
Automating Seccomp Filter Generation for Linux
Applications

Claudio Canella∗, Mario Werner∗, Daniel Gruss∗, Michael Schwarz‡,

∗Graz University of Technology ‡CISPA Helmholtz Center for Information Security

Abstract—Software vulnerabilities in applications undermine
the security of applications. By blocking unused functionality,
the impact of potential exploits can be reduced. While seccomp
provides a solution for filtering syscalls, it requires manual
implementation of filter rules for each individual application.
Recent work has investigated automated approaches for detecting
and installing the necessary filter rules. However, as we show,
these approaches make assumptions that are not necessary or
require overly time-consuming analysis.

In this paper, we propose Chestnut, an automated approach for
generating strict syscall filters for Linux userspace applications
with lower requirements and limitations. Chestnut comprises two
phases, with the first phase consisting of two static components,
i.e., a compiler and a binary analyzer, that extract the used
syscalls during compilation or in an analysis of the binary.
The compiler-based approach of Chestnut is up to factor 73
faster than previous approaches without affecting the accuracy
adversely. On the binary analysis level, we demonstrate that the
requirement of position-independent binaries of related work is
not needed, enlarging the set of applications for which Chestnut is
usable. In an optional second phase, Chestnut provides a dynamic
refinement tool that allows restricting the set of allowed syscalls
further. We demonstrate that Chestnut on average blocks 302
syscalls (86.5%) via the compiler and 288 (82.5%) using the
binary-level analysis on a set of 18 widely used applications. We
found that Chestnut blocks the dangerous exec syscall in 50%
and 77.7% of the tested applications using the compiler- and
binary-based approach, respectively. For the tested applications,
Chestnut prevents exploitation of more than 62% of the 175
CVEs that target the kernel via syscalls. Finally, we perform a
6 month long-term study of a sandboxed Nginx server.

I. INTRODUCTION

The complexity of applications is steadily growing [29],
[58], and with that, also the number of vulnerabilities found
in applications [49]. A consequence is that the attack surface
for exploits is also growing. Especially in applications written
in memory unsafe languages such as C, bugs often lead to
memory safety violations that potentially enable exploits [73].
While state-of-the-art defensive-programming techniques and
countermeasures reduce the number of vulnerabilities, there is
still a remaining risk that an attacker can exploit a vulnerability
in an application. Especially for privileged applications such
as setuid binaries, this can, in the worst case, mean that an
attacker can take over the entire system.

The remaining exploitation risk can be addressed by re-
ducing the post-exploitation impact (cf. principle of least
privilege). With available resources and interfaces limited
to those strictly required by the application, a successful
exploit cannot use arbitrary other functionality [43]. Especially

blocking dangerous syscalls and syscall parameters that are
not required by many applications, e.g., the exec syscall to
execute a new program, reduces an attacker’s possibilities in
the post-exploitation phase. Application sandboxing limits the
resources available to an application [56], [26] and, ideally, un-
trusted and potentially malicious, or benign but compromised
applications cannot escape the sandbox.

On Linux, seccomp [18] and the extended seccomp-bpf
can be used by applications to restrict the syscall interface.
Seccomp-bpf [18] supports filter rules via developer-defined
Berkeley Packet Filters [47]. Each syscall can either be entirely
blocked or specific arguments for it. However, the correct
usage of seccomp-bpf requires the developer to know which
syscalls are used by the application and the included libraries.
As this is a considerable effort, seccomp is mainly used
in applications that implement isolation mechanisms, e.g.,
sandboxes [32], [22]. Given its complexity, it is rarely used in
other applications.

Recent works proposed two methods to automatically gener-
ate such seccomp filters [24], [14]. The first approach utilizes
the compiler and various external tools to derive the filters
during compilation [24]. To minimize the set of syscalls,
the approach relies on sophisticated points-to analysis [2] to
generate a call graph of reachable functions and syscalls.
The second approach relies on binary analysis to determine
the syscalls an existing binary intends to use [14]. While
these are first solutions to the problem of automating filter
generation, both come with clear limitations. For instance,
the first approach does not scale with the program size due
to the points-to analysis [2], [28]. In practice, the overheads
can be prohibitively large as they would require a massive
upscaling of development and build server resources. The
second approach comes with a strong requirement that the
application is compiled as a position-independent code (PIC)
binary (PIE) [14]. While PIE is the default on recent Ubuntu
distributions for C and C++ compiled programs, static C
and C++ binaries are by default not compiled as PIE. Other
compiled binaries are often not PIE either, e.g., ‘golang’
binaries such as the popular git server Gogs, which are not
supported by these previous works. Both limitations reduce the
set of applications that can be protected with these solutions
substantially.

In this paper, we present a novel approach that overcomes
the limitations of previous ones and automatically generates
strict seccomp filters for native Linux userspace applications.

1

ar
X

iv
:2

01
2.

02
55

4v
1

 [
cs

.C
R

]
 4

 D
ec

 2
02

0

We show that our approach is a significant improvement over
the compiler-based approach by Ghavamnia et al. [24] as it
does not require a sophisticated points-to analysis to generate
filter rules. Instead, a faster has address taken approach can
be used that achieves the same accuracy but at a fraction
of the performance impact on compilation time. Second, we
demonstrate an alternative implementation to the one provided
by DeMarinis et al. [14]. In this approach, we demonstrate that
the requirement of a PIC binary is not necessary, significantly
extending the set of applications to which it can be applied. We
implement our method in a proof-of-concept tool, Chestnut.1

We also advance the state of the art in evaluations of automatic
syscall filtering, with a first long-term case study and coverage
metrics to confirm our approach’s validity.

Chestnut uses a two-phase process. A static first phase P1
consisting of two static components (Sourcalyzer and Bina-
lyzer), and an optional dynamic second phase P2 (Finalyzer).
Based on static analysis, Chestnut first identifies the set of
unused syscalls without running the application in P1 and
dynamically refines this set in P2 to reduce the inherent
limitations of the static analysis in P1.

For Sourcalyzer, we extend the LLVM framework to detect
the syscalls used by the application already during compile-
and link-time. The syscall information for each shared library
is either extracted using the compiler or using Binalyzer.
Binalyzer can be used for applications and libraries which
are either not compatible with LLVM or where the source
code is not available. We rely on capstone [60] to disassemble
applications and to locate syscalls. Using symbolic backward
execution [46] from the syscall instruction, we infer the
syscall number used in the identified syscall. Additionally, we
use the control-flow graph recovery functionality of angr [79]
to map exported functions to identified syscalls. Exactly as
in previous work, an inherent limitation of static approaches
is that they can miss syscalls in rare cases if control-flow
cannot be inferred correctly. However, we observe that more
frequently, the set of used syscalls is overapproximated. To
refine the number of allowed syscalls, we provide a comple-
mentary optional dynamic approach in the second phase of
Chestnut. In this second phase, Finalyzer traces all syscalls of
the application and then refines the allowlist to further restrict
or relax the seccomp filters.

To demonstrate our approach’s feasibility, we evaluate var-
ious real-world client applications, such as git and busybox,
database applications such as redis and sqlite3, and Nginx as
a server application. We show that Chestnut does not impair
their functionality while it significantly reduces the attack
surface. On average, Chestnut blocks 295 syscalls (84.5%) on
Linux kernel 5.0. In the 18 real-world binaries we evaluated,
Chestnut blocked the exec syscall for 50% of the applications
using Sourcalyzer and in 77.7% using Binalyzer. We prevent
the mprotect syscall in 61.1% of the tested applications
using Sourcalyzer. Furthermore, we evaluate our approach

1The prototype and several demo videos can be found in our anonymous
GitHub repository https://github.com/chestnut-sandbox/Chestnut.

with existing real-world exploits, showing that Chestnut pre-
vents exploitation of around 64% and 62% of CVEs using
Sourcalyzer and Binalyzer, respectively. We also compare our
approaches with related previous work [24], [14]. We show
that we can achieve similar results in terms of effectiveness,
measured in the practically mitigated CVEs, to the compiler-
based approach by Ghavamnia et al. [24] but improving the
performance by up to factor 73. We are the first to show
that binary-based approaches can also be applied to non-PIC
binaries by demonstrating that Binalyzer runs successfully on
non-PIC binaries. We evaluate the functional correctness of
Sourcalyzer in functional tests as well as a 6-month long-
term case study: During 6 months of use of a Sourcalyzer-
protected Nginx production server, we did not observe a single
crash. Furthermore, we are the first to evaluate how tight
automatically generated filter rules actually are. We evaluate
the functional correctness and the tightness of the filters by
executing the available test suites. We substantiate the validity
of these experiments by measuring the code coverage of the
respective test suites.

Filters generated automatically with a tool might not always
be as strict as theoretically possible. However, there is no
time investment required from the developer, making it a very
inexpensive defense in depth. More importantly, Chestnut can
be applied to and improve the security of existing and widely-
used technology, i.e., seccomp, making syscall filtering avail-
able to commodity applications. The only runtime overhead
introduced is the small overhead of using seccomp, similar as
containers already do today.

To summarize, we make the following contributions:
1) We present a novel compiler-based approach for automatic

syscall-filter generation without manual interaction that is
up to factor 73 faster than previous work.

2) We present a method to refine the number of allowed
syscalls based on dynamic tracing.

3) We demonstrate that Chestnut prevents the exploitation of
more than 63% of the 175 CVEs in the Linux kernel
exploitable via syscalls.

4) We show that requirements of previous approaches are not
necessary, thus enabling a significantly faster approach that
is also applicable to a wider range of applications.

5) We perform a 6 month long-term study using Nginx to
demonstrate the functional correctness of our approach
where we did not observe a single crash.

Outline. Section II provides background. In Section III, we
discuss the threat model, challenges, and design of Chestnut.
In Section IV, we detail our compiler-based approach and
the extraction from existing binaries. Section V discusses
our dynamic refinement approach. We evaluate Chestnut in
Section VI. We discuss related work, limitations, and future
work in Section VII. We conclude in Section VIII.

II. BACKGROUND

A. Sandboxing

Sandboxing is a security mechanism that intends to con-
strain software within a tightly controlled environment by

2

https://github.com/chestnut-sandbox/Chestnut

restricting the available resources to a required minimum [56],
[26]. Hence, the damage in case of exploitation is limited.
These restrictions may encompass the ability to access the
network, limit the amount of storage, file descriptors, or inhibit
the application from issuing specific syscalls. By now, different
forms of sandboxing have been adopted by many browser
vendors to secure their products [72], [82], [54], [62], [63],
[81].

