
HECTOR-V: A Heterogeneous CPU Architecture for a Secure
RISC-V Execution Environment

Pascal Nasahl
pascal.nasahl@iaik.tugraz.at
Graz University of Technology

Robert Schilling
robert.schilling@iaik.tugraz.at
Graz University of Technology

Mario Werner
mario.werner@iaik.tugraz.at
Graz University of Technology

Stefan Mangard
stefan.mangard@iaik.tugraz.at
Graz University of Technology

Lamarr Security Research

ABSTRACT
To ensure secure and trustworthy execution of applications in po-
tentially insecure environments, vendors frequently embed trusted
execution environments (TEE) into their systems. Applications ex-
ecuted in this safe, isolated space are protected from adversaries,
including a malicious operating system. TEEs are usually build
by integrating protection mechanisms directly into the processor
or by using dedicated external secure elements. However, both
of these approaches only cover a narrow threat model resulting
in limited security guarantees. Enclaves nested into the applica-
tion processor typically provide weak isolation between the secure
and non-secure domain, especially when considering side-channel
attacks. Although external secure elements do provide strong isola-
tion, the slow communication interface to the application processor
is exposed to adversaries and restricts the use cases. Independently
of the used approach, TEEs often lack the possibility to establish
secure communication to peripherals, and most operating systems
executed inside TEEs do not provide state-of-the-art defense strate-
gies, making them vulnerable to various attacks.

We argue that TEEs, such as Intel SGX or ARM TrustZone, imple-
mented on the main application processor, are insecure, especially
when considering side-channel attacks. In this paper, we demon-
strate how a heterogeneous multicore architecture can be utilized
to realize a secure TEE design. We directly embed a secure pro-
cessor into our HECTOR-V architecture to provide strong isolation
between the secure and non-secure domain. The tight coupling of
the TEE and the application processor enables HECTOR-V to pro-
vide mechanisms for establishing secure communication channels
between different devices. We further introduce RISC-V Secure Co-
Processor (RVSCP), a security-hardened processor tailored for TEEs.
To secure applications executed inside the TEE, RVSCP provides
hardware enforced control-flow integrity and rigorously restricts
I/O accesses to certain execution states. RVSCP reduces the trusted
computing base to a minimum by providing operating system ser-
vices directly in hardware.

KEYWORDS
TEE; secure I/O; heterogeneous computer architecture; RISC-V

1 INTRODUCTION
With the growing demand for complex IT applications, such as au-
tonomous driving or smart city infrastructures, software complexity
increases steadily. The codebase of Linux, for example, increases by

250k lines of code each year, reaching 27.8M LOC in 2020 [13]. This
is challenging because one can expect roughly 1 to 25 bugs in 1,000
lines of code [39]. While not all of these bugs might be exploitable
by an attacker, a growing codebase complexity clearly leads to a
larger attack surface. One strategy to deal with the growing com-
plexity and meet security goals is to isolate all security critical
applications using a trusted execution environment (TEE) [25].

A TEE establishes a secure execution environment by creating a
safe, isolated space using hardware and software primitives. Most
TEE threat models consider a powerful adversary controlling user
space applications, the operating system, or even the hypervisor,
trying to influence the execution of applications in the trusted en-
vironment. To achieve the protection needed for this threat model,
TEEs require strong isolation between the TEE and the rich execu-
tion environment (REE).

The powerful concept of shifting security critical applications
into a trusted execution environment is already adapted by major
vendors like Intel, ARM, and Apple. One of the most common
TEE design approaches is to create a virtual secure processor in
the main application processor by using hardware extensions. Intel
SGX [22] and ARMTrustZone [7] take this approach. Contradictory
to embedding the TEE tightly into the CPU, Google’s Titan [32] and
Apple’s T2 [4] implements a secure element by externally mounting
a dedicated security processor next to the main CPU. However,
both TEE design approaches yield different weaknesses. Several
recent attacks [15, 16, 20, 27, 28, 36, 49, 55, 65] showed that the
isolation of TrustZone and SGX can be bypassed by mounting cache
or transient-based side-channel attacks. While dedicated secure
elements provide strong isolation between REE and TEE, Google’s
Titan, e.g., uses a slow SPI connection for communication between
the two domains limiting potential use cases. Furthermore, this
off-chip communication fabric between REE and TEE is physically
exposed to an attacker, making it vulnerable against probing attacks.

Independently of the used TEE design approach, typical TEE im-
plementations offer several weaknesses. First, although a security
breach within the TEE is fatal, operating systems deployed in the
secure environment surprisingly do not offer state-of-the-art pro-
tection mechanisms like ASLR, guard pages, or stack cookies [17].
Second, most TEEs do not provide architectural features to establish
secure communication with I/O devices. The lack of trusted I/O
paths in TEE systems is critical because secrets shared between
user and TEE are unprotected.

With the Intel Lakefield architecture [33] and anAMDpatent [40],
major vendors recently announced to introduce heterogeneous
multi-core architectures in upcoming processor designs. While the
approach of tightly coupling different processor cores on one chip
to balance power and energy efficiency is already used by ARM’s
big.LITTLE technology [6] in mobile platforms, Intel and AMD are
planning to introduce this concept in forthcoming computer archi-
tectures. This design strategy raises the following research question:
RQ1: "Can the tight coupling of distinct processor cores on a SoC be
used to increase the security of trusted execution environments?"

Contribution
In this paper, we introduce HECTOR-V, a design methodology uti-
lizing a heterogeneous multi-core architecture to develop secure
trusted execution environments. HECTOR-V achieves strong isola-
tion between the secure and non-secure domain and provides pro-
tection for various side-channel attacks, such as cache and transient-
based attacks, by using a distinct processor of the heterogeneous
core cluster for the secure environment. The tight coupling of TEE
and REE in the shared SoC infrastructure yields several advantages.
In the HECTOR-V architecture, the application processor and TEE are
connected through an interconnect, enabling a high-speed link be-
tween the two processors. Additionally, since the TEE is embedded
into the SoC, all peripherals integrated into the system are also avail-
able for the secure environment. To manage peripheral sharing and
protect peripherals from unauthorized accesses, HECTOR-V further
introduces a secure I/O path concept. The identifier-based strategy
deeply nested into the communication fabric and the peripherals
allows a fine granular protection of the attached peripherals. In
HECTOR-V, the access permission management is implemented us-
ing a hardware-based security monitor. While the owner of the
security monitor can configure a set of access permissions, the other
parties in the system can request access to certain peripherals by
consulting the security monitor. We further extend this mechanism
to dynamically grant and deny access to certain peripherals by
introducing the concept of security monitor ownership transfer.
To enable various use cases, the owner of the security monitor
dynamically can transfer the ownership to other parties. Further-
more, we introduce RVSCP, a security-hardened RISC-V processor
tailored for being used as a TEE. Although the HECTOR-V archi-
tecture is independent of the used TEE processor, we show that
RVSCP further increases the TEE security by utilizing features of
HECTOR-V. RVSCP isolates applications within the trusted execution
environment by enforcing the integrity of the control-flow. We
combine the control-flow information with the secure I/O mech-
anism to only grant access to certain peripherals when reaching
a predefined control-flow state. To reduce the trusted computing
base and therefore the attack surface to a minimum, RVSCP imple-
ments operating system features, such as multitasking, directly in
hardware. We demonstrate the HECTOR-V concept by introducing
a heterogeneous multi-core architecture for RISC-V. We embed-
ded a RISC-V processor with a control-flow integrity unit into the
HECTOR-V architecture. To verify the functionality of HECTOR-V and
RVSCP design approaches, we use secure boot as a prototype appli-
cation on our FPGA implementation. In summary, our contributions
are:

HECTOR-V, a design methodology for developing secure TEEs.
HECTOR-V utilizes a heterogeneousmulti-core architecture to realize
a secure trusted execution environment. The architecture includes
a configurable security monitor managing access permissions to
specific peripherals. This mechanism allows the system to estab-
lish secure communication channels between peripherals, users,
and the processor cores. The dynamic transfer of security monitor
ownership enables the HECTOR-V architecture to realize several use
cases, such as secure boot or executing trusted applications.
RVSCP, a security-hardened processor integrated into the HECTOR-V
architecture. RVSCP protects applications within the TEE by com-
bining a previously introduced control-flow integrity unit with the
peripheral access protection offered by HECTOR-V. The secure pro-
cessor provides operating system features in hardware to minimize
the trusted computing base.

