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Abstract—Advancing the current Advanced Driver Assistance
Systems (ADAS) is coupled with introducing novel technologies
into the automotive domain such as Light Detection and Ranging
(LiDAR). LiDAR is attributed as a key-technology that will be
one of the key enablers for safe and reliable automated driving.
Considering the fact that vehicles nowadays rely on the driver
in safety-critical situations leads to the problem that in a fully-
automated driving scenario the vehicle needs to control every
possible situation on its own. This increases the requirements
and the overall safety level of the system but also for each
component and needs a gradual transition from fail-safe to fail-
operational behvior at least as long as the occupants and other
road participants could be endangered.
This publication introduces a novel system architecture of a
fail-operational 3D Flash LiDAR System that enables dynamic
system degradation during run-time as well as internal built-in
self-test (BIST) for automated failure injection tests. The novel
fail-operational system architecture is able to handle critical
temperature ranges as well as long-term memory faults.

Index Terms—Automotive LiDAR, Fail-Operational, Degrada-
tion, Dynamic Safety, Memory Faults

I. INTRODUCTION

The concept of fail-safe behavior is one of the key method-
ologies that is used in the automotive domain for safety-critical
systems to handle failures during run-time [2]. However, this
concept will not fullfill the requirements of future fully-
automated driving vehicles because of the need of a human

Fig. 1. PRYSTINE’s concept view of a fail-operational urban surround
perception system [1].
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Abstract—In recent years, fields such as industrial automation,
virtual and augmented reality and autonomous robotics increased
the demand for location-awareness of electronic devices. Image
sensor based inside-out localization and tracking systems are
sufficiently accurate to determine the position and orientation
of electronic devices. Without additional sensors however, these
systems are impaired in reaching high update-rates, handling fast
motions, and tend to be unable to provide localization with low
latency.

We present a new localization approach in our work, using
Time-of-Flight 3D sensors in combination with small reflective
markers. This allows to establish high-performance optical lo-
calization systems, delivering the position and orientation of a
device at a rate of several hundred Hz. A novel Time-of-Flight
3D sensing procedure is introduced, enabling to measure the
3D positions of fast moving targets at unprecedented frame-
rates. With this work, we aim to close the gap between indoor
positioning and motion tracking, enabling a new class of location-
aware devices.

I. INTRODUCTION

In the past, indoor positioning and pose tracking have been
widely regarded as separate disciplines. If electronic devices
are however capable to determine their pose (position and
orientation) at a high update-rate, the demands for indoor
positioning and motion tracking applications can be satisfied
in a unified system. Consumer electronics in the fields of
augmented and virtual reality are among the most demanding
applications for such pose estimation systems. Since pose-
depended information is embedded into the user’s viewpoint,
low latency and high pose estimation update-rates are crucial
for the users experience.

Positioning and tracking systems based on 2D cameras are
well established. Since conventional image sensors need to
capture light for a certain time and then digitize every pixel on
each frame, the frame-rate is limited. State-of-the-art solutions
hence require additional sensors to satisfy the demand for high
update-rates and low latencies.

This work proposes a system consisting solely on ToF
sensors. It can be included on a device and is capable of
determining its pose at high update-rates. The basic concept
is illustrated in Fig. 1. Time-of-Flight camera emits light and
captures 3D images of reflective markers. In contrast to active
beacon based systems, small randomly distributed reflectors
drastically reduce the infrastructure effort of a positioning
system. A device equipped with a ToF imaging sensor, can use
distance measurements to determine the relative 3D position

Fig. 1. The principle of our proposed positioning system. A Time-of-Flight
3D imaging system determines its pose by sensing reflective markers.

Fig. 2. The principle of Time-of-Flight 3D imaging, obtained with changes
from [4].

of each visible marker. Since ToF sensors are capable of
measuring distances with the correct scale, the pose to a real
world coordinate system can be determined by applying 3D
pointcloud matching methods. Since the signal quality is vastly
improved from reflecting targets [1], short exposure times in
the range of 30 to 200 microseconds are possible.