B. Linux Seccomp
To facilitate operations that require higher privileges or

direct hardware access, the kernel provides syscalls to every
userspace application. As with other interfaces, they also
contain bugs that can lead to privilege escalation [37], [36],
[38]. Hence, platform security profits from limiting the amount
of syscalls that an application can perform. With Secure
Computing (seccomp) [18], Linux provides a filter that allows
a userspace program to specify the syscalls it performs over its
lifetime. The kernel then blocks the remaining syscalls for the
sandboxed application that might originate from an application
being exploited. As seccomp filters do not dereference point-
ers, so-called time-of-check time-of-use attacks [48] common
in syscall interposition frameworks are not possible. Examples
of applications that rely on seccomp are Chromium [11],
Firefox [51], and the zygote process in Android systems [31].

C. Memory Safety
Memory safety is an essential concept in computer security,

and its violation can lead to exploitation. One way to exploit a
program is to corrupt its memory and to divert control flow to
a previously injected code sequence. This code sequence, i.e.,
the payload, is called shellcode and is commonly written in
machine code. These types of attacks are commonly referred
to as control-flow hijack attacks [73].

Nergal [55] and Shacham [67] describe ROP attacks, which
allow an attacker to chain existing code gadgets within an
application together to perform malicious tasks. Each such
gadget is a sequence of instructions that end with a return in-
struction. ROP attacks are hard to defend as all the information
is already present within the application, i.e., an attacker does
not need to inject code. While ROP attacks overwrite saved
return addresses, similar attacks exist that overwrite other
pointers [9], [4], [41], [8], [25], [64] or signal handlers [5].

D. Executable and Linkable Format
On Unix-based systems, the Executable and Linkable For-

mat (ELF) [6], [16] is the standard file format for shared
libraries and executable files. One advantage is that it is
highly flexible and extensible. An ELF file consists of an ELF
header that is followed by data. The data itself can consist
of a program and a section header table describing segments
and sections, respectively. Segments contain information that
is necessary for the run-time execution of the ELF binary,
while sections contain information relevant for linking and
relocating.
Dynamic Linking. The dynamic linker is responsible for
loading and linking shared libraries needed by an executable

P1: Static Analysis

Source

Binary

Annotated
Binary File(s)

Source
Analyzer

Binary
Analyzer

P2: Dynamic Refinement

Dynamic
Analyzer

Annotated
Binary File(s)

Chestnut
Generator

Chestnut
Patcher

Sandboxed
Binary

Wrapped
Binary

or

Fig. 1: The components of Chestnut and their interaction. In
P1, source files can be analyzed statically with our LLVM-
based analyzer, binaries with our binary analyzer. If necessary,
dynamic analysis in the optional P2 refines the previous
filters. After both phases, the binary can either be rewritten to
block unused syscalls or a tailored sandbox can be generated
that allows only the syscalls used in the binary.

during runtime [16]. For that, the dynamic linker copies
the shared library’s content into memory and ensures its
functionality, e.g., filling jump tables and relocating pointers.
On Unix-like systems, the dynamic linker is selected during
link time and is embedded into the ELF file.

III. DESIGN OF CHESTNUT

In this section, we introduce the threat model used through-
out the paper. We outline a set of challenges required to solve
automatic filter generation and discuss the high-level idea of
Chestnut. Figure 1 illustrates the main components of Chest-
nut, e.g., the compiler modification Sourcalyzer, the binary
analyzer Binalyzer, and the dynamic refinement tool Finalyzer.
Furthermore, we discuss how all three components can be
combined to further enhance the capabilities of Chestnut.

A. Threat Model and Idea of Chestnut

Chestnut supports Linux applications available as either C
source code or as a binary. In the latter case, it is not limited
to PIC binaries as previous work has discussed [14]. These
applications can range from server applications to applications
executing potentially malicious code that is not controlled by
the user, such as browsers, office applications [52], [33], and
pdf readers [19], [20]. Another example where Chestnut can be
used to restrict the syscall interface are messenger applications
as several attacks have been shown to fully compromise a
system [68], [27]. We assume correct usage of Chestnut in
one of its variants (cf. Figure 1). Chestnut assumes that the
application itself is not malicious but potentially vulnerable
to exploitation, e.g., due to a memory-safety violation, en-
abling an attacker to gain arbitrary code execution within a
vulnerable application. We assume that the post-exploitation
step targets the trusted system and requires syscalls, e.g., to
gain kernel privileges. Chestnut prevents the application from
using syscalls it usually would not use, averting harm from
the rest of the system. Syscalls provided for file operations can
potentially be exploited by an attacker to modify configuration
files. Argument-level API specilization [50] can be used to
protect against such attacks. In line with related work [24],
Chestnut currently cannot protect against such attacks if the
application requires these syscalls, and the file permissions are

3

set incorrectly. Augmenting Chestnut with argument-level API
specialization is left for future work. Chestnut is orthogonal
to other defenses such as CFI, ASLR, NX, or canary-based
protections and enhances the security in case these other
mitigations have been circumvented. Side-channel and fault
attacks [39], [83], [40], [45], [77], [65], [7] are out of scope.

B. Challenges

Automatic filter generation using a static approach requires
solving the following four challenges:
C1: Identifying Syscall Numbers for each Syscall. To
automatically block unused syscalls, it is necessary to identify
the syscalls used by the application. The syscall itself is
usually a single instruction, e.g., syscall (x86 64) or svc
#0 (AArch64). The actual syscall is specified as a number in
a CPU register, e.g., rax (x86 64) or x8 (AArch64) [15].
Hence, the first challenge is identifying the individual syscall
number that a specific syscall uses. Syscalls can appear in
many different forms within a binary, e.g., inline assembly,
assembly file, or issued with the libc syscall wrapper function.
Moreover, syscalls might not be called directly, but via a call
chain through various libraries. For example, an application
calls foo() in libfoo.so that calls open() in libc.so, which finally
calls syscall() in libc.so issuing the syscall. For our approach,
we have to detect all syscalls, regardless of how they are
called. Extracting the syscall number is the only architecture-
dependent part of Chestnut.
C2: Reconstruct Call Sites of Syscalls. By solving challenge
C1, we know which syscalls can be potentially called by
the target application. Unfortunately, including all detected
syscalls of the binary and the used libraries does not suffice.
Most binaries link against libc, which provides an implemen-
tation of almost all syscalls. Hence, the generated filters would
be too permissive as they would basically allow all syscalls.
We have to analyze the reachability of the identified syscalls
by constructing a call graph for every binary. This call graph
contains the information obtained from C1 for each function
and the information about edges between them.
C3: Generate Set of Syscalls. To generate the final set of
syscalls for our application, the information from C1 and C2
has to be combined for the application and its libraries. By
combining the call graph obtained in C2 with the information
which functions are used in the application and libraries, we
create a set of functions potentially called by the application.
In combination with the call graph (C2) and syscall numbers
(C1), this set provides the information about all the syscalls
that the application can execute.
C4: Install Filters. We rely on seccomp to apply the syscall
filters as seccomp is natively supported on Linux. To install
the filters, we provide a library (libchestnut) that has to be
added to the application. This library uses the allowlist (C3),
generates the seccomp rules, and installs the resulting filters
before the actual application starts at the main entry point.

Once all these challenges have been solved, we automati-
cally obtain an application that can only execute the required

syscalls. We solve the challenges in detail in Sections IV
and V.

C. High-Level Idea

This section briefly discusses the three components Chestnut
provides in the two phases (P1 and P2) and how they solve
the challenges. Sections IV and V provide more detail on the
implementation of each component.
Sourcalyzer. Chestnut contains Sourcalyzer, a compiler-based
component for static analysis of the application source code.
Based on LLVM, Sourcalyzer is a compiler pass that extracts
all syscalls identified during compilation.

This proves to be a practical approach for statically linked
binaries. For such applications, and given that libraries are
compiled with Sourcalyzer, the compiler and linker are aware
of the entire codebase and can thus identify every syscall
instruction of the final binary. Unfortunately, just extracting
the numbers and installing a seccomp filter for all found
syscalls is not enough, as this would lead to almost all
syscalls being allowed. The reason is that the C standard
library implements almost all syscalls. By linking against it,
our generated filters would allow almost all syscalls, which
renders the filters ineffective. Hence, we need to determine
further which syscalls are actually used by the application by
analyzing the control-flow graph to solve challenges C2 and
C3. While comparable work [24] needs to perform the same
task, we demonstrate a solution that is up to factor 73 faster.
We discuss this in Section IV-A.
Binalyzer. The compiler-based approach’s limitation is that
it requires the source code of the application and all used
libraries. Binalyzer has the same goal as Sourcalyzer but works
directly on the binary level. With this, our approach is also
applicable to programs where the source code is not available
or where the source code is not compatible with LLVM,
retrofitting the approach to binaries. In contrast to previous
work [14], Binalyzer is also not restricted to PIC binaries.

The idea of this binary-level analyzer is to scan binaries and
libraries for syscall instructions and then use symbolic back-
ward execution [46] from these locations to infer the respective
syscall number, again solving challenge C1. Similar to the
compiler-based approach, the basic binary-level approach also
suffers from overapproximation. To reduce overapproximation,
Binalyzer leverages control-flow-graph analysis of all depen-
dencies to map exported functions to the identified syscall
numbers (C2). Finally, based on the required symbols of the
binary and the libraries and the syscall-to-function mapping,
Binalyzer infers a set of syscalls reachable by the application
(C3). Note that Binalyzer can also be applied to stripped
binaries as all the required information is still included for
dynamic linking, i.e., the list of exported functions to which
we add syscalls. We detail this in Section IV-B.
Finalyzer. To work around the limitations of static analysis,
we propose Finalyzer, an approach based on dynamic syscall
tracing. Finalyzer is solely intended to refine filters identified
by our static approaches in a developer-controlled, benign

4

environment. In this optional phase, Finalyzer removes or adds
additional filters that cannot be identified statically.

The dynamic nature of Finalyzer allows us to simplify chal-
lenges C1 to C4 by inspecting syscalls just-in-time. Finalyzer
extracts the syscall number during runtime (C1) by intercept-
ing all syscalls for the target application. By intercepting the
syscall, it is inherent that the syscall is reachable (C2). These
dynamically collected syscalls can then be checked against the
statically identified syscalls. In this step, missed syscalls can
be added to refine the installed filter list (C4). We discuss this
process in more detail in Section V.
Combining Components. Chestnut is designed in a way that
allows combining all three components, as shown in Figure 1.
For instance, Finalyzer is intended to be used as an optional
step after the static components if they cannot infer the used
syscalls due to the static analysis’s limitations. An instance
where this is necessary is when an application dynamically
starts other applications. The child process inherits the parents’
syscall filters, which cannot be relaxed anymore. By combin-
ing the static approaches with Finalyzer, the syscalls of the
child process can be identified and added to the application’s
allowlist. Sourcalyzer can also be used in combination with
Binalyzer, e.g., if the source is available for the application
but not for a used library.
Applying Syscall Filters. The output of each component
is a file containing the syscalls the application can call. For
Sourcalyzer, the syscall filters can be directly compiled into
the target application. However, if this is either not desirable
or possible, e.g., because only the binary is available, we
provide two tools to apply the syscall filters (cf. Figure 1).
ChestnutGenerator creates a sandbox tailored to the target
application. Alternatively, ChestnutPatcher directly patches the
target application to include the syscall filters and libchestnut.

