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A crucial factor determining charge transport in organic semiconductors is the electronic 

coupling between the molecular constituents, which is heavily influenced by the relative 

arrangement of the molecules. This renders quinacridone, with its multiple, structurally 

fundamentally different polymorphs and their diverse intermolecular interactions an ideal test 

case for analyzing the correlation between the electronic coupling in a specific configuration 

and the configuration’s energetic stability. To provide an in-depth analysis of this correlation, 

starting from the -polymorph of quinacridone, we also construct a coplanar model crystal. 

This allows us to systematically compare the displacement-dependence of the electronic 

coupling with that of the total energy. In this way, we identify the combination of Pauli 

repulsion and orbital rehybridization as the driving force steering the system towards a structure 

in which the electronic coupling is minimal (especially for the valence band and at small 

displacements). The general nature of these observations is supported by equivalent trends for 

an analogous pentacene model system. This underlines that the design of high-performance 

materials cannot rely on the “natural” assembly of the -conjugated backbones of organic 

semiconductors into their most stable configurations. Rather, it must include the incorporation 

of functional groups that steer crystal packing towards more favorable structures, where aiming 

for short-axis displacements or realizing comparably large long-axis displacements appear as 

strategies worthwhile exploring.  
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1. INTRODUCTION 

Organic semiconductors (OSC) are increasingly used as active elements in (opto)electronic and 

photonic devices.1–11 For most of these applications, the charge-carrier mobility, µ, of the 

employed materials is of paramount importance. Unfortunately, carrier mobilities in the 

majority of OSCs are orders of magnitude smaller than in their inorganic counterparts.12 

Improving that situation and achieving efficient charge transport is, thus, one of the key 

challenges for the further success of OSC-based devices. Computational modelling has the 

potential to significantly contribute to overcoming that challenge by explaining the 

experimentally observed trends and by helping to understand, whether specific intermolecular 

interactions exist that drive molecular crystals towards low-mobility configurations. Based on 

such insights, it should eventually be possible to design new systems with markedly improved 

properties. 

In order to simulate charge-carrier mobilities, many models have been developed over the 

years, with the limiting cases represented by fully coherent band transport (for weak electron-

phonon coupling and low temperatures) and incoherent hopping (for strong electron-phonon 

coupling at elevated temperatures).13–16 The popularity of the various models has varied over 

time and their suitability for a given system typically depends on the types of molecules, their 

arrangement, the temperature range of interest, and the degree of disorder present.13–16 Essential 

parameters in all models are the electronic couplings between neighboring molecules, which 

are typically correlated with the overlap of the associated wavefunctions and are often 

expressed via so-called transfer integrals, t. For hopping-based theories the carrier mobility, μ, 

is then proportional to t2, while it is proportional to t for band-transport based models at least 

within a simple tight-binding picture.13,16 For complex cases, elaborate tight-binding fits are 

advisable for determining the electronic coupling in the actual crystalline environment. They 
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also allow a straightforward calculation of the effective mass of the charge carriers in the entire 

Brillouin zone.17  

Besides small inter-molecular electronic couplings, charge transport in organic crystals is also 

limited by factors like a particularly strong electron-phonon coupling13–16 and the associated 

dynamic18–23 as well as static disorder. The focus of the present study, however, is on the 

materials’ electronic properties (considering the material’s full 3D crystalline structure), in 

order to determine fundamental factors that limit the electronic coupling. 

A key aspect in this context is the relative geometric arrangement of neighboring molecules, 

where displacements by fractions of an Å can easily change transfer integrals by orders of 

magnitude.13,24–31 In other words, the structure of an organic semiconductor crystal crucially 

determines quantities describing its electronic properties, like band widths, transfer integrals 

and effective masses. This raises the question, whether a similar correlation also exists in the 

opposite direction, i.e., whether the magnitude of the electronic coupling between neighboring 

molecules in a crystal in a systematic way defines its (equilibrium) structure. To address this 

question, in the following we will search for correlations between inter-molecular electronic 

couplings (i.e., transfer integrals) and the energetic stability of specific structural motifs. The 

primary goal of this is to understand, whether there are driving forces that steer OSC crystals 

into equilibrium packing configurations with reduced electronic couplings. The latter is 

suggested by the observation that the highest mobilities are often found for metastable, high-

energy phases.32,33 In fact, based on molecular dimer simulations, Sutton et al. have already 

suggested a “clear correlation between the degrees of intermolecular electronic coupling and 

exchange repulsion”.34 Additionally, we will explore, whether alternative driving forces not 

immediately related to inter-molecular wavefunction overlaps, such as  electrostatic or van der 

Waals interactions, might help mitigating this dilemma. 
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As the primary model system for our study, we chose the hydrogen-bonded organic pigment 

quinacridone, which has been successfully used in several devices, suggesting an avenue 

towards biocompatible electronics.19–21 Considering the presence of polar heteroatomic groups 

and the prevalence of hydrogen bonds, it also promises particularly rich physics to be explored. 

Quinacridone exhibits three established, stable polymorphs (called α, β and γ)35 with 

fundamentally different packing motifs. Still, in all polymorphs one observes -stacking of 

neighboring molecules,35 rather than the more common herringbone arrangement.36,37  This is 

insofar interesting, as a cofacial -stacking of molecules in brickwork or slip-stacked 

architectures has been observed for many high-mobility materials.28,38–40 Consequently, in the 

following, we will focus on analyzing the electronic coupling in the -stacking direction. In 

this direction the largest coupling for a given material can be achieved, provided that the 

molecules are suitably arranged.  

On more technical grounds, in the past the magnitude and sign of transfer integrals in OSCs 

have typically been rationalized based on calculations on displaced -stacked molecular dimers 

together with the symmetries and nodal structures of the relevant dimer orbitals.24–29 For 

quinacridone, such a -stacked arrangement of molecules is consistent with the actual crystal 

structure. Consequently, starting from the -polymorph and without breaking the inter-

molecular H-bonds, one can construct a representative crystalline model system with molecules 

arranged in parallel planes. For the sake of comparison, we also analyze an analogous model 

crystal built from pentacene molecules, even though pentacene crystallizes in a herringbone 

pattern. Displacing the molecular planes in the model systems relative to each other allows 

deriving the dependence of the transfer integrals on the inter-molecular displacement in a 

realistic, crystalline environment. Importantly, in contrast to simulating dimers, these 

calculations also provide direct information on how the total energy of the 3D extended system 
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depends on the displacement. This then allows identifying possible correlations between the 

magnitude of the transfer integral(s) and the stability of a specific crystalline structure.  

 

2. Computational Methodology  

 

2.1 General approach 

Computationally, transfer integrals are usually either derived from molecular dimer 

simulations13,24–28 or from band-structure calculations. Based on the results of the latter (relying 

on a simple tight-binding ansatz), transfer integrals can be directly obtained from band 

widths.26,41 Consequently, (within certain limitations)17 also band widths serve as a measure 

for the inter-molecular electronic coupling. A more advanced approach is fitting more elaborate 

analytic expressions derived from tight-binding models (see below) to the bands in the entire 

1st Brillouin zone. The transfer integrals to all relevant neighbors can then be extracted from 

that fit.14,17 Compared to calculations on molecular dimers, this has the advantage that the 

crystalline environment of the molecules is accounted for and situations can be identified in 

which “super exchange”-like next-nearest neighbor couplings become relevant.17,42–45 Thus, 

before correlating electronic couplings and total energies, we will first explore, whether 

simulations based on molecular dimers and calculations employing periodic boundary 

conditions yield consistent trends. As far as the periodic simulations are concerned, we will 

also test, whether trends derived from band widths and from tight-binding parameters are 

consistent. 

