
Electrical Power and Energy Systems 131 (2021) 107006

Available online 30 April 2021
0142-0615/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

On WAMS-based emergency outage detection using optimization 

Stefan Polster *,1, Herwig Renner , Robert Schürhuber , Katrin Friedl 
Institute of Electrical Power Systems – Graz University of Technology, Austria   

A R T I C L E  I N F O   

Keywords: 
Outage detection 
Hybrid optimizer 
PMU 
Particle swarm optimization 
Power transmission systems 

A B S T R A C T   

In this paper, an optimization-based algorithm for the detection of multi-branch outages is presented. The main 
advantage is its ability to detect an unknown number of tripped branches in meshed power systems solely based 
on node voltage angle information obtained with phasor measurement units (PMUs). The proposed algorithm 
uses a hybrid optimization approach combining particle swarm optimization with Newton’s method. The al
gorithm is tested on linearized load flow data as well as on a dynamic simulation of the Nordic-32-Bus system. In 
a sensitivity analysis the influence of the optimizer’s main parameters and the robustness against linearization 
errors and missing data is shown. The high ratio of correct detection results across the whole range of evaluated 
parameters identifies the proposed algorithm as a useful supportive tool for future decentralized SCADA 
applications.   

1. Introduction 

Accurate state awareness of a system is an important factor for secure 
grid operation. The system state is usually provided by state estimators. 
Traditionally, the input data of state estimators consists of the topology 
and asynchronous measurements – voltage, current, power, etc. – based 
on SCADA systems with update rates down to several seconds. With the 
increasing exploitation of PMUs, algorithms for dynamic state estima
tors are being developed using the synchronized and quickly updated 
measurements [1–3] available now. However, the correct system to
pology remains a crucial factor in the quality of the state estimation. 
Therefore, an accurate detection of branch outages is of great impor
tance. A special problem situation arises in grid areas on the re
sponsibility border of different grid operators, where only sparse real 
time information is shared. Recent work on outage detection focuses on 
a joint detection and estimation problem [4] to accurately update state 
estimator’s topology model using all kind of available measurements 
from unsynchronised power, voltage and current magnitudes as well as 
synchronised voltage phasor measurements. 

Several publications of the last years focused on the problem of 
outage detection using synchro phasor data and evaluated a wide range 
of possible algorithms. The following review is far from complete but 
shall give an overview on already evaluated approaches. 

In [5] a method is described using pre simulated linearized node 
voltage angle sensitivities on branch outages to detect a tripped branch. 

Later this method is developed further to be used for double branch 
outages [6] and applied on specific parts of large networks to reduce the 
necessary synchro phasor data [7]. Similar to these works, a detection 
algorithm based on the least square error between measured and 
simulated node voltage angles is discussed and evaluated on its 
vulnerability to bad WAMS data [8] and another detection estimation 
algorithm is proposed using bus power mismatches calculated from node 
voltage angles decision criterion [9]. However, all of these approaches 
need the number of tripped branches as input and require the pre- 
calculation of the sensitivities after any change in the network topol
ogy. The necessary effort for these pre-calculations increase with the 
number of considered branches and has to be repeated after any change 
in the network. 

The use of a decision tree identifying critical attributes in WAMS data 
and further applying them as detection criterion is discussed in [10]. The 
contingencies detectable with this approach are not limited to branch 
outages, but it comes at the cost of extensive pre-simulations since any 
considered contingencies has to be simulated and the decision tree 
trained on the set of contingencies. 

Another method as described in [11] is based on vector estimation 
which is solved with adopted greedy orthogonal matching pursuit as 
well as the convex least-absolute shrinkage and selection operator. This 
method can overcome the need of a beforehand known number of 
tripped branches by incorporating an additional sample variance devi
ation criterion based on pre-calculations but requires information on 
line outage probabilities and expected noise level. 
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The exploitation of statistical properties of the generation and de
mand of the considered network in combination with an application of 
quickest change detection algorithm on node voltage angle measure
ments to detect transmission line outages is discussed in [12] and further 
evaluated in [13,14]. Based on this approach the ideal location of 
measurements and possible improvements by system partitioning are 
evaluated in [15]. This method is applicable on single and multi-branch 
outages, but due its need to parallelly applying the Cumulative Sum 
algorithm for each possible outage combination the computational 
burden is rather high. A comparison on statistical based outage detec
tion is given in [16]. 

Several papers use optimisation-based approaches. For examples the 
work described in [17] utilizes mixed-integer programming to identify 
line outages in an external system influencing load flow of the internal 
system. This approach is only applied on single branch outages. An 
evolutionary optimisation-based approach is using an adaptive version 
of distribution algorithm [18]. This algorithm seems to be able to detect 
a variable number of tripped branches and is further developed in [19]. 
However, from the results it is unclear, if it is suitable for a fast detection 
in real operation conditions. 

In contrast to these works, the goal of the proposed algorithm is to 
provide an accurate detection of tripped branches based on minimal 
information which can be used for decentralized emergency control 
decisions – e.g., to automatically activate a superordinate controller of 
HVDC links as used in [20] and [21]. Therefore, the computational 
complexity of the algorithms should be not too demanding, so as to 
enable decent runtimes for a near to real time detection. Additionally, 
the algorithm’s performance must be independent from the pre- 
contingency load flow. These postulations encourage the use of linear
ized cold start models, such as the classical DC load flow [22], for the 
problem formulation and WAMS measured changes of the node voltage 
angles caused by the tripped branches. 

The algorithm evaluated in this paper focuses on the use of opti
mizers to solve the detection problem, whereby a hybrid optimizer 
combining particle swarm optimization with Newton’s method 

henceforth referred to as HPN (Hybrid Particle Swarm – Newton Opti
mizer), is implemented. The HPN was selected due to pre-evaluations 
comparing its performance to an adapted Newton’s method and parti
cle swarm optimization. 

This paper is subsequently organized as follows: Section 2 is dedi
cated to the definition of the optimizer’s objective function. The 
implemented algorithm is described in Section 3. The simulated network 
and simulations are given in Section 4 and the detection results based on 
the simulation data are discussed in Section 5. Finally, the conclusions 
are stated in Section 6. 