IV. STATIC FILTER EXTRACTION

In this section, we present the two static approaches of
P1 to automatically generate syscall filters. We highlight the
necessary steps for solving the outlined challenges in a fast and
efficient way in both a compiler and a binary-based approach
in more detail.

A. Compiler-Based Approach

Sourcalyzer utilizes the LLVM compiler framework [42]
to extract syscalls from source code. It uses module passes
(i.e., one analysis and one transformation pass) that operate
on the LLVM intermediate representation (IR). Additionally,
LLVM’s linker lld is extended to combine the extracted infor-
mation from multiple translation units. We use an unmodified
compiler-rt and musl libc. Hence, using Chestnut with the
Sourcalyzer approach is as simple as compiling and linking
an application with our extended toolchain.

C1: Identify System Call Numbers. To invoke a syscall,
x86 64 provides the syscall and AArch64 the svc #0 in-
struction. The extraction of the syscall number is the only
architecture-dependent part of Chestnut. Given the syscall

Sources
Extract

System Call
Number

Build Call
Graph

Annotated
Binary File(s)

Libraries

Generate
System Call

List

Annotated
Executable Install Filters

Fig. 2: The different steps of Sourcalyzer, which starts with
the source and ends with a fully sandboxed application.

number, the rest of the approach is the same for all archi-
tectures supported by LLVM. Syscalls are typically abstracted
by the standard C library via the syscall() function, i.e.,
read invokes the syscall() function with the SYS read syscall
number. musl additionally provides the function syscall cp()
that adds a cancellation point to a syscall. To detect all
invocations of syscalls, we need to detect all three cases, i.e.,
inline assembly, the syscall function, and the syscall cp()
function.

The LLVM analysis pass iterates over all functions within
a translation unit. For each function, we iterate over every
LLVM IR instruction to check whether it is a call site. If it is,
we check whether it is an inline syscall assembly statement or
a call to either one of the syscall or syscall cp functions. In
all three cases, we extract the first argument as it is the number
of the requested syscall. Note that, due to the way we traverse
the IR, we also know precisely what function performs the
respective syscall.

Our proof-of-concept implementation currently does not
parse assembly files as they are treated differently by LLVM
than normal source files. Hence, if a syscall is implemented in
one, e.g., clone, we cannot detect it, but a full implementation
can handle this case.
C2: Reconstruct Syscall Call Sites. Sourcalyzer uses the

syscall numbers extracted in C1 as a starting point for further
analyzing which syscalls are used based on the call graph. The
main challenge in this regard is extracting a reasonably precise
call graph without strongly degrading usability due to huge
performance overheads or by requiring changes to the common
compilation model (e.g., by demanding link-time optimization
(LTO)). In particular, restricting indirect function call sites
to a set of possible call targets is a necessary, but typically
quite expensive, task that commonly relies on inter-procedural
pointer analysis (e.g., Andersen [2], Steensgaard [71]). This
type of analysis requires access to the whole program and often
does not scale efficiently to larger program sizes [2], [28].
An automated syscall-detection system based on this form of
analysis and its impact on the compile-time performance has
been demonstrated by Ghavamnia et al. [24]. This approach
also requires changes to the common compilation model,
which is not supported by every application.

Hence, as we want to avoid changes to the compilation
model and given that our application can tolerate some im-
precision, we do not use sophisticated pointer analysis in
our prototype implementation and opt for a function-signature
based heuristic to determine possible call targets. Every func-

5

tion in the program where the function type of the call site
matches the function type of the definition is considered a
possible call target. Note that, for correctly typed programs,
this heuristic is an overapproximation of the actual possible
call targets, which corresponds to permitting more syscalls
than are actually needed (cf. Section VI-D2).

Both the LLVM IR passes and the linker are involved
in mapping syscall numbers to functions. Our analysis pass
traverses over all defined functions within the module. It
extracts their function signature, functions that are directly
called, the function signatures for indirect call sites, and the
functions that are referenced by the code (for which function
pointers exist, i.e., functions that have their address taken).
The latter is similar to what LLVM uses in its implementation
of software-based CFI. This gives rise to the assumption that
the resulting call graph is precise enough as applications that
use software-based CFI would otherwise not work correctly.

Note that we perform our analysis in the same traversal
where we also locate the used syscall numbers (see C1),
meaning that a single pass over the IR is sufficient. As function
aliases are widely used in musl, we also support them by
treating them like copies of the original function. Finally,
references to functions in global initializers are extracted. In
musl, e.g., global file structures are used on which functions
for reading, writing, and seeking are registered.

Our IR transformation pass serializes the information col-
lected from the analysis pass into a note section of the emitted
ELF object for the linker to use this information. To simplify
inspection of the extracted data, we use human-readable JSON
as encoding format. For a production-ready compiler, binary
encoding is preferable to reduce performance overheads.

C3: Generate Syscall Set. By solving challenges C1 and
C2, we generate object files containing the serialized syscall
and call graph information. The linker extracts this information
from all the provided input files to perform the actual call
graph construction and syscall number propagation. Finally,
the linker can either generate the set of relevant syscalls for
the application or a flattened call graph for further processing.

In more detail, after loading the call graph metadata, all
reachable functions are resolved according to their symbol’s
linkage specification (e.g., local or global, strong or weak),
and a list of indirect callable functions is generated. In the
next step, a call graph is constructed in which each node
represents a function, and each directed edge represents a
possible control-flow transfer from the caller to the callee.
The linker transforms this call graph into a directed acyclic
graph (DAG) using Tarjan’s algorithm [74], enabling efficient
propagation of the information. Namely, each graph node has
to be updated only once by visiting the DAG in post-order.
Using the discovered strongly coupled components, circular
call dependencies can be directly resolved by merging the
information from all functions that are part of the respective
cycle in the original call graph. As a result, the linker has
access to a flattened call graph in which, for every function in
the program, all reachable syscall numbers are known.

mov $0x1,%bl

xor %edi,%edi
mov %ebx,%eax

lea 0xf(%rip),%rsi
mov $0xd,%edx

syscall rax = ?
rax = ?
rax = ?
rax = rbx = ?
rax = rbx = ?
rax = rbx = $0x1

Fig. 3: Symbolic backward execution starts from the syscall
instructions and finds the syscall number by symbolically
tracking the corresponding CPU register.

Using the flattened call graph, we determine which syscalls
our final application needs. If we build a static binary, we
extract all syscalls that can be reached from the main and the
exit function and embed them as a note containing a simple
list of numbers into the final ELF binary. For dynamic binaries
or shared libraries, we instead embed the flattened call graph,
again serialized using JSON as encoding, into a new note of
the linked binary for further processing.
C4: Install Seccomp Filters. After linking with the Sour-

calyzer toolchain, the binary contains annotations containing
the application’s used syscall numbers directly or its flattened
call graph that still needs to be combined with the additional
dynamic libraries. For static linkage, we delegate the process-
ing to the application itself by additionally linking against
our libchestnut library. This library contains a constructor that
extracts the syscall numbers and installs the seccomp filters
using libseccomp [17] before the application starts executing.

In the second case, dynamic linkage, we provide two
options. ChestnutPatcher extracts the embedded call graph
from all library dependencies and determines all syscalls from
functions that are reachable from the main and exit function.
Finally, the tool adds a new note section with information on
syscall numbers. As the compiler has generated the dynamic
binary, we can already link libchestnut against it automatically.
ChestnutGenerator performs the same steps except that it does
not modify the binary but creates a launcher that sets up the
filters before executing the actual binary.

B. Binary Syscall Extraction

The second static approach of Chestnut, Binalyzer, works
on the binary level. While there is less semantic information
available than on the compiler level, Binalyzer works without
access to the source code and even for stripped binaries.
In contrast to previous work [14], we demonstrate that the
requirement of a PIC binary is not necessary.
C1: Identify Syscall Numbers. The syscall number spec-

ifying the type of syscall is not encoded in the syscall instruc-
tion itself. Instead, the syscall number is provided by a general-
purpose register, i.e., rax on x86 64 or x8 on AArch64.
Hence, Binalyzer has to reconstruct the syscall number by
inferring the content of this register. This reconstruction results
in a list of all syscalls and their virtual addresses.

Binalyzer uses the capstone framework [60] to disassem-
ble a binary as this framework supports various ISAs, e.g.,

6

puts

fork
system

sys writev

sys clone

sys futex

sys wait4
sys execve

sys rt sigprocmask

Fig. 4: Binalyzer creates an n : m mapping between exported
functions (ellipse) and syscalls (rectangle).

x86 64 and AArch64. The disassembly is used as the base
for identifying syscall numbers. Starting from a syscall instruc-
tion, Binalyzer leverages symbolic backward execution [46].
Tracking back from the syscall instruction, Binalyzer tracks
the register’s symbolic value containing the syscall number.
In many cases, the immediate for the syscall number is
directly moved to the register before the syscall instruction
as it is a constant value. However, in some cases, there is at
least some form of register-to-register transfer involved. These
transfers also include register copies where only a lower part
of the register is involved. Thus, as illustrated in Figure 3,
Binalyzer keeps the content of the register symbolic and steps
back through the binary, symbolically evaluating operations.
This symbolic backward execution is repeated until either
a concrete immediate for the syscall number is identified,
or after a user-definable number of instructions have been
analyzed without successfully identifying the immediate.2 One
failure reason can be that the syscall instruction is a call
or jump target, i.e., there are potentially multiple call sites
reaching the instruction with different syscall numbers. Such
a situation would require a more complex symbolic execution.
Luckily, the syscall instruction is usually inlined, and thus, we
do not consider such situations for our proof of concept.

C2: Reconstruct Syscall Call Sites. To reduce the
overapproximation of used syscalls, Binalyzer analyzes the
binary’s control-flow graph (CFG) to map identified syscalls
to (exported) functions. After this analysis, Binalyzer has a set
of all possible syscalls per exported function (cf. Figure 4).

We rely on angr [79] to statically create a CFG of the binary.
Based on the basic blocks of all functions in the CFG, we
assign every syscall identified in C1 to a function. Such a
function might not be an exported function or even a named
function, but any block identified as a function.

Binalyzer traverses the CFG from each exported function
as the root node to identify reachable functions with a syscall
instruction. Assuming a correctly reconstructed CFG from
angr and correctly identified syscall numbers (C1), this yields
a set of possible syscalls per exported function (cf. Figure 4).