For the dimer simulations, we extracted dimer geometries from the relaxed crystal structures 

(see below). To calculate their electronic structure, we employed the FHI-aims code,46 version 

180424 in combination with the Perdew-Burke-Enzerhof (PBE)47,48 functional and the default 

“tight” settings for the numerical parameters and basis sets (a more detailed description of the 



 7 

nature of the associated basis sets can be found in the Supporting Information).  Transfer 

integrals were determined from orbital energies applying the “energy splitting in dimer” (ESD) 

technique.13 As an alternative strategy, we also employed the fragment orbital (FO) approach25 

using a recently developed post-processing tool interfaced with FHI-aims.49 The sign of the 

transfer integrals was determined depending on whether the bonding (positive) or antibonding 

(negative) linear combination of the molecular orbitals was higher in energy. Due to the 

inversion symmetry of the dimers, the transfer integrals obtained with the ESD and FO 

approaches are essentially identical when employing the PBE functional (as is shown in the 

Supporting Information). 

For the calculations relying on periodic boundary conditions, we used dispersion-corrected 

density-functional theory (DFT). Unless otherwise stated, we used  VASP 5.4.450–53 treating 

exchange and correlation via the PBE functional in combination with the Tkatchenko-Scheffler 

(TS) dispersion correction method54 to account for long-range van der Waals interactions. The 

recommended PAW55 potentials (details in the Supporting Information) together with a plane-

wave cut-off energy of 700 eV were used for all calculations. In the self-consistent-field (SCF) 

procedure, the Brillouin zone was sampled using a 32 x 20 x 8  Γ-centered k-point grid for - 

a 25 x 36 x 9 grid for -, a 8 x 32 x 8 grid for -quinacridone, and a 25 x 25 x 25 grid for the 

coplanar model system. This k-point grid is significantly overconverged for determining a 

reliable charge density. It has been chosen here, as a particularly tight sampling of the Brillouin 

zone is necessary for improving the quality of the tight-binding fits and for determining 

meaningful total band widths (see below). Bearing this in mind, for the test of the employed 

methodology (functional and van der Waals correction) and for energy decompositions, smaller 

k-point grids have been used. To describe the occupation of the electronic states, we used the 

Methfessel-Paxton56 occupation scheme with a width of 0.1 eV. The geometries of the - - 

and -polymorphs of quinacridone were obtained using the experimental unit cells,35 and 
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relaxing the atomic positions of the molecule(s) until the largest force component on the atoms 

was smaller than 0.01 eV/Å. 

 

2.2 Testing the impact of the type of van der Waals correction and the 

employed functional 

 

As far as the choice of the a posteriori van der Waals correction is concerned, in addition to 

the above-mentioned TS approach, we also tested the many-body dispersion (MBD) approach 

by Ambrosetti et al.57 As will be shown below, the choice of the vdW correction has virtually 

no impact on the relative stability of the different polymorphs (section 3.1), but it changes the 

order of minima of the total energy, when calculating the coplanar model crystal as a function 

of inter-molecular displacements (section 3.2). Both methods applied in this test, TS as well as 

MBD, build on the converged charge density. For obtaining the results of the computationally 

much more expensive MBD approach, the same energy cutoff as in section 2.1 has been used 

in VASP and we employed the following k-point grids: -quinacridone - 16 x 10 x 4; -

quinacridone, - 13 x 8 x 4; -quinacridone – 4 x 16 x 4, and coplanar model crystal – 12 x 12 x 

12. These grids are somewhat smaller than the ones described in section 2.1, as the MBD 

calculations have neither been used for determining total band widths nor for fitting tight-

binding functions (see above). For the -, -, and -polymorphs of quinacridone, we also 

performed geometry optimizations using the MBD approach.  

 

To test the impact of the employed functional (especially evaluating the role of exact 

exchange), we also performed calculations using the hybrid functional HSE06.59,60  This yields 

equivalent results for the nature of the frontier bands; only the band widths obtained with HSE 

are somewhat larger, as will be discussed in the results and discussion section. The only 
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qualitative change upon employing HSE vs. PBE concerns the order of deeper-lying orbitals 

(see Supporting Information of Ref. 17), consistent with the results of Lüftner et al..61 As we 

are primarily concerned with the frontier bands and since swapping the orbital ordering does 

not affect the electron density, this has also no effect on the quantities discussed here. Thus, 

we can safely rely on the (computationally much less expensive) PBE calculations  

On more technical grounds, the HSE calculations have been performed using FHI-aims for 

both, open and periodic boundary conditions. This choice is made here, as for hybrid 

calculations we are typically able to achieve convergence particularly efficiently in FHI-aims. 

Notably, for the chosen (well converged) settings, test calculations employing the PBE 

functional in FHI-aims and in VASP yield identical band structures. For the HSE calculations 

in FHI-aims, the same well-converged k-point grids as for the MBD tests have been used for 

-quinacridone, -quinacridone, and -quinacridone. For the tests on the coplanar model 

crystal, we reduced the grid to 6 x 6 x 6 due to memory limitations. 

 

2.3 Building the coplanar model crystal 

As a first step to create the model crystal with quinacridone molecules arranged in parallel 

planes, we constructed an orthorhombic unit cell and then placed a gas-phase optimized 

quinacridone molecule in this cell such that the long molecular axis was parallel to the unit cell 

vector a3, the short axis parallel to a2, and the stacking direction of the molecules parallel to a1 

(see Figure 1). The length of a1 was set to 3.5 Å (the equilibrium distance of the quinacridone 

stripes in the -polymorph).35 The lengths of a2 and a3 were chosen such that the van der Waals 

surfaces of neighboring molecules touched. Next, the lengths of the unit cell vectors a2 and a3 

and the molecular geometry were relaxed, where for technical reasons associated with the 

partially constrained relaxations we employed the FHI-aims46 code (see Supporting 

Information). All geometry optimizations for the model crystal were performed combining the 
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PBE functional with the TS van der Waals correction. Compared to simply arranging 

quinacridone molecules in their gas-phase geometry, this has the advantage that geometric 

changes due to the formation of inter-molecular H-bonds (i.e., a more aromatic structure of the 

molecules) are accounted for. In a second step, the size of the unit cell in a1 direction was 

doubled to 7.0 Å, such that it contained two molecules in the stacking direction (c.f., Figure 1). 

This setup allows to easily shift consecutive quinacridone layers in an AB fashion, see Figure 

1. In passing we note that employing this procedure has hardly any impact on the H-bonding 

network of quinacridone. As discussed in more detail in the Supporting Information, the H-

bonding energies are reduced by less than 3% in the orthorhombic model system compared to 

the -polymorph and the bonding distances are even somewhat smaller. Notably, the procedure 

sketched here yields a model system that is reasonably close to the -polymorph of 

quinacridone, as exemplified by the observation that the lowest-energy structure of the model 

system is only ca. 0.3 eV per molecule higher in energy than the -polymorph. 

For constructing the pentacene model crystals, we adopted the same strategy with the only 

difference that for the geometry optimizations we had to set the length of the a1 vector to a 

value large enough to suppress inter-layer interactions (40 Å), as otherwise unrealistic 

geometric distortions occurred (for details see Supporting Information). 
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Figure 1. Unit cell of the coplanar model crystal derived from the -phase of quinacridone. 

The two most important transfer integrals for transport in -stacking direction are sketched 

for 3 different displacements of the molecular layers. 