A. Time-of-Flight 3D Imaging

Time-of-Flight sensors [2] are miniaturized depth sensing
systems, which are increasingly included into augmented
reality smartphones and embedded systems [3]. ToF sensors
work by measuring the time it takes for light to travel from
the camera to the scene and back to the sensor. This produces
images, where each pixel encodes the distance between the
camera and corresponding objects.978-1-5090-6299-7/17/$31.00 c© 2017 European Union

Fig. 2. Conceptional overview of a 3D Flash LiDAR system [3].

driver as a fall-back scenario who is able to control the vehicle.
Future fully-automated driving vehicles that are able to provide
driving services at SAE Automated Driving Level 4 or 5 will
control all possible driving scenarios on their own, including
situations in which safety-critical systems partly fail [4]. This
fact will force a paradigma change and requires a transition
from fail-safe behavior to fail-operational behavior. Especially
sensors that are responsible for providing environmental per-
ception data needs to be highly robust and safe. This key
requirement for future automated driving systems has already
been identified by the European research project PRYSTINE
(Programmable Systems for Intelligence in Automobiles). One
of the key goals of PRYSTINE is introducing a novel Fail-
Operational Urban Surround perception (FUSION) which is
based on LiDAR and RADAR sensors as seen in Figure 1.
FUSION will be an enabler for safe automated driving in urban
and rural environments [1].

In contrast to RADAR, which is already widely used in
the automotive domain for ADAS such as Adaptive Cruise
Control (ACC), is LiDAR not very common in the aumototive
domain yet because of the high costs of the current mechanical
spinning LiDAR systems [5], [6]. One possible key changer
could be the novel 1D MEMS Micro-Scanning LiDAR system
concept, as seen in Figure 2, by Druml et al. which will reduce
the costs to approximately 250 Dollar and enables robust and
safe automated driving functionalities for middle class vehicles
[7]. This novel system is based on a scanning technology



which is enabled by an oscillating MEMS mirror. On the other
hand there are also non-scanning LiDAR systems such as the
diffuse light cone Flash LiDAR system as seen in Figure 2
that are already available on the market.

This publication describes a novel fail-operational, safety-
critical Automotive 3D Flash LiDAR system architecture that
enables degradation of specific functions to guarantee the
correct behavior of the system in case of failures. Our provided
solution makes the following fundamental contributions:

• Describing 3D Flash LiDAR degradation possibilities that
enables correct data for other ADAS and ensures safe
driving.

• Providing a prototype that proves feasibility of a novel
fail-operational 3D Flash LiDAR system architecture that
enables degradation from a safety point of view.

• Introducing a novel test platform that is able to verificate
the novel introduced degradation functions of the 3D
Flash LiDAR prototype.

This paper is structured as follows. Section I gives a short
introduction into the topic and what research output is pro-
vided by this publication. In Section II, we are providing
information about current challenges and other related work in
the topic of fail-operational 3D Flash LiDAR systems. Section
III introduces our novel fail-operational 3D Flash LiDAR
system architecture that enables degradation of safety-critical
functions. The evaluation and results can be seen in Section
IV such as the Graphical Control Interface that enables the
testing of the novel degradation functions of the implemented
prototype. Finally, we concluded our results in Section V.

II. RELATED WORK

The change from traditional controlled vehicles by the driver
to autonomous driving vehicles requires higher safety stan-
dards. The discontiunation of the driver as a control backup in
case of a failure will enforce a disruptive change of designing
safe and robust vehicles [8]. Any failure that appears during
driving must be handled by the system itself and is also known
as fail-operational behavior [9], [10]. For this purpose, specific
functions must be degraded to a point at which the vehicle still
can operate in a safe way that decreases the probability of an
accident to the lowest possible limit.

