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Abstract. Saber is one of the four finalists in the ongoing NIST post-quantum
cryptography standardization project. A significant portion of Saber’s computation
time is spent on computing polynomial multiplications in polynomial rings with
powers-of-two moduli. We propose several optimization strategies for improving
the performance of polynomial multiplier architectures for Saber, targeting different
hardware platforms and diverse application goals. We propose two high-speed
architectures that exploit the smallness of operand polynomials in Saber and can
achieve great performance with a moderate area consumption. We also propose a
lightweight multiplier that consumes only 541 LUTs and 301 FFs on a small Artix-7
FPGA.
Keywords: Lattice-based Cryptography · Post-Quantum Cryptography · Hardware
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1 Introduction
Quantum computers pose a threat against the majority of currently used cryptosystems,
and the rapid pace of technological development urges a transition to quantum-resistant
cryptographic protocols. In 2016, the American National Institute of Standards and
Technology (NIST) started a post-quantum cryptography standardization process for key
encapsulation mechanisms (KEM) and digital signature schemes. After several rounds,
the four KEM finalists–Classic-McEliece, Kyber, NTRU, and Saber–were announced in
July 2020.

Saber bases its security on the Module-Learning-With-Rounding problem, which is a
lattice-based problem and is believed to be quantum-resistant. One of the main defining
characteristics of Saber is the choice of using powers-of-two moduli. This greatly simplifies
public-key generation, scaling and rounding operations, and modular reduction. However,
such a choice prevents implementations of Saber from directly using the asymptotically
fastest number theoretic transform (NTT)-based polynomial multiplication, since the NTT
algorithm requires the modulus to be prime. Thus improving the efficiency of polynomial
multiplications in polynomial rings with powers-of-two moduli have recently received
significant attention.

Indeed, efficient implementations of Saber have improved across a wide range of plat-
forms. The original publication of Saber [1] proposed a fast polynomial multiplier based on
the Toom-Cook algorithm [2] targeting high-end software platforms. Then, [3] proposed
speed and memory-efficient polynomial multiplication and other software optimization tech-
niques for implementing Saber on resource-constrained microcontrollers. The latest software
optimization techniques for Saber rely on a combined Toom-Cook/Karatsuba/schoolbook-
based multiplier [4].
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On hardware platforms, there are two possible approaches: hardware/software co-
designs and fully-in-hardware implementations. The former only outsources the most
demanding tasks to hardware platforms and are thus more flexible and easier to develop,
but offer relatively worse performance. Among these, the first hardware implementation of
Saber relied on a Toom-Cook-based polynomial multiplier [5]. A second HW/SW codesign
is reported in [6], which reports an implementation that can provide good performance, at
the cost of a large area consumption. They use a schoolbook-based multiplier, where each
coefficient-wise multiplier is implemented with a single DSP, and thus it requires 256 DSPs
in total. Recently, RISQ-V [7] was introduced, which is a RISC-V accelerator for post-
quantum cryptography. It reuses an NTT module to compute polynomial multiplication
in Saber through field extensions and the Chinese Remainder Theorem. On the other
hand, fully-in-hardware implementations are less flexible but can offer very high levels of
performance. The first such implementation is reported in [8], which uses a schoolbook-
based polynomial multiplier and can offer a high computation speed, while still remaining
flexible and only requiring a moderate area consumption. More recently, [9] proposed
a fully-in-hardware implementation whose polynomial multiplier uses a parallel 8-level
Karatsuba algorithm and leads to a small cycle count. In their work, the preprocessing
and postprocessing steps needed by the Karatsuba algorithm, together with its iterative
nature, require a large area consumption and a longer critical path (hence slower clock).