C3: Generate Syscall Set. To solve challenge C3, we have
to combine the information created from solving C2 for all
binaries, i.e., the application binary and all of its dynamically-
linked libraries. We cannot create a complete CFG over the
application binary and its libraries as this would take multiple
hours to days, depending on the size of the application and

2For the evaluation, we set this number to 30, which was sufficiently large.

the number of dynamic libraries. As a tradeoff, we chose to
overapproximate the number of possible syscalls by relying on
individual CFGs that we merge. We only consider functions
that are defined in the dynamic symbol table of the ELF file.
These functions are found in the dynamic libraries loaded by
the application. Hence, we search for these functions in the
shared object dependencies and look up the used syscalls for
the function in the respective library. Note that shared libraries
can also have a dynamic symbol table if they call functions
from other libraries. Thus, this process is repeated for all
dynamic symbols of all shared object dependencies.

Solving challenge C3 yields a set of syscalls that the
application can potentially call. This assumes that no dynamic
libraries are loaded at runtime, e.g., via dlopen, and that the
application does not execute a different binary at runtime, e.g.,
via exec. In such cases, we would have to resort to P2, as
the complete set of syscalls cannot be determined statically.
C4: Install Seccomp Filters. From the complete set of

syscalls, Binalyzer has to create filter rules and apply them
to the binary. We cannot simply compile the filters with the
application (cf. Sourcalyzer). Instead, Binalyzer supports two
different variants: binary rewriting, and building a sandbox
wrapper (cf. Figure 1). ChestnutGenerator is a simple applica-
tion that sets up the filter rules and starts the target application.

With binary rewriting, Binalyzer stores the syscall numbers
in the ELF binary and injects a new shared object dependency,
libchestnut. The library provides a constructor function, which
is called before the actual application starts. In the constructor
function, the library parses the filters stored in the binary to
apply the seccomp filter rules. The advantage of a rewritten
binary is that it does not need any launcher application.

V. DYNAMIC REFINEMENT

In this section, we discuss the optional P2 component
Finalyzer, a method to dynamically refine the previously
detected syscall filters. The dynamic approach simplifies the
challenges C1 to C4 by inspecting syscalls just-in-time in a
secure and controlled environment during development.

A. Limitations of Static Approaches

While our approach for statically detecting an application’s
syscalls works well for most binaries (cf. Section VI), there are
inherent limitations to a static approach. Dynamically loaded
libraries, e.g., codecs, plugins, self-modifying, or just-in-time-
compiled code, often cannot be analyzed statically.

Moreover, the current implementation of seccomp is not
flexible enough to handle scenarios involving child processes
with a different set of syscalls, as a child inherits its parent’s
filters and can only further restrict but not relax them. For a
child to work as intended, the parent also needs to install a
seccomp filter for the syscalls the child uses as otherwise the
operating system kills the child.

B. Implementation Details

In our prototype, Finalyzer is a strace-like syscall-tracing
component linked against the target application or used as a

7

Kernel

System Call

notify

System Call

Tracer

allow

return

Log
Syscall

Tracee

Trace

Fig. 5: The tracer gets notified by the kernel when the tracee
executes a syscall. The tracer logs the syscall and informs the
kernel to execute the syscall.

standalone wrapper for a binary (cf. Figure 1). This allows
Finalyzer to work with Binalyzer and Sourcalyzer. If desired,
it can also be used without any of the two static components
to identify the required syscalls.

In either case, Finalyzer, i.e., the tracer, first creates a child
process, the tracee. Finalyzer then installs seccomp filters for
all syscalls in a way that informs the tracer about a seccomp
violation. To enable this behavior, the tracer needs to attach
itself to the tracee. The tracee then stops execution until it
receives the continue signal from the tracer to ensure that it
successfully attached itself. If the child process creates a new
child process, the tracer is automatically attached to the newly
created child process. The tracer is then also informed of the
unsuccessful execution of the child’s syscalls.

Upon receiving the notification of a violating syscall, Fina-
lyzer extracts the syscall number (C1), logs it (C3), and allows
it for all future occurrences (cf. Section III-C). As the syscall
is indeed executed, it is inherent that it is reachable (C2). We
illustrate this whole process in Figure 5.

Once Finalyzer has finished tracing the application, it cross-
references the list of obtained syscalls with the ones obtained
in P1. If a syscall is missing, it modifies the allowlist to
include the newly detected syscall. Optionally, it can also be
used to remove syscalls that P1 identified but which were
never executed during P2.

VI. EVALUATION

In this section, we evaluate the performance, functional
correctness, and security of Chestnut. Our evaluation is in line
with related work [24], [14] while improving on it in several
points, i.e., we evaluate several parts that were omitted by these
works. In the performance evaluation, we evaluate the one-
time overheads of Chestnut, such as compile time and binary-
analysis time. We also discuss the runtime overhead seccomp
introduces. For the functional correctness, we evaluate whether
Chestnut causes any issues in terms of functionality of exist-
ing real-world software, e.g., crashes. We also perform a 6
months long evaluation of an Nginx server with its syscall
interface restricted by Sourcalyzer. In the security evaluation,
we evaluate the ability of Chestnut to prevent the dangerous
exec syscall and the overapproximation of syscalls in general.
With the latter, we are the first to demonstrate how tight the
automatically generated filters are. Furthermore, we evaluate
how well Chestnut can mitigate real-world exploits. Finally,

we discuss related works in this field to show the main
differences to our work.

A. Setup

For the evaluation of Chestnut, we focus on x86 64. Note
that the only architecture-dependent part of Chestnut is the
extraction of the syscall number. Hence, we do not expect
significant differences for other architectures. We also veri-
fied that the general approach works across architectures by
successfully extracting the syscall numbers from musl libc for
both x86 64 and AArch64.

We evaluate Chestnut on various real-world applications
shown in Table I, including client, server, and database soft-
ware. While busybox may be seen as a non-obvious choice,
it is in line with previous work that used coreutils for the
evaluation [59]. We instead chose busybox as the number of
provided utilities is 3 times higher, making it a better choice
for our evaluations. For evaluating Sourcalyzer, we compile
the binaries statically with and without Chestnut enabled using
our modified compiler. For Binalyzer, we compile the appli-
cations dynamically using GCC 7.5.0-3 on Ubuntu 18.04.4.
For the sake of brevity, we do not evaluate every combination
of components and sandboxes but focus on libchestnut for
Sourcalyzer and ChestnutGenerator for Binalyzer.

B. Performance Evaluation

In this section, we evaluate the performance of Chestnut.
This includes the one-time overheads for compiling (Sec-
tion VI-B1) or binary analysis (Section VI-B2), the increase
in binary size (Section VI-B3), and runtime overheads (Sec-
tion VI-B4).

1) Compile-Time Overhead: We analyze the impact Sour-
calyzer has on the compile time of an application. To make
comparison possible, we compile the application 10 times
with and without our modification enabled, always using our
modified compiler, and use the average compile time over
these runs.

As the results show, we observe the worst-case overhead
for the git application with an increase from an average of
65.5 s (σx̄ = 0.094, N = 10) to 84 s (σx̄ = 0.054, N = 10),
an increase of 28%. For the busybox utilities combined, the
average increases from 10.94 s (σx̄ = 2.88, N = 10) to 10.99 s
(σx̄ = 2.79, N = 10). When compared to related work [24],
we observe a speedup of factor 73 for Nginx when using
Sourcalyzer. This low overhead makes it a feasible approach
to be used in everyday development cycles.

2) Binary Extraction Runtime: For Binalyzer, we evaluate
the time it takes for extracting the syscalls from the dynamic
binary. We assume that default dependencies like libc.so have
already been processed and that their extracted call graph is
available to the user. For completeness, we timed the extraction
of syscalls from libc.so, which takes on average 44.66 s (σx̄ =
0.18, N = 10). For the applications themselves, we can see in
Table I that the extraction process is in the range of 2 to 10 s
for the individual busybox utilities, with an average time of
3.4 s (σx̄ = 0.73, N = 10). For large binaries like FFmpeg (>

8

Software #Syscalls
Found / Used / P2 Added Size Overhead Analysis Time exec mprotect

Fully
Mitigated

Subvariant
Mitigated

Compiler () Binary () Compiler () Binary ()
C

lie
nt

ls 24 / 14 / 0 39 / 18 / 1 +173 kB (253%) +288B (1.08%) +0.38 s (1.72%) 3.041 s 3 3 3 7 81.1% 81.1% 87.5% 87.5%
chown 22 / 11 / 0 36 / 14 / 0 +174 kB (369%) +280B (1.52%) +0.29 s (1.35%) 2.777 s 3 3 3 7 81.7% 81.7% 87.8% 87.8%
cat 18 / 6 / 0 34 / 13 / 0 +174 kB (397%) +272B (1.9%) +0.08 s (2.29%) 2.576 s 3 3 3 7 82.3% 81.7% 88.1% 87.8%
pwd 16 / 4 / 0 34 / 14 / 0 +175 kB (430%) +272B (1.92%) +0.21 s (0.98%) 2.507 s 3 3 3 7 85.1% 81.7% 90.3% 87.8%
diff 25 / 9 / 0 36 / 16 / 0 +173 kB (304%) +280B (1.25%) +0.06 s (1.44%) 2.946 s 3 3 3 7 81.1% 81.7% 87.5% 87.8%
dmesg 15 / 5 / 0 34 / 14 / 0 +176 kB (439%) +272B (1.92%) +0.08 s (2.17%) 2.452 s 3 3 3 7 85.1% 81.7% 90.3% 87.8%
env 15 / 3 / 0 33 / 13 / 0 +175 kB (416%) +272B (1.92%) +0.07 s (1.88%) 2.416 s 7 3 3 7 81.7% 81.7% 88.4% 87.8%
grep 20 / 11 / 0 34 / 16 / 0 +174 kB (177%) +272B (1.49%) +0.41 s (1.88%) 2.748 s 3 3 3 7 81.7% 81.7% 87.8% 87.8%
true 3 / 1 / 0 32 / 12 / 0 +200 kB (3277%) +264B (4.4%) +0.09 s (2.55%) 9.908 s 3 3 3 7 98.3% 83.4% 98.4% 88.7%
head 17 / 7 / 0 33 / 13 / 0 +174 kB (434%) +272B (1.92%) +0.06 s (1.64%) 2.436 s 3 3 3 7 82.3% 81.7% 88.1% 87.8%

git 82 / 42 / 1 85 / 42 / 2 +219 kB (4.5%) +448B (0.003%) +18.5 s (28.18%) 247 s 7 7 7 7 34.3% 58.3% 55.9% 73.4%

FFmpeg 63 / 27 / 1 91 / 27 / 2 +190 kB (0.21%) +472B (0%) +268 s (27.14%) 643 s 7 3 7 7 33.1% 34.9% 57.8% 44.1%

mutool 61 / 16 / 1 69 / 15 / 0 +189 kB (0.48%) +376B (0.001%) +3.17 s (0.69%) 164 s 7 3 7 7 52.0% 38.3% 69.4% 60.3%

memcached 88 / 54 / 1 102 / 59 / 4 +216 kB (28.9%) +456B (0.13%) +0.35 s (5.5%) 8 s 7 3 7 7 30.3% 33.7% 50.0% 41.9%