2. Definition of the objective function for optimisation 

The objective function is defined as the mean square error between 
the PMU measured voltage angle changes and the estimated voltage 
angle changes. The estimated voltage angle changes are a function of the 
trial variable of the optimization based on the linearized DC load flow 
network model. For the following, an arbitrary network with N nodes 
and L branches is assumed. Due to the linearization, the node voltage 
angles ϑ are calculated solely as a function of the active node power 
injections pN and the node susceptance matrix B 

ϑ = B− 1∙pN (2-1)  

ϑ ∈ ℝ(N− 1)×1, pN ∈ ℝ(N− 1)×1, B ∈ ℝ(N− 1)×(N− 1) (2-2) 

Any change in the active node power injections leads to a change in 
the node voltage angles. Furthermore, any branch outage which does 
not isolate a part of the network can be represented by a fictional power 
injection at the starting node and an equally high negative power in
jection at the branch’s ending node [23]. The fictional power injections’ 
value is defined by the condition, that the resulting branch load of the 
tripped branch has to be 0. The change of the node voltage angles Δϑ is 
therefore calculated with the fictional power injection vector ΔpN and 
the unchanged node susceptance matrix. The resulting change of the 
node voltage angles corresponds to the effects of a branch outage, if ΔpN 

Nomenclatures 

List of Symbols 
HPN Hybrid Particle Swarm – Newton Optimizer 
HVDC High Voltage Direct Current 
PSO Particle Swarm Optimizer 
PMU Phasor Measurement Unit 
VSC Voltage Source Converter 
WAMS Wide Area Measurement System 
δ Newton step 
ε optimality tolerance 
ϑ node voltage angle, referred to slack node, dimension (N −

1) × 1 
Δϑ calculated change in node voltage angle after contingency 

event, dimension (N − 1) × 1 
Δϑmeas measured change in node voltage angle after contingency 

event, dimension (NPMU − 1) × 1 
ξ detection threshold 
APMU PMU incidence matrix, dimension NPMU×(N − 1) 
ALOI branch of interest incidence matrix, dimension L × LOI 
B node susceptance matrix, dimension (N − 1)× (N − 1) 
b index denoting pre-contingency situation 
c index denoting post-contingency situation 
c1, c2 weighting factors of the updating formula used in the PSO 
f objective function 
Δf gradient of objective function 
H Hessian of objective function 

i iteration step 
imax maximum iteration step 
j one specific particle of the PSO 
KD full correlation matrix between ΔpNL and Δϑ 
KxB according to xB reduced correlation matrix between xp and 

Δϑ 
L number of branches in the network 
ℓ notation of a specific branch 
LOI number of branches of interest 
N number of nodes in the network including slack node 
n notation of a specific node 
NPMU number of PMU monitored nodes 
NBI node-to-branch incidence matrix, dimension (N − 1) × L 
pp particle’s personal best position in PSO 
pg global best position in PSO 
pN node power injections, dimension, (N − 1) × 1 
ΔpN fictional change in node power injections modelling the 

effects of a contingency event, dimension (N − 1) × 1 
ΔpNL fictional change in node power injections referred to 

branches, dimension L × 1 
r1, r2 equally distributed random numbers of the updating 

formula used in the PSO 
vB particle velocity used in PSO 
w particle’s inertia factor of the updating formula used in the 

PSO 
xB trial variable linked to branches 
xP trial variable linked to node power injection  
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is composed of the fictional power injections modelling a branch outage. 

Δϑ = B− 1∙ΔpN = B− 1∙NBI∙ΔpNL (2-3)  

Δϑ ∈ ℝ(N− 1)×1

ΔpNL ∈ ℝL×1

NBI ∈ { − 1, 0, 1}(N− 1)×L

(2-4) 

The usage of the node-to-branch incidence matrix NBI and a vector 
ΔpNL containing one value of a fictional power injection for each branch 
in the network allows a direct linking of multi branch outages to the 
node voltage angle change. The elements of ΔpNL are 0 except for those 
corresponding to the branches tripped. ΔpNL can easily be calculated if 
the tripped branches and the change of the node voltage angles are 
known. 

However, since the branches tripped and their number are unknown, 
a suitable solution for ΔpNL is found by minimizing the mean square 
error function between the measured and calculated node voltage angle 
change. The scalar objective function in respect to the trial variable 
ΔpNL is stated as 

f (ΔpNL) = ‖Δϑmeas − KD∙ΔpNL‖
2 (2-5)  

KD = B− 1∙NBI (2-6)  

KD ∈ ℝ(N− 1)×L (2-7) 

KD is a matrix describing the relation between node voltage angle 
change Δϑ and the trial variable ΔpNL. The slack node, defining the 
reference angle, is excluded. In general, not all branches of the network 
are of interest and not all nodes are equipped with a PMU. The number 
of branches of interest are denoted in the following as LOI and the 
number of PMU monitored nodes as NPMU. This leads to the necessity to 
define incidence matrices that relate PMU monitored nodes and 
branches of interest to the nodes and branches of the complete network. 
The PMU incidence matrix APMU relates the nodes and the branch of 
interest incidence matrix ALOI the branches. The objective function 
changes to 

f (ΔpNL) = ‖Δϑmeas − APMU∙KD∙ALOI∙ΔpNL‖
2 (2-8)  

APMU ∈ {0, 1}NPMU×(N− 1) (2-9)  

ALOI ∈ {0, 1}L×LOI (2-10) 

From Eq. (2-3), it is concluded that a minimum of the objective 
function must exist for a trial variable vector ΔpNL only containing 
nonzero values at the elements corresponding to the branches actually 
tripped. The value of the objective function at this optimality point is 0. 
This is the case if the DC load flow solutions matches the measured data 
exactly, which, generally, is not the case. However, due to the relatively 
small expectable angle error of the DC load flow, it can be assumed that 
the optimization still finds a ΔpNL vector with dominant values at the 
elements corresponding to the branches actually tripped. 