2 BACKGROUND
To protect the processing of sensitive data, such as biometric data or
cryptographic keys in an untrusted environment, trusted execution
environments (TEE) are used. These secure environments comprise
a combination of hardware and software features, the trusted com-
puting base (TCB) [25]. A TEE guarantees the secure execution of
trusted applications, even when considering a malicious operat-
ing system running in the rich execution environment (REE). This
section summarizes popular TEE design strategies.
Virtual Processor based TEEs. Virtual processor based TEEs
extend the main processor with additional hardware and software
features to establish a secure, isolated space within this processor.
As this approach utilizes the main processor for the TEE, such TEEs
achieve high performance and require no additional hardware [34].
Hence, major vendors, like Intel with SGX [22] and ARM with
TrustZone [7], utilize this approach. However, sharing resources,
such as caches or peripherals, also is the main disadvantage of
such systems. SGX and TrustZone fail to provide strong isolation
guarantees by being vulnerable to side-channel attacks, such as
cache attacks [15, 27, 28, 36, 49, 65] or transient attacks [16, 20, 55].
Additionally, most TEEs, e.g., SGX, based on this design approach,
do not protect peripherals by providing secure I/O.
External Co-Processor based TEEs. These TEEs utilize a dedi-
cated, external core to securely execute trustlets. Examples of such
secure elements are Google’s Titan [32] and Samsung’s eSE [45],
which are mainly used in mobile platforms or servers. Since this
technique separates the execution pipelines and the caches of REE
and TEE, cache- and transient-based side-channel attacks are mit-
igated efficiently. Although these TEEs provide strong security
guarantees, they also have major drawbacks. External secure ele-
ments typically establish a communication channel between REE
and TEE using a slow communication interface, like SPI. This limits
potential use cases of the TEE and the exposed interface also is
vulnerable against physical probing and sniffing attacks [3]. Further-
more, dedicated secure co-processors require additional hardware
and do not support shared peripherals.
On-SoC Processor based TEEs. This approach combines advan-
tages from virtual processor and external co-processor based TEE
designs. Here, a dedicated secure element is directly embedded
into the main SoC infrastructure of the system. Although placing

Peripheral

SM

Interconnect

Core Cluster

Figure 1: Overall HECTOR-V design.

such an element into the SoC increases the die size of the chip, this
approach enables fast communication channels between REE and
TEE and aggravates probing and sniffing attacks on this interface.
Therefore, and due to the possibility to share peripherals on the
SoC, this approach increases the flexibility and possible use cases
of the design. Additionally, by placing two separate cores into the
system, cache- and transient-based side-channel attacks can be mit-
igated. This approach is taken by major vendors, like Apple with
their Secure Enclave Processor (SEP) [29] and Microsoft with their
recently announced Pluton processor [61].

3 THREAT MODEL
Our threat model considers the common attack scenarios on TEEs
defined by Cerdeira et al. [17]. We are considering an attacker
directly exploiting architectural weaknesses of the TEE and the
TEE kernel. Here an adversary uses a combination of bugs in the
kernel, flaws in the hardware protection mechanism, and missing
state-of-the-art defense strategies, such as ASLR or guard pages, to
compromise the system. Furthermore, we expect bugs in trustlets,
which can be exploited by an attacker over the communication in-
terface between REE and TEE. The security of applications in REE or
TEE also can be threatened by using cache-based or transient-based
side-channel attacks. Additionally, we are considering a malicious
trustlets explicitly trying to attack the SoC. We are extending the
threat model of common TEEs also to cover attacks on peripher-
als, i.e., illegitimate accesses to secure storage elements, sensitive
peripherals such as a fingerprint reader or SPI [1], or protectedmem-
ory regions. In summary, we expect a powerful attacker having full
control over user applications, the operating system, trustlets, or
even the hypervisor executed on the application processor.

4 DESIGN
This section presents our secure TEE design approach consisting of
the HECTOR-V architecture and the secure processor RVSCP. We first
introduce HECTOR-V consisting of several architectural features,
such as trusted I/O paths, a security monitor, and a secure TEE
integration. Then, we introduce RVSCP, a concrete proposal for a
secure processor used as a TEE and demonstrate, how RVSCP and
HECTOR-V combined, form a secure TEE system. In Section 5, we
then demonstrate a prototype of HECTOR-V and RVSCP integrated
into our RISC-V base platform, the lowRISC chip.

4.1 HECTOR-V Design
The HECTOR-V design proposes architectural features for creating
secure TEEs. As seen in Figure 1, the TEE in HECTOR-V is realized
by mounting a secure processor directly into the main SoC. This

approach is similar to ARM’s big.LITTLE technology [6], where
independent cores are embedded into the chip. However, instead of
using the additional cores for power efficiency, HECTOR-V uses the
dedicated processor for security purposes. Although placing a se-
cure processor directly into the SoC increases the area overhead, we
argue that this approach is feasible and yields several advantages.
First, we contend that offering strong isolation between secure and
non-secure domain only is possible with a dedicated secure pro-
cessor for the TEE. TEE architectures introduced before, such as
Arm TrustZone and Intel SGX, are vulnerable to side-channel and
microarchitectural attacks [19, 36]. As these attacks are the result
of the growing complexity of modern processors driven by the
demand for high-speed systems [34], fixing these security issues in
the main processor is challenging [42]. However, the design choice
of using a dedicated secure processor for the TEE completely sep-
arates the instruction pipelines and caches of the cores, resulting
in an independent execution flow of REE and TEE applications.
Second, services deployed on TEE processors, such as applications
handling banking information or processing passwords, are typi-
cally rather small. This constrained processing requirement allow
us to deploy a tiny secure processor. Compared to a state-of-art
multicore processor, the area overhead introduced by this tiny pro-
cessor is negligible. While integrating a dedicated secure processor
into the SoC infrastructure is straightforward, a secure and viable
TEE system requires to establish communication channels between
REE and TEE, as well as for peripherals enabling user I/O. In the
remaining part of this section, we introduce our trusted I/O path
design utilizing a hardware-based security monitor and elaborate
how these concepts allow REE and TEE to share devices on the SoC
and realize features, such as secure storage elements.

4.1.1 Trusted I/O Paths. The trusted I/O path mechanism is the
central element of the HECTOR-V architecture. This concept al-
lows HECTOR-V to securely share devices on the SoC, establish
secure communication channels between external users and the
TEE or REE, and implement concepts, like secure storage elements.
HECTOR-V establishes trusted I/O paths by assigning an unique iden-
tifier to each party of the system, i.e., the processor cores. When
accessing a device, like the SD-card or the block RAM (BRAM), the
peripheral uses an internal mechanism to verify the identifier. This
strategy allows the architecture to enforce access permissions, such
as the fingerprint reader only can be accessed by the TEE.
Identifier. In HECTOR-V, an identifier is used to distinguish be-
tween legitimate and illegitimate accesses to a peripheral. While
this concept is similar to ARM TrustZone [7], TZ only uses a 1-bit
identifier to distinguish between accesses from the secure or non-
secure world. The identifier used by our system consists of a core
ID, a process ID, and a peripheral ID. While the core ID permanently
and unchangeable is assigned to each processing core, e.g., an ID
for the application processor and one ID for the secure processor,
at design time, the process and peripheral ID can be assigned by
each entity itself.
Interconnect. To efficiently transport the ID from the participants
to the peripherals, we integrate the ID directly into the system
interconnect. The AMBA AXI4 [5] protocol, which is used as inter-
connect by our lowRISC base platform and many other SoC designs,
allows to embed up to 1024-bits wide user-defined signals into the

protocol. By embedding the ID into the user-defined signals, which
are not used by most AXI devices, the ID is transported without
any protocol overhead. Additionally, this approach assures that
the identifier is sent along with the address and data on each AXI
request. Since the core ID is hardcoded directly into the the inter-
connect interface of the participants, an attacker cannot change
this ID from software.
Peripherals. HECTOR-V creates a trusted channel between an en-
tity, e.g., the application or the secure processor, and a peripheral by
enforcing the identifier-based access check directly in hardware at
the peripheral driver. The peripherals, e.g., the hardware implemen-
tation of the SD-card controller or the BRAM, use the ID to filter
illegitimate accesses. This scheme, which requires the peripherals
to be identifier-aware, is implemented by introducing a lightweight
wrapper module for each peripheral instance. In our architecture,
the peripheral wrapper module consists of two communication
channels: the data channel and the configuration channel. The data
channel interface of the peripheral wrapper is directly connected
to the AXI4 communication fabric, allowing other parties, e.g., the
secure processor, to access the peripheral. By using the configura-
tion channel, the configuration party can set or unset the identifier
in the ID field. In HECTOR-V, the data and configuration channels
are physically separated by introducing a dedicated, lightweight
AXI4-lite [5] communication fabric.

When the identifier of the AXI4 communication request trans-
ported over the communication fabric matches the identifier stored
in the peripheral wrapper ID field, the access is permitted and the
request is directly forwarded to the actual peripheral driver. On an
ID mismatch, the firewall mechanism blocks the request and re-
turns an exception over the AXI4 channel, which can be processed
by the issuer. If the process or peripheral identifier is set to zero,
the peripheral wrapper ignores these ID fields.

The peripheral wrapper resides in two states: claimed or un-
claimed. While in the unclaimed state all data channel requests
are blocked, in the claimed state only the requests with the match-
ing identifier are permitted. Furthermore, we differentiate between
configurable and non-configurable peripheral wrappers. To realize
functionalities, like secure storage elements, which must not be
accessible by any party except one, non-configurable peripheral
wrappers store a hardcoded identifier, consisting of the core and
process ID, in the identifier field.