D
B redis-server 85 / 35 / 1 93 / 42 / 3 +216 kB (11.2%) +472B (0%) +2.4 s (2.7%) 41 s 7 7 7 7 30.3% 32.0% 54.1% 54.4%

sqlite3 92 / 72 / 1 102 / 72 / 13 +215 kB (5.9%) +456B (0.02%) +0.8 s (7.2%) 45 s 7 7 7 7 62.9% 32.6% 75.3% 57.5%

Se
rv

er Nginx 105 / 48 / 0 106 / 51 / 4 +217 kB (1.5%) +528B (0.003%) +7.9 s (10.53%) 277 s 7 3 3 7 32.0% 30.9% 38.8% 40.0%

httpd 98 / 50 / 1 106 / 46 / 0 +218 kB (8.3%) +504B (0.04%) +4.1 s (5%) 16.8 s 7 7 7 7 29.7% 30.3% 50.9% 44.4%

TABLE I: Results for the compiler- () and binary-based () approach of Chestnut, respectively. For each software, we
show the number of detected syscalls in P1, used syscalls, and added syscalls in P2, the size overhead of the annotations,
compile-time overhead (for Sourcalyzer), and binary analysis time (for Binalyzer). The exec and mprotect columns indicate
whether Chestnut blocks (3) the execve and execveat or mprotect syscalls respectively. We also show the percentage
of fully mitigated CVEs and individual subvariants of these CVEs targeting the kernel. Note that the syscalls added in P2 are
only necessary in our proof-of-concept implementation of Chestnut as they appear in edge cases, which can be handled in a
production-ready implementation.

Shared library Vanilla Annotated Overhead
musl libc.so 815 kB 1007 kB 23.63%
libssl.so 657 kB 1.7MB 161%
libcrypto.so 4.1MB 23MB 460%

TABLE II: We evaluate the size overhead of the compiler-
based approach of Chestnut on shared libraries. The overhead
is based on a vanilla version of the respective shared library.

100MB) and its dynamic dependencies, the extraction takes
around 11min.

3) Binary Size Analysis: The code size does not increase
with adding filters, only the binary size increases by the
meta-information. Moreover, libchestnut and libseccomp are
potentially linked to the application.

Compiler. We analyze the size of the binary produced by
Sourcalyzer compared to a vanilla application. Chestnut needs
to treat static and dynamic ELF files differently as syscall
numbers of externally linked libraries are not known. In a
static binary, we only add the set of syscall numbers to the
binary and link against libchestnut and libseccomp. As both
libraries are of fixed size, the maximum overhead in a static
binary is limited by the number of syscalls Linux provides, i.e.,
349 on Linux 5.0. Table I shows the overhead for statically
linked binaries. As expected, the overhead is quite small in
large binaries, e.g., FFmpeg. In the small busybox utilities,
the overhead appears to be huge (> 177%), but as these
binaries sizes are in the lower kilobyte range (40-100 kB),
linking against two additional libraries drastically increases the
size. Nevertheless, the binaries remain in the kilobyte range.

For dynamic binaries and shared libraries, we have to embed
the entire call graph as we need the information later on
to determine the required syscalls. Table II shows the size

increase for three shared libraries. In libcrypto.so, we observe
a worst-case increase from 4.1MB to 23MB (460%). The
overhead also increases with the size of the binary as the call
graph is larger for the larger codebase.

Binary. Table I shows the increase for Binalyzer. We
opted to generate a binary that needs to be launched by
ChestnutGenerator instead of rewriting the binary. Still, for
simplicity, we embed the detected syscalls in the binary from
where our wrapper extracts the information. As we embed
only the numbers, the overhead in all 18 applications is less
than 2%. Binary rewriting incurs the additional overhead of
adding the dependency on libchestnut and libseccomp, but this
increase is again insignificant and similar to the observed result
of Sourcalyzer.

4) Runtime Overhead and Seccomp: For the static ap-
proaches, the only overhead compared to manually crafted
seccomp filters is the parsing of the syscall numbers. As this is
done during application startup, it is a one-time overhead that
depends on the number of rules that need to be set up. Hence,
we investigate the overhead for setting up the application with
the smallest (true) and largest (Nginx) number of syscalls
based on Sourcalyzer. For Nginx, the setup time takes on
average 9.92ms (σx̄ = 0.007, N = 10 000) while it only takes
0.58ms (σx̄ = 0.004, N = 10 000) for true. The remaining
slowdown is then introduced by seccomp itself, which is
unavoidable if a developer decides to sandbox an application
with it. Previous work has shown that its performance depends
on the number of filters that are installed and the rule’s position
within the filter list [30], [76]. The Linux developers are cur-
rently working on improving the performance of seccomp [12].

5) Dynamic Refinement Overhead: As a microbenchmark,
we analyze the impact of Finalyzer on the syscall latency.

9

Software Coverage
Lines

Coverage
Functions

FFmpeg 59.3% 61.7%
memcached 77% 91.9%
redis 77% 61.5%

TABLE III: Coverage results for selected applications.

We first benchmark the latency of the getppid syscall without
Finalyzer in place 1 million times. The latency of getppid
on our test system (Ubuntu 18.04.4, kernel 5.0.21-050021-
generic) is 1358 (σx̄ = 0.91, N = 1000 000) cycles. With Fi-
nalyzer, we observe an average latency of 17 103 (σx̄ = 5.52,
N = 1000 000) cycles, an increase of approximately 1160%.
While this increase seems large, it is supposed to be used as
an optional step during development. Hence, we consider this
to be less of a problem as it does not impact the released
application.

C. Functional-Correctness Evaluation

A critical aspect of Chestnut is that the sandboxed binaries
still work as intended without observing crashes. Related
work [24] tested each application 100 times using various
workloads. For a fair comparison, we perform the same
tests. Moreover, for those applications where a test suite is
available, we execute these test suites to reach higher coverage,
ensuring that we do not miss edge cases. Beyond previous
work [24], [14], we also extend our evaluation with code
coverage results to show that large parts of the application
are actually executed. We also perform a 6 month long test of
Nginx sandboxed by Sourcalyzer.

In more detail, we first apply Chestnut to the binaries
shown in Table I. Note that obtaining a sound ground truth
of whether all syscalls are detected is infeasible and would
require time-consuming formal proofs that are out-of-scope for
this paper. Hence, we rely on executing the available test suites
that should cover many of the different code paths available
in the tested application. This is, for instance, possible for
FFmpeg, memcached, redis, Nginx, and sqlite3. In other cases,
we execute the binaries with different configurations to ensure
that we reach as many different code paths as possible, similar
to what related work has done [24]. We observed no crashes
in applications sandboxed with Chestnut. Even if a syscall is
missed in P1, P2 can be used to add it, ensuring correct
functionality.

While this is not an exhaustive test, it can be assumed that
test suites for large applications are designed for complete
functionality coverage and thorough testing of critical com-
ponents in particular. Based on the latter, it is a reasonable
assumption that our functional-correctness test tests whether
all syscalls in the core functionality of the tested application
are found. To further substantiate this, we perform a coverage
test for a selection of applications shown in Table I. We show
the result of these coverage tests in Table III. Additionally to
our results, the sqlite developers always maintain 100% branch
and 100% MC/DC coverage [70]. While not perfect, the re-
sults indicate that large parts of the respective applications are

executed and, to a certain degree, demonstrate the functional
correctness of the applications after Chestnut has been applied.
In future work, we would like to employ coverage-guided
fuzzing to better estimate whether all required syscalls are
found.

Programs using fork+exec, e.g., git-diff, exhibit the in-
herent problem of seccomp, namely that a child program
inherits its parent’s filters. If the child uses a syscall blocked
by the parent, the child crashes. For such applications, P2
is necessary to ensure functionality. Out of the 18 tested
applications, P2 was only necessary for two of them, namely
git-diff and git-log as they performed syscalls blocked by
their parent. After refining the filters using Finalyzer, both
successfully completed their task.
Adding Missed Syscalls using P2. We evaluated how
many syscalls the static approaches missed. For Sourcalyzer,
Finalyzer added 4 syscalls to musl libc, which are then
propagated to the individual applications if the corresponding
function is used, e.g., clone. Table I shows for each application
how many syscalls were added in P2.

For Binalyzer and busybox, P2 only had to add a syscall
in ls. The largest amount of added syscalls appears in sqlite3,
where Finalyzer adds 13 syscalls.

These missed syscalls are currently only a limitation of
our proof-of-concept implementation. All these syscalls occur
in edge cases that our implementations do not, but a full
implementation can cover. Hence, they do not necessitate
Finalyzer to be a mandatory phase of Chestnut.

Long-Term Study using Nginx. To further demonstrate
the functional correctness of Chestnut, we performed a long-
term study of 6 months using Nginx. In this test, we compiled
a static version of Nginx using Sourcalyzer, which we then
deployed to a real-world server to host a website. The number
of blocked syscalls for that Nginx binary is shown in Table I,
i.e., 105. Over this period of 6 months, the server handled
around 100 000 requests without ever triggering a seccomp
violation. This further demonstrates that Sourcalyzer can infer
all syscalls necessary for a successful operation of Nginx on
a real-world system.

D. Security Evaluation

To evaluate how Chestnut increases the security of sand-
boxed applications, we analyze how often dangerous syscalls,
e.g., exec, are blocked (Section VI-D1), the number of
syscalls not blocked even though they are not used by the
application (Section VI-D2), the number of mitigated real-
world exploits (Section VI-D3), and how malicious SGX
enclaves can be prevented (Section VI-D4).

1) Preventing Dangerous Syscalls: Three of the more
dangerous syscalls that Linux provides are the two syscalls
in the exec group, i.e., execve and execveat, and the
mprotect syscall. With the exec syscalls available, an
attacker can execute an arbitrary binary in the presence of
an exploitable memory safety violation [8]. In fact, most
libc versions even contain a ROP gadget that leverages the
exec syscall to open a shell [35]. Hence, an attacker can

10

execute a new program in the context of the current one.
With mprotect, an attacker can modify the permissions of
existing memory, i.e., make it executable. While mmap can be
used to map memory as executable, we did not consider it in
our evaluation. We consider attacks not relying on syscalls [10]
as out of scope.

Even with Chestnut, certain attacks are still possible, e.g.,
adding an ssh key if a privileged application is exploited and
the open/write syscalls are allowed. Note that these attacks are
also possible with Chestnut, but other attacks are prevented,
improving the overall system security. Hence, Chestnut im-
proves the status quo, which is the goal of this work.

