Understanding Neural Networks with Information Theory

Bernhard C. Geiger
Joint Work with Rana Ali Amjad and Kairen Liu
Who are we?
Overview

1 Logistic Regression

2 Neural Networks

3 Understanding NNs

4 Information-Ordered Cumulative Ablation

5 Conclusion
Binary Classification Task
Logistic Regression

- learn *class label* (red, blue) from *features* X_1 and X_2
Logistic Regression

- learn *class label* (red, blue) from *features* X_1 and X_2
- logistic regression is a linear model
Logistic Regression

- learn *class label* (red, blue) from *features* X_1 and X_2
- logistic regression is a linear model
- logistic regression yields class probabilities:

 If $X_1 = x$ and $X_2 = x'$, then the probability that Y is red is p.
Logistic Regression (cont’d)

\[\mathbb{P}[Y = \text{red}] = \sigma(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0) \]

- \(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0 < 0 \), then \(Y \) is more likely to be blue
- \(w_1, w_2, \) and \(w_0 \) define decision boundary
- **Task:** Learn \(w_1, w_2, \) and \(w_0 \) from data
- (typically: cross-entropy loss + \(L_2 \) regularization)
Logistic Regression (cont’d)

\[\mathbb{P}[Y = \text{red}] = \sigma(w_1 \cdot X_1 + w_2 \cdot X_2 + w_0) \]
Binary Classification using Logistic Regression
Binary Classification (slightly more complicated)
Binary Classification (slightly more complicated)
Logistic Regression Fails...

...if the data is not linearly separable
Logistic Regression Fails. . .

. . . if the data is not linearly separable

Idea: Stack multiple linear regression models on top of each other!
Logistic Regression Fails...
...if the data is not linearly separable

Idea: Stack multiple linear regression models on top of each other!
Binary Classification with a Neural Network
Binary Classification with a Neural Network
Binary Classification with Neural Networks

Input X

Latent L_1

Latent L_2

Latent L_3

Latent L_4

Output \hat{Y}

X_1

X_2

X_3

X_4
Binary Classification with Neural Networks

- Still easy to understand with two input features, hidden layers of width two (2D scatter plot)
- What happens for higher-dimensional input?
 - MNIST: input has 784 dimensions
 - CIFAR-10: input has 3×1024 dimensions
 - ...
- What happens for wider layers?
 - e.g., a 100 – 100 MLP trained on MNIST?
 - ...
Two Approaches to Understand NNs

► Explainable/Interpretable AI:
 • What input features led to the decision?\(^1\)
 • What training data was most influential for this decision?\(^2\)
 • Simplified decision boundaries\(^3\), extract decision procedure, etc.
 • ...

► How do NNs work internally?
 • Behavior during training
 • Why do NNs generalize so well?\(^4\)
 • Importance of individual (“cat”) neurons
 • ...

\(^1\) Montavon, Samek, and Müller, “Methods for interpreting and understanding deep neural networks”, 2018
\(^2\) Koh and Liang, “Understanding Black-box Predictions via Influence Functions”, 2017
\(^3\) Ribeiro, Singh, and Guestrin, ““Why should I trust you?” Explaining the predictions of any classifier”, 2016
\(^4\) Frankle and Carbin, “The Lottery Ticket Hypothesis: Training Pruned Neural Networks”,
Two Approaches to Understand NNs

▶ Explainable/Interpretable AI:
 • What input features led to the decision?¹
 • What training data was most influential for this decision?²
 • Simplified decision boundaries³, extract decision procedure, etc.
 • ...

▶ How do NNs work internally?
 • Behavior during training
 • Why do NNs generalize so well?⁴
 • Importance of individual ("cat") neurons
 • ...