In the next few years, Light Detection and Ranging (LiDAR)
will be one of key sensors for environmental perception in
automated driving vehicles [1], [7]. LiDAR scans the front
scene of the sensor by emiting a laser pulse that is reflected
by the objects of the scenery and is received by a photo diode.
The measurement range from the LiDAR system is primary
defined from the output power of the laser. Because of eye-,
and skin-safety the laser must guarantee a specific maximal
output power. For that reason, the maximal possible distance
is already limitied through that safety specification and can not
be extended by increasing the laser power [7]. One negative
side effect is that the output power of a laser is affected by
the overall temperature. Yulianto et al. [11] described that
with a Distributed Feedback Laser (DFL) with an operation
wavelength of 1550 nm the slope of the output power was

-0.33 mW/◦C. Additionally, also the wavelength is varying by
the laser temperature with a slope of 0.094nm/◦C. Transfer
to the automotive LiDAR system would result in a possible
decrease of the maximum operation distance. In the worst
case, this would vary during operation based on the current
temperature that is mostly influenced by the current weather
conditions.

Volatile Memory such as Random-Access Memory is nec-
essary to cache sensor data as well as computation results.
Especially for LiDAR big on-chip memory arrays are needed
[12]. Maksymova et al. [13] described that the amount of data
that needs to cached depends on several key parameters of the
LiDAR system such as image and range resolution, frames
per second, sampling frequency, and others. The last trend
in the automotive domain is to use for highly computational
tasks consumer modified hardware components such as the
Intel Atom A3900 [14]. In the A3900 datasheet [15] the sup-
ported memory technology are DDR3L/ECC and LPDDR4.
The DDR3L/ECC technology is the same technology that
are used in business servers. For Dynamic Random Access
Memory (DRAM) technology several research studies are
already available that are describing potential soft errors,
transient errors and failures in these modules and counter mea-
sures [16]–[19]. Especially the large-field study of Schroeder
et al. [19] must be emphasized that describes a study of
DRAM errors within two years considering multiple vendors,
generations, technologies and capacities. Most of the annual
incidence errors that appeared were corrected by the internal
Error Correction Code (ECC) but there were about 1.3% of
uncorrectable errors per machine and 0.22% uncorrectable
errors per DIMM. An interesting fact is that temperature does
not impact the incidence of memory errors but utilization does
[19]. This results in the requirement to consider the utilization
of the volatile memory module of the LiDAR system.

In general, fail-operational behavior of safety-critical em-
bedded systems can be achieved by introducing redundant
subsystem design and diversity, as described in the IEC 61508
safety standard of Electronic systems [20]. Fail-Operational
behavior is particularly important for systems that do not
have the possibility of a mechanical fallback. For that specific
systems novel system design approaches have been introduced
such as the 2-out-of-3 architecture. In this case, three inde-
pendent systems perform the same tasks and a voting system
decides about the correctness of the output [9]. But there
are also researchers in the field of fail-operational systems
that are enabling this function by introducing a dynamic
configuration of their system [21], [22]. For that reason, we are
inclined to take the path of dynamically reconfiguring the 3D
Flash LiDAR system during operation, in case of failure, and
enable a continuous performance of the system to keep up the
overall automated driving service as long as needed to prevent
any fatal damages. Additionally, we want to decrease the
possibility of material fatigue of the components and increase
the mean-time-between failures. This will increase the overall
safety of the whole system as well as decrease possible costs
caused by guarantee services.



III. FAIL-OPERATIONAL 3D FLASH LIDAR SYSTEM

This Section gives an overview about the novel developed
fail-operational 3D Flash Lidar system architecture that sup-
ports automatic degradation in failure cases as well as to take
care of safety-critical hardware parts to extend lifetime.

The main focus of the novel system architecture is to
determine on a safe behavior in any possible situation. For this
purpose, we identified that one of the worst scenarios is driving
with high speed on a highway, fully-autonomous and the driver
is distracted while the Lidar system is losing environmental
perception. In this particular situation, the vehicle is not able to
recover from this situation on its own. Traditionally developed
vehicles that rely on the driver as a backup system would
cause a crash with all consequences such as harmed passengers
or worse. Modern vehicles with functionalities that consider
self-driving behavior such as Adaptive Cruise Control (ACC)
require higher standards for safety-critical components such
as fail-operational behavior. For this reason, we decided to
develop a novel system architecture for an environmental
perception system that is based on Lidar that fulfills the
requirement of a fail-operational behavior and is able to
degrade functions in specific context such as driving in an
overcrowded city or on a highway.