The representation of double lines in the objective function prevents 
a distinguishable detection for parallel branches. Without a suitable pre- 
evaluation of the network topology, the results of the optimizer are not 
unambiguous, since the outage of one or more of the parallel branches 
will lead to an optimal trial variable ΔpNL. Only the values of the 
nonzero elements can give further information about the actual outage – 
higher values can be expected for multi branch outages. However, these 
values also depend on the pre-fault state of the system, thus making it 
necessary to include the load flow situation. The distinction between 
parallel branches does not fall within the focus of this work. Therefore, 
the correct detection of one of the indistinguishable parallel branches is 
treated as correct detection if one or more of these parallel branches are 
actually tripped. 

The authors are aware of the fact that if all nodes of the network are 

monitored, the branches tripped can be derived without an optimizer by 
solving (2-3) 

3. Implemented optimizing algorithm 

The main challenges for the optimization are the high search space 
dimension equal to the number of branches of interest LOI and the ex
istence of multiple optimal solutions not linked to the actual outage 
event for a meshed network topology. The cause and effect of the mul
tiple optimal solution are discussed subsequently. The general design 
approach avoids these challenges by the separation of ΔpNL into two 
trial variables. The first – xB – is a vector which elements describe a 
subset of branches of interest. Only the branches in xB are considered as 
candidates for an outage. The number of branches in xB determines the 
search space dimension. The second – xP – is also a vector and its ele
ments correspond to the amount of fictional power injections on the 
terminals of the candidate branches in xB. The resulting two variable 
objective function is given as 

f (xB, xP) = ‖Δϑmeas − APMU∙KD∙ALOI(xB)∙xP‖
2 (3-1)  

KxB = APMU∙KD∙ALOI(xB) (3-2)   

APMU PMU incidence matrix 
ALOI(xB) notation for columns corresponding to xB of the branch of interest 

incidence matrix ALOI 
KD complete correlation matrix between node power injection and node 

voltage angle change 
KxB  correlation matrix between trial variable xP and measured node voltage 

angles  

The resulting matrix linking xP to Δϑmeas is further defined as KxB for 
simplified notation. Analyzing the objective function separately for each 
trial variable, it is obvious that a change in xB results in a discontinuous 
change in KxB and, consequently, altering the objective function’s form. 
However, the objective function is continuous to changes in xP for any 
given xB. 

Based on this general behaviour towards the trial variables, a two 
level optimizer HPN is proposed, combining particle swarm optimiza
tion PSO [24] and Newton’s method [25]. The outer level applies PSO 
on xB to define a continuous objective function fN (3-3). fN is the input 
for the inner level Newton’s algorithm minimizing with respect to xP. 
The minimal function value of fN is handed back to the PSO as the 
function value of fPSO (3-4) for the current value of xB. 

fN(xP) = ‖Δϑmeas − KxB∙xP‖
2 (3-3)  

fPSO(xB) = min
(
fN(xP)xB

)
(3-4) 

The value of xB is the position of the PSO particle at the current 
iteration step. At each iteration step i, the position and velocity vB of the 
particle are updated as follows: 

v(i+1)
B = w∙v(i)

B + c1∙r1∙
(

pp − x(i)
B

)
+ c2∙r2∙

(
pg − x(i)

B

)
(3-5)  

x(i+1)
B = x(i)

B + v(i+1)
B (3-6) 

With these update formulas, the standard PSO with inertia weight 
and constrictions is implemented as described in [26]. Violations of 
search space limitations – minimum and maximum values of xB – are 
treated by setting the value to the closest limitation. This version of PSO 
is chosen, since it is widely known and its simple straight forward 
implementation allows a good evaluation of the usability of PSO for the 
given optimization problem. However, implementing more advanced 
PSO versions, e. g. as described in [27,28], might improve the results. 

Since xB represents the selected candidate branches, the values in 
each of its dimensions must be discrete integers between 1 and the 
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number of branches in the network L. However, it is obvious that the 
stated update formulas of PSO lead to continuous values of xB and it 
must be discretized with the prerequisite of equally large intervals. 

The personal and global best position store the values of the parti
cle’s xB leading to the smallest function value of fPSO. The function value 
of fPSO decreases if branches topologically close to the actually tripped 
branches are included in the branches of xB. The function value of fPSO 
only becomes 0 or satisfies a < ε condition if the tripped branches are 
part of the branches of xB. Therefore, a higher dimension of xB – in other 
words more candidate branches per particle – has the effect of a faster 
convergence at the cost of detection accuracy. The decrease in the 
detection accuracy is caused by the possibility of multiple minima as 
soon as the branches in xB form a meshed structure. 

The gradient ∇fN and Hessian H – needed to calculate the Newton 
step δ (3-7) – are given by the Eqs. (3-8) and (3-9). If the second order 
minimization condition – the Hessian has to be positive definite – is 
violated, the method of Levenberg-Marquardt [29,30] is applied to 
assure a downhill direction of the Newton step. 

δ(xP) = − H− 1∙∇fN(xP) (3-7)  

∇fN(xP) = − 2∙KT
xB
∙(ϑmeas − KxB∙xP) (3-8)  

H = 2∙KT
xB
∙KxB (3-9) 

Due to the optimizer’s two-level approach, the Eqs. (3-7)–(3-9) must 
be evaluated at each PSO iteration step and for each particle separately 
at each. However, since the reduction of the matrix KD to KxB as well as 
the calculation of ∇fN and H are simple matrix multiplications, it is not 

computationally expensive. The inverse of H is constant for the itera
tions of Newton’s method and therefore, must be calculated only once 
per PSO iteration step and particle. 

The PSO’s iteration is stopped, if fPSO(xB) satisfies a < ε condition or 
the maximum number of iterations is reached. If a < ε condition is 
satisfied, it is assumed that all tripped branches are within the corre
sponding xB. If the algorithm is aborted due to maximum iterations, the 
output is marked as not valid. The HPN’s flowchart is shown in Fig. 3-1. 