Contributions

On hardware platforms, the Saber KEM algorithm spends most of its time in computing
polynomial multiplications. Previous implementations, such as [8], report that polynomial
multiplication takes up to 56% of the overall computation time. Naturally, any improvement
in its efficiency would have a direct impact on the efficiency of Saber overall. In this paper
we focus on improving the area/performance trade-offs of the polynomial multiplication
of Saber on hardware platforms, and we propose optimizations for both lightweight and
high-speed implementations. In greater detail, we make the following contributions:

1. We propose a technique that reduces the area consumption by centralizing coefficient-
wise multiplication. This streamlines the implementation, avoids the repetition of
the same computations, and significantly reduces the overall area consumption with
no impact on performance.

2. We propose a second technique that offloads coefficient-wise multiplications to DSPs
while still exploiting the small secret coefficients. Comparing to the architecture in
[10], we obtain 4× the performance by fitting four coefficient-wise multiplications
inside a single DSP. Our design uses 128 DSPs to compute a full multiplication in
128 cycles.

3. We also propose a lightweight polynomial multiplier that targets area and power
reduction. To realize a simple lightweight architecture, we rely on a variant of the
simple schoolbook multiplication algorithm. To reduce power consumption and cycle
count, we minimize the number of memory read/write accesses and do as much
computation as possible on the read operand data before writing the result back into
the memory. Additionally, we carefully schedule the reading and writing of data to
memory within the lightweight multiplier to vastly reduce the number of idle cycles.
Overall, our proposed multiplier can compute a full polynomial multiplication in
19, 471 cycles, while consuming 541 LUTs and 301 flip-flops.

4. The source code of all the proposed optimizations is available at https://github.
com/andreavico/saber-optimized-multipliers

https://github.com/andreavico/saber-optimized-multipliers
https://github.com/andreavico/saber-optimized-multipliers
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Paper Outline

We introduce the Saber protocol and schoolbook-based architectures in Section 2. We
first propose two techniques to reduce area consumption in high-speed implementations
by exploiting the limited range of the secret coefficients in Section 3. We then present a
lightweight architecture for a low-power polynomial multiplier in Section 4. Lastly, we
report the implementation results for all target-specific variants in Section 5.

2 Preliminaries
2.1 The Saber protocol in brief
The Saber public-key encryption (PKE) scheme is composed of three algorithms: key
generation, encryption, and decryption. The first generates a public matrix of polynomials
A and a secret vector of polynomials s. Then, it computes the vector b by scaling and
rounding the product As. The public key then consists of A and b, while the secret
key is the vector s. A message can be encrypted by embedding it into the polynomial
v = s′b, where s′ is a vector generated specifically for encryption. The ciphertext also
includes the vector b′ obtained by scaling and rounding the product As′. The message
can then be decrypted by recovering an approximation of v, which is given by the product
sb′. The key encapsulation mechanism is then obtained by wrapping the PKE functions
with a mechanism that ensures correctness and guarantees private key reusability. All
polynomials have degree 255; thus 256-coefficient polynomial arithmetic, and specially
multiplication, plays a critical role in the performance of Saber. We refer the reader to the
original Saber proposal [11] for more details.

2.2 Architectural design principles
All proposed multiplier architectures are implemented considering a 64-bit memory. Hence,
they have 64-bit data exchange ports. The proposed multipliers can be thought as a
drop-in replacement for the multiplier in the complete Saber architecture reported in [8].
We refer to the original paper for a top-level description of the complete architecture.

The optimized implementations for both low-power and high-speed multipliers are
based on the schoolbook algorithm. This is because such an approach is conceptually simple
and highly flexible. Its flexibility makes it an ideal candidate for providing very different
performance/area trade-off levels and for being quickly adaptable to different low-level
implementations. Furthermore, previous schoolbook-based implementations ([10, 8]) show
that such an approach is particularly fruitful in hardware implementations.

The schoolbook algorithm is described in Algorithm 1. Each coefficient of one polyno-
mial is multiplied by every coefficient of the other polynomial and their result is added
to an accumulator. At the end of the inner for loop, the second polynomial is multiplied
by x. Since the polynomials live in the ring modulo 〈xN + 1〉, such an operation can be
implemented by a simple negacyclic shift.