 

2.4 Two-dimensional displacement maps, band widths and tight-binding fits 

When calculating the energetics and band widths upon displacing neighboring quinacridone or 

pentacene planes in the model crystals, DFT calculations employing the comparably expensive 

settings from section 2.1 are performed for displacements along either the long or the short 

molecular axes. Doing such calculations on a sufficiently dense grid for simultaneous 

displacements along both axes would pose a sizable computational challenge. Thus, for such 
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2D displacement maps we, resorted to Gaussian process regression. There, the model vector 

consisted only of the x and y positions of the shifted layer and as kernel functions we chose 

linear combinations of Gaussian kernels equally distributed in the unit cell, which fulfill the 

periodicity constraints. To optimize the hyper parameters, the marginal log likelihood was 

maximized. Gaussian process regression allows to estimate a model error, which is visualized 

and discussed in the Supplementary Information. The model was first trained with the  data 

calculated for displacements along the long and short molecular axes. Then 10 additional points 

were chosen at the coordinates of maximum model uncertainty. During this process all system 

symmetries (C2 rotation around a1 for quinacridone and pentacene, mirroring along a2 and a3 

for pentacene) were considered and exploited.  

As far as band widths are concerned, the total band width, W, of -quinacridone with only a 

single molecule in the unit cell is defined as the difference between the maximum and the 

minimum values of the energies of the highest occupied eigenstate for all considered k-points. 

Band widths along specific k-paths are determined in an analogous manner. In -quinacridone, 

-quinacridone, and the coplanar model crystals, the situation is less straightforward, as these 

systems all contain two molecules per unit cell, which causes a backfolding of the bands. There, 

to obtain values consistent with the procedure for -quinacridone, W was determined by 

subtracting the maximum energy amongst the highest occupied eigenstates in the entire 1st 

Brillouin zone from the minimum of the second highest occupied eigenstates. For k-paths 

parallel to directions in which the unit cell contains two molecules (here, along the a1 direction 

in the model crystal), the band width is evaluated as the difference between the corresponding 

eigenstates at the -point, considering the detailed evolution of the bands. This is again done 

for the sake of consistency, to account for the backfolding of the band caused by the doubling 

of the unit cell. More details on the evaluation of the band widths are contained in the SI.  
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Regarding the tight-binding fits, the functional form of the model function differs, depending 

on whether there are one or two molecules in the unit cell. For -quinacridone with only a 

single molecule per unit cell it reads: 

E(𝐤) = ε + ∑ tjj ∙ ei𝐤∙𝐑j     (1) 

Here ε denotes the on-site energy, tj is the transfer integral for neighboring molecules along 

direction j and Rj is the vector connecting the central molecule with the respective neighbor. 

Due to the inversion symmetry of -quinacridone, the two neighbors at Rj and -Rj are 

equivalent, which results in identical transfer integrals tj.  

The equation becomes more complex, when the unit cell contains two inequivalent 

molecules,14 like in - and -quinacridone and in the coplanar model system. It reads: 

𝐸(𝒌) =
𝐻𝐴𝐴+𝐻𝐵𝐵

2
± √

(𝐻𝐴𝐴−𝐻𝐵𝐵)2

4
+ |𝐻𝐴𝐵|2   (2) 

Here, the indices A and B denote the inequivalent molecules present in the unit cell; HAA and 

HBB are terms describing the coupling between equivalent molecules in neighboring unit cells. 

The couplings between inequivalent molecules, either in the same or in different unit cells, are 

included in the term HAB. All these terms have the same functional form; only the neighbors 

considered in the sum are different: 

𝐻𝐴𝐴/𝐵𝐵/𝐴𝐵 =  ∑ tRj,𝐴𝐴/𝐵𝐵/𝐴𝐵j ∙ ei𝐤∙𝐑j,𝐴𝐴/𝐵𝐵/𝐴𝐵    (3) 

In - and -quinacridone and in the coplanar model system, for symmetry reasons HAA, tj,AA, 

and Rj,AA are the same as HBB, tj,BB, and Rj,BB. The vectors Rj,AB differ from the Rj,AA and Rj,BB 

by the displacement vector between the two inequivalent molecules in the unit cell. To obtain 

the transfer integrals, one has to fit the above expressions to the energy eigenstates of the 

system within the entire first Brillouin zone. In passing, we note that increasing the number of 

inter-molecular interactions included in the tight-binding fits does not impact the values of 

transfer integrals determined already with fewer parameters, which is discussed in more detail 
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in Ref. 17. A list containing all inter-molecular interactions that have been included for the 

three quinacridone polymorphs and the coplanar model system can be found in the Supporting 

Information.  

 

2.5 Determining the contributions to the bonding energy in the coplanar 

model crystal  

 

A central element of the present manuscript is the analysis of the total energy of the systems 

(especially the total energy of the coplanar model crystal as a function of inter-molecular 

displacements). In this context it is relevant to analyze the origin of the observed differences 

via energy decomposition approaches. This is frequently done for finite-size systems and 

molecular dimers.34,62–71 In the present context we, however, primarily care about the 3D 

crystalline environment of the molecules. Therefore, we resorted to the recently developed 

“periodic energy decomposition analysis” (pEDA),68,72 which decomposes the interaction 

energy Eint between two fragments into several well defined contributions. 

Eint = EPauli + Eelstat + Eorb    (4) 

The first is the quasi-classical electrostatic energy, Eelstat, which considers the Coulomb 

interaction between the nuclei and electronic charge densities of the two fragments. This energy 

contribution also includes effects like charge penetration (i.e., the attractive interaction between 

the electron cloud of one sub-system and the nuclei of the other, which becomes relevant at 

small distances).66,73,74 The Eelstat term is (nearly) always attractive due to the larger magnitude 

of electron-nuclei attraction in comparison to the repulsive terms – this is also found here. 

Eelstat does not yet consider modifications of the charge densities of the fragments due to the 

interaction. The energetic cost/gain of these modifications is split into two terms: When 
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constructing a wavefunction of the joint system as a product of the eigenfunctions of the 

fragments, this new wavefunction needs to be normalized as well as antisymmetrized to obey  

the Pauli principle. The energetic cost for achieving that is termed Pauli repulsion energy, 

EPauli. The  last term arises from the final relaxation of the charge density to the self-consistent 

density of the combined system and determines the attractive orbital interaction energy, Eorb. 

The final contribution to the interaction energy is the van der Waals attraction, which is 

calculated a posteriori, as described in sections 2.1 and 2.2. It has been shown recently, that the 

energy terms in the EDA analysis can be well compared to the results from symmetry-adapted 

perturbation theory analysis (SAPT) and lead to similar insights regarding the bonding 

situation.75 Core advantage of the the pEDA analysis is that it considers the full periodicity of 

the crystalline environment.  

The pEDA analysis is implemented in the ADF-BAND package,76–78 we thus employed that 

code (version 2018, r69431)  for the energy decomposition in combination with the PBE 

functional, a TZ2P79 basis set, a small frozen core, scalar relativistic effects in the ZORA 

approach, an SCF convergence criterion of 10-6 eV and 3D periodic boundary conditions. A -

centered 5 x 3 x 5 k-point grid was used after checking for convergence (see SI). 

The crystal structures were visualized using Ovito80 and the molecular orbitals by Avogadro.81 

 

3. RESULTS AND DISCUSSION 

 

3.1 Crystalline -, -, and -quinacridone. 

The structures of the three established polymorphs of quinacridone are shown in Figure 2. Of 

the -polymorph, two variants have been discussed (I and II),35 where only the existence of 

I is undisputed. Thus, in the following, this phase will be denoted as -quinacridone. The -
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and -phases consist of H-bonded molecular stripes, which are not exactly planar, but exhibit 

small steps between the molecules. In -quinacridone they, for example, amount to 0.35 Å.35 

The fundamental difference between the two polymorphs is that in the -phase all stripes run 

in the a1+a2 direction (perpendicular to the plane of projection in the right panel of Figure 2a), 

while in the -phase they run in different directions in consecutive layers (a1+a2 and a1-a2). 

