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Abstract. This paper tackles the issue of access control in fully de-
centralised systems. Previously, access control always fell back to some
degree of centralisation. Our work approaches this problem by outsourc-
ing access policy evaluation to the millions of trusted computing bases
already deployed in the form of current Android devices. This assures
correct policy evaluation to both data owners and those seeking data
access. In essence, our solution encrypts to-be-shared data, splits and
wraps the encryption key, and cryptographically binds it to an access
policy. Policies are evaluated by freely selectable evaluators, that do not
need to be enrolled beforehand. Evaluators then interface with attribute
providers during policy evaluation. Each evaluator independently reaches
a conclusion about whether or not to grant access, leading to a decision
by majority vote. We designed this system with practicality and real-
world applicability in mind, meaning that it can be deployed and used
today. We achieve this by relying on efficient primitives and foregoing
expensive cryptographic constructions, making it possible to define even
highly complex access policies. Overall, this presents a clear advantage
over previous concepts.
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1 Introduction

In the past years, decentralisation has been gaining momentum, with cryptocur-
rencies pushing decentralised payment systems, and projects like IPFS 4 advo-
cating decentralised applications. When hosting some service with or without
the help of such frameworks, enforcing access policies is trivial, as every access is

4 https://ipfs.io/

https://www.a-sit.at
https://www.iaik.tugraz.at
https://ipfs.io/
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handled by the entity providing the service. New, previously hardly addressed is-
sues arise, however, when the entity owning some to-be-protected data might not
be available when this data is to be accessed. Most importantly, when advocating
the advantages of decentralised systems, falling back to centralised approaches
diminishes some (if not all) of the inherent advantages of this paradigm. We
therefore firmly believe that fine-grained access control needs to be made avail-
able in a decentralised manner.

We strive for attribute-based access control (ABAC) in this context because
this flexible approach can emulate all other access control schemes. Recent ad-
vancements in implementing and deploying trusted computing at large have put
the realisation of fully decentralised ABAC into reach. The key distinction of
our approach compared to previously theorised concepts is its feasibility under
real-world conditions.

Contribution: We propose Multiply, Divide, and Conquer to enable data
owners to outsource data protected by access policies without the need to be
involved in the data access and policy evaluation process. Since an open, fully
decentralised context without any form of common governance implies mutually
distrusting parties, we explicitly target this setting. We cater to this scenario by
delegating policy evaluation to trusted computing devices. Our design targets
practical applicability in the real world and does not represent a purely aca-
demic scheme. To accomplish this, we propose to utilise recent Android devices,
equipped with trusted hardware modules, capable of extensive remote attesta-
tion capabilities for the policy evaluation process. As we will argue, it is feasible
to delegate policy enforcement to current Android devices outside a data owner’s
control and guarantee correct policy enforcement both to the data owner as well
as to the party seeking to access the policy-protected data. As we aim for prac-
ticality, our scheme is designed to remain efficient even when using complex
policies. We have implemented a prototype and evaluated its performance to
show that this goal was reached in practice.

Our design combines established ABAC frameworks with the trusted com-
puting capabilities of modern Android devices and linear secret sharing. The
decentralisation aspect is upheld by letting data owners freely select instances
for policy evaluation as well as arbitrary attribute providers. In addition, relying
on trusted computing for policy evaluation assures all parties that policies are
evaluated correctly and honestly.
To securely share some data, the data owner defines an access policy and at-
tribute providers. Data is encrypted, the encryption key is split, and each share
is encrypted for a single policy evaluator selected by the data owner. Data, pol-
icy, and encrypted key shares can then be published. Upon data access, policy
evaluators interface with attribute providers for policy evaluation. Each evalua-
tor decides individually whether or not to grant access by divulging its respective
key share to the accessing entity. In essence, if evaluators agree5 to grant access,
the data encryption key can be recovered and data access is thereby granted.

5 No coordination between evaluators is needed.
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2 Background

Multiply, Divide, and Conquer implements fully decentralised ABAC based on
trusted computing and secret sharing. This section therefore provides the neces-
sary background on these topics, with a focus on trusted computing on mobile
devices.

2.1 Secret Sharing

The idea behind generic (k, n) threshold secret sharing is to split up a secret
D among n parties, such that D can be efficiently reconstructed from k shares,
while “knowledge of any k − 1 or fewer Di pieces leaves D completely unde-
termined” [14]. More precisely, we rely on Shamir’s secret sharing, since it (1)
scales well (with the total size of all shares being k · sizeof(D)), (2) can be
implemented efficiently, and (3) reconstruction does not involve the dealer (who
created the shares). As we will argue in Section 4, our design requires no verifi-
ability with respect to the secret sharing scheme.