4.1.2 Security Monitor. The architectural features of identifier,
identifier transportation, and peripheral firewalls are the founda-
tion for establishing trusted I/O paths on the SoC. To enforce secu-
rity policies utilizing the trusted paths, we embed a tiny security
monitor into the SoC infrastructure. This hardware-based security
monitor (SM) module acts as trusted computing base (TCB) and is
responsible for managing access permissions to peripherals. Inter-
nally, the SM consists of a table tracking these access permissions.
For each peripheral included in the system, the security monitor
maintains a table entry tracking the state (claimed or unclaimed)
and a list of identifiers allowed to claim the device.
Security Monitor Owner. The HECTOR-V architecture introduces
the security monitor owner privilege, which is assigned to a certain
party at design time. This party solely is responsible for config-
uring the TCB, i.e., the security monitor, over an interface. More

concretely, only the SM owner is allowed to define, which periph-
eral can be claimed by which participant. The security monitor
stores the identifier of the current owner and accepts configuration
commands only from this party.
Peripheral Claiming and Releasing. To access a certain periph-
eral, the requester first needs to claim the peripheral by sending a
claim request to the security monitor. Then, the SM checks, if the pe-
ripheral currently is unclaimed and verifies that the ID of the issuer
is in the list of identifiers permitted to access the peripheral. Finally,
the security monitor sends the ID of the issuer to the peripheral
wrapper over the AXI4-lite bus and this wrapper sets this identifier
in its ID field. Now, the identifier transported in the user-defined
signals of each AXI4 request issued by the requester matches the
identifier in the ID field and the requester exclusively can access
the peripheral. However, if the requester is not allowed to claim
the peripheral, i.e., the identifier of the requester is not in the list of
privileged entities, the ID verification fails and the security monitor
sends back an access denied message. If the requester ID is in the
table entry of the peripheral, but the peripheral currently is claimed,
the security monitor notifies the issuer. HECTOR-V is a cooperative
scheme, meaning, the entity currently claiming a peripheral needs
to release it after using it. To release a peripheral, the entity sends
a release command to the SM. The security monitor processes this
request by clearing the ID field of the peripheral wrapper.
Peripheral Access Withdraw. Claiming a peripheral and bind-
ing access exclusively to an entity is a powerful concept and estab-
lishes a trusted, secure channel between this entity and a periph-
eral, but it also can be abused. A participant, e.g., the application
processor or the secure processor, in control of an attacker, could
permanently occupy one or more peripherals resulting in a denial-
of-service (DOS) attack. To mitigate such attacks and manage un-
responsive participants, the security monitor has the capability to
withdraw access from certain peripherals. A simple approach to
implement this functionality would be to clear the ID field in the
peripheral wrapper. However, this approach is dangerous because
it could enable time-of-check to time-of-use (TOCTOU) attacks.
For example, when withdrawing access to a peripheral currently
processing a secret, the SM owner would be able to retrieve the
result of the request. To securely withdraw access to certain periph-
erals, HECTOR-V introduces a withdrawing mechanism, which can
be triggered by any entity in the system. While a withdraw request
issued by the SM owner is always granted, a request from other
parties first needs to be approved by the security monitor. When
a withdraw request is retrieved by the security monitor, the SM
simultaneously starts a timer with a predefined timeout and noti-
fies the owner of the peripheral. The notification of the peripheral
owner is realized by introducing a dedicated interrupt line and a
interrupt service routine (ISR) provided by the processors for each
peripheral. The ISR implements a cleanup function responsible for
clearing secrets, stopping current transactions, and gracefully re-
leasing the corresponding peripheral. After the timeout is reached
in the security monitor and the peripheral is not released gracefully
by the ISR, the SM forcefully releases the peripheral by clearing the
ID field in the firewall.
Security Monitor Ownership Transfer. A significant advan-
tage of HECTOR-V, compared to other TEE architectures, is the
possibility to utilize the TEE infrastructure for various use cases.

While in TEE systems, like ARM TrustZone, one entity, e.g., the
secure-world, is the exclusive owner of the highest privilege level,
HECTOR-V introduces a dynamic ownership transfer mechanism.
The security monitor privilege, which allows the SM owner to con-
figure access privileges and release arbitrary peripherals, can be
transferred to any other entity by the SM owner. To initiate a SM
ownership transfer, the entity sends a request with the identifier
of the new owner to the security monitor. The security monitor
acknowledges this request by setting the received identifier into
the SM owner ID field. To obtain a clear state, we recommend that
the security monitor owner first releases all peripherals.

4.2 RVSCP Design
Most ARM TrustZone based systems either utilize a dedicated TEE
OS to spawn multiple trustlets or exclusively reserve the whole
secure domain for one trustlet providing services [44]. While run-
ning multiple trustlets is tempting, the concept of deploying a fairly
complex OS also increases the TCB and the attack surface. How-
ever, as reserving the whole TEE environment for a single trustlet
might be lavish, we propose a TEE design in between of these two
approaches. In RVSCP, we reduce the TCB to a minimum by pro-
viding basic OS services, such as context switches and resource
management, directly in hardware. Although these hardware ser-
vices cannot provide the same functionality as a rich OS, we argue,
that for most TEE use cases, this approach is sufficient. Typically,
trustlets deployed in TEEs offer services with limited complexity,
such as a key store, a credential manager, or a cryptographic li-
brary [32, 38]. Furthermore this approach also allows us to deeply
integrate security features, such as a control-flow integrity (CFI)
unit combined with the secure I/O concept of HECTOR-V, into the
processor.

4.2.1 Control-Flow Integrity. To protect a program from attacks
targeting to alter the control-flow, CFI schemes are commonly
used [53, 57, 64]. These schemes mitigate attacks like ROP [50] or
JOP [18] by ensuring that the control-flow of the program can not
escape the control-flow graph (CFG) determined at compile time.
Enforcing the integrity of the instruction stream can be realized
in different degrees of fineness. While some schemes [2, 8, 21]
preserve the correctness of the execution flow at basic block level,
other techniques [24, 59, 60] maintain the integrity of the control-
flow even at instruction granularity.
Control-Flow Integrity Unit. RVSCP utilizes the existing fine-
grain Sponge-Based Control-Flow Protection (SCFP) [59] scheme
to protect trustlets within the secure processor from attack attempts.
The main idea of SCFP is to encrypt a program using a sponge-
based authenticated encryption primitive during compile time and
decrypt it instruction for instruction at runtime. This method allows
SCFP to enforce the, at compile time extracted, CFG at runtime.
Decryption of the individual instructions is realized using a dedi-
cated decryption stage in the processor pipeline. To successfully
decrypt an instruction, the pipeline stage needs to know the key
and an internal state. The SCFP scheme accumulates information
over all previously executed instructions in this state. If the in-
tegrity of the state is violated, the decryption fails and returns a
faulty instruction, which can be detected with a certain probability
by the CPU. An attacker modifying instructions, e.g., using fault

injection, or inserting additional instructions, alters the state and
can be detected by SCFP.

4.2.2 Hardware Scheduling. We extend the native SCFP implemen-
tation, which allows to execute a bare-metal program on a processor,
to support multitasking. One approach to enable multitasking with
CFI protected trustlets could be realized purely in software using an
OS. However, since TEE operating systems, such as OP-TEE [26], do
not provide state-of-the-art protection mechanisms, such as ASLR
or guard pages, mounting an operating system would also increase
the attack surface of the TEE. Therefore, similar to Antikernel [66],
RVSCP offers hardware features to run multiple trustlets on the
processor and reduce the software TCB to a minimum.
Hardware Scheduling Unit. RVSCP introduces a hardware entity
providing minimal OS functionality for trustlets. This hardware
unit is responsible for performing secure context switches between
individual trustlets in hardware. The round-robin based scheduling
mechanism internally maintains a list of trustlets and after a certain
amount of cycles executed, a context switch is conducted. When
performing a context switch, the hardware entity stops the current
trustlet, stores the architectural state to a secure place, and loads
the next architectural state of the next trustlet. Additionally, the
hardware context switch mechanism also exchanges the decryption
key used for SCFP. Using an individual key for each trustlet yields
two major advantages. First, since the programs are encrypted
with a different key, only the developer with the correct key can
access the plain program, leading to an IP protection mechanism for
trustlets. Second, using different keys for trustlets enables strong
isolation between the applications. After the context switch, the
execution is resumed and the next trustlet is executed. While this
hardware scheduling unit allows the processor to basically consist
of several virtual processor cores, only a fixed number of trustlets
can run simultaneously on the physical core. However, since most
TEEs are anyway limited in their processing power and only a well-
chosen set of trustlets is usually deployed in TEEs by the vendor,
an upper bound of processes is acceptable. Furthermore, we argue
that for simple services typically used in mobile platforms, such
as a process handling biometric data for unlocking the device or
a process handling the secure key storage, no dedicated operating
system is needed. Completely omitting the operating system and
providing operating system services using a tiny hardware unit
reduces the software TCB to a minimum and would even allow to
formally verify the simple hardware unit.

4.2.3 Control-Flow Integrity with Secure I/O. The fine granular
control-flow integrity unit embedded into the HECTOR-V architec-
ture prevents an attacker from performing control-flow hijack at-
tacks by limiting the control-flow of the program to only valid paths
through its control-flow graph. However, while the CFI scheme pro-
tects the control-flow by detecting integrity violation of forward-
and backward-edges, and thus prevents attacks such as ROP or JOP,
data-oriented attacks can not be detected by this countermeasure.
In such attacks, an adversary modifies control- or non-control re-
lated data to break the security of the system. By manipulating
control-related data, such as the condition value in an if statement,
the attacker indirectly can influence the control-flow of the pro-
gram. Furthermore, an attacker could leak sensitive data, such as
passwords or keys, by manipulating addresses in the system. For

example, instead of returning the ciphertext over an API to the user,
an attacker could modify the address from pointing to the location
of the ciphertext in memory to the encryption key stored in a secure
storage element instead by exploiting a buffer overflow. To lower
the impact of such attacks, RVSCP binds access to certain assets to
a certain CFI state. More concretely, only when the CFI protected
program reaches a predefined CFI state, the program is permitted
to access the distinct peripheral. In RVSCP, this strategy is realized
by tunneling each interaction request with a peripheral through a
dedicated function with a certain state. RVSCP automatically sets
the peripheral identifier of the processor to the current state. Only
if this state matches the ID stored in the peripheral wrapper, access
to the device is granted. If an attacker calls the peripheral access
function outside the valid control-flow graph, the CFI mechanism
detects this violation. Additionally, if the adversary crafts an ad-
dress accessing the asset, the state used as an ID does not match
the identifier of the peripheral and access to the device is restricted.