¹Montavon, Samek, and Müller, “Methods for interpreting and understanding deep neural networks”, 2018
²Koh and Liang, “Understanding Black-box Predictions via Influence Functions”, 2017
³Ribeiro, Singh, and Guestrin, “"Why should I trust you?" Explaining the predictions of any classifier”, 2016
⁴Frankle and Carbin, “The Lottery Ticket Hypothesis: Training Pruned Neural Networks”, 2019
Prerequisite: Mutual Information

\[I(U; V) \]

- is defined for general random variables
- measures statistical dependence between \(U \) and \(V \)
- generalizes (linear) correlation
- is zero if and only if \(U \) and \(V \) are independent
- is invariant under invertible maps
- (can be difficult to estimate)
Information Plane Analyses

\[X_1, X_2, X_3, X_4 \rightarrow L_1 \rightarrow L_2 \rightarrow L_3 \rightarrow L_4 \rightarrow \hat{Y} \]
Information Plane Analyses (cont’d)

Intermediate representation L (NN layer) should

P1 contain sufficient info for classification
- e.g., L should suffice to determine whether X is a cat or a dog

P2 ...but not more info than necessary (compression)
- e.g., L should not contain information about the color of the fur, length of ears, etc.

5 Alemi et al., “Deep Variational Information Bottleneck”, 2017
6 Kolchinsky, Tracey, and Wolpert, “Nonlinear Information Bottleneck”, 2019
Information Plane Analyses (cont’d)

Intermediate representation \(L \) (NN layer) should

- **P1** contain sufficient info for classification
 - e.g., \(L \) should suffice to determine whether \(X \) is a cat or a dog

- **P2** ...but not more info than necessary (compression)
 - e.g., \(L \) should not contain information about the color of the fur, length of ears, etc.

\[
P1 \iff \text{large } I(Y; L) \\
P2 \iff \text{small } I(X; L)
\]

5 Alemi et al., “Deep Variational Information Bottleneck”, 2017
6 Kolchinsky, Tracey, and Wolpert, “Nonlinear Information Bottleneck”, 2019
Information Plane Analyses (cont’d)

Intermediate representation L (NN layer) should

$\textbf{P1}$ contain sufficient info for classification

- e.g., L should suffice to determine whether X is a cat or a dog

$\textbf{P2}$...but not more info than necessary (compression)

- e.g., L should not contain information about the color of the fur, length of ears, etc.

\[P1 \Leftrightarrow \text{large } I(Y; L) \]
\[P2 \Leftrightarrow \text{small } I(X; L) \]

Idea has been successfully applied in NN training5,6,7

5Alemi et al., “Deep Variational Information Bottleneck”, 2017

6Kolchinsky, Tracey, and Wolpert, “Nonlinear Information Bottleneck”, 2019

Information Plane Analyses (cont’d)

Estimate how $I(X; L)$ and $I(Y; L)$ evolve during NN training:

$\hat{I}(X; L)$

$\hat{I}(Y; L)$

Shwartz-Ziv and Tishby, *Opening the Black Box of Deep Neural Networks via Information*, 2017
Information Plane Analyses (cont’d)

Hot Topic, but many open questions:

- requires estimating mutual information, which is problematic

- connection to generalization not fully clear, e.g.

- information plane appears to show geometric picture (clustering)

- current results in the literature are inconsistent (is there a compression phase?, etc.)

- ongoing debate

9 Amjad and Geiger, “Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle”, 2020

12 Geiger, *On Information Plane Analyses of Neural Network Classifiers – A Review*, 2020
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $\mathcal{D} = \{D_1, \ldots, D_m\}$

13 Vera, Piantanida, and Vega, “The Role of the Information Bottleneck in Representation Learning”, 2018

14 Shwartz-Ziv, Painsky, and Tishby, *Representation Compression and Generalization in Deep Neural Networks*, 2018

15 Xu and Raginsky, “Information-theoretic analysis of generalization capability of learning algorithms”, 2017

16 Bu, Zou, and Veeravalli, “Tightening Mutual Information Based Bounds on Generalization Error”, 2019

17 Pensia, Jog, and Loh, “Generalization Error Bounds for Noisy, Iterative Algorithms”, 2018

18 Achille and Soatto, “Emergence of Invariance and Disentanglement in Deep Representations”, 2018
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $D = \{D_1, \ldots, D_m\}$

$\propto \sqrt{I(X; L)} \frac{\log m}{\sqrt{m}}$, see\(^{13}\)

$(2^{I(X; L)} + \log(2/\delta)) / (2m)$ with probability $1 - \delta$, see\(^{14}\)

\(^{13}\) Vera, Piantanida, and Vega, “The Role of the Information Bottleneck in Representation Learning”, 2018