2.2 Attribute-Based Access Control

Attribute-based access control (ABAC) [4] provides authorisation mechanisms
at a granular level. It achieves access authorisation by evaluating user-, global
environment-, resource- as well as action-attributes to reach a decision. A widely
used industrial standard is the eXtensible Access Control Markup Language
(XACML; [8]), which is one of the most frequently referenced works of generic
ABAC models. It does not, however, provide a standardised way to ensure data
confidentiality. Attribute-based encryption (ABE), on the other hand, crypto-
graphically enforces access control. Some ABE concepts offer properties similar
to our proposal as outlined in Section 6.

2.3 Mobile Trusted Computing

Fides [10] is a scheme to verify the integrity of a remote application using the
attestation capabilities of Android. It requires an Android device with trusted
cryptographic hardware and remote attestation capabilities as supported by de-
vices launched with Android 8.0 or later. The application attempting to prove
its integrity first requests the creation of a public/private keypair from the
hardware-based keystore and an attestation certificate. This certificate contains
hardware-enforced information about the verified boot state and the lock state
of the bootloader, certifying OS integrity and verified boot state. In addition, the
hardware-enforced values include the OS version and its patch level, which makes
it possible to lock out vulnerable smartphones. Furthermore, the attestation cer-
tificate contains information about the application requesting the attestation. By
validating the signature certificate of the application, Fides can thus verify that
the examined application has not been tampered with.
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Prünster et al. [9] show that it is possible to utilise the aforementioned con-
cept in a fully decentralised peer-to-peer (P2P) context to thwart Sybil attacks.
The approach takes advantage of the fact that Android’s remote attestation can
be verified completely offline, by checking against Googles hardware attestation
root certificate6. Although access to device identifiers as proposed by Prünster
et al. [9] has been restricted in recent Android versions7, it is still possible to
impose a limit of running only a single instance of an application per device:
App developers can enforce that only the so-called system user is able to use
their app8.

3 Multiply, Divide, and Conquer

Multiply, Divide, and Conquer requires no set of predefined entities for evalu-
ating and enforcing access policies and no trusted setup phase. Instead, policy
evaluation and enforcement needs to be delegated to trusted devices.

We define a current Android smartphone as described in Section 2.3 as suf-
ficiently trusted : It is possible to remotely verify a device’s integrity using key
attestation, when not considering root exploits. Actually compromising an An-
droid device using an exploit takes considerable effort even for device owners. For
example, basic local privilege escalation exploits are priced at USD > 100.0009

as of June 2020. To further raise the bar for attackers, we also introduce ba-
sic multi-party computation (MPC) to the policy evaluation process by letting
multiple devices evaluate the same policy. The overall evaluation result is then
reached by majority vote.

3.1 Architecture

Multiply, Divide, and Conquer is underpinned by a decentralised P2P network
where every participant is equal. It employs attestation-based identifiers as dis-
cussed in Section 2.3. Our system defines the following actors to enable data
sharing with outsourced policy enforcement:

Data owner The data owner seeks to publish data and protects it using an
access policy. Every data owner is identified using a public-private key pair.
Attribute provider Attribute providers are used to attest that a user holds
some set of attributes. We assume honest but curious attribute providers. At-
tribute providers are identified by a certificate.
Storage provider Any storage provider of choice may be used to host data.
The only requirement towards the storage provider is availability.

6 https://developer.android.com/training/articles/

security-key-attestation#root_certificate
7 https://developer.android.com/about/versions/10/privacy/
8 https://developer.android.com/reference/android/os/UserManager#

isSystemUser()
9 https://zerodium.com/program.html

https://developer.android.com/training/articles/security-key-attestation#root_certificate
https://developer.android.com/training/articles/security-key-attestation#root_certificate
https://developer.android.com/about/versions/10/privacy/
https://developer.android.com/reference/android/os/UserManager#isSystemUser()
https://developer.android.com/reference/android/os/UserManager#isSystemUser()
https://zerodium.com/program.html
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Evaluator Policy evaluators are responsible for evaluating and enforcing access
policies. Data owners choose a subset of all reasonably trusted devices known
at policy creation time. This set is composed of Android smartphones whose
integrity can be remotely verified using key attestation (see Section 2.3). Con-
sequently, each evaluator’s identity is derived from a certificate chain whose leaf
is an attestation certificate bound to a public-private key pair and a hardware
identifier (see [9]).