4. Application to Nordic-32-Bus system 

4.1. Network settings and pre-evaluation 

A variant of the Nordic-32-Bus system, as seen in Fig. 4-1, imple
mented and validated in DigSILENT is used. The model has been 
generously provided by the authors of [31]. The system mainly consists 
of 32 nodes representing a transmission grid with the nominal voltages 
of 400 kV (nodes 40xx), 220 kV (nodes 20xx) and 130 kV (nodes 10xx). 
The generators and loads are connected to the network with 22 addi
tional medium voltage nodes. The dynamic model includes automatic 
voltage regulators, over excitation limiters and power system stabilizers 
as well as a frequency control and saturation effects for the generators. 
The voltage dependency of loads is modelled by equipping all load 
transformers with on load tap changers. The referenced branch 
numeration for the transmission lines and transformers are given in the 
appendix Table 8-1. 

The base model is expanded with a VSC-HVDC link between the 
nodes 4042 and 4045 and simplified PMU models at the 400-kV-nodes. 

Start

Nonzero elements of 
global best xB define 
detected branches

Initialize for all particles 
xB and vB

Define fN(XP) according to 
xB

fPSO(pg) < ε Update
xB and vB

no

yes

 i = i + 1

Newton‘s method on
fN(xP)

Update global pg and 
personal best pj

i ≥ imax no

No valid detection

yes

PSO applied on xB

Newton‘s method 
applied on xP

Fig. 3-1. Flow chart of the HPN based on a superordinate PSO and Newton’s method.  

S. Polster et al.                                                                                                                                                                                                                                  



International Journal of Electrical Power and Energy Systems 131 (2021) 107006

5

Fig. 4-1. Nordic-32-Bus single line diagram [32] with HVDC link (violet) and branches of interest (red).  

Fig. 4-2. Placement of PMU monitored nodes.  
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The HVDC’s location is chosen according to [20] to represent the DC link 
part of the south-west link currently under construction [33]. The 
branches of interest – marked red in Fig. 4-1 – were selected in a pre- 
evaluation based on the HVDC’s expected effects on the branch 
loading and loading changes due to branch outages. The resulting 
branches of interest are {20, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 42, 43, 46, 48}. 

In order to select the PMU monitored nodes, a pre-evaluation is 
conducted. The goal of the evaluation was to find the node combinations 
of the 400-kV-nodes with the highest amount of non-redundant infor
mation in the node voltage angle change for a given number of moni
tored nodes. The scalar product between the vectors corresponding to 
voltage angle changes in each node for each single branch of interest 
outage serves as a measure for the redundancy of information. The result 
of the pre-evaluation is shown in Fig. 4-2. The red x-marks indicate the 
PMU monitored nodes. 

4.2. DC load flow simulation 

Simulations with the linearized DC load flow model are used to 
evaluate the general robustness of the detection algorithm against a 
variation of the search space dimension, missing information and 
changed load flow situations. The DC load flow is used for this purpose, 
since the detection algorithm is based on it. Therefore, the ideal solution 
is known beforehand and errors due to the linearization do not exist. The 
linearized DC load flow model of the Nordic-32 Bus system contains only 
the 32 transmission system nodes, whereby node 4032 is set as the slack 
node. The loads and generation are shifted from the medium voltage 
nodes to the corresponding transmission system nodes. 

The node voltage angle changes are calculated for each branch 
outage combination as follows, whereby the index b refers to the 
network before any branch tripping and index c to the network without 
the tripped branches. Bc and Bb are the corresponding system suscep
tance matrixes. The calculated node voltage angle changes are used as 
measurement input for the detection algorithm. 

Δϑ =
(
B− 1

c − B− 1
b

)
∙
(
pgen − pload

)
(4-1) 

The generation and load data are varied over 1000 load cases to 
ensure a load flow independent performance test. The distribution is 
achieved by assigning a uniformly distributed number between 0 and 1 

to the corresponding nodes and subsequently scaling to the total 
network load. The detection performance is then statistically evaluated 
for all possible single and double branch outages. Significant cases – 
original load data, worst, mean and best detection ratio – are used for 
testing the principal applicability of the algorithm on triple branch 
outages. 

This evaluation is important for a better understanding of the algo
rithm’s principal behaviour and dependencies without additional error 
sources such as linearization error, controller actions and oscillations. 

4.3. Dynamic simulations 

The algorithms’ real-world applicability is evaluated by dynamic 
simulations taking oscillations and control actions into account. The 
angle changes are derived from a dynamic simulation performed with 
DigSilent PowerFactory [34]. Fig. 4-3 shows the test process from the 
dynamic simulation to the actual detector implemented as MATLAB 
script. 

The PMU data is the detector’s measurement input data stream. The 
detector applies simple data pre-processing, such as a low pass filter and 
referencing the measured voltage angles to the reference bus. The 
detection algorithm is started manually after the outage occurs and is 
executed repeatedly for 10 s. The start can be automated, e.g., by 
applying edge detection algorithms as suggested in [5]. However, this 
falls outside the focus of this work. The change in the node voltage angle 
is calculated with respect to fixed reference values which are measured 
10 s before the contingency event. Oscillations triggered by the branch 
tripping and linearization errors of the objective function can cause 
different detection results for the individual detection runs. Therefore, 
the output of the detection process is the branch or branch combination 
which has the highest overall appearance in the results of the detection 
runs within the runtime window of 10 s. Detection runs without the 
optimizer’s convergence are included as empty results for the calcula
tion of the appearance. To increase the reliability of the detection, a 
branch is only marked as tripped if a minimum detection threshold ξ, e. 
g., 0.4 pu appearance of all detection runs including empty results – is 
exceeded. The effects and interpretation of this threshold value are 
discussed in 5.2.2. 

The function diagram of the implemented PMU model is shown in 
Fig. 4-4. The available input is the frequency in pu as well as the sine and 

Fig. 4-3. Test process of the detection algorithms with dynamic simulation data.  