\(^{14}\) Shwartz-Ziv, Painsky, and Tishby, *Representation Compression and Generalization in Deep Neural Networks*, 2018

\(^{15}\) Xu and Raginsky, “Information-theoretic analysis of generalization capability of learning algorithms”, 2017

\(^{16}\) Bu, Zou, and Veeravalli, “Tightening Mutual Information Based Bounds on Generalization Error”, 2019

\(^{17}\) Pensia, Jog, and Loh, “Generalization Error Bounds for Noisy, Iterative Algorithms”, 2018

\(^{18}\) Achille and Soatto, “Emergence of Invariance and Disentanglement in Deep Representations”, 2018
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size m of dataset $\mathcal{D} = \{D_1, \ldots, D_m\}$

- $\propto \sqrt{I(X; L)} \frac{\log m}{\sqrt{m}}$, see13
- $(2^I(X; L) + \log(2/\delta)) / (2m)$ with probability $1 - \delta$, see14
- $\propto \sqrt{\frac{1}{m} I(D; A(D))}$, see15
- $\propto \frac{1}{m} \sum_{i=1}^{m} \sqrt{I(D_i; A(D))}$, see16
- extensions to SGD-type training17

13 Vera, Piantanida, and Vega, “The Role of the Information Bottleneck in Representation Learning”, 2018

14 Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018

15 Xu and Raginsky, “Information-theoretic analysis of generalization capability of learning algorithms”, 2017

16 Bu, Zou, and Veeravalli, “Tightening Mutual Information Based Bounds on Generalization Error”, 2019

17 Pensia, Jog, and Loh, “Generalization Error Bounds for Noisy, Iterative Algorithms”, 2018

18 Achille and Soatto, “Emergence of Invariance and Disentanglement in Deep Representations”, 2018
Bounds on Generalization Gap

i.e., difference between expected and estimated loss as a function of size \(m \) of dataset \(\mathcal{D} = \{ D_1, \ldots, D_m \} \)

\[\propto \sqrt{I(X; L)} \frac{\log m}{\sqrt{m}}, \text{ see}^{13} \]

\[(2^{I(X; L)} + \log(2/\delta)) / (2m) \text{ with probability } 1 - \delta, \text{ see}^{14} \]

\[\propto \sqrt{\frac{1}{m} I(\mathcal{D}; A(\mathcal{D}))}, \text{ see}^{15} \]

\[\propto \frac{1}{m} \sum_{i=1}^{m} \sqrt{I(D_i; A(\mathcal{D}))}, \text{ see}^{16} \]

\[\text{extensions to SGD-type training}^{17} \]

\[\text{see also}^{18} \]

13 Vera, Piantanida, and Vega, “The Role of the Information Bottleneck in Representation Learning”, 2018
14 Shwartz-Ziv, Painsky, and Tishby, Representation Compression and Generalization in Deep Neural Networks, 2018
15 Xu and Raginsky, “Information-theoretic analysis of generalization capability of learning algorithms”, 2017
16 Bu, Zou, and Veeravalli, “Tightening Mutual Information Based Bounds on Generalization Error”, 2019
17 Pensia, Jog, and Loh, “Generalization Error Bounds for Noisy, Iterative Algorithms”, 2018
18 Achille and Soatto, “Emergence of Invariance and Disentanglement in Deep Representations”, 2018
What about Individual Neurons?
What about Individual Neurons? (cont’d)

How important is the \(\ell \)-th neuron in the \(i \)-th layer?
What about Individual Neurons? (cont’d)

How important is the ℓ-th neuron in the i-th layer?

- compute mutual information $I(Y; L_{i,\ell})$
- much easier to estimate than $I(Y; L_i)$ (whole layer) or $I(X; L_i)$ (X is high-dimensional/continuously distributed)
- **Hypothesis**: Large values indicate that the ℓ-th neuron in the i-th layer is important for the task
Information-Ordered Cumulative Ablation

- **Ablation**: Turning off individual neurons, i.e., set $L_{i,\ell} = 0$

19Liu, Amjad, and Geiger, *Understanding Individual Neuron Importance Using Information Theory*, 2018
Information-Ordered Cumulative Ablation19