Accessor The set of accessors encompasses everyone who wants to access data
published within Multiply, Divide, and Conquer. Each accessor is identified by
a public-private key pair.

Fig. 1: Encryption process – all components are cryptographically linked.
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3.2 Data Publishing

This section presents the general idea behind data encryption, with a detailed
process description provided below in accordance with Fig. 1. This process fo-
cuses on the cryptographic operations and therefore assumes some data to be
protected by an already defined policy at hand:

0○ The data owner creates a nonce.

À The data owner creates an ephemeral bulk encryption key and

Á encrypts some data using this key.

Â The data owner splits the key using a (k, n) threshold secret sharing scheme
into n shares. Depending on the choice of k and n, more or less evaluators
need to be online during policy evaluation (see Section 3.3). The requirement
for a majority vote can be implemented by choosing k > n/2.

Ã The data owner attaches the nonce to each key share. It signs this tuple
using the private key tied to its identity to create a binding between key
shares and data owner.

Ä The data owner wraps each share for a single evaluator using the public key
tied to the respective evaluator’s identity.

Å The data owner attaches the nonce to the policy. It signs this tuple using
the private key tied to its identity to create a binding between policy, shares,
and data owner.

Æ The data owner concatenates and serialises:

– Data owner’s public key

– Signed policy

– Evaluator’s identities

– Encrypted, wrapped key shares

– Encrypted data

Ç The data owner signs the resulting data container using the private key tied
to its identity. Once the signed data container is published, the data owner
can go offline as accessors only need to contact evaluators to gain data access.

3.3 Data Access

Accessing data involves the storage provider, accessor, attribute providers, and
evaluators and consists of the following steps:

À The accessor fetches the data container,

Á checks the signature, and

Â extracts the signed policy and all signed, wrapped key shares.
For each i -th key share:

Ê The accessor transmits the signed policy, the data owner’s identity and
the i -th wrapped key share to the i -th evaluator.

Ë The evaluator checks the policy signature,



Multiply, Divide, and Conquer 7

Ì evaluates the policy, and requests any information (such as user at-
tributes) from the accessor that may be required to reach a verdict about
whether access should be granted. This step usually involves one or more
attribute providers, which is omitted from the process description for the
sake of clarity.

Í In case access should be granted, the i -th evaluator unwraps the i -th
key share and checks its signature.

Î The evaluator checks whether the received share and the policy belong
to each other by comparing the nonce values and whether both items
were signed by the same data owner.

Ï If so, the evaluator signs the unwrapped share, and
Ð transmits it to the accessor.
Ñ The accessor checks both unwrapped key’s signatures (the original one

created by the data owner, and the one created by the i -th evaluator).
Ã The accessor recovers the bulk encryption key from all received shares, and
Ä finally decrypts the data.

As can be observed, no actor needs to perform computationally expensive op-
erations. Policy evaluation itself is implemented using XACML, which has been
shown to perform well, even on lower-end hardware [15]. A thorough perfor-
mance analysis is provided in Section 5, which supports the claims of efficiency
and real-world applicability.

4 Security Characteristics

This section argues how Multiply, Divide, and Conquer achieves fully decen-
tralised, practically secure, and correct access control based on the data access
process described in Section 3.3. Consequently, the security properties of each
step are discussed below. Afterwards, general security properties, benefits over
the current state-of-the-art, and a sketch of an adversary model are provided.