Compiler. We evaluate the effectiveness of Sourcalyzer in
preventing the exec and mprotect syscalls (Table I). In
busybox, we prevent the exec syscalls in 9 out of 10 cases
and mprotect in all 10. Additionally, we also evaluated
all the remaining busybox utilities and prevent exec in 313
out of 396 (79.0%) of them and mprotect in all 396
(100%). In Nginx, we cannot prevent exec, but we do prevent
mprotect. In the other applications, we can prevent neither
of them as our compiler detects a potential call to a function
that contains the respective syscalls.

Binary. As Table I shows, Binalyzer prevents the exec
syscalls in all of the shown busybox utilities. The analysis
of the remaining busybox utilities showed that we can also
prevent it in all of them. This result differs from Sourcalyzer
which could not block the exec syscall in the env utility. We
manually verified that the syscalls are indeed not required in
the application. The mprotect analysis showed the opposite
behavior as it is not blocked in any of the applications. For
Nginx, memcached, mutool, and FFmpeg, we were also able
to block the exec syscalls without crashing the application,
but not mprotect. We could not block either one of them
in git, httpd, redis, and sqlite3. For git and the exec syscalls,
the reason is that some of the git commands rely on other
applications to run, i.e., the configured pager for commands
like diff or log. The explanation of why we cannot block
mprotect using Binalyzer is the point of time at which we
start blocking syscalls. In Sourcalyzer, we block syscalls that
are reachable only from the main and exit functions, while
we block them from the start of the application in Binalyzer.
Hence, we need to allow mprotect as it is required for
setting up the application. In a full implementation, the func-
tions necessary for program startup can be removed from the
analysis, potentially removing the mprotect syscall.

2) Overapproximation of Syscalls: As Table I shows,
Chestnut can drastically reduce the number of syscalls avail-
able to a userspace application. For our 18 tested applications,
Nginx and httpd block the least number of syscalls with 106
being allowed. However, without Chestnut, all 349 syscalls
that Linux 5.0 provides would be available [44]. While Chest-
nut drastically reduces the attack surface, both Sourcalyzer
and Binalyzer often allow more syscalls than necessary. We
estimate our approaches’ overapproximation to determine how
tight the syscall filters are that an automated approach can

generate. As such, we are the first to demonstrate this for an
automated seccomp filter generation tool.

Setup. To evaluate our static components’ overapproxima-
tion, we leverage the functionality of Finalyzer in libchestnut.
This has the advantage over strace that we do not include
syscalls that are needed for setting up the application, i.e., we
only log syscalls after the main entry point. Using this setting,
we then either execute the applications test suite or execute
the program with different arguments to trigger different code
paths, i.e., try to trigger as many of the existing syscalls
as possible. Note that the accuracy of our results depends
on the code coverage of the respective test suites. As was
the case in Section VI-C, we again argue that despite this
not being an exhaustive test, test suites typically cover at
least the core functionality of the tested applications and its
critical components. We again substantiate this claim with
the code coverage metrics for selected applications shown in
Table III. As the coverage metrics indicate, large parts of
the respective applications are executed. This demonstrates
that this is an adequate but not perfect approach to detect
the overapproximation of Chestnut. Furthermore, we are the
first to provide an insight into the tightness of automatically
generated filters.

Using the aforementioned approach, we obtain a list of
syscalls that the evaluated program issued. We calculate that
list’s intersection with the allowed syscalls as detected by
Sourcalyzer or Binalyzer. This gives us a list of syscalls
that our approach allows but that are never executed by the
application in our tests. If a syscall was triggered that our
static approaches block, Finalyzer automatically refines the
application’s filter list.

Compiler. For git, FFmpeg, memcached, redis, sqlite3,
httpd, and Nginx, Binalyzer allows on average 2 syscalls more
than Sourcalyzer. Sourcalyzer outperforms it due to two points:
the heuristics based on function signatures that we apply in
the compiler to infer potential indirect call targets, and as it
only includes syscalls that are reachable from main and exit.
While Binalyzer has to rely on heuristics as well, the amount
of available information is smaller as it needs to disassemble
generated code and infer the call graph from it using angr
instead of doing it on the source code level where more meta-
information is available. If angr incorrectly infers a call target,
it potentially merges syscalls that are not necessary into a
function that is later on used by the target application, which
results in overapproximation.

As Table I shows, overapproximation varies between dif-
ferent applications. Out of the shown busybox utilities, we
observed the largest overapproximation for env, where only
20% of the detected syscalls are actually used. For the larger
applications, we observe the largest overapproximation in
mutool, with only 26.23% being used.

Binary. For the evaluation of Binalyzer, we slightly deviate
from the outlined setup just to ease the evaluation. The only
difference is that we do not rely on the linked libchestnut
library, but instead use the standalone implementation of
Finalyzer. Hence, we observe a larger amount of syscalls as we

11

Syscall Equivalents
munlockall munlock
listxattr llistxattr, flistxattr
epoll create epoll create1
mlockall mlock, mlock2
execve execveat
recvfrom recvmsg, recvmmsg
writev pwritev
mknod mknodat
open openat
accept accept4
getdents getdents64
sendto sendmmsg, sendmsg
getxattr fgetxattr, lgetxattr
rename renameat, rename2
epoll ctl epoll ctl old

TABLE IV: Syscalls and their equivalents.

also record syscalls executed during program startup, similar
to strace.

In busybox, we overapproximate the most in the true utility,
where only 37.5% are being used. In the larger applications,
we observe the lowest percentage of actually used syscalls in
mutool, with only 21.74% being used.

As was the case with the functional-correctness evaluation,
we would like to investigate the possibility of better estimating
the overapproximation using a coverage-guided fuzzer. Unfor-
tunately, this is out-of-scope for this paper.

3) Mitigating Real-World Exploits: For evaluating the
effectiveness of Chestnut in mitigating real-world exploits, we
assume an attacker that can either inject shellcode or mount
a code-reuse attack [73] in one of our target applications. We
define an exploit as successful if the attacker can exploit a
kernel bug from the application context. These bugs in the
kernel either trigger a privilege escalation or result in a denial
of service. As seccomp filters restrict the available syscalls,
they reduce the attack surface of the kernel.

For the evaluation, we extract a list of CVEs from the
mitre database [75] that exploit syscalls on the x86 64 Linux
kernel. This results in a total of 175 CVEs since 2003. From
this list, we extract the necessary syscalls and map them to
the corresponding syscall numbers, resulting in a list of 231
malicious samples. The reason for the higher number is that a
CVE can be triggered by different syscalls that are independent
of each other. As some syscalls have equivalent versions that
perform the same action, we extend our list of samples to
320 by substituting the syscall numbers where applicable. We
provide a list of these equivalent syscalls in Table IV. As we
want to show that Chestnut-sandboxed applications impede the
exploitation of unpatched kernel vulnerabilities, we assume a
kernel that is vulnerable to all these CVEs.

To determine the effectiveness of Chestnut, we cross-
reference the syscall numbers from each sample with the ones
prohibited by our various test applications in Table I. If one
of the syscalls required for the exploit is not allowed by the
application, we determine that this application cannot trigger
the exploit in the kernel, indicating that Chestnut increased the
security of the system. We consider both the number of CVEs

that we fully mitigate and the number of subvariants mitigated
by Chestnut.

Compiler. With Sourcalyzer, we can mitigate around
84.04% of the CVEs completely and around 89.42% of the
subvariants in the case of busybox. The reason for that is that
the busybox utilities are rather small, allowing only a few
syscalls. With the larger applications, our compiler performs
worse with mitigating around 38.08% of CVEs completely
and around 56.53% of the subvariants. Even though Sourca-
lyzer does not perform as well for the larger binaries, it still
increases the system’s security.

Binary. In busybox, Binalyzer mitigates around 81.8% of
the CVEs completely and around 87.9% of the subvariants.
In the larger binaries, Binalyzer can fully mitigate 36.38% of
the CVEs and 52% of the subvariants.

4) Preventing Malicious SGX Enclaves: Intel SGX en-
claves cannot directly execute any syscalls, but only use func-
tionality provided by the host application. The host application
can use syscalls to provide this functionality to the enclave.
Schwarz et al. [66] presented a technique to execute arbitrary
syscalls from an SGX enclave by mounting a ROP attack
on the host application. This allows malicious or exploited
enclaves to mount attacks on the kernel.

Weiser et al. [80] presented SGXJail as a generic coun-
termeasure for malicious enclaves, preventing them from ex-
ecuting arbitrary syscalls. Binalyzer achieves a similar goal
without affecting the performance of required syscalls. For
the evaluation, we used the public proof-of-concept exploit
provided by Schwarz et al. [66]. The Intel SGX SDK cur-
rently does not support LLVM; hence, we can only evaluate
Binalyzer. As enclaves cannot contain syscalls, Binalyzer only
has to scan the host application and allow only syscalls
legitimately used by the host application. Out of the 349
syscalls provided by Linux 5.0, 279 (79.9%) are blocked,
including exec. We verified that the benign functionality of
the host and enclave is not impacted. As a result, the malicious
(or exploited) enclave cannot run arbitrary programs anymore,
and the attack surface is drastically reduced.

E. Comparison to Other Approaches

Recently, the field of automating seccomp filter generation
has gained traction with the publication of two works [24],
[14]. Note that these works were only published after the start
of our 6-month long-term case study of Chestnut on Nginx.
In this section, we want to take a closer look at these two
approaches and discuss the differences between them and our
work.

Temporal Syscall Specialization. Ghavamnia et al. [24]
propose an automated approach to detect the used syscalls
during compilation. Contrary to our approach, they require
a multitude of tools for the compilation and link-time op-
timization that is not supported by every application. Their
approach is limited to applications that can be split into an
initialization and serving phase, such as server applications.
The basic idea is to detect syscalls used after the server’s
initialization phase, i.e., the point in time where it starts

12

handling requests. Thus, this approach is not directly ap-
plicable to applications that cannot be easily split into an
initialization and serving phase, potentially enabling attacks
through browsers, malicious PDFs [19], [20], messengers [68],
[27], and office applications [52], [33]. We explicitly consider
such applications in our approach (cf. Section III-A). Similar
to Chestnut, they also extract a sufficiently precise call graph
to be able to extract which syscalls are reachable by the
application. Their approach relies on Andersen’s points-to
analysis, which is known to not scale with program size [2],
[28]. We evaluated an orthogonal has address taken approach
as is used by LLVM’s CFI implementation. As this is already
used for the CFI implementation of LLVM, we know that
the resulting CFG is reasonably precise as otherwise applica-
tions that rely on software-based CFI would not work. Our
evaluation showed that this approach achieves similar results
in terms of detected syscalls as the more complex and slower
approach used by Ghavamnia et al. [24]. As neither Andersen’s
points-to nor our address taken approach can guarantee a
complete CFG, we rely on the more practical address-taken
algorithm. This choice significantly reduces the compile time.
For instance, syscall extraction for Nginx using Andersen’s
algorithm shows an increase in compilation time from 1min
to 83min (+8300%) [24] compared to an increase of 7.9 s
(+10.53%) with Chestnut. Another difference is that our
approach allows for a larger threat model as we also include
a potential local attacker instead of just a remote one.