Consequently, -quinacridone contains one and -quinacridone two molecules in the unit cell. 

Nevertheless, in both cases the stripes are -stacked in the a1 direction, which corresponds to 

the shortest vector between two neighboring molecules, whose -systems overlap (c.f., grey 

arrow). For the -phase, the packing motif is fundamentally different (Figure 2c): While for the 

- and -phases each quinacridone molecule forms two H-bonds to each of its two neighbors 

(causing the formation of the stripes), in -quinacridone every molecule has a single hydrogen 

bond to four different neighbors. This gives rise to a “hunter fence” structure, as shown in the 

bottom panel of Figure 2c. Nevertheless, one can still identify a -stacking direction (grey 

arrow). 
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Figure 2. Crystal structures of the three quinacridone polymorphs. (a) left: view of the unit 

cell of -quinacridone with the molecule in the original cell marked by a blue rectangle and 

the closest H-bonding partner marked by a purple rectangle; right: side view of the crystal 

structure with the viewing direction chosen such that the alignment of the H-bonded stripes is 

resolved most clearly. The -stacking direction is indicated by a gray arrow. (b) left: unit cell 

of -quinacridone; again, the blue rectangles mark the (in this case two) molecules in the unit 

cell and the closest H-bonding partners are highlighted in purple. The central panel again 

provides a side view, illustrating the alignment of the H-bonded stripes. In the right panel the 

viewing direction is perpendicular to the (a1,a2) plane to illustrate that the -stacking direction 

is the same for all layers (with molecules in different layers highlighted by the cyan and brown 

shading). (c) left: unit cell of -quinacridone containing two molecules, which are H-bonded 

to each other; right: side view illustrating the “hunter fence” arrangement of the molecules.  
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Of particular interest for the electronic couplings along the -stacking direction (as the main 

topic of the present paper) is the displacement of the molecules along the short and long 

molecular axes in consecutive stripes. These displacements are summarized in Table 1. 

Consistent with the rather large inclination of the molecular stripes (, see Figure 2) in the -

phase, this polymorph is characterized by a rather pronounced long-axis displacement (1.4 Å) 

and a smaller short-axis displacement (0.9 Å). Conversely, for -quinacridone the long axis 

displacement is negligible (0.1 Å), while the short axis displacement amounts to 2.0 Å, which 

is more than twice as large as for the -phase. For the -phase, due to the hunter fence 

arrangement of the molecules, the relative displacement of neighboring molecules is 

determined by the distance between the H-bonding sites on each molecule and by the 

equilibrium distance between the molecular backbones. Amongst the three different 

polymorphs, this results in the largest value of  and, correspondingly, in the largest long-axis 

displacement of neighboring molecules (1.7 Å see Table 1). Concomitantly, the short axis 

displacement is the shortest of all polymorphs (0.7 Å). 

 

Table 1. Displacements of neighboring molecules in -stacking direction along their long and 

short molecular axes and inclination of the molecular planes relative to the quinacridone 

sheets, , for -, -, and -quinacridone. Also, the energies per molecule relative to the most 

stable conformation (-quinacridone) are reported. Values which have been obtained 

employing the many-body dispersion correction scheme are given in brackets. 

 long axis 

displacement / Å 

short axis 

displacement / Å 

inclination angle 

 / ° 

relative energy / meV 

α 1.4 0.9 21.5 +90 (88) 

 0.1 2.0 6.1 +5 (3) 

 1.7 0.7 25.1 0 (0) 
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Energetically, using the TS van der Waals corrections we find that the -phase is less stable 

than the -phase by 90 meV per molecule (see Table 1), while the total energies of -

quinacridone and -quinacridone are within 5 meV. This means that (within the numerical 

accuracy of our simulations) the latter two phases are isoenergetic despite their fundamentally 

different structures. These trends also prevail when employing the MBD scheme with energetic 

differences of 88 meV and 3 meV (for more details see Supporting Information). The above 

values do not contain vibrational energies and entropies. Nevertheless, it is interesting to 

compare the calculated trends to experimental observations: For example, Lüftner et al.61 

observed the -polymorph when growing quinacridone on Cu(111), while Paulus et al.35 

concluded that -quinacridone is most stable. They also successfully determined the structures 

of - and -quinacridone, but found it impossible to grow large enough single crystals of the  

phase for single-crystal diffraction experiments, which massively complicated the 

determination of its structure.35 They also describe that the - and -phases are stable and 

typically do not interconvert into each other. This is not the case for -quinacridone, which 

may convert into the - and -phases, preventing its commercial use.35 All these findings are 

in line with the above-discussed trends in total energy. 

 

Regarding the electronic structure of the quinacridone polymorphs, a comparison of the bands 

in the high-symmetry directions in reciprocal space for -, -, and -quinacridone is shown in 

the Supporting Information. The shapes of the bands are essentially the same independent of 

whether one employs the PBE or the HSE06 functional. Overall, the band dispersions are 

comparably small, ranging between 22 meV and 324 meV for the valence band and between 

111 meV and 262 meV for the conduction band in the PBE calculations. These widths only 

somewhat increase for the HSE-calculated bands (see Table 2). Also the total band widths, W, 

characteristic of the entire volume of the first Brillouin zone, remain rather small varying 
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between 148 meV and 324 meV for the valence and between 252 and 345 meV for the 

conduction band (see Table 2). Interestingly, in all these cases (with the exception of the 

conduction band in X direction) the band widths are largest for the -polymorph and rather 

similar for - and -quinacridone. Thus, for the three established quinacridone polymorphs, 

there is no apparent correlation between the total widths of the frontier bands and the energetic 

stability of the materials.  

 

Table 2. Total band-widths, W, band-widths along X, WX, and band widths for bands running 

parallel to the -stacking direction (i.e., parallel to a1), Wa1, for all 3 quinacridone polymorphs. 

The X direction in reciprocal space is close to parallel to a1. Additionally, transfer integrals 

in a1 direction calculated from tight-binding fits, ta1, and employing molecular dimers are 

shown. For the latter, we compare the results of ESD, tESD, and FO, tFO, calculations. Note that 

although the H-bonded quinacridone stripes run in different directions in consecutive 

quinacridone layers in the -polymorph, the -stacking direction in all layers is given by a1. 

(PBC) denotes results obtained in DFT calculations employing periodic boundary conditions, 

(TB) are values extracted from the corresponding tight-binding fits, and (dimer) refers to the 

results of dimer calculations. In addition to the results obtained with the PBE functional, for 

the sake of comparison we also show the values obtained employing the hybrid functional HSE 

for tESD and WX. A brief discussion of the HSE06 values for tFO can be found in the Supporting 

Information 
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PBE 

W / meV            (PBC) 152 324 148 

WX / eV (PBC) 22 324 82 

Wa1 / meV            (PBC) 15 324 76 

|ta1| / meV      (TB) 5 54 22 

|tesd| / meV      (dimer) 4 43 20 

|tFO| / meV      (dimer) 6 41 19 

HSE 
WX / meV            (PBC) 39 330 99 

|tESD| / meV      (dimer) 6 44 24 

C
o
n

d

u
ct

io

n
 

B
a
n

d
 

PBE 
W / meV            (DFT) 252 345 263 

WX / eV (PBC) 129 111 262 
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Wa1 / meV            (PBC) 100 111 262 

|ta1| / meV      (TB) 18 31 53 

|tesd| / meV      (dimer) 17 21 30 

|tFO| / meV      (dimer) 10 19 32 

HSE 
WX / meV            (PBC) 135 112 297 

|tESD| / meV      (dimer) 20 19 36 

 

As far as the anisotropy of the resulting electronic coupling is concerned, a detailed analysis of 

the situation in -quinacridone with a focus on differences between the H-bonding, van der 

Waals stacking, and -stacking directions can be found in Ref [17]. Here, we are primarily 

concerned with transport along the -stacking direction, a1. Correspondingly, Figure 3 shows 

the valence and conduction bands of the three quinacridone polymorphs along a k-path starting 

at the  point and running parallel to the a1 direction until the boundary of the Brillouin zone 

(→A1). Again, the band widths are rather small, but more importantly, compared to the total 

band widths, there are even more significant differences between the three polymorphs, 

especially for the valence band: It is essentially flat for -quinacridone parallel to a1. 