According to Section 3.3, the accessor À initially fetches an encrypted data
container and Á checks its signature using the included public key. Since the
data owner created this container, we can assume that their correct public key
was included. As a consequence, the accessor can unconditionally verify the data
container’s integrity without the need for verifiable secret sharing.
After Â taking apart the data container and Ê distributing the signed policy
(including the nonce), data owner identity, and wrapped, signed key shares to
evaluators, Ë each evaluator can validate integrity and origin of the policy by
means of a simple signature check.
Assuming policy evaluation (Ì) results in the accessor being granted access—a
conclusion each evaluator reaches independently of others—each evaluator can
then Í unwrap their key share to recover the nonce and the signed, plain key
share.
By Î verifying the share’s signature against the previously received data owner
identity, each evaluator can validate the received key share’s integrity and ori-
gin. By also comparing the nonce attached to the signed policy with the nonce
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attached to the key share, the evaluator can verify that the key share actually
belongs to the policy and has not been replaced with another policy signed by
the same evaluator10.
After Ï signing and Ð transmitting their share to the accessor, the evaluator is
not involved anymore.
The accessor Ñ checks both signatures of the received shares (one initially cre-
ated by the data owner, and one created by the evaluator). The original signature
serves the purpose of enabling the accessor to verify the integrity of the received
share. Thus no verifiable secret sharing scheme is required. The second signature
serves accountability, in the unlikely event that of an evaluator being compro-
mised using a root exploit and not producing the correct key share. Once all this
has been done, the accessor can Ã recover the bulk encryption key and Ä finally
recover the data. Appendix A provides more details on the adversary model and
discusses the system’s general security properties in detail.

While outsourcing a sensitive task like access control to essentially unknown
entities may seem irresponsible, in this case it actually provides advantages even
compared to traditional client-sever setups. As subsumed in Section 2.3, it is
indeed possible to deploy code to current Android devices and remotely verify
that it will be executed without modifications and that no sensitive data can be
extracted. This effectively reduces the attack surface to highly targeted attacks,
which we consider out of scope. In addition, it assures data owners and accessors,
that access policies are indeed correctly evaluated.

5 Implementation and Performance

Multiply, Divide, and Conquer has been implemented in Kotlin, for easy bench-
marking on the desktop and on Android. To obtain meaningful results regarding
our system’s performance, we only evaluated scheme-specific operations and do
not consider generic operations that would be required for any form of con-
fidential data exchange. Bulk encryption, for example, is considered a generic
operation and has thus not been benchmarked.

5.1 Implementation Details and General System Characteristics

Multiply, Divide, and Conquer uses SHA3-256 and the Elliptic Curve Digital
Signature Algorithm (ECDSA) (curve: secp256k1 ) as signature algorithm. Our
system heavily relies on cryptographic signatures, which has two implications:
(1) asymmetric operations (and hashing) will account for the bulk of perfor-
mance overhead and (2) no verifiable secret sharing scheme is required. Instead,
an implementation of Shamir’s secret sharing11 is used. Wrapping (encrypting)
shares for evaluators relies on the Elliptic Curve Integrated Encryption Scheme
(ECIES).

10 Technically, this could also be accomplished by incorporating the random value used
for secret sharing into the policy.

11 https://github.com/codahale/shamir

https://github.com/codahale/shamir
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Creation and verification of signatures, participating in the secret sharing
scheme, and policy evaluation are considered scheme-specific operations. These
operations are not independent, however. Most prominently, the chosen number
of evaluators directly impacts performance on all levels:

– Complexity of the secret sharing scheme increases.
– As each share needs to be signed, more shares result in more signature and

verification operations.
– As each shares need to be wrapped, more shares result in more hybrid en-

cryption operations.
– The number of shares increases the overall container size, which results in

more hashing operations being performed as part of container signing/veri-
fying.

The remaining factors impacting overall performance are payload and policy
size as this affects the number of hashing operations during creating/verifying
the policy’s signature. Consequently, this also has a bearing on the number
of hashing operations required for creating/verifying the overall container sig-
nature. Naturally, policy complexity has a direct impact on policy evaluation
performance. We therefore used fixed container and policy sizes, as well as a
fixed policy complexity.

5.2 Benchmarks

We have split our benchmarks into three groups to reflect the operations carried
out by each actor and organised this section accordingly. To provide a constant
container and policy size, we used a fixed 1kB policy and a 10MB payload. Policy
evaluation was benchmarked against the IID302 policy from the XACML 3.0
conformance test suite provided by AT&T12. This policy was modified to grant
access instead of denying it.
Setup: The primary device used for testing was a bq Aquaris X. All benchmarks
were run single-threaded, as this reflects assigning only limited resources (i.e. a
single CPU core) to Multiply, Divide, and Conquer running in the background.
The remainder of this sections discusses the obtained results.