Fig. 4-4. PMU measured node voltage angle model.  
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cosine of the angle difference Δϑ between the slack node and the PMU 
monitored node. Δϑ in radiant and its sign are calculated from the sine 
and cosine information. The frequency deviation from the nominal value 
is multiplied with 2π and integrated to calculate the frequency 
depending angle drift of the reference node to the fictive global angle 
reference. The unrestrained node voltage angle of the measured node is 
derived from the sum of Δϑ and angle difference of the reference node to 
the global angle reference. The result is processed further in the portion 
marked in red to limit the angle to a range between -π and π. 

5. Results 

5.1. Evaluation of linearized DC load flow simulations 

The main performance parameters for the detection algorithm are 
the detection ratio, the detection runtime and its vulnerability to missing 
node information. The evaluation is conducted for the detection results 
of the 1000 load cases, which are created as described in 4.2. The 
detection algorithm is implemented as a MATLAB script and will run on 
one core of an i7-4790 3.60 GHz CPU. 

The correct detection ratio (DR) and mean detection run time (MT) 
are evaluated for two options:  

• The index OC refers to the simulation results of a specific branch 
outage combination which is evaluated for all 1000 load cases with 
Eq. (5-1).  

• The index LC refers to the simulation results of a specific load case 
which is evaluated for all possible branch outage combinations with 
Eq. (5-2). 

DROC =
#correctOC

#load cases

MTOC =

∑
RTOC

#load cases

(5-1)  

DRLC =
#correctLC

#outage combinations

MTLC =

∑
RTLC

#outage combinations

(5-2)   

RT detection run time of a single contingency event 
#correct number of correct detections per outage combination (OC) or 

per load case (LC) 
#load cases number of simulated load cases (1000) 
#outage 

combinations 
number of feasible double branch outage combinations (3336)  

The following visualizations of these evaluations for the detection 
results based on node voltage angle information of all 32 nodes uses the 
kernel density estimation (KDE) based on normal distribution, see 
Figs. 5-1 and 5-2. The search space dimensions of 2 and 4 are chosen to 
show the result dependency based on the minimal search space and a 
sufficient larger search space. The KDE parameters are derived using the 

Fig. 5-1. Frequency of correct detection ratio estimated using KDE.  

Fig. 5-2. Frequency of the detection run time estimated using KDE. The detection run time is referred to its mean value to allow a comparison between 2- and 4- 
dimensional search spaces. 
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MATLAB® function ‘fitdist’ [35]. The per unit reference for the resulting 
frequency of DROC and MTOC is 3336, which is the number of single and 
double branch outage combinations not leading to islanding of network 
parts and 1000 for DRLC and MTLC. The frequency is interpreted as the 
relative appearance of the value on the abscissa. E.g., a frequency of 
0.001 pu at a DROC of 0.9 pu means that 0.001 pu of all possible branch 
outage combinations have a DROC of 0.9 pu). 

The frequency of DROC in Fig. 5-1 shows significant saddles at 
detection ratios around 0.9 pu and 0.95 pu as well as a relative exposed 
mode at 0.98 pu for a 4-dimensional search space. The two saddles are 
caused by topological issues and mainly correspond to three-branch 
loops, whereby the worst detection ratio occurs for branches partici
pating in more than one three-branch loop. The branch with the smallest 
impedance in any of the loops is more often wrongly detected, since 
higher node power injections are necessary to obtain the measured 
change in node voltage angle. The higher number of wrong detections 
for these branches results from the tendency of the Newton part opti
mizing algorithm to find a solution closest to the initial point. The results 
for the reduced search space dimension to 2 supports this conclusion on 
the topological effect. Consequently, three-branch loops no longer lead 
to wrong detection results, since they simply no longer exist in the op
timizers search space. That leads to a probability density function with a 
more pronounced mode. The remaining small saddles are caused by 400- 
kV-branches in parallel to network parts of lower voltage. 

Focusing on the frequency of DRLC in Fig. 5-1 enables conclusions to 
be drawn on the influence of the load flow situation on the detection 
ratio. The dominant mode occurring in the data for 2- and 4-dimensional 
search space indicates a robustness of the detection algorithm against 
different load flow situations. The smaller peaks which start to occur at 
about 0.9 pu detection ratio might be caused by the stochastic PSO part 
of the HPN. 

The frequencies of the mean detection run time MT, depicted in 
Fig. 5-2, similarly show a stronger influence of the network topology on 
the detector performance. The mean detection run time on the abscissa 
is referred to its mean value – 74.3 ms for the 4-dimensional search space 
and 899 ms for the 2-dimensional search space– to allow a comparison 
between the search space dimensions in one graph. 

Focusing on the results of the 4-dimensional search space first, the 
mode of MTOC occurs for a detection run time of 29 ms – or 0.39 pu – and 
has right side skewed behaviour which is caused by a small number of 
outage combinations with higher detection run times. MTLC has its mode 
at a detection run time of 74 ms – or 0.99 pu. Its sharp and nearly 
symmetrical shape indicates only a minor influence of the load flow 
situation on the detection run time. The evaluations for the 2-dimen
sional search space have a much flatter frequency profile for both 
MTout and MTLC which indicates a greater scattering of the results. 
However, the principle shape of the frequency profile is comparable 

between 2- and 4-dimensional search spaces. These observations match 
with the conclusions drawn from evaluations of the correct detection 
ratio. 

The main parameters of the result evaluation are summarized in 
Table 5-1. Comparing the mean correct detection ratio with the correct 
detection ratio corresponding to the mode, it becomes obvious that the 
resulting frequencies are left skewed independently of the search space. 
The mean detection run time is right skewed for the outage-based 
interpretation MTOC, whereby the 2-dimensional application has a 
higher skewness. Summarizing the skewness, it shows that the expect
able correct detection ratio is higher than the mean value of the correct 
detection ratio of the simulation results and has a shorter detection run 
time. 

Comparing the results for 2- and 4-dimensional search spaces shows 
generally a slightly higher detection ratio for the 2-dimensional search 
space. The slight increase in the detection ratio comes at the cost of a 
significant increase in the detection run time. Both effects are explained 
as follows. An increase in the search space dimensions allows the algo
rithm to check more branch combinations at each iteration, thus 
reducing detection run time. However, the increase in the dimension 
also leads to an increased probability of loops in the selected candidate 
branches, including the actual tripped branches causing wrong 
detections. 