In summary, we have significantly improved the approach’s
performance while maintaining accuracy and security proper-
ties. Additionally, we allow for the approach to be applicable
to a broader range of applications, including local applications
that are commonly exploited. We also provide an evaluation
of the tightness of the resulting filters.

Sysfilter. A second approach, sysfilter [14] focuses on
extracting syscalls from existing binaries. While sysfilter and
Binalyzer share the same goal, the approaches differ in the
used tools, i.e., Binalyzer relies on the angr framework that
already supports parts of what sysfilter manually implemented.
Both approaches show similar success rates in mitigating
exploits in their respective test sets.

Sysfilter provides no analysis of the approach’s overapprox-
imation, making it hard to estimate how tight the resulting
syscall filters are. Hence, we perform such an analysis to
show differences between the approaches. As we discussed
in Sections VI-C and VI-D2, obtaining a ground truth is
infeasible and would require computational intensive formal
proofs. Hence, we need another source for a reliable baseline
to which we can compare the results of the evaluation for
Binalyzer and sysfilter.

To provide this baseline, we rely on the results of Sourca-
lyzer when generating a static binary. The reason why we do
this is twofold. First, the compiler has the most information
about the application as it needs to generate a functioning
binary, i.e., it needs to know which functions are actually
required and called. The second reason is based on what a
compiler like clang does when it generates the static binary

Binary Sourcalyzer Binalyzer sysfilter
(vacuumed-fcg)

sysfilter
(universal-fcg)

FFmpeg 63 53 18 53
busybox 163 144 15 152
Redis-server 85 74 12 74

TABLE V: The number of extracted syscalls by Sourcalyzer,
Binalyzer, and the two modes of sysfilter.

that we use. When generating this binary, the compiler already
removes all unnecessary functions, i.e., functions that are
never called and never have their address taken, from the
binary. So the resulting binary only contains functions and
their respective syscalls if the compiler determined a potential
path to the respective function. Therefore, any syscall found by
the two binary tools within the static binary can be reached and
is necessary for the application to work correctly. This number
may differ from the one detected by Sourcalyzer due to the
inherent overapproximation of the function signature heuristic,
i.e., read and write have the same function signature, so if one
is used, the other one is automatically included in the set. In
this case, the syscall of a function is included even though the
compiler removed the function’s actual code. Nevertheless, we
expect the numbers to be in a similar range.

In this evaluation, both sysfilter and Binalyzer work on
the exact same static binaries. We ensured that the binary
still contains the stack unwinding information (.eh frame)
and other necessary sections (.init, .fini) on which sysfilter
relies for its precise disassembly. While sysfilter notes that
one requirement is a position-independent binary, we note that
there is no reason for such a requirement as additional tasks
that sysfilter performs for PIC binaries, i.e., relocations or
checking the dynamic symbol table, are by the design of static
binaries simply not necessary. Building the call graph does not
depend on these steps either. In fact, for binary analysis tools
like sysfilter and Binalyzer, a static binary can be considered
the most straightforward use case as all information is already
contained within the single binary.

In the evaluation, we consider two different modes of
sysfilter, i.e., the default behavior that prunes the call graph
based on a reachability analysis and the universal approach
that assumes that every function is reachable by every other
function. As the binary is compiled statically, we expect that
both modes produce the same result as only functions that are
reachable from the main entry point are included. We show
the result of this analysis in Table V.

As our analysis shows, the assumption that both modes
of sysfilter produce the same result does not hold as the
pruning-based mode significantly underapproximates in all
three evaluated binaries. The low number of detected syscalls
hints at some mistake in the pruning algorithm as the number
is too low for such complex applications. In two out of three
binaries, Binalyzer and sysfilter using the universal approach
produce the exact same result while the third binary only
shows a small difference of 8 syscalls. In this case, the
difference to Sourcalyzer is within an expected range due to
the overapproximation of Sourcalyzer. This is not true for

13

the pruning-based approach of sysfilter as the difference is
too large, and the number of detected syscalls is lower than
the number of syscalls that are actually used (cf. Table I).
Interestingly, the universal-fcg implementation of sysfilter also
supports our observation that a PIC binary is not a requirement
for these types of binary analysis tools as it produces similar
results to Binalyzer, contradicting the statement by its devel-
opers. Nevertheless, there is still a difference in the operation
between the universal-fcg approach of sysfilter and Binalyzer
as the latter achieves this result by not assuming that every
function is reachable by every other function. Instead, it still
builds a correct call graph and derives the information from
it, which fails for the vacuum-fcg approach of sysfilter.

We further investigated why the number of found syscalls
is so low for the pruning-based approach of sysfilter. This
analysis showed that during the pruning, the main function is
removed from the set of reachable functions, which results in
the whole application being removed from the analysis. We
leave the analysis of whether this is purely an implementation
fault or a hint that this is a general fault in the approach for
future work as this is out of scope for this paper.

VII. DISCUSSION

Limitations and Future Work. One of the limitations is
the performance of seccomp as it is quite slow [30], [76].
Unfortunately, this is a limitation imposed by the underlying
system and not a weakness of Chestnut itself. Improving the
performance of seccomp is considered out of scope for this
paper, and there is no suitable alternative.

Another limitation is the overapproximation of both the
compiler- and binary-based approaches. Fast and reliable
points-to analysis with limited overapproximation is still an
unsolved problem as previous work has shown [28]. In some
cases, we also exhibit the opposite effect in angr that it is not
able to detect the call target of an indirect call, hence missing
a potentially reachable syscall.

In future work, we will investigate the possibility of ex-
tending the syscall filtering with argument tracking. While
detecting the constant arguments from a syscall is possible,
the problem is the propagation of the information throughout
the call graph so that in the end, only the argument remains
that is needed. If we can solve this problem, we can restrict
syscalls even further. For instance, for the exec syscalls, we
can detect hardcoded paths and install filters that only allow it
with this path. For mprotect, we can then further restrict the
possible set of permissions so that only those are allowed that
are used, potentially preventing mprotect with executable
permissions. Furthermore, we will investigate performance im-
provements for seccomp as well as alternatives. We also want
to investigate the possibility of using coverage-guided fuzzers
to estimate the overapproximation of automated seccomp filter
generation tools.
Related Work. For related work, we mostly focus on work
that tried to automate a sandboxing process as this is also
what was done in this work. Previous work has already
focused on reducing the attack surface of an application by

removing unused code from an application. One of the first ap-
proaches for library debloating was proposed by Mulliner and
Neugschwandtner [53] based on removing non-imported func-
tions from a shared library during load time. This approach
has been further improved by Quach et al. [59] by removing
all unused functions from shared libraries during load time
by extending the compiler and the loader. Agadakos et al. [1]
proposed a binary-level approach for library debloating. It is
based on function boundary detection and dependency identi-
fication to identify and erase unused functions. Davidson et al.
[13] performed an analysis of the complete software stack for
web applications to create specialized libraries based on the
requirements for PHP code and the server binaries. Mishra
and Polychronakis [50] proposed Shredder, which instruments
binaries to restrict arguments to critical system APIs to a
predetermined allowlist. Another approach is to apply data
dependency analysis for fine-grained library customization of
static libraries [69]. Ghavamnia et al. [24] propose a similar
approach to Sourcalyzer, but at the cost of a much higher
analysis time during compilation but with similar accuracy
in detecting syscalls. Wagner and Dean [78] propose a static
approach to build an IDS that uses a similar approach to
Sourcalyzer for pointer analysis to extract a model of ex-
pected application behavior. In general, several papers have
proposed static analysis of syscalls for anomaly detection and
IDS [21]. Rajagopalan et al. [61] propose to replace syscalls
with authenticated syscalls that specify a policy and provide
a cryptographic message authentication code that guarantees
the integrity of the syscall.

Other approaches propose to reduce the attack surface
by relying on training to identify the unused code sections.
Ghaffarinia and Hamlen [23] rely on training to limit control
flow transfers to not authorized sections of code. An approach
without access to the source code uses training and heuristics
to identify and remove unnecessary basic blocks [57].

Previous work focused mostly on C/C++ software with few
solutions for software in other languages. For Java, one ap-
proach uses static code analysis to remove unused classes and
methods [34]. For PHP, Azad et al. [3] proposed a framework
using dynamic analysis to remove superfluous features.

VIII. CONCLUSION

Chestnut is an automated approach for sandboxing native
Linux userspace applications on the syscall level. It mainly
relies on static analysis to identify syscalls required by an
application and blocks the unused syscalls. Chestnut also
supports an optional dynamic refinement phase that can be
used to restrict the syscall filters further. In contrast to existing
solutions, Chestnut has fewer requirements and limitations.
For instance, the compiler-based approach is up to factor
73 faster than previous work without any loss in accuracy.
For the binary-level analysis, we lifted the requirement of a
position-independent binary, making our approach applicable
to a broader set of applications. We demonstrated that in
a selection of 18 real-world applications, Chestnut can, on
average, block 302 syscalls (86.5%) when used on the source

14

level, and 288 (82.5%) when used on the binary level. Our
analysis showed that the compiler- and binary-based approach
prevent exploitation of more than 63% and 61%, respectively,
of Linux kernel CVEs, which can be triggered via syscalls, in
case the selected applications have been exploited. Moreover,
Chestnut can reduce the attack surface by blocking the dan-
gerous exec syscall in the majority of tested applications.
We have provided insights into the functional correctness and
the overapproximation of Chestnut, which we substantiated
by code coverage metrics of the respective tests. Additionally,
we showed the results of a 6month long-term evaluation of
Nginx on a real server. Finally, our work shows that automated
sandboxing is feasible and increases platform security without
manual effort.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Research
Promotion Agency (FFG) via the project ESPRESSO, which is
funded by the province of Styria and the Business Promotion
Agencies of Styria and Carinthia. This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
program (grant agreement No 681402). Additional funding
was provided by generous gifts from ARM, Intel, and Red Hat.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

REFERENCES

[1] I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portoka-
lidis, “Nibbler: debloating binary shared libraries,” in ACSAC, 2019.

[2] L. O. Andersen, “Program Analysis and Specialization for the C
Programming Language,” Ph.D. dissertation, May 1994.

[3] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quanti-
fying the security benefits of debloating web applications,” in USENIX
Security Symposium, August 2019.

[4] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in AsiaCCS, 2011.

[5] E. Bosman and H. Bos, “Framing signals - A return to portable
shellcode,” in S&P, 2014.

[6] D. P. Bovet, “Special sections in Linux binaries,” January 2013.
[Online]. Available: https://lwn.net/Articles/531148/

[7] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation of
Transient Execution Attacks and Defenses,” in USENIX Security Sympo-
sium, 2019, extended classification tree and PoCs at https://transient.fail/.