Data Publishing (Container Creation): This task is performed by the data
owner and has been described in Section 3.2. The following operations as shown
in Fig. 1 have been benchmarked:

– Splitting the bulk encryption key among evaluators (Step Â)
– Signing (Step Ã) each key share and wrapping (Step Ä) each share for it’s

designated evaluator
– Signing an access policy (Step Å) and signing the overall data container

(Step Ç)

12 https://lists.oasis-open.org/archives/xacml-comment/201404/msg00001.

html

https://lists.oasis-open.org/archives/xacml-comment/201404/msg00001.html
https://lists.oasis-open.org/archives/xacml-comment/201404/msg00001.html
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The results shown in Figure 3a confirm the intuitive notion that asymmetric
operations are the dominating factor with respect to the overall performance of
data container creation. However, at less than 0.1s for realistic secret sharing
parameters, overall performance remains satisfactory.
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Fig. 2: Execution times: Each operation was carried out 100 times (excluding
warmup runs). Server hardware: Intel Xeon E5-2699 v4 @ 2.20GHz. Smartphone
hardware: Qualcomm Snapdragon™ 626 octa core platform @ 2.20GHz.

Policy Evaluation: This task has been benchmarked from a single evaluator ’s
point of view, since it scales linearly with the number of evaluators. However,
this usually happens in parallel from the accessor ’s point-of-view, which means
the figures plotted below can be factored into the overall performance as-is.
The following scheme-specific operations as defined in Section 3.3 have been
benchmarked:

– Checking a policy’s signature (Step Ë)
– Policy evaluation (Step Ì)
– Unwrapping the evaluator’s share and verifying its signature (Steps Í and Î)
– Re-signing the decrypted share using the evaluator’s key (Step Ï)
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Fig. 3b clearly shows that the operations carried out by evaluators perform well,
taking only few milliseconds even on less-than-current smartphone hardware.

Data Access: The following scheme-specific operations as shown in Section 3.3
were benchmarked from the accessor ’s point of view:

– Check container signature (Step Á)
– Checking a share’s original signature as well as checking the signature pro-

duced by the evaluator (Step Ñ). These two operations are carried out k
times each (since k out of n shares are required to reconstruct the secret)

– Reconstructing the bulk encryption key from k shares (Step Ã)

Fig. 3c displaying the accessor ’s performance clearly correlates with Fig. 3a,
since the operations related to secret sharing are again the dominating fac-
tor. Given that all scheme-specific operations total to less than half a second
even when having to combine 15 shares to recover the key, interacting with at-
tribute providers and network latency will have the most impact on the overall
round-trip time. In summary, the benchmark figures obtained clearly show that
Multiply, Divide, and Conquer performs well and does not strain the targeted
smartphone hardware.

6 Related Work

On the surface, Multiply, Divide, and Conquer provides a similar feature set to
some ABE schemes. Even though trusted computing has been proposed for ac-
cess control before, no decentralised approach has so far been brought forward.
We therefore refrain from discussing proposals that rely on a central trusted
computing instance. Instead, this section focuses on summarising the major con-
tributions in the field of ABE and compares them to our work.

Attribute-based encryption (ABE), in contrast to attribute-based access con-
trol (see Section 2), ensures fine-grained access control on a cryptographic level.
It defines the recipients of a message as a set of attributes. Access rights are
determined based on access structures, either embedded in the key (Key-Policy
Attribute-Based Encryption (KP-ABE; [3]) or the ciphertext (Ciphertext-Policy
Attribute-Based Encryption (CP-ABE; [1])). Users can only decrypt a ciphertext
if their attributes match the embedded policy.

Since its introduction, subsequent work has improved ABE in terms of per-
formance or functionality. The area most similar to our work is multi-authority
ABE. First described by Chase [2], multi-authority ABE schemes allow for any
party in the system to become an attribute authority. It is collusion-resistant,
when assuming a trusted authority in place. Whenever new attribute author-
ities join, the system key needs to be modified and propagated to all users.
Our scheme, on the other hand, imposes no limitation whatsoever on attribute
providers, both in overall number and dynamics over time.

Another approach to decentralise ABE was proposed by Müller et al. [7].
They present a distributed ABE scheme, where an arbitrary number of parties
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can maintain attributes and secret keys. The scheme eliminates the need for a
central attribute authority, but requires a trusted master to distributes secret
keys Policies are restricted to boolean formulas in disjunctive normal form (DNF)
over attributes and their values. We, however, rely on a combination of secret
sharing to distribute keys and trusted computing to enforce policies. Thus, our
scheme does not rely on a central authority and can also enforce considerably
more expressive policies.