A comparison to the mean values of the detection ratio and detection 
runtime obtained by applying PSO on both types of the separated trial 
variables (DR2 = 0.936, DR4 = 0.2, MT2 = 354 ms, MT4 = 959 ms) shows 
clearly the improvements achieved with the introduction of the HPN 
algorithm. PSO performs comparably well for small search space di
mensions but is not suitable for larger search space dimensions due to 
unacceptable low detection ratios and high detection run times. 
Applying PSO without a separation of the trial variables does not yield 
useful results. Based on these findings and conducted pre-evaluations on 
dynamic simulation data, the PSO is not further investigated in this 
work. 

Based on the results of double branch outage detection, the original 
load case as well as the load cases corresponding to the worst, closest to 
the mean and best load DRLC, are selected to test the algorithm on the 
detection of three branch outages. This reduction in evaluated cases is 
due to limit the simulation’s run time to a reasonable time span. In 
Table 5-2, the mean detection ratio and detection run time are stated for 
the four load flow samples. 

The number of maximal detectable branches and actually tripped 
branches differs less. Therefore, the possibility of combinations that lead 
to an optimal minimum of the objective function not linked to the 
branches tripped decreases and the detection ratio increases. The dis
tribution of the detection ratio is not linked to the results of the double 
branch outages. This indicates again that the actual pre-contingency 
load flow has smaller influence on the algorithm’s performance than 

Table 5-1 
Correct detection ratio and detection run time.    

4-dimensional search 
space 

2-dimensional search 
space   

OC LC OC LC 

DR in pu Worst 0.257 0.787 0.193 0.845 
Mean 0.944 0.969 
Best 1.0 0.975 1.0 0.998 
Mode 0.979 0.962 0.984 0.993 

MT in ms Minimum 7.7 52.1 7.0 622.0 
Mean 74.5 899.1 
Maximum 398.6 105.0 6771.9 1186.9 
Mode 29.0 74.0 155.0 905.0  

Table 5-2 
Detection ratio DRLC and mean detection run time MTLC for the outage of three 
branches.    

2 branch out 3 branch out 

DRLC in pu Worst 0.787 0.959 
Mean 0.944 0.983 
Best 0.975 0.981 
Original 0.944 0.938 

MTLC in ms Worst 52.1 923 
Mean 68.6 900 
Best 105.0 912 
Original 59.2 1022  
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the topology. 
A reduction in the number of PMU monitored nodes decreases the 

input information of the algorithms. In the following, the HPN’s detec
tion performance is assessed using node sets with an increasing number 
of monitored nodes – see Fig. 4-2 – for outage combination of the branch 
set stated in Section 4.1. The evaluation is conducted for a search space 
dimension of 2 and 4. The depicted mean detection ratio refers to the 
mean value over all outage combinations and load cases. As can be seen 
in Fig. 5-3, an increase in the search space dimension leads to a higher 
decreasing effect in the detection ratio. 

The algorithm’s parameters used in this section are given in Table 5- 
3. 

5.2. Evaluation of dynamic simulation data 

The applicability of the HPN-based detection methodology in real 
systems is tested with PMU data from dynamic simulations. The evalu
ation is separated into considerations for single branch outages focusing 
on the detection performance for reduced monitored nodes and con
siderations for double branch outages. Furthermore, for the single 
branch outages, a comparison of the detector’s detection ratio with the 
results for an analytical method based on [5,6] is completed, whereby no 
validation check using a maximum distance criterion is used for the 
analytical methods. 

The optimizer’s DC load flow model network representation leads to 
an immanent linearization error. The optimizer reacts to this by adding 
small unnecessary power injections at terminal nodes of branches not 
tripped, consequently causing more non-zero elements to define the 
detected branches. This effect is avoided by implementing a minimum 
value for the power injections to be taken into account. Since their actual 
values depend on the pre-contingency load flow, the minimum value is 
referenced to the maximum power injection of the optimizer output. In 
the following, a cut off ratio of 0.2 pu is used as the referenced minimum 
power injection value. Due to this, the detection algorithm only con
siders power injections higher than 0.2 times the maximum power in
jection for the output selection of the tripped branches. 

Additionally, the linearization errors affect the selection of a sensible 
value for the optimization tolerance ε, used as stopping criterion. For the 
following evaluations, ε values of 0.005 rad and 0.02 rad are imple
mented. However, an optimal selection of the value ε also depends on 
the chosen search space dimension and the network topology. There
fore, the search space dimensions with values of 3 and 4 are evaluated. 

Table 5-4 summarizes the different parameter sets of the HPN eval
uated in the following. 

The set of branches and PMU monitored nodes used for the evalua
tions are provided in Section 4. 

5.3. Single branch outage 

The generation and load parameters remain unchanged for the 
simulation of the single branch outages from the original data from [31]. 
The branch number 21 – the line connecting nodes 4011 and 4021 – is 
additionally excluded from the set of evaluated branch outages defined 
by the indices stated in Section 4.1, since its outage leads to a voltage 
instability followed by a loss of synchronization of the generators in the 
central and south parts of the grid. 

Fig. 5-4 shows the correct detection ratio over the number PMU 
monitored nodes and for different HPN parametrization. The detection 
threshold ξ in the output appearance for a valid detection result is set to 
0.4 pu. The graphs indicate a higher robustness against missing node 
information with lower search space dimensions, which is reasonable in 
view of reduced probability of loop structures in the selected candidate 
branches. The chosen value for ε has only a minor influence on the 
detection ratio. 