A. System Architecture

In Figure 4 an overview of the novel fail-operational 3D
Flash Lidar system architecture can be depicted. The system
is divided in two main parts:

• System Control
This sub-system is handling the configuration of the

overall system as well as controlling the overall fail-
operational processes and application.

• Memory Manager
The Memory Manager is responsible for storing data on
the memory and continously checks integrity of individ-
ual memory blocks.

The system receives raw input data from the 3D Flash Lidar
system to the Memory Manager. The Memory Manager is
able to disable specific memory blocks in case of failures
and this allows a longer lifetime of the system because faulty
memory blocks can be disabled and does not infect higher
layers of the processing chain. This data is processed by the
application that is fetching the data from the memory. The
system controller can be configured by external configuration
with focus on preserving memory faults and temperature
caused faults. To achieve these targets the control system is
able to modify frames per second of the output data, frequency
of the processor or resolution of the output image.

1) Preserving Memory Faults: As we have described the
common problem with worn out EMMC chips from Tesla
vehicles in the Section about Related Work clearly depicts
that memory faults could be one of the most common faults
for future fully-autonomous vehicles that are using centralized
computation platforms for computational tasks [23]. To pre-
vent this circumstance the novel system architecture focuses
on this specific problem by enabling an automatic degradation
mode for memory faults.

The novel memory monitoring system can be depicted in
Figure 5 and is storing the raw data from the 3D Flash Lidar
system into the memory block according the index array.
Any fault inside the memory block that gets detected triggers

Fig. 3. Graphical Control Interface that depicts the current live camera data, settings, and current monitoring data.



the automatic memory degradation algorithm that is deciding
about the further processing of the faulty memory block.
For this purpose, the algorithm is introducing a generation
based memory management. In the first generation are memory
blocks without any occuring error. The second generation
are memory blocks that are classified as suspicious and the
memory blocks get verified more frequently. This prevents that
memory blocks are getting excluded because of external events
such as soft errors. In the third generation are memory blocks
placed that are not reliable enough anymore and are excluded
from storing data.

2) Efficient and Effective Resolution Adaption: One of the
most effective ways of reducing computational utilization is
about reducing raw pixel data. For this purpose, the novel sys-
tem architecture is reducing the amount of pixels by skipping
a specific amount of pixels as depicted in Figure 6. The system
is able to automatically degradate the resolution between the
factor one to four. The main focus from a safety point of
view was to still provide enough information inside the image
that computer vision algorithm are still able to interpret the
data in a correct way as seen in Figure 7. Additionally, the
system is not able to reduce the resolution in each situation.
In specific situations, such as driving in an overcrowded city
the system should not be able to reduce the pixels on purpose.
Just in emergency cases, if the system would otherwise result
in a total failure a degradation is allowed. In other non safety-
critical cases like driving on a highway the system is allowed
to reduce the resolution on purpose. This guarantees a safe
behavior for passengers as well as other road participants.

B. Integrated Testing Functions

1) Realistic Scenario Simulations: Testing is necessary
to provide information about reliability and utilization of
hardware components. Nowadays, most of these tests are
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Fig. 4. Overview of the novel fail-operational 3D Flash Lidar system
architecture.
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Fig. 5. Concept of the preserving memory fault system architecture that has
been integrated in the novel fail-operational 3D Flash Lidar platform.
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Fig. 6. Overview of the efficient and effective resolution adaption algorithm
that is implemented in the novel fail-operational 3D Flash Lidar system.

Fig. 7. Adaptive resolution example containing grey images and depth
information images of the 3D Flash Lidar system of a bicycle scene. The
resolution is reduced from 352x287 (left photo) to 118x96 (right photo).

performed by statistical tests in which specific road types
are mapped to a specific time. In the near future, these tests
can be advanced to more sophisticated real data scenarios
that can be obtained by using data from the European eCall
system or similar systems that are able to provide GPS data.
These data sets can be used to test the real utilization of the
hardware components and enable more precise optimization of
specific components with the positive side-effects of reducing
ressource usage and costs.