Following [8], a schoolbook-based polynomial multiplier architecture has four main
components:
• The first polynomial module loads the first polynomial and provides one of its
coefficient at a time.

• The second polynomial module loads the second polynomial and provides all or some
of its coefficients to be multiplied by the coefficient provided by the first module.

• The multiplier block computes the coefficient-wise multiplications. It is usually
composed of several multiply-and-accumulate (MAC) units, which each compute one
coefficient-wise multiplication and update the accumulator with the new result.
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Algorithm 1 Schoolbook polynomial multiplication.
Input: Two polynomials a(x) and b(x) in Rq of degree N .
Output: The product a(x) · b(x) of degree N .
1: acc(x)← 0.
2: for i = 0; i < N ; i = i + 1 do
3: for j = 0; j < N ; j = j + 1 do
4: acc[j] = acc[j] + b[j] · a[i] mod Zq // MAC op.
5: b = b · x mod Rq.
6: return acc.

• The accumulator module stores the partial values and provides the final result at the
end of the polynomial multiplication.

In Saber implementations, the first polynomial module loads the public polynomial,
while the second polynomial module loads the secret one. This is because the smaller
coefficients of the secret polynomial make it more efficient to store it its entirety.

The most performant schoolbook-based hardware multiplier for Saber in the literature is
reported in [8]. We briefly recall their hardware architecture since our proposed architecture
shares the general approach. Since the coefficients of the secret polynomial are short (only
4-bit long), the entire secret polynomial is stored in a 256 × 4 = 1024-bit long buffer.
Similarly, the accumulator is stored entirely in a buffer, which is 13 × 256 = 3328-bit
long. The multiplier is also equipped with 256 MAC units. Despite the high number
of MACs, the area consumption is kept moderate because each MAC unit uses bitshift
operations and additions to implement coefficient-wise multiplication (see Alg 2). Each
MAC unit is connected to one coefficient of the secret and one coefficient of the accumulator.
In each cycle, each MAC unit is fed a coefficient of the public polynomial, computes a
coefficient-wise multiplication, and updates the accumulator. Thus, by using 256 MACs,
the inner loop of Algorithm 1 (lines 3 and 4) can be computed in one cycle. Concurrently, a
negacyclic shift is applied to the secret polynomial buffer. Thus, a complete multiplication
between two 256-coefficient polynomials can be computed in only 256 cycles (without
counting reading and writing operations). Special attention needs to be paid to the public
polynomial buffer. To reduce the area consumption, the entire public polynomial cannot
be loaded at once. However, partial loading is made complicated by the fact that several
coefficients are stored across two BRAM words, since the length of the coefficients (13
bits) does not divide that of the BRAM words (64 bits). Thus, 64 coefficients need to
be loaded at once, since they cumulatively take 13 full words and there is no coefficient

accumulator	buffer

Memory

secret	polynomial	buffer

public	polynom
ial	buffer

256	MACs
in	total

MAC MAC MAC

negacyclic	shift

Figure 1: Schoolbook polynomial multiplier, based on Fig. 4 of [8].
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split among the 13th and 14th word. However, with the use of a multiplexer, it is possible
to read and use the coefficients while they are being loaded. In this way, the size of the
polynomial buffer can be reduced to 676 bits (since 12 coefficients are used during loading
and 676 = 13×64−13×12) and the loading overhead is only 1 cycle per entire polynomial
multiplication. The overall architecture of the polynomial multiplier is depicted in Figure 1.

3 Optimizations for high-speed polynomial multiplier
In the Saber protocol, during any polynomial multiplication, one operand polynomial
has small coefficients (in the range -4 to +4), while the other polynomial has 10-bit or
13-bit coefficients. This smallness of one operand polynomial was exploited in [8] to design
a small-area coefficient multiplier. Several MAC units were instantiated in parallel to
compute the inner loop of schoolbook polynomial multiplication in Alg. 1. Alg. 2 shows
the way a coefficient multiplication is performed inside a MAC unit in [8].