The influence of the threshold ξ on the correct detection is depicted 
in Fig. 5-5, whereby the HPN output data for a search space dimension of 
3 and an ε of 0.005 rad is selected for representation. The detection 
results of an analytical detection algorithm similar to [5,6] are included 
for comparison in the figure. However, the detection performance of the 
analytical algorithm might be overrated, since no validation check as 
described in [5] and no threshold ξ on the appearance ratio as for the 
HPN are included. Due to the missing thresholds, the equivalent in the 
HPN data for a comparison is the green graph for a ξ = 0 pu. Only correct 
or wrong results exist for a detection threshold of ξ = 0 pu. These results 
are linked to the element with the highest absolute appearance in the 
detector output stream without any threshold and reflect the maximal 
reachable ratios. A comparison of these two graphs shows that the HPN 
performance is equal or slightly better in means of average detection 
ratio for 5 or more PMU monitored nodes. 

Fig. 5-3. HPN’s mean detection ratio for a double branch outage with different numbers of PMU monitored nodes.  

Table 5-3 
Optimizer parametrization used for the evaluation of linearized data.  

w c1 c2 Search space dimension imax #particles 

1 … 0.3 1.05 1.05 2 500 20 
1 … 0.3 1.05 1.05 4 500 40  

Table 5-4 
Optimizer parametrization used for the evaluation of dynamic data.  

w c1 c2 Search space dimension ε Cut off ratio imax #particles 

1 … 0.3 1.05 1.05 3 0.005 0.2 1000 30 
1 … 0.3 1.05 1.05 3 0.02 0.2 1000 30 
1 … 0.3 1.05 1.05 4 0.005 0.2 1000 40 
1 … 0.3 1.05 1.05 4 0.02 0.2 1000 40  
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However, for ξ = 0 pu a single detected element would be interpreted 
as the solution if it is the only non-empty detection output. With 
increasing detection threshold values, the detection results become 
more and more reliable. The decreasing detection ratio with higher 
detection threshold values is caused by increasing numbers of no-result 
outputs of the detector. Wrong detections definitely decrease similarly 
to increasing detection thresholds. 

The detection run time of the HPN algorithm naturally depends on 
the available node information, the search space dimension and the 
chosen ε, whereby these factors are listed according to their severances. 
Due to the wide range in the detection run time starting from around 
350 ms for 2 monitored nodes and going below 5 ms for 17 monitored 
nodes, a graphical presentation is set aside. However, the detection run 
time is well below 50 ms for the numbers of monitored nodes enabling 
reasonably good detection ratios. This short run times allow enough 
optimization runs in the 10 s detection window to have a solid decision 
base. 

5.4. Double branch outage 

The loading of the used Nordic-32-Bus system is scaled down to 70% 
of the original load data from [31] to enable a stable post contingency 
state of the double branch outages. However, some outage combinations 
still have no stable solution – mainly combinations including branch 21. 
These instable outage combinations and outage combinations leading to 
the islanding of network parts are not included in the results. This leaves 
a set of 226 simulated branch outages defining the node voltage angle 
data for the evaluation of the detection algorithm. 

Fig. 5-6 shows the correct detection results on dynamic data for an 
HPN parametrization with a search space dimension of 4 and an ε of 
0.005 rad. All 17 400-kV-nodes are considered as PMU monitored and 
the detection threshold ξ is set to 0.5 pu. The green squares indicate a 
correct detection of the outage combination – the correct combination 
has an appearance in the output data of the 10 s detection window 
higher than ξ. The red squares indicate a wrong detection – a wrong 
output combination has an appearance higher than ξ. The blue squares 
indicate no detection result – neither a correct nor a wrong combination 
has an appearance higher than ξ. The black squares reference branch 
outages either resulting in the islanding of network parts or causing 

instabilities. The wrong detections are concentrated on combinations 
including the branches 30, 33 and 48. This is caused for the branches 30 
and 33 by their topology-based probability to be the lowest impedance 
branch of a loop formed by the optimizer’s candidate branches and the 
higher likeliness of wrong detection linked to that. The tripping of 
branch 48 leads to strong oscillations of the generators g17 and g18 and 
therefore causes the wrong detection results. 

The influence of the chosen value of ξ on the overall detection ratio 
of double branch outages for different values of ε and a search space 
dimension of 4 are given in Fig. 5-7. The graphs depict the ratios of 
correct, wrong and no detection for HPN as a function of the detection 
threshold ξ and 17 PMU monitored nodes. The maximum correct 
detection ratio is 0.91 pu. The correct detection ratio slowly decreases 
and forms a knee point at ξ = 0.6 pu. The ratio of no results becomes 
dominant while the correct and wrong detection ratio decreases to 

Fig. 5-5. Detection ratio for reduced number of PMU monitored nodes for different ξ values and an HPN parametrization with search dimension 4 and ε of 0.005 rad.  

Fig. 5-6. Detection result for a search space dimension of 4, ε of 0.005 pu, ξ =
0.5 pu and 17 PMU monitored nodes. Green correct detection, red wrong 
detection, blue no detection, black not evaluated. 

Fig. 5-4. Detection ratio for reduced number PMU monitored nodes for different parametrization and ξ = 0.4 pu.  
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0 with further increasing threshold values, whereby the smaller ε of 
0.005 pu enables higher correct detection ratios. 

The comparison to the reference detection ratio obtained from the 
evaluations of the linearized load flow calculations show that the algo
rithm is performing similarly well on the dynamic data till the knee 
point at ξ = 0.6 pu. 