- **Ablation**: Turning off individual neurons, i.e., set $L_{i,\ell} = 0$
- **Cumulative** Ablation: Turn off more and more neurons and see how, e.g., classification accuracy is affected

19Liu, Amjad, and Geiger, *Understanding Individual Neuron Importance Using Information Theory*, 2018
Information-Ordered Cumulative Ablation

▶ **Ablation**: Turning off individual neurons, i.e., set $L_{i,\ell} = 0$

▶ **Cumulative Ablation**: Turn off more and more neurons and see how, e.g., classification accuracy is affected

▶ **Information-Ordering**: Turn off the k neurons with lowest (highest) mutual information and compare with turning off neurons randomly

19 Liu, Amjad, and Geiger, *Understanding Individual Neuron Importance Using Information Theory*, 2018
MNIST 100 – 100, L_2 regularization
MNIST 100 – 100, Dropout

Classification accuracy vs. Number of neurons ablated.
What about Individual Neurons? (cont’d)

How important is the ℓ-th neuron in the i-th layer?

- it seems as if neurons with high mutual information are not useful/hurting classification performance
- reproduces results from\(^\text{20}\)

\^\text{20}: Morcos et al., *On the importance of single directions for generalization*, 2018
What about Individual Neurons? (cont’d)

How important is the ℓ-th neuron in the i-th layer?

- It seems as if neurons with high mutual information are not useful/hurting classification performance
- Reproduces results from Morcos et al., *On the importance of single directions for generalization*, 2018

Let’s take a closer look!
MNIST 100 – 100, Dropout, Layer 1

![Graph showing classification accuracy vs number of neurons ablated.](image)

- **Classification accuracy**
- **Number of neurons ablated**
- **entropy**
- **mutual information**
- **KL selectivity**
- **random**
MNIST 100 – 100, Dropout, Layer 2
MNIST 100 – 100, Dropout

![Graph showing Mutual Information and KL selectivity across hidden layers]
What about Individual Neurons? (cont’d)

How important is the ℓ-th neuron in the i-th layer?

- it seems as if neurons with high mutual information are not useful/hurting classification performance\(^{21}\)
- **BUT**: neurons with high mutual information are useful within a given layer
- layers have different distribution of mutual information values
- \Rightarrow Simpson’s paradox

\(^{21}\)Morcos et al., *On the importance of single directions for generalization*, 2018
FashionMNIST 100 – 100, L_2, Layer 1

![Graph showing classification accuracy vs number of neurons ablated for different metrics: entropy, mutual information, KL selectivity, and random.](image)
FashionMNIST $30 - 30$, L_2, Layer 1
CIFAR-10 250 – 500 – 250 – 500, L_2, Layer 3
Information-Ordered Cumulative Ablation

What else can we learn?
CIFAR-10 250 – 500 – 250 – 500, \(L_2 \), Layer 3

- 40 neurons with highest mutual information suffice
- removing 60 neurons with highest mutual information destroy performance
- \(\approx 200 \) neurons are inactive
CIFAR-10 250 – 500 – 250 – 500, \(L_2 \), Layer 4

- 100 neurons with highest mutual information suffice
- removing 250 neurons with highest mutual information destroy performance
- \(\approx 250 \) neurons are inactive
- \(\approx 50-150 \) neurons are redundant
More Insights?

- beyond mutual information
- beyond ReLU activation functions
- beyond L_2 regularization
- effects of quantization
- ...

arXiv:1804.06679v3 [cs.LG]
Conclusion

NNs are difficult to understand, but information theory is powerful:

- Bounds on the generalization error
- Investigating learning behavior
- Interplay between learning and geometric compression
- Importance of individual neurons via ordered cumulative ablation
 - neurons with large mutual information (within a layer) are important for classification
 - mutual information values differ between layers
 - cumulative ablation reveals inactive, redundant, and synergistic neurons
Conclusion

NNs are difficult to understand, but

information theory is powerful:

▶ Bounds on the generalization error
▶ Investigating learning behavior
▶ Interplay between learning and geometric compression
▶ Importance of individual neurons via ordered cumulative ablation
 ● neurons with large mutual information (within a layer) are important for classification
 ● mutual information values differ between layers
 ● cumulative ablation reveals inactive, redundant, and synergistic neurons

Thanks for your attention!