Consequently, Wa1 (=15 meV) is by an order of magnitude smaller than the total band width. 

This is because in -quinacridone the valence band along a1 is significantly narrower than, e.g., 

the band in the H-bonding direction (a1+a2, i.e., along →A12, also shown in Figure 3). Wa1 is 

intermediate for -quinacridone (76 meV) and largest for -quinacridone (324 meV, see also 

Table 2). In -quinacridone, Wa1 and W are actually identical, which indicates that in this 

system both, the maximum and the minimum of the band are found along →A1. The same 

trend as for Wa1 is also found for transfer integrals between molecules displaced by a1. This 

happens  independent of whether one considers the values obtained from the tight binding fits, 

ta1, or from dimer calculations82 within the electronic splitting in dimers approach, tESD, or 

performing fragment orbital simulations, tFO (see Table 2). Minor deviations between transfer 

integrals extracted from the tight-binding fits and obtained from dimer calculations are 
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primarily attributed to the conceptual differences between the two approaches, especially the 

fact that the crystalline environment is only accounted for when determining ta1. The latter is 

particularly relevant for quinacridone, where a dimer calculation misses the change in 

conjugation due to the H-bond formation.83 

 

Figure 3. Electronic band structures of the three quinacridone polymorphs shown along k-

paths originating at  and running parallel to the real space a1 and a1+a2 directions until the 

Brillouin zone boundaries. Energies are plotted relative to the valence-band maximum. 

 

The situation is somewhat more involved for the conduction bands, as for the - and -

polymorphs they display a distinctly non-cosine shape, which is a clear evidence for “higher-

frequency” components (i.e., transfer integrals beyond the nearest neighbors) playing a 

significant role.17 Indeed, an analysis of the tight-binding fits shows that the corresponding 

transfer integrals can be associated with next-nearest neighbor couplings (t2a1). This we 

attribute to “superexchange-like” type interactions (for a more in depth discussion of this aspect 

in -quinacridone see Ref [17]). Correspondingly, the direct correlation between band widths 

and transfer integrals is lost for the conduction bands. For example, ta1 is nearly twice as large 

for -quinacridone as for -quinacridone, although the associated band widths are very similar. 

While this complicates the situation when analyzing electron transport, here we are mostly 

concerned with occupied bands, as only their properties can have an impact on the total energy 

of the system.  
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When comparing the results of the PBE and HSE simulations we find that consistent with the 

similar band structures calculated in both cases, the band widths are also very similar. 

Furthermore, also the dimer-calculated transfer integrals when employing the ESD approach 

turn out to be quite robust against changing the exchange correlation functional. 

 

 

3.2 Properties of the coplanar model system of quinacridone 

 

The above-described results for the three quinacridone polymorphs do not show a clear 

correlation between total energy and transfer integrals or band width. Therefore, it is useful to 

analyze a model system, whose properties can be assessed in a more systematic way. Such a 

system is found in the coplanar model crystal derived from -quinacridone, which is shown in 

Figure 1 and whose structure is discussed in detail in the methods section. Based on this model 

crystal, we will not only analyze the dependence of the electronic couplings on the inter-

molecular displacements, but will primarily search for correlations between, on the one hand,  

transfer integrals and band widths and, on the other hand, the total energy of the system. 

Moreover, we will analyze the various ingredients to the total energy in order to clarify, 

whether specific interactions exist that try to force molecular crystals towards configurations 

with low electronic couplings. As a first step in this quest, Figure 4 shows how the total energy, 

the van der Waals energy, and the total width of the valence band of the coplanar model crystal 

depend on the displacement of neighboring sheets.  
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Figure 4. PBE calculated total energy (a), van der Waals energy derived from the TS approach 

(b) and total width of the valence band (c) as a function of the displacement of neighboring 

sheets. The position in the graph denotes the position of the center of a molecule in the second 

layer within the unit cell relative to the first layer, whose structure is indicated in the plot. All 

energies are given relative to an average value of the respective energy, which is specified 

below each of the panels. The total energy plot is additionally offset by E0, which is the value 

for the lowest-energy structure. As far as the total band width is concerned, the covered range 

is somewhat larger than indicated by the color bar, as its value varies between 140 meV and 

1100 meV. 
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The data in Figure 4 show that the total energy is maximized for the cofacial, zero displacement 

situation. Notably, all local maxima of the total energy are found for displacements along the 

long molecular axis, with the exception of the situation in which the quinacridone sheets are 

displaced by half the unit cell lengths simultaneously in a2 and a3 directions. This maximum 

can be associated with a reduced van der Waals attraction between the sheets due to the 

minimized van der Waals contact area in this configuration (see Figure 4c). The energetically 

best configurations are also found in the vicinity of structures displaced either along the long 

or along the short molecular axis (the global maximum occurs for a long-axis displacement of 

1.5 Å and a simultaneous minor short-axis displacement of 0.3 Å). A similar behavior is 

observed for the most pronounced maxima of the total band widths in Figure 4b (with by far 

the largest band width for the cofacial, zero-displacement structure). This suggests that for a 

more in depth and more quantitative discussion, it is useful to primarily analyze displacements 

either along the long or along the short molecular axis. 

 

Displacing consecutive molecular sheets along the long molecular axis in coplanar 

quinacridone – quantifying the electronic coupling.  

The results for the long-axis displacement are shown in Figure 5. Here, as a first step, we 

compare the trends for the most relevant parameters used in Table 1 to quantify the strength of 

the electronic coupling in order to determine whether a single one of them will be sufficient for 

the further discussion. Such a test is advisable, as when analyzing the anisotropy of coupling 

parameters in -quinacridone, relevant deviations between, for example, band widths and 

transfer integrals have been observed.17 The results for the (valence-band related) transfer 

integral between displaced molecular dimers obtained with the fragment orbital approach, tFO, 

are shown in Figures 5a. They display an evolution reminiscent of the observations for 

rubrene,28 anthradithiophene,24 or sexithienyl:26 There is a pronounced maximum for zero 
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displacement, subsequently tFO crosses the zero line, reaches a negative maximum and then 

crosses the zero line again.  

Before comparing these trends to those for the corresponding transfer integral(s) obtained via 

the tight-binding fit, two technical aspects need to be mentioned: First, it is not possible to 

extract the sign of the transfer integral describing the coupling between the two inequivalent 

molecules in the unit cell, tAB, (see Figure 1) unambiguously. This is due to symmetry reasons 

and the functional form of the tight-binding band structure for two molecules in the unit cell. 