5 IMPLEMENTATION
In this section, we provide a prototype implementation of our
HECTOR-V architecture consisting of two cores with two different
ISAs. We first introduce the RISC-V lowRISC chip, which we use as
our base platform. Then, we extend this platformwith the HECTOR-V
features. Finally, we present our RVSCP design and demonstrate how
this processor is embedded into the SoC infrastructure.

5.1 Base Platform
The prototype implementation is based on the open-source
lowRISC [37] project. Internally, the lowRISC chip consists of the
64-bit RISC-V Rocket chip [9, 58] using the RV64GC ISA. The SoC,
capable of running Linux, provides an external off-chip DDR3 mem-
ory and an on-chip BRAM.

5.2 HECTOR-V
Figure 2 depicts the prototype implementation of HECTOR-V. The
extended lowRISC base platform consists of the Rocket Core ap-
plication processor ÷ and the secure processor RVSCP integrated
into the TEE ï . By providing an AXI4 master interface 1 2 ,
REE and TEE gain access to various peripherals over the shared
communication fabric 3 . To differentiate between REE and TEE,
the immutable core identifier is directly embedded into this AXI4
master interface. We further introduce a security monitor � , a
memory protection unit (MPU) , a reset unit Ê , and a secure
storage element ¤ as part of HECTOR-V.
Interconnect. The SoC communication infrastructure consists of
a shared AXI4 3 and AXI4-lite C interconnect. In our architecture,
the AXI4 bus is used to enable interaction between the processing
cores and the peripherals. We extended the AXI4 bus protocol and
the crossbar to transport the 16-bit user signal along with each bus
request. This user signal carries the 1-bit core ID, the 4-bit process
ID, and the 10-bit peripheral ID. While communication between
peripherals and cores requires a high-speed link, the configuration
of the security monitor and the peripheral wrappers only consists
of small configuration commands. Hence, we use a lightweight
AXI4-lite bus as a configuration channel. The configuration of the

security monitor is realized by introducing a point-to-point com-
munication channel between REE and SM A and TEE and SM B .
By using a separate AXI4-lite interconnect C , the configuration
of the peripheral wrappers can only be initiated by the security
monitor. This strategy ensures that neither the TEE nor the REE
directly can manipulate the peripheral firewalls; configuration only
can be requested over the security monitor module.
Security Monitor. To receive commands from REE and TEE, the
security monitor implements two AXI4-lite slave interfaces. The
protocol used to interact with the security monitor consists of two
privileged and four unprivileged commands. With the privileged
configuration command, the SM owner configures the table entries
of the hardware module. The table includes all peripherals known to
the SM, the current claiming status, and a list of identifiers allowed
to request access to the device. By using the privileged ownership
transfer configuration command, the SM owner can define a new
designated SM owner. The permission to issue a privileged con-
figuration command is checked by the security monitor using the
SM owner ID field stored in the SM module. The unprivileged com-
mands consist of a claiming and release request command allowing
the issuer to gain access to a peripheral. A status command can be
used to determine the permission level of the peripheral and if it is
currently claimed. To gain access to an already claimed peripheral,
the unprivileged withdraw request command can be used. While a
withdraw request issued by the SM owner is always granted, the
request of the unprivileged participant first needs to be approved.
When the withdraw request is granted, the SM uses dedicated in-
terrupt lines to notify the owner of the peripheral about the
withdraw request. For each peripheral, a dedicated interrupt line
between SM and TEE or REE is introduced. When the request is
approved by the SM, the configuration command is forwarded to
the peripheral wrapper over the AXI4-lite crossbar C .
PeripheralWrapper. AnAXI4 read or write request issued by the
TEE or REE and transported over the interconnect 3 is not directly
sent to the peripheral driver. First, a simple logic deployed in the
peripheral wrapper checks if the ID stored in the user signal of the
AXI4 request matches the identifier stored in the ID field of the
wrapper module. When the process ID or the peripheral ID is set to
zero, the access control is only conducted with the core ID, allowing
all entities on the TEE or REE to access the peripheral. Then, if the
ID transported in the request matches the ID stored in the module,
the request is forwarded to the actual peripheral. However, on an ID
mismatch, the peripheral wrapper transports the error code SLVERR
to the issuer using the RRESP or BRESP AXI4 signal. In addition to
the AXI4 slave interface, the peripheral wrappers also implement
an AXI4-lite slave interface. This interface is used by the SM to set
or unset the I in the ID field of the wrapper.
Interrupt. The peripheral wrapper also is responsible for routing
the interrupt line of the peripheral to the current peripheral owner.
To realize correct interrupt handling, the peripheral wrapper mod-
ules consists of one dedicated interrupt line for each participant
(REE and TEE). Based on the ID of the current peripheral owner,
the interrupt either is routed to the TEE or the REE.
Software Support. To interact with the security monitor, we pro-
vide a Linux kernel module for the application processor. This ker-
nel module allows the user processes to claim, release, withdraw,

TEE

IRQRst

Security
Monitor

Rocket Chip

TileLink
MEM NetworkIRQRst

REE TEEREE TEEREE TEE REE TEE REE TEE REE TEE REE TEE REE TEE TEE

AXI4

AXI4 Crossbar

AXI4-lite

AXI4AXI4-lite

A
X

I4
-l
it
e A

X
I4

AXI4-lite Crossbar

1

3

2

A

B

C

AXI4-lite
Interrupt
Reset

AXI4

3x 4x

BRAM

AXI4 Slave Interface

AXI4 Slave Interface

A
X

I4
-l
it
e

S
la

v
e

S
la

v
e

ID
_

R

R
eq

u
es

t

ID
_

C

if(ID_R==ID_C)

else
Request=SLVERR

Request_B

Request_B=Request

ID_C

Figure 2: The HECTOR-V architecture.

or query the status of a peripheral. Furthermore, the kernel module
also provides functionalities to configure the security monitor. To
handle interrupts from the security monitor withdraw mechanism,
each peripheral driver is extended with a dedicated cleanup inter-
rupt service routine. This ISR is responsible for clearing any secrets,
aborting communication channels with other parties, and releasing
the peripheral gracefully using the release mechanism. For the TEE,
we provide a small library. Similar to the kernel module, this library
provides basic functionalities to interact with the security monitor
Physical Memory Protection. Isolating a peripheral by binding
it exclusively to one entity does not work for the shared, external
DDR3 memory. Therefore, the HECTOR-V architecture introduces
a memory protection unit (MPU) , which is placed directly be-
tween the memory controller and the AXI4 bus interface. The MPU
can be claimed like any other peripheral by the TEE or REE using
the security monitor and the dedicated AXI4-lite slave interface.
The party currently claiming the MPU is now able to divide the
physical memory into up to 16 regions. These regions can then be
either exclusively accessed by one entity or are shared among mul-
tiple entities. Each incoming AXI4 read or write access is checked
by the memory protection unit using the identifier transported
with the request. With this mechanism, a secure storage place for
the REE and each virtual core of the RVSCP is enabled and shared
communication channels between REE and TEE can be established.
Reset Unit. The reset unit Ê controls the reset lines of the appli-
cation and the secure processor. Similar to other peripherals, this
entity can be claimed by each participant in the system. The owner
of the device can release the reset lines and turn on or off the other
entity in the system.
Secure Storage. To securely store sensitive data, such as crypto-
graphic keys, biometric data, or user passwords, HECTOR-V intro-
duces a secure storage element ¤ . In contrast to other peripherals,
a predefined, immutable identifier consisting of the core ID and the
process ID is programmed into the ID field of the wrapper module
at design time. Therefore, only the entity with the corresponding

ID can access the storage element. In the prototype, each of the
four virtual cores of RVSCP posses an own secure storage.

5.3 RVSCP
The RVSCP prototype implementation is based on the 32-bit RISC-V
REMUS core [46, 59] with the RV32IMXIE ISA already offering the
sponge-based CFI unit. The REMUS core originally is based on the
Ri5CY core [54], which achieves similar performance than a ARM
Cortex-M4 core. We further extend the core with the RVSCP features
and embed the processor into the HECTOR-V architecture.
TEE Infrastructure. By using the AXI4 master interface 2 con-
nected to the AXI4 crossbar 3 , the RVSCP is able to interact with
the peripherals, such as the UART or PS2 controller. Similar to the
main application processor, the secure processor implements an
AXI4-lite master interface B to configure and transmit peripheral
access requests to the security monitor.
Context Switch. The hardware scheduler unit is responsible for
performing secure context switches. For the RVSCP prototype, the
hardware scheduler maintains a list of four slots enabling four vir-
tual cores VC0 . . .VC3 on the RVSCP core. On a context switch, the
hardware scheduler saves the current SCFP state and the current
register file and loads the state, the decryption key, and the register
file for the next trustlet. To implement the replacement of the regis-
ter file, we added four additional register sets to our processor. Note
that the register file replacement could also be implemented by
storing and loading the content of the registers to memory, e.g., to a
secure storage element, to keep the area overhead of the processor
low. To differentiate between the four trustlets executed on the
RVSCP, each of the four slots gets assigned an individual process ID.
While the core ID is identical for all slots, the hardware scheduler
replaces the process ID directly in the AXI4 and AXI4-lite master
interface individually for each slot. By using the same core ID for
all four threads, a peripheral could be configured to be accessible
by all four trustlets.

write_se(addr,data)

*addr = data

...

write_se(0x0,1)

write_se(0x1,2)

main()

Figure 3: Access function for secure peripheral accesses.