In Fig. 5-8 the dependency of the HPN’s detection ratio on the 
number of PMU monitored nodes is depicted for a parametrization with 
4-dimensional search space, an ε of 0.005 pu and a threshold of 0.5 pu. 
The general dependency of the correct detection ratio behaves similarly 
to correct detection ratio for the single branch outage – Fig. 5-4. The 
comparison with the reference detection ratios obtained from the eval
uation of the linearized load flow data (Ref DC Data) shows that with 
higher numbers of monitored nodes, the influence of the linearization 
error of the optimizer’s underlying model decreases. Furthermore, the 
graphs highlight that the detector has a constant low ratio in explicitly 

wrong detections. 
The graphs in Fig. 5-9 show the dependency of the correct detection 

ratio on the chosen threshold and different parametrizations of the HPN. 
The value of ε is set to 0.005 pu and the search space dimension is 3 and 
4, respectively. The black dotted and dash-dotted lines are the detection 
ratios obtained from the linearized load flow evaluations serve as 
reference. Comparing the detection ratios of the different search space 
dimensions and thresholds, it becomes notable that with smaller 
threshold values – 0 pu and 0.4 pu in the graph – and more than 9 
observed nodes, a higher search space dimension yields a better detec
tion ratio. This behaviour contradicts the expectation based on the re
sults from the single branch evaluations. This is plausible by considering 
that the optimizer is able to compensate the linearization error better in 
a higher dimensional search space leading to a higher convergence rate 
and fewer empty results in the detection algorithm. With increasing 
threshold values, the detection ratio for the smaller search space 

Fig. 5-8. Detection ratio of HPN with a search space dimension of 4, ε of 0.005 pu, ξ = 0.5 pu for dynamic simulation data.  

Fig. 5-9. Referenced detection ratio of HPN optimizer for reduced number PMU monitored nodes on dynamic simulation data with different thresholds.  

Fig. 5-7. Dependency on threshold for HPN with a search space dimension of 4 on dynamic simulation data for 17 PMU monitored nodes.  
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dimension is better, since the actually detected branches for each indi
vidual detection run are more stable. This is caused by the lower prob
ability of forming loops in the candidate branches. The same holds true 
for the detection ratio for numbers of observed nodes below 8. The 
probability of candidate branch loops dominates the decreasing effect 
for small numbers of observed nodes and higher threshold values. For 
lower threshold values, the linearization error has a stronger albeit 
decreasing impact for higher numbers of observed nodes. 

The detection runtime for the double branch outages behave simi
larly to the detection runtime of the single branch outages. This means 
that enough detection runs are conducted in the 10 s detection window 
to have a solid decision base. 

6. Conclusion 

In this paper, an optimization-based approach for the detection of 
tripped branches is presented which requires only the node voltage 
angle information provided from PMU measurements. The proposed 
detection algorithm is able to detect multi-branch outages without 
extensive pre-calculations of possible outage combinations or a pre
definition of the expected number of tripped branches. 

The detection performance of the proposed algorithm is robust 
against the loss of node information as long as a certain number of 
measured nodes is not undershot. Focusing on the basic parametrization, 
the most critical parameter is the selection of the search space dimen
sion, since it has a negative impact on the detection ratio if chosen to be 
too small or too large, depending on the network topology and the 
chosen detection threshold. The choice of the space dimension should 
consider the maximum sensible number of tripped branches – taking 
into account general network stability – as well as the linearization error 
of the underlying model. However, the results show that as long as the 
linearization assumptions are mostly met, the detection ratios achieved 

on the data created with the described dynamic nonlinear and stationary 
linear simulation models are comparable. 

The number of explicitly wrong results over the whole range of 
evaluated threshold values and number of monitored nodes is small for 
the proposed algorithm. It is therefore a possible tool for future back-up 
monitoring applications and standalone emergency control actions of 
decentral resources. The next working steps are to test the detection 
algorithm on linearized and static AC load flow data of large systems 
such as the ENTSO-E network and on defining triggers for emergency 
control actions based on the detection output in dynamic simulations. 
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Appendix A 

See Table 8-1. 

Table 8-1 
Referenced branch numeration.  

Nr. Name From node To node Type  Nr. Name From node To node Type 

1 1011–1013 1011 1013 Line  31 4031–4041 4031 4041 Line 
2 1011-1013b 1011 1013 Line  32 4031-4041b 4031 4041 Line 
3 1012–1014 1012 1014 Line  33 4032–4042 4032 4042 Line 
4 1012-1014b 1012 1014 Line  34 4032–4044 4032 4044 Line 
5 1013–1014 1013 1014 Line  35 4041–4044 4041 4044 Line 
6 1013-1014b 1013 1014 Line  36 4041–4061 4041 4061 Line 
7 1021–1022 1021 1022 Line  37 4042–4043 4042 4043 Line 
8 1021-1022b 1021 1022 Line  38 4042–4044 4042 4044 Line 
9 1041–1043 1041 1043 Line  39 4043–4044 4043 4044 Line 
10 1041-1043b 1041 1043 Line  40 4043–4046 4043 4046 Line 
11 1041–1045 1041 1045 Line  41 4043–4047 4043 4047 Line 
12 1041-1045b 1041 1045 Line  42 4044–4045 4044 4045 Line 
13 1042–1044 1042 1044 Line  43 4044-4045b 4044 4045 Line 
14 1042-1044b 1042 1044 Line  44 4045–4051 4045 4051 Line 
15 1042–1045 1042 1045 Line  45 4045-4051b 4045 4051 Line 
16 1043–1044 1043 1044 Line  46 4045–4062 4045 4062 Line 
17 1043-1044b 1043 1044 Line  47 4046–4047 4046 4047 Line 
18 2031–2032 2031 2032 Line  48 4061–4062 4061 4062 Line 
19 2031-2032b 2031 2032 Line  49 4062–4063 4062 4063 Line 
20 4011–4012 4011 4012 Line  50 4062-4063b 4062 4063 Line 
21 4011–4021 4011 4021 Line  51 4071–4072 4071 4072 Line 
22 4011–4022 4011 4022 Line  52 4071-4072b 4071 4072 Line 
23 4011–4071 4011 4071 Line  53 1011–4011 1011 4011 Transf. 
24 4012–4022 4012 4022 Line  54 1012–4012 1012 4012 Transf. 
25 4012–4071 4012 4071 Line  55 1022–4022 1022 4022 Transf. 
26 4021–4032 4021 4032 Line  56 2031–4031 2031 4031 Transf. 
27 4021–4042 4021 4042 Line  57 1044–4044 1044 4044 Transf. 
28 4022–4031 4022 4031 Line  58 1044-4044b 1044 4044 Transf. 
29 4022-4031b 4022 4031 Line  59 1045–4045 1045 4045 Transf. 
30 4031–4032 4031 4032 Line  60 1045-4045b 1045 4045 Transf.  
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