All that can be determined is, whether the signs of tAB and tAB-a3 (see Figure 1) are the same or 

not. Second, the band dispersion in the a1 direction in the coplanar model crystal does not 

depend on these two transfer integrals individually but is only determined by their sum. Thus, 

in Figure 5b this sum, tAB+tAB-a3, is shown with the sign chosen such that it is consistent with 

that of tFO. These aspects are discussed in detail in the Supporting Information, where also the 

values of the individual transfer integrals tAB and tAB-a3 are plotted. In this context it should also 

be noted that especially for small displacements the contribution from tAB-a3 is negligible (|tAB-

a3 | < 5 meV for displacements < 2.6 Å and |tAB-a3 | < 20 meV for displacements < 4.7 Å). Thus, 

the plot in Figure 5b for small and intermediate displacements mostly reflects the evolution of 

tAB. As far as the overall trends are concerned, there are only minor deviations between tFO and 

tAB+tAB-a3 concerning the magnitude of the maxima at higher displacements and their exact 

positions. We attribute these differences mostly to changes in the orbital structure arising from 

the interaction between the molecules in the actual crystalline environment. 

To more easily compare the trends for the transfer integrals to those for the band widths, we 

also show the evolution for |tAB+tAB-a3| in Figure 5b as a dashed red line. This reveals a close 

to perfect agreement between the evolutions of |tAB+tAB-a3|, the total width of the valence band, 

W, and the width of the valence band along a path starting at the  point and running along a1, 

W𝐚1
VB. The latter data are shown in Figure 5c. In passing, we note that W𝐚1

VB is close to zero at 
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the displacements corresponding to zero-crossings of the transfer integrals, while this is not the 

case for W. This is simply due to the fact that for W also the band widths along other paths 

(e.g. parallel to the H-bonding direction) count, which are largely unaffected by the 

displacement of the quinacridone sheets.  

As far as the employed functional is concerned, using HSE leads to an increase of the maximum 

values of W𝐚1
VB by ca. 100 meV which corresponds to a relative change of ~12%. Despite the 

quantitative differences, switching the functional does not affect the shapes of the bands nor 

the evolution of tFO with the displacement (see Supporting Information).  

Considering the above comparison and the overall qualitative agreement between all quantities 

used to determine the displacement-dependent trends in the electronic coupling, in the 

following we will restrict the analysis primarily to PBE-calculated band widths as the most 

straightforwardly accessible parameters for the actual crystals.  
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Figure 5. Dependence of the PBE-calculated electronic coupling, (a)-(c), and the energy per 

molecule ,(d), on the long-axis displacement for quinacridone. The values in (b)-(d) have been 

calculated for the coplanar model crystal and those in (a)  for the corresponding molecular 

dimer. The transfer integrals in (a) have been calculated via the fragment orbital method. 

Employing the energy splitting in dimer method yields the same results, as shown in the 
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Supporting Information. In (b) the sum of the tight-binding derived transfer integrals to the two 

neighboring molecules in the stacking direction is shown (for details see main text) and (c) 

contains the total band width of the valence band sampled over a tight k-point grid (area 

shaded in blue) as well as the widths of the valence band (VB, derived from the molecular 

HOMO) and the next lower band (VB-1, derived from the HOMO-3) for the k-path running 

from the -point to the Brillouin-zone boundary in a direction parallel to a1. In (d) the total 

energies per molecule including and disregarding TS and MBD -type van der Waals 

interactions are shown relative to  the minimum energy obtained for the long-axis 

displacement- . The dotted vertical lines are guides to the eye, while the dash-dotted line 

denotes a shift by half of the unit-cell length. On the vertical axes, the displacements are given 

in Å as well as in multiples of the corresponding unit-cell length.  

 

Displacing consecutive molecular sheets along the long molecular axis in coplanar 

quinacridone – evolution of the total energy.  

 

A central observation for the present study is made when comparing the evolution of the band 

widths with that of the total energy of the system, shown in Figure 5d. Especially, for small 

displacements, their evolutions run parallel (c.f., Refs. [34,65]), as can be seen comparing Figure 

5d with Figures 5a-c. In detail, as already mentioned in the discussion of Figure 4, the largest 

band width and the highest total energy are found when not displacing consecutive 

quinacridone sheets. Moreover, the total energy reaches its minimum for a total displacement 

of ca. 1.5 Å, where also the electronic coupling is minimized. This suggests that there is a 

fundamental driving force steering the crystal towards a structure with a minimized electronic 

coupling. In this context it is important to stress that the unfavorable situation for zero 

displacement is not primarily the consequence of arranging the polar carbonyl and amine  
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groups on top of each other, as a similarly pronounced energetic maximum is observed when 

flipping the molecules in the second layer by 180° placing the amines on top of the ketones. 

The origin of the above-mentioned driving force minimizing the band-width can rather be 

traced back to exchange repulsion, as stressed in Ref. [34] and discussed for molecular dimers 

of acenes employing symmetry-adapted perturbation theory.65   Qualitatively, the variation of 

the total energy with displacement can be understood from the following consideration: When 

the orbitals of two molecules overlap, bonding and antibonding linear combinations are 

formed, where the bonding one is stabilized less than the antibonding one is destabilized. As 

the energies of the occupied bands (orbitals) enter into the expression of the total energy, wave-

function overlap involving fully occupied orbitals, thus, results in a repulsive contribution, with 

the effect being particularly pronounced for large energetic splittings and, correspondingly, 

strong electronic couplings.  

To ensure that such a destabilization of the structures by large transfer integrals is indeed a 

consequence of the modification of the wavefunctions due to the interaction between 

neighboring quinacridone sheets, we performed a periodic energy decomposition analysis, as 

described in section 2.5 taking the two quinacridone sheets associated with the two molecules 

in the unit cell as the two fragments for the analysis. The resulting contributions to the 

electronic interaction energy, Eint, (not comprising long-range van der Waals interactions)68,72 

are shown in Figure 6a relative to the values obtained for zero displacement (where the latter 

are listed in the figure caption). One clearly sees that the evolutions of the Pauli repulsion 

energy, EPauli, and the orbital interaction energies, Eorb, both directly follow the trend for the 

total energy.  I.e., the modification of the wavefunctions in the interacting system is indeed 

responsible for the destabilization of the model system at large transfer integrals. This shows 

that for the present system attractive interactions, e.g., due to charge penetration66,73 are 

insufficient to overcome exchange repulsion. At this stage it should also be mentioned that 



 31 

although EPauli displays an oscillatory behavior, its absolute value always remains large (> 1.5 

eV), consistent with what Sutton et al. observed for the exchange repulsion, when analyzing 

molecular dimers.34  

The impact of the electrostatic interaction energy between the sheets, Eelstat, on the relative 

stability of different geometries is less pronounced. It somewhat destabilizes the zero-

displacement situation and stabilizes the displacement at which the total energy reaches its 

second maximum as well as a shift by half of the unit cell. Overall, the electrostatic energy, 

however, does not severely impact the observed trends.  