Lewko and Waters [6] proposed a similar system to ours. In their scheme,
any party, too, can become an attribute authority. Like our work, the proposed
scheme does not require any central authority. However, the system has several
limitations which impact usability in resource-constrained environments. First,
the system is designed around composite order bilinear groups. As was shown by
Kiraz and Uzunkol [5], this decision influences key size and thus performance.
To maintain a desired security level, key sizes need to be increased. Secondly, the
scheme requires a trusted global setup phase. In contrast, our scheme supports
environments with mutually distrusting parties and needs no global setup phase.

Summarising, multi-authority ABE offers a cryptographic solution to provide
fine-grained access control in distributed environments. More recent variants of
multi-authority ABE improve existing schemes by adding support for, e.g., arbi-
trary large attribute strings [12], revocation [11], hidden policies [16] or tackling
efficiency in resource-constrained environments [13]. What almost all variants
of multi-authority ABE schemes have in common, though, is that they rely on
expensive bilinear pairing operations or on one or more central entities.

7 Conclusions

This paper presented Multiply, Divide, and Conquer, a system to enforce ac-
cess control in fully decentralised environments based on secret sharing and the
trusted computing capabilities of current Android devices. Compared to pre-
viously proposed concepts, it relies on fast primitives and traditional trusted
computing concepts, thus allowing for complex access policies, while remaining
efficient, compared to attribute-based encryption. At its core, it utilises the fact
that it is possible to remotely attest the integrity of current Android devices run-
ning in unmanaged environments and deploy software to these devices, such that
the software cannot be tampered with in an undetectable manner. At no point
does our system require any central instance. As such, our solution can be de-
ployed to fully decentralised P2P networks without falling back to centralisation.
Previously, this has not been possible. Most importantly, our system has been
designed with practicality in mind, meaning that it is usable in the real world
and does not remain a purely academic experiment. Its security parameters can
be tweaked to suit different needs, all while keeping real-world applicability in
mind.
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A Security Model

This appendix discusses the security properties of Multiply, Divide, and Con-
quer. First, assets to be protected are identified and characterised based on the
system description provided in Section 3. Next, security services that need to
pe provided are derived. Afterwards we define each actor and an according ad-
versary model. Finally, this is mapped against our design’s characteristics to
show which properties and strategies ensure that each security service can be
provided. We assume that all cryptographic primitives perform as expected and
consider implementations flaws and targeted attacks out of scope.

A.1 Assets

The assets identified below are directly derived from Multiply, Divide, and Con-
quer’s goals and the workflows described in Section 3.
Payload should only be revealed to those parties, who are rightfully allowed to
access it according to the access policy. Every payload is encrypted, signed and
cryptographically linked to an associated access policy.

Access policy defines which parties are authorised to access the payload. Access
policies are public, must not be manipulated, and are cryptographically signed.

Key shares must only be revealed to authorised parties (according to the access
policy) such that those parties are able to decrypt the payload.

Attributes are used to describe any party seeking to access some encrypted
payload as inputs for policy evaluation.

A.2 Security Services and Goals

Based on our scheme’s goals for fully decentralised access control to securely
share data, the following security services need to be provided.
Confidentiality. Assets: payload, key shares: A payload shall only be disclosed
to accessors who fulfil the access policy associated with a payload. As the pay-
load is encrypted and the encryption key is split, key shares must also be kept
confidential and only be revealed to authorised accessors.

Integrity. Assets: payload, key shares, policy, attributes: Information must re-
main intact; modifications must be detected. This excludes manipulated infor-
mation that remains intelligible (see unforgeability).

Authenticity. Assets: payload, key shares, policy, attributes: It must be possi-
ble to verify the origin and integrity of any asset, thus authenticating all data.

Accountability. Assets: payload, key shares, policy, attributes: Following au-
thenticity, the origin of every asset must be traceable such that the actor can be
held accountable. This includes any (legitimate) manipulations of an asset, such
as the decryption of key shares by evaluators.

Non-repudiation. Assets: payload, key shares, policy, attributes: Following ac-
countability, no actor must be able to unrightfully disclaim authorship (or legit-
imate manipulation) of any asset.



Multiply, Divide, and Conquer 15

Unforgeability. Assets: payload, key shares, policy, attributes: Forging a policy,
payload, or key shares would mean that an attacker could replace assets with a
modified, still intelligible version and integrity and signature checks, as well as
authenticated encryption schemes would still produce valid outputs.

Availability. Assets: payload, key shares, policy, attributes: All information
(and the actors required to process it) must be available when needed.