Algorithm 2 Coefficient-wise shift-and-add multiplier [8].
Input: ai: 13-bit number, sj : 3-bit number with 0 ≤ sj ≤ 5.
Output: ai · sj modulo q = 213.

r0 ← 0
r1 ← ai,
r2 ← ai � 1,
r3 ← ai + (ai � 1),
r4 ← ai � 2,
return rk, where k = sj . // Select right multiple

In this section, we introduce two techniques to optimize the polynomial multiplier
in high-speed implementations. Both techniques exploit the limited range of the secret
coefficients either to reduce the area consumption of the coefficient-wise multipliers or to
improve their performance, if the area consumption is kept the same.

3.1 Centralized multiplier architecture
The high-speed Saber architecture of [8] instantiates 256 parallel MAC units, each contain-
ing a coefficient-wise multiplier based on Alg. 2. Thus, the area of the computational logic
in their schoolbook polynomial multiplier is roughly 256 times the area of one MAC unit.

In Algorithm 2, the value of sj only comes in at the very end, as a selector of the
multiplexer that chooses the correct multiple of the other coefficient ai. When parallel
MACs are instantiated to parallelize the inner j-loop of Alg. 1, all MACs will receive the
same coefficient ai as one input operand, whereas the other operand sj can be different for
the parallel MACs.

Based on this observation, and furthermore benefiting from the fact that the absolute
magnitude of sj can be 0-to-4, we apply a precomputation-based approach in which we
compute all five multiples of ai (i.e., 0× ai, 1× ai, 2× ai, 3× ai, and 4× ai) only once
and then forward these multiples to the parallel MAC instances. Next, the MAC instances
choose their right multiple of ai depending on their corresponding sj and add that to
the accumulator. With this approach, multiplication inside a MAC becomes a simple
select operation, thus reducing the area of the MAC unit significantly. The optimized
architecture is shown in Fig. 2.

Moreover, we note that the gains are directly correlated to the number of coefficient-wise
multipliers used. Since the schoolbook multiplication (Alg. 1) is highly parallelizable, one
can reduce the cycle count further by instantiating more MAC units in parallel. For example,
by using 512 coefficient multipliers instead of 256, it is possible reduce the cycle count of
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schoolbook multiplication by a factor of two. As the precomputation approach that we have
proposed results in a much smaller MAC unit, a higher-speed implementation that employs
512 (or more) coefficient multipliers sees more benefits from this optimization. Lastly,
note that such a change is only positive and has virtually no trade-offs. It significantly
reduces the area consumption without impacting the performance of the implementation.
Furthermore, from a side-channel security perspective, the proposed architecture is still
constant-time (similar to [8]) and does not offer any additional attack surface. This is
because this optimization only centralizes the computation of public coefficient multiples,
while the secret-dependent selection remains inside the MAC units. Thus, this technique
only changes the location of the computation of non-sensitive information (the public
coefficient multiples).

accumulator	buffer

negacyclic	shift

Memory public	polynom
ial	buffer

{ai,2ai,3ai,4ai}

secret	polynomial	buffer

MAC MAC MAC

256	MACs
in	total

Figure 2: High-speed polynomial multiplier architecture with centralized multiplier
architecture. There is a single shift-and-add multiplier for all MAC units, so that each
MAC is composed of only a multiplexer and an accumulator adder.

3.2 Coefficient-wise multiplication in DSPs
Digital Signal Processing (DSP) blocks are arithmetic logic units embedded into the fabric
of most FPGAs and can be used to compute multiply-and-add operations. The DSPs in
modern Xilinx Ultrascale+ FPGAs can compute signed multiplication between a 27-bit
operand and a 18-bit operand, and post-multiplication addition with a 48-bit operand.
For unsigned multiplication, as in our case, an Ultrascale+ DSP can compute the product
between 26 and 17-bit long operands.