As far as the long-range van der Waals contributions are concerned, several conclusions can 

be drawn. When considering the absolute values of the energy contributions (see caption of 

Figure 5), it becomes evident that the van der Waals attraction is the force that results in the 

formation of the crystal, as it is the only attractive interaction that is large enough to overcome 

Pauli repulsion. Concerning the relative stability of different displacements, the van der Waals 

contribution does not change the general shape of the total energy curve (see Figure 5d). It, 

however, determines the relative stability of the two minima at displacements of 1.5 Å and 2.5 

Å. Van der Waals interactions stabilize smaller displacements. Thus, for the TS van der Waals 

correction the first minimum is the lower one, although Eint and the total energy excluding 

van der Waals corrections (Figure 5d) are smallest at the second one. The trend is also observed 

when using the MBD correction, although there the stabilization of the first minimum is smaller 

such that it becomes essentially isoenergetic to the second one. 
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Figure 6: (a) PBE-calculated relative evolution of the electronic interaction energy, Eint, 

(excluding a-posterior van der Waals corrections) and its components (Pauli repulsion energy, 

ΔEPauli, orbital interaction energy, Eorbital, and electrostatic energy, Eelstat, as a function of 

the long-axis displacement in a coplanar quinacridone model crystal). The energies are given 

relative to the zero-displacement situation. For the latter the following absolute values (per 

molecule) are obtained:  Eint= 407 meV, ΔEPauli = 870 meV Eelstat = -343 meV Eorbital = -

120 meV. As the minima for different quantities are found at different displacements, aligning 

them relative to the energetic minima as in Figure 5 is not advisable, as this would obscure 

their additive character. (b) Evolution of the TS and MBD van der Waals correction energies 

with displacement. At zero displacement, the following absolute values (per molecule) are 

obtained: EvdW,TS = -2375 meV and EvdW,MBD = -2651 meV. 
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Returning to the comparison between the band widths of the valence band and the total energy, 

the question arises, why the parallel evolution of the two quantities in Figure 5 does not prevail 

for larger displacements and why the one-to-one correlation between band width and total 

energy is also lost for most regions of Figure 4. We attribute this to the contribution of lower-

lying occupied electronic bands (occupied orbitals for molecular systems). These do not impact 

charge transport per se, as electrons will always accumulate in the conduction band and holes 

in the valence band, but their contribution to the total energy is as important as that of the 

valence band.  

 

As shown in Figure 7, there are various occupied bands that, for zero displacement, display 

widths comparable to that of the valence band. Of the bands we analyzed, this applies to all -

bands (red bars in Figure 7). Only for the 2nd and 3rd band below the valence band the widths 

are about one order of magnitude smaller, which is a consequence of their -character (black 

bars in Figure 7). The latter suggests that the interaction between -electrons has only a minor 

impact on the relative stability of certain displaced structures.  

 

 

Figure 7: PBE-calculated bandwidths of the highest occupied bands of the coplanar 

quinacridone model crystal, evaluated as the splitting of the backfolded bands at the  point. 
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-bands are denoted by red and green and -bands by black and orange bars. The widths were 

evaluated for zero displacement (red and black bars) and for a displacement of 0.1 times the 

length of the unit cell along the long molecular axis (green and orange bars).  

 

The widths of all bands drop dramatically, when displacing consecutive quinacridone sheets 

by a tenth of the unit-cell length (see green and orange bars in Figure 7). This rationalizes the 

parallel evolutions of the valence-band width and the total energy for small displacements. 

Notably, although the band widths of all considered bands becomes very small at a 

displacement of one tenth of the unit cell, the absolute value EPauli remains sizable (663 meV; 

i.e., larger than its variation with displacement in Figure 6).  

As far as the evolution of the total energy at larger displacements is concerned, the varying 

nodal structures of the molecular orbitals forming the lower-lying bands (see Supporting 

Information) result in different trends for the band widths at larger displacements such that they 

no longer follow the valence band. This is exemplarily shown for the second-highest band (VB-

1) in Figure 5c. It eventually causes the differences in the positions of the extrema in the valence 

band width and the total energy observed in Figure 5 for large displacements.   

 

Short axis displacements in the coplanar quinacridone model crystal.  

As mentioned above (cf., Figure 4), additional minima in the total energy and maxima of the 

band widths are found for displacing the quinacridone sheets along the short molecular axes. 

The resulting evolutions of the band widths and energies are shown in Figure 8. Again, the 

band width is maximized for zero displacement, drops sharply reaching a pronounced 

minimum for a short-axis displacement around 1.8 Å (corresponding to a quarter of the unit 

cell-length in that direction) and then rises again (Figure 8a). The sharp drop at small 

displacements is again accompanied by a pronounced drop in the total energy (Figure 8b). For 
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displacements of more than a quarter of the unit-cell length, the evolution of the total energy 

becomes very shallow. This implies that minor modifications in the interaction could easily 

change the position of the minimum, which would at the same time massively change the 

electronic coupling and the band width. In fact, even in our simulations the exact position of 

the minimum depends on the employed van der Waals correction (see Figure 8b). 

 

 

Figure 8. Dependence of the band widths, (a), and the energies per molecule, (b) on the short-

axis displacement for the coplanar quinacridone model crystal. (a) contains the total band 

width of the valence band sampled over a tight k-point grid (area shaded in blue) as well as 

the widths of the valence band (VB, derived from the molecular HOMO) and the next lower 

band (VB-1, derived from the HOMO-3) for the k-path running from the -point to the 

Brillouin-zone boundary in a direction parallel to a1. In (b) the total energies per molecule 

including and disregarding van der Waals interactions are shown relative to the minimum 
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energy obtained for the short-axis displacement. The dotted vertical line is a guide to the eye, 

while the dash-dotted line denotes a shift by half of the unit-cell length. On the vertical axes, 

the displacements are given in Å as well as in multiples of the corresponding unit-cell length.  

 

Performing an energy decomposition in analogy to the previous section reveals that 

electrostatic as well as van der Waals interactions favor small displacements (Figure 9). Their 

impact is, however, insufficient for dominating the overall evolution. Thus, again especially 

Pauli repulsion is responsible for the sharp drop in energy for displacements between zero and 

a quarter of the unit-cell length. At larger displacements it essentially compensates the 

evolutions of the electrostatic, the van der Waals, and the orbital interaction energies, which 

results in the very shallow area of the potential energy surface. The observation that in this 

displacement region EPauli does not follow the evolution of the valence band width is again 

attributed to different nodal structures of other occupied orbitals. 



 37 

 

Figure 9. (a) PBE-calculated evolution of the electronic energy, Eint, (excluding a-posterior 

van der Waals corrections) and its components (Pauli repulsion energy, ΔEPauli, orbital 

interaction energy, Eorbital, and electrostatic energy, Eelstat) as a function of the long-axis 

displacement in a coplanar quinacridone model crystal. The energies are given relative to the 

zero-displacement situation. (b) Evolution of the TS and MBD van der Waals correction 

energies with displacement. 

 

Implications for the situation in -, -, and -quinacridone. 
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The structure of the -polymorph is dominated by a displacement of neighboring quinacridone 

molecules along the long molecular axis (see Table 1). Intriguingly, this displacement amounts 

to 1.4 Å, which is very close to the zero-crossing of the transfer integrals for the model crystal 

upon long-axis displacement (at 1.5 Å). It also coincides with the minimum in total energy for 

this displacement. I.e., in -quinacridone one observes a situation, where minimizing the 

energy also results in a vanishing transfer integral for the valence band. Interestingly, the 

calculated global energy minimum according to Figure 4 comprises a short-axis displacement 

of 0.3 Å (vide supra), which is well consistent with the experimental fact that the actual 

structure of -quinacridone not only comprises a long- but also a smaller short-axis shift of the 

molecules (see above).  

For -quinacridone, the displacement along the short molecular axis dominates. For this 

direction, the coplanar crystal displays a very shallow minimum of the total energy, which does 

not necessarily coincide with the minimum in the electronic coupling for the valence band  (see 

above). This suggests that even minor modifications in the crystal structure could easily result 

in situations with increased electronic couplings. This indeed is the case for -quinacridone,  

where the equilibrium structure is characterized by a short-axis displacement of 2.0 Å, which 

is distinctly larger than the displacement of 1.6 Å representing the minimum band-width 

situation. This rationalizes the sharp increase of the electronic coupling in -quinacridone 

compared to the -phase (see Table 2).  