A.3 Actor and Adversary Model

This section briefly formalises Multiply, Divide, and Conquer’s actor and ad-
versary model and illustrates how an adversary may try to weaken its security
properties by trying to compromise one of is security services. Due to the def-
inition of system actors, attackers inherently assume the role of an adversarial
actor. For example, a third party seeking to gain unauthorised access to pro-
tected data is considered to be an adversarial accessor.
Data owners seek to publish some data and protect it using an access policy.
Adversarial data owners may produce data that either overburdens evalua-
tors with complex policies, or may occupy all other actors with a policy that
requires long-running interactions between accessors, attribute providers, and
evaluators while consuming storage providers’ space. In general, limiting policy
complexity and introducing timeouts are apt measures to combat adversarial
data owners. We therefore consider this issue out of scope.

Attribute providers are used to attest that an accessor holds some set of
attributes—assumed to be chosen such that they behave honestly but curious.
Adversarial attribute providers may, in theory, misbehave by inspecting an
access policy to produce attributes accordingly in order to tilt the policy evalu-
ation result towards denial or access. This targets confidentiality or availability.
In established schemes like OpenID Connect13, the service provider is free to
choose identity providers (IdPs) they trust. Our design takes up on this idea
and lets data owners freely choose attribute providers they trust, without any
form of central governance. This strategy is therefore no worse than the current
state-of-the-art. As a consequence, an adversarial attribute provider is degraded
to an honest, but curious one, if we consider that trusted attribute providers
behave honestly. The specific trust model to be used can be chosen based on the
deployment scenario.

Storage providers are used to host data and are chosen by data owners.
Adversarial storage providers may try to gain access to the payload (target-
ing confidentiality), modify it (targeting integrity, authenticity, unforgeability),
replace access policies (targeting integrity, authenticity, unforgeability, account-
ability). In addition, adversarial storage providers may simply delete data they
are supposed to store, thus targeting availability.

Evaluators are responsible for evaluating and enforcing access policies. The

13 https://openid.net/connect/

https://openid.net/connect/
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evaluation process is carried out inside a trusted computing base. Our security
model assumes that this secure execution environment can only be compromised
by a powerful attacker (see Section 4), which we consider out of scope.
Adversarial evaluators may go offline at any point in time, based on realistic
user behaviour. Thus, only availability concerns remain.

Accessors want to access data published within Multiply, Divide, and Conquer.
Adversarial accessors may seek to gain unauthorised access encrypted pay-
loads, thus targeting confidentiality.

A.4 System Properties Providing Security Services

Property 1 (Confidentiality). Assets: payload, key shares.
Since means for transport security like Transport Layer Security (TLS) are avail-
able, we assume authenticated, encrypted communication channels between all
actors. This protects attributes and key shares in transit. The payload is en-
crypted prior to publishing and the randomly generated bulk encryption key
is split and wrapped for evaluators, making these two assets initially confiden-
tial. Colluding evaluators could recover the key. However, this would violate the
postulated trusted computing properties.

Property 2 (Integrity, Authenticity, Accountability, Non-repudiation).
Assets: payload, key shares, policy, attributes
Considering honest, but curious attribute providers and TLS-secured connec-
tions, provided attributes are authentic. This implies that their source can be
verified. As our system employs ECIES, and key shares are signed by the data
owner and (after policy evaluation) also by evaluators, their authenticity can be
verified. Authenticated encryption is used to encrypt the payload, and polices
are signed and cryptographically linked to key shares and payload, the integrity
and authenticity of these assets can also be verified at any given point. The
use of cryptographic signatures and cryptographic linking using a nonce directly
implies accountability and provides non-repudiation.

Property 3 (Unforgeability). Assets: payload, key shares, policy, attributes
Assuming all cryptographic primitives perform as expected, forging any asset
is infeasible. Considering honest but curious attribute providers and TLS, at-
tributes cannot be tampered with. We assume a state-of-the-art protocol towards
attribute providers that ensures freshness of all produced data.

Property 4 (Availability). Assets: payload, key shares, policy, attributes
Cheap (and even free), cloud-based storage is abundant. Since payload, key
shares, and policy are stored together, this applies to all three of these assets.
Defining multiple attribute providers (catering towards redundancy) is possible.
In addition, secret sharing parameters can be tweaked to account for evaluators
going offline to ensure availability.

Assuming the postulated trusted computing guarantees are upheld and attribute
providers behave in an honest but curious manner, our design delivers on its
promises.
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