Decryption Keys. To decrypt the encrypted instruction stream,
the SCFP unit needs to know the decryption key for the correspond-
ing trustlet. In the prototype implementation, the key is stored in
a dedicated control and status register of each virtual core, which
is only accessible from the respective core. To initially load the
key into the secure storage, our prototype trustlet consists of a
small, unencrypted boot code and the actual, encrypted code. The
unencrypted boot code can either generate the key, load the key
from the network, or directly from the binary. After storing the key
into the key register, the actual encrypted trustlet starts to execute.
Code Storage. Each of the virtual processor cores VC0 . . .VC3 run-
ning on the RVSCP processor executes code from an on-chip BRAM.
While VC1 . . .VC3 fetch code from a claimable BRAM � , the first
virtual processor core fetches its code from a secure code storage
element exclusively and permanently owned by VC0. To utilize
one of the virtual cores at RVSCP as an enclave, the issuer needs to
store the trustlet code on the BRAM of this core. Since the code of
the first virtual core is stored in a secure storage element , this
code cannot be changed by the REE or by the other virtual cores of
RVSCP at any point in time.
Control-Flow Integrity with Secure I/O. To implement the con-
cept of binding access to peripherals to a certain CFI state, each
AXI4 request leaving the RVSCP is annotated with the current CFI
state. The processor directly places a compressed form of the cur-
rent state into the 10-bit peripheral ID field of the AXI4 user signal.
To only allow, e.g., write access to the secure element when reach-
ing a predefined state, the trustlet tunnels all write accesses to this
peripheral through the function write_se. Since decrypting this
function only works, when a certain state 𝑆𝑆𝐸 is reached, the SCFP
scheme automatically patches the state of the callee with the patch
value 𝑝𝑎 or 𝑝𝑏 . As seen in Figure 3, the patching mechanism of
SCFP ensures that, on each valid call of the access function, state
𝑆𝑆𝐸 is reached. By using this state as the peripheral identifier, access
to a specific peripheral only is granted when reaching state 𝑆𝑆𝐸
through the access function. Similar to the setup procedure of the
decryption keys, the boot code of the trustlet claims the peripheral
used in the code by sending the identifier consisting of the core
identifier (ID of RVSCP), the process identifier (ID of the virtual
processor), and the peripheral identifier (compressed CFI state 𝑆𝑆𝐸)
to the security monitor. Now, access to secrets stored in the secure
storage element or other sensitive peripherals, like a fingerprint
reader, only is permitted when reaching a predefined CFI state. If a
trustlet does not need explicit protection of certain peripherals, the
peripheral ID in the peripheral claiming request is set to zero.

5.4 Performance Evaluation
In this section, we analyze the latency for peripheral and TEE
communication, as well as the runtime overhead of the TEE.
Peripheral Access Latency. The secure I/O design of HECTOR-V
requires the entities to claim resources, e.g., the BRAM, before
accessing them. However, this claiming process, which is initialized
in software, only needs to be conducted once for each entity and
resource. To determine the performance of this mechanism, we
configured a trustlet on the RVSCP to be the designated security
monitor (SM) owner. We measured an execution time of 188 cycles
on average for sending a claim request from the REE to the SM and
reading back this status. Furthermore, the secure I/O concept of
HECTOR-V introduces the peripheral wrappers, which compare the
identifier of each incoming AXI4 request to the identifier stored in
the register of this wrapper. To measure the performance impact of
this filteringmechanism, we copied data from the REE to a protected
BRAM. However, since the ID comparison only requires a simple
hardware logic, we could not measure any performance impact
when comparing to a platform without the peripheral wrappers.
Communication Latency between REE and TEE. The current
implementation of HECTOR-V utilizes a memory region shared be-
tween REE and the trustlet for communication. Hence, the com-
munication latency between these two security domains is deter-
mined by the performance of the external DDR3 memory and the
communication API arranged by the trustlet and the REE applica-
tion. To characterize the general performance of the underlying
memory subsystem, we benchmarked the external memory using
LMBench [41]. We measured an average memory access latency
of 876 ns for the lat_mem_rd 64M 512 testcase. To measure the
communication latency, i.e., the timeframe of sending a message
from REE to TEE and receiving the acknowledgment on the REE,
we installed a benchmarking trustlet on RVSCP. We configured
this trustled to establish a shared memory region on the external
memory using the secure I/O design of HECTOR-V. This trustlet
acknowledges the received 1MB message by writing a status value
in the shared memory. On the REE, we implemented a blocking
function allowing to send data to the shared memory region and
waiting for the acknowledgment from the trustlet. Note that the us-
age of blocking functions for communication also is recommended
by the popular GlobalPlatform TEE API specification [52] used by
many TEE operating systems, such as OP-TEE [26]. We measured
an execution time of 5498 cycles on average for transmitting a 1MB
memory object to the TEE and receiving the response from the REE.
For comparison, simply writing a 1MB to the external memory
already takes 5261 cycles on average. This timing difference of 4.5 %
on average is negligible, as the memory performance is the major
performance indicator for cross-domain communication. Although
the usage of blocking functions is common for TEEs, HECTOR-V
could further be extended to implement an interrupt-based mailbox
system similar to Apple’s SEP [38].
RVSCP Runtime Overhead. For the secure RVSCP processor, we
extended the existing core implementing SCFP [59] with the hard-
ware scheduler responsible for scheduling the trustlets and manag-
ing the identifiers. As these changes do not alter the single thread
performance of the core, we observed same performance numbers
for RVSCP. Werner et al. measured a performance overhead of 9.1 %

on average for protecting a broad range of macrobenchmarks with
CFI. The baseline for these measurements is the Ri5CY [54] core,
which achieves similar performance than a state-of-the-art ARM
Cortex-M4 [47]. Hence, RVSCP is suitable for executing a vast vari-
ety of trustlets.

5.5 Area Overhead
To quantify the area overhead introduced by the additional RISC-V
core and the HECTOR-V features, we synthesized the lowRISC base
platform for a Xilinx Kintex-7 series FPGA. More concretely we
synthesized the extended lowRISC platform with the additional
HECTOR-V features and a selection of different RISC-V cores used
as TEE processor. Table 1 shows the total hardware overhead of
the HECTOR-V architecture consisting of either the Ri5CY [54], the
REMUS [46, 59], or the FRANKENSTEIN [48] core used as secure TEE
processor. The REMUS core, which is based on the Ri5CY, imple-
ments a decryption unit to offer the Sponge-Based Control-Flow
Protection (SCFP)mechanism. FRANKENSTEIN, which is an extended
version of the REMUS core, is a 64-bit RISC-V processor including the
SCFP scheme and a pointer protection scheme for secure memory
accesses. While the Rocket Core used in the lowRISC platform is
capable of running Linux, the processor core still is rather small
compared to application processors from vendors like Intel, ARM,
andAMD. Therefore, when using a larger processor in the HECTOR-V
architecture, the relative overhead introduced by the additional se-
cure TEE processor is negligible. In Table 2, we list area number
for different components in the HECTOR-V architecture using the
RI5CY core as secure TEE processor.

6 USE CASES
This section proposes use cases for the secure TEE design consisting
of the HECTOR-V architecture and the RVSCP. More concretely, we
demonstrate how the TEE can be used to boot Linux on the main

Table 1: Lookup table (LUT) overhead of the overall architec-
ture consisting of the HECTOR-V features and an additional
secure processor compared to the lowRISC base project.

Configuration Area
[LUTs]

Area Overhead
[%]

lowRISC base platform 55,443 -
HECTOR-V with RI5CY 63,648 14.8
HECTOR-V with REMUS 67,024 20.89
HECTOR-V with FRANKENSTEIN 68,746 23.99

Table 2: Hardware overhead of different features.

Component Area
[LUTs]

Area
[%]

Rocket Chip 33,341 52.38
RI5CY 5,780 9.08
Security Monitor 446 0.7
Peripheral Wrapper 43 0.07
AXI4 Crossbar 3,052 4.79
AXI4-lite Crossbar 93 0.14

application processor securely. After the secure boot use case, we
show how the RVSCP can be utilized to securely execute trustlets.
Note that these two scenarios are only a selection of many other
use cases that can be realized with HECTOR-V.

6.1 Secure Boot
On the unmodified lowRISC platform, a zero stage bootloader (ZSBL)
permanently stored in the on-chip BRAM first loads the Berke-
ley boot loader (BBL) from the external SD-card. Then, the ZSBL
hands over control to the BBL first stage bootloader (FSBL). The
BBL, which is linked against the Linux kernel, fetches the Linux
image and sets up the environment by configuring the hardware
threads (HARTS) and the memory. Finally, the Linux operating sys-
tem starts. However, loading the FSBL and the Linux image directly
from the SD-card to boot up the device is problematic in many ways.
An attacker with physical access to the device can boot arbitrary
code by simply modifying the unprotected boot files stored on the
SD-card. This attack methodology also can be used in an online
attack by overwriting the boot files. To only allow authenticated
software to boot, vendors frequently embed a secure boot mech-
anism into their systems. Here, a chain-of-trust is generated by
authenticating each boot file before executing it.