The situation changes fundamentally in -quinacridone. Here, the total energy curve in Figure 

5 is only of limited relevance due to the fundamentally different bonding motif in this 

polymorph, where the equilibrium displacement is strongly impacted by the positions the H-

bonding sites and the equilibrium distance between two consecutive quinacridone planes (see 

section 3.1). This explains the increase of the long-axis displacement by 0.3 Å compared to tha 

-phase, which in turn results also in a larger band width consistent with the data in Table 2.  
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3.3 Molecular displacements, band widths, and total energies for a coplanar 

pentacene model crystal. 

 

In order to highlight the general validity of the above considerations, we performed analogous 

simulations for a coplanar pentacene model crystal. As shown in Figures 10 and 11, this yields 

similar trends as in the quinacridone case.  
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Figure 8. (a): Dependence of the band widths, on the long-axis displacement for the coplanar 

pentacene model crystal. The total band width of the valence band sampled over a tight k-point 

grid (area shaded in blue) as well as the widths of the valence band (VB, derived from the 

molecular HOMO) and the next two lower bands (VB-1, derived from the HOMO-1 and VB-2, 

derived from the HOMO-2) for the k-path running from the -point to the Brillouin-zone 

boundary in a direction parallel to a1 are shown. The values of W following the definition of 

the quantity in the Methods section underestimate the actual situation for small displacements. 
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The reason for that is that there the band widths become so large that several valence bands 

overlap and the PBE calculated band gap vanishes (the corresponding band structure is shown 

in the Supporting Information). In (b) the total energies per molecule including and 

disregarding van der Waals interactions are plotted relative to the minimum energy obtained 

for long-axis displacement. The dotted vertical line is a guide to the eye, while the dash-dotted 

line denotes a shift by half of the unit-cell length. On the vertical axes, the displacements are 

given in Å as well as in multiples of the corresponding unit-cell length. Panel (c) contains 

isodensity plots of the three highest occupied molecular orbitals of pentacene.  

 

For the long-axis displacement, the total valence band width again displays a pronounced 

succession of maxima and minima, where for short displacements there is a near perfect 

agreement of the trend with that observed for the total energy. This correlation is once more 

lost for larger displacements, which also here can be rationalized by the impact of lower-lying 

strongly dispersing occupied bands. In fact, as far as the latter aspect is concerned, pentacene 

serves as a particularly instructive example.: As shown in Figure 10c, the molecular HOMO-

1, which in the crystal forms the band directly below the valence band, has a smaller number 

of nodal planes perpendicular to the long molecular axis than the molecular HOMO (forming 

the valence band). Consequently, the relative displacements between consecutive minima in 

the band width are larger. Conversely, for the molecular HOMO-2 (and the associated band in 

the crystal) with an increased number of nodal planes, the number of minima increases.  
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Figure 11. (a): Dependence of the band widths, on the short-axis displacement for the coplanar 

pentacene model crystal. The total band width of the valence band sampled over a tight k-point 

grid (area shaded in blue) as well as the widths of the valence band (VB, derived from the 

molecular HOMO) and a the VB-2 (derived from the HOMO-2) for the k-path running from 

the -point to the Brillouin-zone boundary in a direction parallel to a1 are shown. The 

evolution for the VB-1 is not contained in the plot, as it follows that of the VB. The values of W 

following the definition of the quantity in the Methods section underestimate the actual 

situation for small displacements. The reason for that is that there the band widths become so 

large that several valence bands overlap and the PBE calculated band gap vanishes (the 

corresponding band structure is shown in the Supporting Information). In (b) the total energies 

per molecule including and disregarding van der Waals interactions are plotted relative to the 

minimum energy obtained for short-axis displacement. The dotted vertical line is a guide to the 
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eye, while the dash-dotted line denotes a shift by half of the unit-cell length. On the vertical 

axes, the displacements are given in Å as well as in multiples of the corresponding unit-cell 

length.  

 

As far as the short axis displacement is concerned, the overall trends are again similar to the 

situation in the coplanar quinacridone model crystal (see Figure 9). Particularly instructive in 

the pentacene case is again the evolution of the band widths for deeper-lying bands, in 

particular the VB-2 (derived from the molecular HOMO-2). There, due to the absence of a 

nodal plane perpendicular to the short molecular axis, the associated band-width reaches its 

minimum only, when the sheets are displaced by half the inter-pentacene distance. I.e., they 

occur at twice the displacement for the minima of the VB and VB-1 (where the evolution latter 

essentially coincides with that of the valence band and, therefore, is not shown).  

 

4. CONCLUSIONS 

 

In the present work, we have examined the interplay between crystal packing, i.e. the relative 

stability of certain crystal structures, and transport relevant parameters for organic 

semiconductor crystals relying mostly on the instructive example of quinacridone. Comparing 

the electronic coupling in the three established, stable polymorphs of quinacridone, we find 

pronounced differences for the transfer integrals and band widths, which, however, do not 

correlate with the relative energies of the three structures. This prompted us to analyze a 

coplanar quinacridone model crystal, which allows relating various parameters characterizing 

the inter-molecular electronic coupling (like band widths and transfer integrals) to the relative 

displacements of the quinacridone sheets. Even more importantly, as we simulate these 

displacements in a 3D periodic, crystalline environment, it is possible to correlate the evolution 

of the electronic coupling in the valence band with the energetic stability of specific 
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configurations. For the sake of comparison, similar studies are performed for an analogous 

pentacene-based model system. These studies allow a number of conclusions: The largest band 

width in both systems are observed for a cofacial, zero-displacement arrangement of the 

molecules. This configuration is, however, destabilized by Pauli repulsion and orbital 

rehybridization involving all electrons in the occupied -bands. Consequently, there is a 

general driving force pushing the crystals towards a situation with reduced electronic 

couplings. This, for example, explains the particularly small transfer integrals in the -stacking 

direction of -quinacridone. For small displacements, one even observes a direct correlation 

between the total energy of a configuration and the width of the valence band;34 i.e., the smaller 

the width of the valence band becomes the more a structure is stabilized.  Thus, for realizing 

high-mobility materials, one cannot rely on the intrinsic interactions driving the self-assembly 

of the -conjugated backbones. Instead one has to exploit, e.g., steric effects induced through 

chemical substitutions.34,84–86 This is done, for example in the cases of rubrene28,65,87 or TIPS-

pentacene,40  where recently efforts have been undertaken to vary packing and displacements 

by carefully tuning the substituents.62,88 Alternative strategies for overcoming exchange 

repulsion comprise, e.g., heteroatom substitution and the inclusion of halogens in the periphery 

of the conjugated core as discussed comprehensively in Ref. [34]. 

Interestingly, the direct correlation between electronic coupling in the valence band and total 

energy is lifted for larger displacements both in the long- and short-axis directions due to the 

different nodal structures of lower-lying -bands. This means that for structures more strongly 

displaced along the long molecular axis, a much smaller external stimulus (e.g., through 

substituents) should be enough for realizing large couplings in the valence band. Even more 

promising is to extrinsically control the short-axis displacement. In that case, a rather shallow 

local  minimum in total energy as a function of the displacement is observed, as there the 

detrimental exchange repulsion due to the valence band is more readily overcome by lower-
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lying bands derived from orbitals with fundamentally different nodal structures. This implies 

that with only minor modifications in the inter-molecular interactions, one should be able to 

significantly modify the relative arrangement of the molecules, which would then massively 

change the width of the frontier bands. In fact, this is to a certain extent already realized in -

quinacridone, where it results in an increase of the band width in -stacking direction by an 

order of magnitude compared to the -phase. 
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