For this reason, our novel system architecture is able to test
real-life usage scenarios in which road trips can be defined
and virtually driven. The system will automatically change
the configuration of the 3D Flash Lidar system based on the
actual road type. This enables the testing of the system in real
scenarios to increase the trustiness of the resulting reliability
estimation.

2) Memory Fault Injection: Memory is necessary to store
data from the sensors as well as computational results. The
integrity of the stored values inside volatile memory is crucial
for correct computation and reliable quality of the output
results. If individual memory blocks get corrupted over time
results in an unpredictable behavior of the whole system.
For that reason, the novel system architecture has built-in a
memory fault injection module that is able to disable a variety
of memory blocks as seen in Figure 5. This enables us to
verify the degradation and fail-operational behavior functions
of the novel system.

C. Graphical Control Interface

The novel system-architecture offers a TCP/IP interface
which offers a service providing environmental perception data



Fig. 8. Test run of a an average commuter route between Graz and Hartberg and the related monitoring data.

as well as monitoring data to external systems. As a client we
have developed a Graphical Control Interface (GCI) as seen in
Figure 3 that displays the current live data from the 3D Flash
LiDAR system as well as current safety-critical sensor values
such as temperature, frame rate, memory usage, and CPU
frequency. The GCI also provides settings for testing specific
usage scenarios of the whole platform to derive behavioral
patterns such as temperature trends and CPU throttling.

IV. RESULTS

This Section describes the results of the novel fail-
operational 3D Flash Lidar system architecture that enables
the degradation of the environmental perception functionality
and enables a safe driving for SAE Automated Driving Level
4 vehicles.

Figure 3 clearly depicts the graphical monitoring system
of the novel implemented system-architecture. On the left
side, the current environmental perception data (Depth Image
and Gray Image) can be seen and is continously updating
with a specific frame rate. The target frame rate can be
specified in the upper section of the GCI as well as the
maximal targeted temperature and the preferred resolution
including the minimum allowed resolution. This resolution can
be adapted according driving scenarios such as urban areas
or highways. Additionally the framework allows to ingore
individual parameters such as temperature, resolution or frame
rate. In the middle section of the GCI the current sensor values
of the overal system architecture temperature, frame rate of the

live 3D Flash LiDAR data, CPU frequency and memory usage
can be seen. On the right side is the memory fault injection
module that is able to disable a specific amount of memory
blocks for testing degradation and fail-operational behavior
considering memory faults.

The novel system architecture was tested with the integrated
realistic scenario simulation with a virtual test run between
Graz and Hartberg. The route was separated into specific sec-
tions with meta information about road type and speed limit.
Generally these values would be provided by additional ADAS
that are common available in middle-class cars nowadays.

In Figure 8 the route is shown on a map as well as
the resulting monitoring results of the test run. The main
focus in this scenario was the strict adherence of the specific
system architecture temperature of 70◦C because temperature
is one of the most crucial parameters for reliability. Higher
temperature directly results in lower reliability and higher FIT
Rates. Higher FIT Rates could potentially degrade the overall
Automotive Safety Integrity Level. The temperature diagram
clearly depicts that this limit was strictly adhered by the system
architecture by dynamically adapting the CPU frequency of the
computation platform as well the frame rate of the 3D Flash
LiDAR sensor.

V. CONCLUSION

In this publication we have introduced a novel fail-
operational 3D Flash LiDAR system architecture. The ar-
chitecture enables the system to dynamically adapt specific



parameters to strictly adhere safety-critical parameters such as
temperature.

In Section III we have described the general system-
architecture and implemented built-in self tests. Considering
the last trends in the automotive industry of using EMMC
memory and the resulting faults [23] we have integrated a
memory fault injection module that is able to simulate faults in
multiple memory blocks to test the direct and indirect impacts
of these failures. The resulting degradation of the system by
adapting the environmental perception data resolution shows
that the scene still could be properly interpreted by higher
level computer vision algorithms as seen in Figure 6.