In our use case implementing secure boot using features of the
HECTOR-V architecture, the first virtual core VC0 of RVSCP is the
designated security monitor owner. At design time, the reset unit
of the system is configured to release the reset line of RVSCP and
keep the REE processor halted when applying power to the SoC.
Additionally, the security monitor owned by VC0 is unconfigured,
except for the reset unit which is claimed by the SM owner. When
applying power to the device, VC0 starts to execute the ZSBL stored
in the secure code storage . Since the secure code storage is
permanently and exclusively owned by VC0, the ZSBL is isolated
from the other parties and only VC0 can update this code using an
update mechanism. Due to these strong protection mechanisms,
the ZSBL stored in the secure code storage is the system root-
of-trust. The ZSBL code first claims the SD-card controller and
configures the memory protection unit of the DDR3 memory. Then,
the ZSBL fetches the BBL from the SD card and stores it to the
external memory. Before passing control to the BBL, the ZSBL
determines the hash value of the loaded BBL image. When this
hash value does not match the expected hash value stored in the
secure storage element ¤ of VC0, the boot process is aborted.
Again, an update of the expected hash value only can be initiated
by the first virtual processor core of RVSCP because the secure
storage element exclusively is owned by this party and can not be
claimed by any other party at any point in time. If the verification of
the BBL was successful, the ZSBL releases the SD-card driver, gives
the main application processor access to the DDR3 memory region
by configuring the MPU, and triggers the reset unit to start the REE.
Now, the Rocket Core starts to execute the modified BBL from the
external memory. The modified BBL then requests access to the
SD-card controller, loads the Linux image from the SD-card, and
verifies the loaded image by comparing the computed hash value
with the expected hash value. Finally, if the verification process
succeeds, the Linux operating system starts and can claim the first
peripherals by sending requests to the security monitor. Since each

stage of the boot process now is cryptographically verified, the
system is in a genuine state. Now, the VC0 passes the SM owner
privilege to the main application processor (AP). This change is
initiated by sending the identifier of the AP to the SM using the
ownership transfer command. Although the REE is now in full
control of the system, e.g., is able to switch of the secure processor
using the reset unit, secrets stored in the secure storage ¤ and
the secure code storage are still protected from AP accesses.

6.2 Trustlets
In this use case, we utilize the virtual processor VC1 of RVSCP to exe-
cute a trustlet. We compile the trustlet with a LLVM-based toolchain
supporting the SCFP scheme and encrypt the program with the key
𝐾 . To interact with the outside and to store secrets, the trustlet uses
the UART controller and the secure storage element. The secure
storage element is protected from malicious accesses by tunneling
all requests through a dedicated access function and binding the
access to it to the CFI state 𝑆𝑆𝐸 . We define access to the UART con-
troller as uncritical. Therefore the interaction with this controller is
unprotected. First, the application processor switches off the RVSCP
by utilizing the reset unit. Then, the processor claims a claimable
BRAM � and stores the code, consisting of an unencrypted small
boot code and the encrypted trustlet, to this storage. After the code
is saved, the AP sets VC1 as owner of the code storage in the security
monitor. Furthermore, the MPU is configured to provide a memory
region owned by the trustlet to use as RAM and a shared memory
region to establish a communication channel between REE and the
trustlet. Finally, the RVSCP is started by releasing the reset line of
the secure processor and code gets executed. To initialize key 𝐾
and state 𝑆𝑆𝐸 , the boot code of the trustlet writes the decryption
key into the key register of 𝑉𝐶1 and claims the secure key storage
element by setting the compressed state 𝑆𝑆𝐸 into the peripheral ID
field. Now, control is passed to the SCFP protected trustlet code
and the decryption stage of the processor decrypts the code using
the key. To access the UART controller, the trustlet needs to claim
the controller by sending a claim request to the SM. The secure
storage element is accessed by using the dedicated access function.
By setting the compressed state directly into the peripheral ID field
of each AXI4 request leaving the processor, access to the secure
storage element only is permitted when reaching the predefined
state 𝑆𝑆𝐸 . The communication channel established using the shared,
external memory allows the REE and trustlet to exchange informa-
tion. When the designated SM owner, the AP, withdraws access to
the UART controller, the claimable BRAM, or the shared memory
region, the trustlet is notified using an interrupt. This interrupt is
handled by the ISR implemented on the trustlet. The ISR clears all
secrets, aborts communication with the UART controller, gracefully
releases the peripheral, and enters a predefined IDLE state.

7 SECURITY DISCUSSION
In this section, we analyze security guarantees of HECTOR-V and
discuss security properties of the secure RVSCP processor.

7.1 HECTOR-V
The security guarantees of HECTOR-V are established with the intro-
duced architectural features, i.e., the securitymonitor, the peripheral
wrappers, and the separation of the REE and the TEE in the SoC.
Isolation between REE and TEE. In each TEE design, the key
challenge is to guarantee strong isolation between REE and TEE.
Most TEE designs fail to provide this guarantee by either be vulner-
able to side-channel and microarchitectural attacks or by insuffi-
ciently protecting TEE resources, such as the memory or peripher-
als [34]. HECTOR-Vmitigates all cache- andmicroarchitectural-based
side-channel attacks by separating REE and TEE using dedicated
cores for each domain. This approach ensures that no sensitive
components, such as caches, branch predictors, and the execution
pipelines, are shared between REE and TEE. To protect resources,
HECTOR-V provides architectural features to bind a peripheral to a
entity using the SM and the peripheral wrappers. In HECTOR-V, for
each entity, i.e., the REE or the trustlets on the TEE, a dedicated
memory region can be reserved. This memory region is isolated
using hardware-enforced access checks in the MPU using the ID of
the entity.
Trusted Computing Base. The TCB of HECTOR-V consists of sev-
eral hardware and software features, which are marked in yellow in
Figure 2. The central trust anchor is the security monitor � , which
manages access permissions to peripherals and the memory. Here,
the SM configures the peripheral wrappers over the exclusively
owned AXI4-lite C interconnect by setting the ID of the autho-
rized entity into the ID register. In HECTOR-V, the SM only can be
configured by one entity, the SM owner. This entity, the software
TCB, either is a trustlet in the RVSCP or a kernel task in the REE
and is responsible for configuring the security monitor. The SM
differentiates between the SM owner and the other parties using the
IDs. While the REE ID is permanently and immutable programmed
into the AXI4 interface 1 of this core, the identifiers of the trustlets
in RVSCP are managed by the hardware scheduler / TCB.
Malicious Software TCB. Although the SM owner is responsi-
ble for configuring the SM and is, therefore, part of the software
TCB, HECTOR-V considers this entity as potentially malicious and
provides architectural features to limit the impact of this threat.
A malicious SM owner either could be the result of an attacker
with kernel privileges on the REE currently being the SM owner
or a malicious trustlet in the TEE with the SM ownership. Here,
the goal of the attacker is to threaten the confidentiality, integrity,
and availability of the system by misconfiguring the SM. HECTOR-V
maintains the integrity and confidentiality of secrets stored in pe-
ripherals, e.g., the external memory or internal BRAMs, by exclu-
sively binding these elements to one entity. The hardware-enforced
ID access check prevents all other entities, even the SM owner, to
access these elements. Furthermore, to protect critical secrets, such
as keys, hash values, or the secure boot code, HECTOR-V offers the
possibility to set an ID of an entity immutable into the ID field of
the critical element, preventing the SM owner and other parties
from accessing this element. Although the SM owner can initiate a
peripheral release request, this hardware mechanism first notifies
the current owner of the peripheral about the incoming withdraw
procedure, allowing to clear sensitive data. However, a malicious

SM owner could influence the availability of the system by perma-
nently withdrawing peripherals. To prevent the SM owner to switch
off a different entity in the system and then access secrets stored
in the peripherals, the reset unit could, similar to the withdrawing
mechanism, notify the entity about the incoming reset.

7.2 RVSCP
The RVSCP processor, which is tightly integrated into the HECTOR-V
architecture, consists of several hardware features, such as a CFI
unit coupled with secure I/O and a hardware scheduler.
Isolation between Trustlets. In addition to the isolation guaran-
tees between REE and TEE, the trustlets within the secure processor
also need strong isolation between each other. The hardware sched-
uler, which acts as TCB for the RVSCP, is responsible of scheduling
the trustlets. Here, on each context switch, this unit replaces the
identifiers of each trustlets. As this swapping mechanism is real-
ized in hardware, the trustlets cannot influence the ID in software.
Isolating resources, such as the external memory, code storage, and
peripherals, is realized by claiming separate resources for each tr-
sutlet using the identifier-based secure I/O mechanism. While the
heterogeneous architecture prevents an attacker from performing
cache and transient-based attacks between REE and TEE, RVSCP
needs additional countermeasures, such as flushing the microarchi-
tectural state [63] on a context switch, to also protect against cache
attacks. Due to the simplicity and openness of RVSCP, transient-
based attacks cannot be performed by an adversary.
Communication Interface. To establish a communication be-
tween REE and TEE, a shared memory region for the trustlet and
the REE application is created using the MPU and the ID of both
parties. Recent attacks [11, 12] demonstrated that a single bug, e.g.,
a buffer overflow, in the software interface between REE and TEE
could completely compromise the secure domain. To prevent the
exploitation of such vulnerabilities, the trustlets are protected using
hardware features of RVSCP. The CFI unit prevents an attacker from
performing control-flow hijacking attacks, such as ROP or JOP. Fur-
thermore, RVSCP limits the impact of data-oriented attacks, which
cannot be detected by CFI units. Here, RVSCP protects trustlets and
resources from these attacks by restricting access to peripherals
only when reaching a predefined CFI state. Moreover, the attack
surface of RVSCP is minimized by completely omitting a TEE OS
and using a hardware TCB controlling the context switches and the
resource management. In addition to logical attacks on the interface,
the HECTOR-V approach also aggravates physical bus probing and
sniffing attacks on the communication interface [3] by integrating
the TEE into the SoC.