[8] N. Carlini and D. A. Wagner, “ROP is still dangerous: Breaking modern
defenses,” in USENIX Security Symposium, 2014.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi, H. Shacham, and
M. Winandy, “Return-oriented programming without returns,” in CCS,
2010.

[10] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-data
attacks are realistic threats.” in USENIX Security Symposium, 2005.

[11] Chromium, “Linux Sandboxing.” [Online]. Avail-
able: https://chromium.googlesource.com/chromium/src/+/0e94f26e8/
docs/linux sandboxing.md

[12] J. Corbet, “Constant-action bitmaps for seccomp(),” 2020.
[13] N. Davidsson, A. Pawlowski, and T. Holz, “Towards automated

application-specific software stacks,” in ESORICS, 2019.
[14] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis,

“sysfilter: Automated System Call Filtering for Commodity Software,”
in RAID, October 2020.

[15] D. Drysdale, “Anatomy of a system call, part 2,” 2014. [Online].
Available: https://lwn.net/Articles/604515/

[16] ——, “How programs get run: ELF binaries,” February 2015. [Online].
Available: https://lwn.net/Articles/631631/

[17] J. Edge, “A library for seccomp filters,” April 2012. [Online]. Available:
https://lwn.net/Articles/494252/

[18] ——, “A seccomp overview,” September 2015. [Online]. Available:
https://lwn.net/Articles/656307/

[19] J. M. Esparza, “Static analysis of a CVE-2011-2462 PDF exploit,” 2012.
[20] ——, “Quick analysis of the CVE-2013-2729 obfuscated exploits,”

2014.
[21] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller,

“Formalizing sensitivity in static analysis for intrusion detection,” in
S&P, 2004.

[22] Firejail, “Firejail Security Sandbox,” 2016. [Online]. Available:
https://firejail.wordpress.com/

[23] M. Ghaffarinia and K. W. Hamlen, “Binary control-flow trimming,” in
CCS, 2019.

[24] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
System Call Specialization for Attack Surface Reduction,” in USENIX
Security Symposium, August 2020.

[25] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in S&P, 2014.

[26] I. Goldberg, D. Wagner, R. Thomas, E. A. Brewer et al., “A secure en-
vironment for untrusted helper applications: Confining the wily hacker,”
in USENIX Security Symposium, 1996.

[27] S. Groß, “Remote iPhone Exploitation Part 1: Poking Memory via
iMessage and CVE-2019-8641,” 2020.

[28] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?” in
PASTE, 2001.

[29] G. J. Holzmann, “Code inflation,” IEEE Software, 2015.
[30] T. Hromatka, “seccomp and libseccomp performance improvements,”

2018.
[31] G. Inc., “Seccomp filter in Android O,” July 2017.

[Online]. Available: https://android-developers.googleblog.com/2017/
07/seccomp-filter-in-android-o.html

[32] ——, “Sandbox2,” 2019. [Online]. Available: https://developers.google.
com/sandboxed-api/docs/sandbox2/overview

[33] A. Inführ, “Libreoffice (CVE-2018-16858) - Remote Code Execution
via Macro/Event execution,” February 2019.

[34] Y. Jiang, D. Wu, and P. Liu, “Jred: Program customization and bloatware
mitigation based on static analysis,” in COMPSAC, 2016.

[35] M. Jurczyk and G. Coldwind, “Permissions overview,” Insomni’hack,
2015.

[36] V. Kemerlis, “Protecting commodity operating systems through strong
kernel isolation,” Ph.D. dissertation, Columbia University, 2015.

[37] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in USENIX Security Symposium, 2014.

[38] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kguard:
Lightweight kernel protection against return-to-user attacks,” in USENIX
Security Symposium, 2012.

[39] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM Disturbance Errors,” in ISCA,
2014.

[40] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P, 2019.

[41] B. Lan, Y. Li, H. Sun, C. Su, Y. Liu, and Q. Zeng, “Loop-oriented
programming: a new code reuse attack to bypass modern defenses,” in
IEEE Trustcom/BigDataSE/ISPA, 2015.

[42] C. Lattner and V. S. Adve, “LLVM: A compilation framework for life-
long program analysis & transformation,” in IEEE / ACM International
Symposium on Code Generation and Optimization – CGO, 2004.

[43] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on Linux container security: Attacks and countermeasures,” in
ACSAC, 2018.

[44] Linux, “64-bit system call numbers and entry vectors,” 2019. [Online].
Available: https://github.com/torvalds/linux/blob/master/arch/x86/entry/
syscalls/syscall 64.tbl

[45] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in USENIX
Security Symposium, 2018.

[46] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in International Static Analysis Symposium, 2011.

15

https://lwn.net/Articles/531148/
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/0e94f26e8/docs/linux_sandboxing.md
https://lwn.net/Articles/604515/
https://lwn.net/Articles/631631/
https://lwn.net/Articles/494252/
https://lwn.net/Articles/656307/
https://firejail.wordpress.com/
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://android-developers.googleblog.com/2017/07/seccomp-filter-in-android-o.html
https://developers.google.com/sandboxed-api/docs/sandbox2/overview
https://developers.google.com/sandboxed-api/docs/sandbox2/overview
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl

[47] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architec-
ture for User-level Packet Capture,” in USENIX Winter, January 1993.

[48] W. S. McPhee, “Operating system integrity in os/vs2,” IBM Systems
Journal, 1974.

[49] M. Miller, “Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape,” Bluehat IL, February 2019.

[50] S. Mishra and M. Polychronakis, “Shredder: Breaking exploits through
api specialization,” in ACSAC, 2018.

[51] Mozilla., “Seccomp filter in Android O,” July 2016. [Online]. Available:
https://wiki.mozilla.org/Security/Sandbox/Seccomp

[52] J. Müller, F. Ising, C. Mainka, V. Mladenov, S. Schinzel, and J. Schwenk,
“Office document security and privacy,” in WOOT, 2020.

[53] C. Mulliner and M. Neugschwandtner, “Breaking payloads with runtime
code stripping and image freezing,” BlackHat USA, August 2015.

[54] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting Fine Grain Isolation in the
Firefox Renderer,” in USENIX Security Symposium, 2020.

[55] Nergal, “The advanced return-into-lib(c) explits: PaX case study,” 2001.
[56] V. Prevelakis and D. Spinellis, “Sandboxing applications,” in USENIX

ATC, 2001.
[57] C. Qian, H. Hu, M. Alharthi, P. Ho Chung, T. Kim, and W. Lee,

“RAZOR: A framework for post-deployment software debloating,” in
USENIX Security Symposium, 2019.

[58] A. Quach, R. Erinfolami, D. Demicco, and A. Prakash, “A multi-OS
cross-layer study of bloating in user programs, kernel and managed
execution environments,” in FEAST, 2017.

[59] A. Quach, A. Prakash, and L. Yan, “Debloating software through piece-
wise compilation and loading,” in USENIX Security Symposium, 2018.

[60] N. A. Quynh, “Capstone: Next-gen disassembly framework,” Black Hat
USA, 2014.

[61] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting, “Authenticated
system calls,” in DSN, 2005.

[62] C. Reis and S. D. Gribble, “Isolating web programs in modern browser
architectures,” in EuroSys, 2009.

[63] C. Reis, A. Moshchuk, and N. Oskov, “Site Isolation: Process Separation
for Web Sites within the Browser,” in USENIX Security Symposium,
2019.

[64] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and T. Holz,
“Counterfeit object-oriented programming: On the difficulty of prevent-
ing code reuse attacks in C++ applications,” in S&P, 2015.

[80] S. Weiser, L. Mayr, M. Schwarz, and D. Gruss, “SGXJail: Defeating
enclave malware via confinement,” in RAID, 2019.

[65] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in CCS, 2019.

[66] M. Schwarz, S. Weiser, and D. Gruss, “Practical Enclave Malware with
Intel SGX,” in DIMVA, 2019.

[67] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in CCS, 2007.

[68] N. Silvanovich, “Exploiting Android Messengers with WebRTC: Part
1,” 2020.

[69] L. Song and X. Xing, “Fine-grained library customization,” in SALAD,
2018.

[70] SQLite, “How SQLite Is Tested,” 2020.
[71] B. Steensgaard, “Points-to analysis in almost linear time,” in POPL,

1996.
[72] N. Sylvain, “A new approach to browser security: the Google Chrome

Sandbox,” October 2008. [Online]. Available: https://blog.chromium.
org/2008/10/new-approach-to-browser-security-google.html

[73] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in S&P, 2013.

[74] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, June 1972.

[75] The MITRE Corporation, “Common vulnerabilities and exposures.”
[Online]. Available: http://cve.mitre.org/

[76] Tizen, “Security:Seccomp,” 2018. [Online]. Available: https://wiki.tizen.
org/Security:Seccomp

[77] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data Load,”
in S&P, 2019.

[78] D. Wagner and R. Dean, “Intrusion detection via static analysis,” in
S&P, 2000.

[79] F. Wang and Y. Shoshitaishvili, “Angr - The Next Generation of Binary
Analysis,” in 2017 IEEE Cybersecurity Development (SecDev), 2017.

[81] M. Wiki, “Project Fission,” 2019. [Online]. Available: https://wiki.
mozilla.org/Project Fission

[82] ——, “Security/Sandbox,” December 2019. [Online]. Available:
https://wiki.mozilla.org/Security/Sandbox

[83] Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Symposium,
2014.

16

https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://blog.chromium.org/2008/10/new-approach-to-browser-security-google.html
https://blog.chromium.org/2008/10/new-approach-to-browser-security-google.html
http://cve.mitre.org/
https://wiki.tizen.org/Security:Seccomp
https://wiki.tizen.org/Security:Seccomp
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Security/Sandbox

	I Introduction
	II Background
	II-A Sandboxing
	II-B Linux Seccomp
	II-C Memory Safety
	II-D Executable and Linkable Format

	III Design of Chestnut
	III-A Threat Model and Idea of Chestnut
	III-B Challenges
	III-C High-Level Idea

	IV Static Filter Extraction
	IV-A Compiler-Based Approach
	IV-B Binary Syscall Extraction

	V Dynamic Refinement
	V-A Limitations of Static Approaches
	V-B Implementation Details

	VI Evaluation
	VI-A Setup
	VI-B Performance Evaluation
	VI-B1 Compile-Time Overhead
	VI-B2 Binary Extraction Runtime
	VI-B3 Binary Size Analysis
	VI-B4 Runtime Overhead and Seccomp
	VI-B5 Dynamic Refinement Overhead

	VI-C Functional-Correctness Evaluation
	VI-D Security Evaluation
	VI-D1 Preventing Dangerous Syscalls
	VI-D2 Overapproximation of Syscalls
	VI-D3 Mitigating Real-World Exploits
	VI-D4 Preventing Malicious SGX Enclaves

	VI-E Comparison to Other Approaches

	VII Discussion
	VIII Conclusion
	References