The test scenario of an average commuter route test run
between Graz and Hartberg that is described in Section IV
clearly indicates the effective performance of the dynamic
degradation of the platform considering specific safety-critical
parameters. In this case, we have set the limit of the general
system architecture temperature range because this is one
of the most crucial parameters for reliability for hardware
components.

In the next few years, vehicles will perform the transfor-
mation from SAE Automated Driving Level 3 to 4 and this
will require higher safety standards because of the absence
of a human driver that is able to retake the driving control.
For this reason, reliability and fail-operational behavior will
become to the most important parameters for the general
safety of road vehicles. The novel introduced fail-operational
3D Flash LiDAR system architecture proves feasibility and
gives an overview of a possible solution for safety-critical
environmental perception sensors such as LiDAR.
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[9] A. Kohn, M. Käßmeyer, R. Schneider, A. Roger, C. Stellwag, and
A. Herkersdorf, “Fail-operational in safety-related automotive multi-
core systems,” in 10th IEEE International Symposium on Industrial
Embedded Systems (SIES), June 2015, pp. 1–4.

[10] N. Druml, O. Veledar, G. Macher, G. Stettinger, S. Selim, J. Reckenzaun,
S. E. Diaz, M. Marcano, J. Villagra, R. Beekelaar, J. Jany-Luig,
M. M. Corredoira, P. Burgio, C. Ballato, B. Debaillie, L. van Meurs,
A. Terechko, F. Tango, A. Ryabokon, A. Anghel, O. Icoglu, S. S. Kumar,
and G. Dimitrakopoulos, “Prystine - technical progress after year 1,” in
2019 22nd Euromicro Conference on Digital System Design (DSD), Aug
2019, pp. 389–398.

[11] N. Yulianto, B. Widiyatmoko, and P. S. Priambodo, “Temperature effect
towards dfb laser wavelength on microwave generation based on two
optical wave mixing,” Int. J. Optoelectron. Eng., vol. 5, no. 2, pp. 21–
27, 2015.

[12] I. Maksymova, C. Steger, and N. Druml, “Extended delta compression
algorithm for scanning lidar raw data handling,” International Confer-
ence on Intelligent Robots and Systems, 2019.

[13] I. Maksymova, N. Druml, and C. Steger, “Review of lidar sensor data
acquisition and compression for automotive applications,” in Multidis-
ciplinary Digital Publishing Institute Proceedings, vol. 2, no. 13, 2018,
p. 852.

[14] S. Han, Y. Wang, S. Liang, S. Yao, H. Luo, Y. Shan, and J. Peng,
“Reconfigurable processor for deep learning in autonomous vehicles,”
2017.

[15] Intel, “Intel Atom Processor E3900 and A3900 Serie Datasheet,” 2019.
[16] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design

Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.
[17] C.-L. Chen and M. Hsiao, “Error-correcting codes for semiconductor

memory applications: A state-of-the-art review,” IBM Journal of Re-
search and development, vol. 28, no. 2, pp. 124–134, 1984.

[18] A. H. Johnston, “Scaling and technology issues for soft error rates,”
2000.

[19] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
a large-scale field study,” ACM SIGMETRICS Performance Evaluation
Review, vol. 37, no. 1, pp. 193–204, 2009.

[20] I. E. Comission, “IEC 61508 - Functional Safety of Electrical/Electron-
ic/Programmable Electronic Safety Related Systems,” 2009.

[21] T. Ishigooka, S. Honda, and H. Takada, “Cost-effective redundancy
approach for fail-operational autonomous driving system,” in 2018 IEEE
21st International Symposium on Real-Time Distributed Computing
(ISORC), May 2018, pp. 107–115.

[22] F. Oszwald, J. Becker, P. Obergfell, and M. Traub, “Dynamic reconfig-
uration for real-time automotive embedded systems in fail-operational
context,” in 2018 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), May 2018, pp. 206–209.

[23] T. Nardi, “Worn Out EMMC Chips Are Crippling Older Teslas,”
Oct 2019. [Online]. Available: https://hackaday.com/2019/10/17/
worn-out-emmc-chips-are-crippling-older-teslas/