8 RELATEDWORK
This section summarizes TEEs introduced by both, academia and
industry, and compares them to HECTOR-V.
Intel SGX. In Intel Software Guard Extensions [22], an enclave is
created purely in software and protected with hardware features,
such as a memory encryption engine (MEE). Although this ap-
proach allows to flexibly spawn new enclaves in software, SGX
suffers from several disadvantages. First, Intel explicitly excludes
side-channel and fault attacks in their threat model [30] and this
weakness already is actively exploited [15, 16, 20, 27, 43, 49, 55].

Second, SGX does not natively protect user I/O and is therefore
vulnerable to attacks on peripherals.
ARM TrustZone. In this TEE design, ARM enforces a secure and
non-secure domain within the processor using a virtual proces-
sor approach based on an identifier, the non-secure (NS) bit. The
enforcement of the security policy is directly implemented in the
AXI interface of the SoC components. This security policy can be
static for some peripherals, like the fingerprint reader, or can be
dynamically configured by the secure world using several hardware
blocks [44]. The TrustZone Protection Controller (TZPC), which
solely can be configured by the secure world, acts as a root-of-
trust and manages access permissions for single peripherals [51].
To partition memory into secure and non-secure areas, the secure
world can configure the security policies using the TZ Address
Space Controller (TZASC) and the TZ Memory Adapter (TZMA).
Since operating systems deployed in TrustZone typically do not
provide state-of-the-art defense strategies [17], a malicious trustlet
could threaten the security of the secure world. Therefore, vendors
integrating TZ into their products limit their systems to only a
pre-defined set of trustlets. SANCTUARY [14] tackles this prob-
lem by extending TrustZone to support user-space applications.
Here, SANCTUARY utilizes TZ to exclusively reserve a core and
memory to spawn individual Sanctuary instances. These instances,
which allow users to deploy own trustlets, mitigate cache-based
side-channel attacks by using the L1 cache of the reserved core and
excluding to use the L2 cache. Although SANCTUARY enhances
TrustZone to support user-defined trustlets, it inherits limitations
of the underlying architecture. In contrast to HECTOR-V, TrustZone
only uses a 1-bit ID to differentiate between secure and non-secure
world. Hence, TrustZone only can bind peripherals to a core or
to the secure domain and fails to offer fine-granular protection of
peripherals for multiple trustlets [10]. Furthermore, TrustZone is
an inflexible approach with the secure domain as the static trusted
entity. HECTOR-V allows to dynamically switch the trusted domains
between the entities, which enhances potential use cases for the
TEE design. Additionally, HECTOR-V offers hardware features, such
as a fine-granular CFI unit combined with secure I/O, to isolate
trustlets within the secure domain. Although SANCTUARY mit-
igates cache-based side-channel attacks by reserving a core and
its L1 cache for a trustlet, other ARM TrustZone based security
architecture are still vulnerable against such attacks [36].
RISC-V based TEEs. The introduction of several open-source
RISC-V cores mobilizes research on open TEE solutions. SANC-
TUM [23] aims to offer a similar programming model to SGX on
RISC-V. This design uses a software-based security monitor and
requires minimal hardware changes to dynamically spawn new
enclaves. In addition to SGX, SANCTUM mitigates cache-based
side-channel attacks by using cache partitioning for each enclave.
Similarly, Keystone [35] utilizes a security monitor to enforce TEE
guarantees and uses the physical memory protection (PMP) feature
of RISC-V to isolate individual enclaves. To mitigate software side-
channel attacks, Keystone flushes enclave states on a context switch.
Although these designs address the side-channel problematic of
TrustZone and SGX, SANCTUM and Keystone do not provide ar-
chitectural features for secure I/O, leaving communication with
peripherals unprotected.

SiFive WorldGuard. Concurrent developed with the HECTOR-V
architecture, SiFive recently introduced WorldGuard [62]. Here,
each core gets assigned a world ID and each process on the core
can be annotated with a process ID. This ID then is transported
using the interconnect and requests from participants are filtered by
peripherals, the memory, and the caches. Similar to HECTOR-V, this
approach allows WorldGuard to reserve one core exclusively for
the secure domain to provide strong isolation guarantees. However,
both architectures differ in various design choices. First, HECTOR-V
uses a hardware-based security monitor which only can be config-
ured by one party. In contrast to WorldGuard, the security monitor
ownership can be dynamically transferred to other parties allowing
flexible use cases. Additionally, the security monitor allows each
participant in HECTOR-V to request access to certain peripherals
and request access to already claimed peripherals using a withdraw
request. We further propose a concrete secure processor design uti-
lizing features of the heterogeneous architecture to create a trusted
execution environment. Moreover, we comprehensively describe
the hardware-software interaction and demonstrate features of
HECTOR-V by introducing several use case scenarios.
GPU based TEEs. In addition to the proprietary solutions from
Apple, Microsoft, and SiFive, several academic TEEs based on GPUs
have been introduced recently. HIX [31] and Graviton [56] utilize
the GPU to establish a trusted execution environment for trustlets.
Although these designs share the idea of HECTOR-V to use a hetero-
geneous system for the TEE, these GPU-based architectures do not
support secure I/O for peripherals.

9 CONCLUSION
In this paper, we proposed HECTOR-V, a secure TEE design strategy
using a heterogeneous CPU architecture. Our design establishes
secure paths between peripherals and the cores by tagging each
party with an identifier. The peripherals enforce access permis-
sions by checking the ID, which is transported along with each
bus request. To configure these access permissions, we integrate
a hardware-based security monitor into the architecture. The se-
curity monitor, which exclusively can set permissions, is owned
by a configuration party. By allowing to transfer this ownership to
other parties, HECTOR-V allows flexible permission management. In
contrast to similar design approaches, we provide a notifier-based
mechanism to withdraw access to certain peripherals securely. We
further introduce RVSCP, a security-hardened CPU design tailored
for our architecture. RVSCP combines a fine-granular control-flow
integrity scheme with the secure I/O concept of HECTOR-V to re-
strict access to assets. To complete our TEE design, we introduce
secure data and code storage elements, a reset unit, and a memory
protection unit. We examine the features of our architecture in a
secure boot and enclave scenario.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681402) and by
the Austrian Research Promotion Agency (FFG) via the competence
center Know-Center (grant number 844595), which is funded in the
context of COMET - Competence Centers for Excellent Technolo-
gies by BMVIT, BMWFW, and Styria.

REFERENCES
[1] 2018. CVE-2016-10423.
[2] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Trans. Inf. Syst.
Secur. 13 (2009).

[3] Denis Andzakovic. 2019. Extracting Bitlocker Keys from a TPM.
[4] Apple. 2020. About the Apple T2 Security Chip.
[5] ARM. 2019. AMBA AXI and ACE Protocol Specification. arm.com (2019).
[6] ARM. 2020. Processing Architecture for Power Efficiency and Performance.
[7] Architecure ARM. 2009. Security technology building a secure system using

trustzone technology (white paper). ARM Limited (2009).
[8] Divya Arora, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha. 2006.

Hardware-Assisted Run-Time Monitoring for Secure Program Execution on
Embedded Processors. IEEE Trans. Very Large Scale Integr. Syst. 14 (2006).

[9] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee, Eric
Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert Ou,
David A Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo,
and Andrew Waterman. 2016. The Rocket Chip Generator. EECS Department,
University of California, Berkeley, Technical Report (2016).

[10] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig, Matthias
Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf. 2020. CURE: A Security
Architecture with CUstomizable and Resilient Enclaves. arXiv abs/2010.15866
(2020).

[11] Gal Beniamini. 2016. QSEE privilege escalation vulnerability and exploit (CVE-
2015-6639).

[12] Gal Beniamini. 2016. War of the Worlds - Hijacking the Linux Kernel from QSEE.
[13] Swapnil Bhartiya. 2020. Linux in 2020: 27.8 million lines of code in the kernel, 1.3

million in systemd.
[14] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and

Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves. In Network and Distributed System Security Symposium – NDSS.

[15] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In Workshop on Offensive Technologies – WOOT.

[16] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[17] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems. In Proceedings of the IEEE Symposium on Security and Privacy (S&P), San
Francisco, CA, USA.

[18] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In Conference on Computer and Communications Security – CCS.

[19] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten-Hwang Lai. 2018. SgxPectre Attacks: Leaking Enclave Secrets via Speculative
Execution. arXiv abs/1802.09085 (2018).

[20] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten-Hwang Lai. 2020. SgxPectre: Stealing Intel Secrets From SGX Enclaves via
Speculative Execution. IEEE Secur. Priv. 18 (2020).

[21] Nick Christoulakis, George Christou, Elias Athanasopoulos, and Sotiris Ioannidis.
2016. HCFI: Hardware-enforced Control-Flow Integrity. In Conference on Data
and Application Security and Privacy – CODASPY.

[22] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Software Developer’s
Manual. (2019).

[23] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In USENIX Security Sympo-
sium.

[24] Ruan de Clercq, Johannes Götzfried, David Übler, Pieter Maene, and Ingrid Ver-
bauwhede. 2017. SOFIA: Software and control flow integrity architecture. Comput.
Secur. 68 (2017).

[25] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. 2014. The Untapped Potential of
Trusted Execution Environments on Mobile Devices. IEEE Secur. Priv. 12 (2014).

[26] Trusted Firmware. 2020. OP-TEE.
[27] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.

Cache Attacks on Intel SGX. In Proceedings of the 10th European Workshop on
Systems Security, EUROSEC 2017, Belgrade, Serbia, April 23, 2017.

[28] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam. 2016.
Cache Storage Channels: Alias-Driven Attacks and Verified Countermeasures. In
IEEE Symposium on Security and Privacy – S&P.

[29] Apple Inc. 2020. Security enclave processor for a system on a chip. US8832465B2.
[30] Intel. 2017. Intel SGX and Side-Channels.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-10423
https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/1609956.1609960
https://pulsesecurity.co.nz/articles/TPM-sniffing
https://support.apple.com/en-us/HT208862
https://www.arm.com/why-arm/technologies/big-little
https://doi.org/10.1109/TVLSI.2006.887799
https://doi.org/10.1109/TVLSI.2006.887799
https://arxiv.org/abs/2010.15866
https://arxiv.org/abs/2010.15866
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
http://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/
https://www.ndss-symposium.org/ndss-paper/sanctuary-arming-trustzone-with-user-space-enclaves/
https://www.ndss-symposium.org/ndss-paper/sanctuary-arming-trustzone-with-user-space-enclaves/
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1145/1866307.1866370
http://arxiv.org/abs/1802.09085
http://arxiv.org/abs/1802.09085
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1109/MSEC.2019.2963021
https://doi.org/10.1145/2857705.2857722
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://doi.org/10.1016/j.cose.2017.03.013
https://doi.org/10.1109/MSP.2014.38
https://doi.org/10.1109/MSP.2014.38
https://www.op-tee.org/
https://doi.org/10.1145/3065913.3065915
https://doi.org/10.1109/SP.2016.11
http://www.google.com/patents/US8832465
https://software.intel.com/content/www/us/en/develop/articles/intel-sgx-and-side-channels.html

[31] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and Jaehyuk Huh.
2019. Heterogeneous Isolated Execution for Commodity GPUs. In Architectural
Support for Programming Languages and Operating Systems – ASPLOS.

[32] Scott Johnson, Dominic Rizzo, Parthasarathy Ranganathan, Jon McCune, and
Richard Ho. 2018. Titan: enabling a transparent silicon root of trust for Cloud. In
Hot Chips: A Symposium on High Performance Chips.

[33] Sanjeev Khushu andWilfred Gomes. 2019. Lakefield: Hybrid cores in 3D Package.
In 2019 IEEE Hot Chips 31 Symposium (HCS), Cupertino, CA, USA, August 18-20,
2019.

[34] Kari Kostiainen, Aritra Dhar, and Srdjan Capkun. 2020. Dedicated Security Chips
in the Age of Secure Enclaves. IEEE Secur. Priv. 18 (2020).

[35] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution
environments. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020.

[36] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. 2016. ARMageddon: Cache Attacks on Mobile Devices. In USENIX
Security Symposium.

[37] LowRISC. 2019. lowRISC Chip.
[38] Tarjei Mandt, Mathew Solnik, and David Wang. 2016. Demystifying the secure

enclave processor. Black Hat Las Vegas (2016).
[39] Steve McConnell. 2004. Code complete. Pearson Education.
[40] Elliot H. MednickEdward McLellan. 2020. Instruction subset implementation for

low power operation. US10698472B2 (2020).
[41] Larry W. McVoy and Carl Staelin. 1996. lmbench: Portable Tools for Performance

Analysis. In USENIX Annual Technical Conference.
[42] Erik Kraft Michael Schwarz. 2019. Are Microarchitectural Attacks still possible

on Flawless Hardware? RuhrSec (2019).
[43] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and

Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP).

[44] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Compre-
hensive Survey. ACM Comput. Surv. 51 (2019).

[45] Samsung. 2020. eSE Safeguard against digital attacks.
[46] David Schaffenrath. 2016. Fault-Attack Secure Processor Design. Graz University

of Technology (2016).
[47] Pasquale Davide Schiavone, Francesco Conti, Davide Rossi, Michael Gautschi,

Antonio Pullini, Eric Flamand, and Luca Benini. 2017. Slow and steady wins
the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things
applications. In 2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS).

[48] Robert Schilling, Mario Werner, Pascal Nasahl, and Stefan Mangard. 2018. Point-
ing in the Right Direction - Securing Memory Accesses in a Faulty World. In
Annual Computer Security Applications Conference – ACSAC.

[49] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.

In Detection of Intrusions and Malware & Vulnerability Assessment – DIMVA.
[50] Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-

into-libc without function calls (on the x86). In Conference on Computer and
Communications Security – CCS.

[51] José Alberto Moreira Silva. 2019. Arm TrustZone: evaluating the diversity of the
memory subsystem. (2019).

[52] GlobalPlatform Device Technology. 2020. TEE Client API Specification.
[53] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar

Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium.

[54] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou,
Eric Flamand, Frank K Gurkaynak, and Luca Benini. 2016. PULPino: A small
single-core RISC-V SoC. In 3rd RISCV Workshop.

[55] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking transient execution through microarchitectural load value
injection. In 41th IEEE Symposium on Security and Privacy (S&P’20).

[56] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton: Trusted
Execution Environments on GPUs. In USENIX Symposium on Operating Systems
Design and Implementation – OSDI.

[57] ZhiWang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity. In IEEE Symposium on Security and
Privacy – S&P.

[58] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović. 2011.
The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA. Technical
Report. EECS Department, University of California, Berkeley.

[59] Mario Werner, Thomas Unterluggauer, David Schaffenrath, and Stefan Man-
gard. 2018. Sponge-Based Control-Flow Protection for IoT Devices. In European
Symposium on Security and Privacy – EuroS&P.

[60] Mario Werner, Erich Wenger, and Stefan Mangard. 2015. Protecting the Control
Flow of Embedded Processors against Fault Attacks. In Smart Card Research and
Advanced Applications – CARDIS.

[61] David Weston. 2020. Meet the Microsoft Pluton processor – The security chip
designed for the future of Windows PCs.

[62] Bob Wheeler. 2019. SIFIVE SECURES RISC-V. Microprocessor report (2019).
[63] Nils Wistoff, Moritz Schneider, Frank K. Gürkaynak, Luca Benini, and Gernot

Heiser. 2020. Prevention of Microarchitectural Covert Channels on an Open-
Source 64-bit RISC-V Core. arXiv abs/2005.02193 (2020).

[64] Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries. In
USENIX Security Symposium.

[65] Ning Zhang, He Sun, Kun Sun, Wenjing Lou, and Yiwei Thomas Hou. 2016.
CacheKit: Evading Memory Introspection Using Cache Incoherence. In European
Symposium on Security and Privacy – EuroS&P.

[66] Andrew D. Zonenberg and Bülent Yener. 2016. Antikernel: A Decentralized
Secure Hardware-Software Operating System Architecture. In Cryptographic
Hardware and Embedded Systems – CHES.

https://doi.org/10.1145/3297858.3304021
https://doi.org/10.1109/HOTCHIPS.2019.8875641
https://doi.org/10.1109/MSEC.2020.2990230
https://doi.org/10.1109/MSEC.2020.2990230
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/lipp
https://www.lowrisc.org
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://www.samsung.com/semiconductor/security/ese/
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://globalplatform.org/specs-library/?filter-committee=tee
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/tice
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://doi.org/10.1109/SP.2010.30
https://doi.org/10.1109/SP.2010.30
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html
https://doi.org/10.1109/EuroSP.2018.00023
https://doi.org/10.1007/978-3-319-31271-2_10
https://doi.org/10.1007/978-3-319-31271-2_10
https://www.microsoft.com/security/blog/2020/11/17/meet-the-microsoft-pluton-processor-the-security-chip-designed-for-the-future-of-windows-pcs/
https://www.microsoft.com/security/blog/2020/11/17/meet-the-microsoft-pluton-processor-the-security-chip-designed-for-the-future-of-windows-pcs/
https://arxiv.org/abs/2005.02193
https://arxiv.org/abs/2005.02193
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/Zhang
https://doi.org/10.1109/EuroSP.2016.34
https://doi.org/10.1007/978-3-662-53140-2_12
https://doi.org/10.1007/978-3-662-53140-2_12

	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Design
	4.1 HECTOR-V Design
	4.2 RVSCP Design

	5 Implementation
	5.1 Base Platform
	5.2 HECTOR-V
	5.3 RVSCP
	5.4 Performance Evaluation
	5.5 Area Overhead

	6 Use Cases
	6.1 Secure Boot
	6.2 Trustlets

	7 Security Discussion
	7.1 HECTOR-V
	7.2 RVSCP

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