Since each MAC unit computes a coefficient-wise multiplication and updates the
accumulator, a straightforward approach would offload each MAC computation to a single
DSP. Since the public polynomial coefficients are 13-bit long and the secret polynomial
coefficients are 3-bit long (plus sign), they easily fit inside a DSP. This appears to be
the approach used by [10] in their Saber implementation where 256 DSP multipliers are
instantiated.

In this section, we propose one technique to offload coefficient-wise multiplication to
DSPs, while still exploiting the smallness of the secret coefficients. Our technique uses a
single DSP to compute 4 coefficient-wise multiplications. We thus propose an architecture
based on the schoolbook method that fits a single DSP within each MAC unit. If the
multiplier uses 256 DSPs, it could compute 1,024 coefficient-wise multiplication per cycle
and thus compute a full multiplication in 64 cycles. However, that would require a fairly
high area consumption, both because of the 256 DSPs and because of the LUTs around
them. We thus propose an architecture with 128 DSPs that can compute a multiplication
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of 256-coefficient polynomials in 128 cycles. The architecture follows the approach of the
512-MAC multiplier of [8] and unrolls the outer loop of the schoolbook algorithm (line 2
of Alg. 1), such that it computes two iterations of the outer loop in each cycle.

Our technique packs two public-polynomial coefficients and two secret coefficients in
each operand, so that each DSP can compute four coefficient-wise multiplications per
cycle. Indeed, let a0 and a1 denote two consecutive public polynomial coefficients, and
s0 and s1 two consecutive secret polynomial coefficients. If we write A = a0 + a12n and
S = s0 + s12n, the multiplication A× S outputs

A× S = a0s0 + (a0s1 + a1s0)2n + a1s122n.

This works well because in the schoolbook algorithm we need to sum all the coefficient-wise
multiplications, and we need the sum a0s1 + a1s0 more than the individual products.
However, such an approach has two problems. It needs to handle secret coefficients of
different signs, and it needs to determine the correct packing value n. Such a value must
guarantee that the results do not overflow while the multiplication is still computable with
a DSP.

Our proposed technique inverts the sign of one of public polynomial coefficients if
needed. If the signs of s0 and s1 are different, we replace a0 with −a0. This ensures that
a0s1 and a1s0 are subtracted rather than added. Then, regardless of whether we inverted
a0, we obtain the right result by inverting a0s1 + a1s0 if s0 < 0 and by inverting a0s0 and
a1s1 if s1 < 0. This can be verified by checking all four cases depending on the sign of s0
and s1.

While secret coefficients are three bits long, their highest values is 4, and multiplication-
by-four adds only two bits of length. So, we can use a packing width of 15 without risking
that a0s0 overflows into the next partial result. However, the sum in a0s1 + a1s0 can
bring the length of the second partial result to 16-bit long. Thus, to compensate when the
second result overflows onto the third by one bit, we check whether the lowest bit of a1s1
is correct (by checking whether a1s1[0] == a1[0]&s1[0]) and subtract one if not.

Hence, our technique requires computing the product of A = ±a0 + a1215 and S =
s0 + s1215. The first is 28 bit long, while the second is 18 bit long. Since the DSP
can compute only between 26 and 17 bit long operands, if we write A = a + a′226 and
S = s + s′217, we have

A× S = as + as′217 + a′s226 + a′s′243.

The first product as can be computed via the DSP, while as′ and a′s can be computed
with small LUT-based multipliers. These involve a 2-to-1 and a 4-to-1 multiplexer, since
s′ and a′ are 1 and 2 bit long, and some bit-shift operations and additions. There is
no need to compute a′s′ since that only affects bits that are removed by the modular
reduction. The accumulator can be updated with LUT-based adders, since the adder
functionality of the DSP is used to add a′s and as′. Note that, since each DSP computes
four coefficient-wise operations, some accumulator coefficients are updated by two DSPs
each cycle and thus a three-way adder is needed.

This optimization does not impact security. Indeed, it partially reduces the side-
channel leakage due to its convoluted nature (hence more noise). Moreover, it might reduce
leakage due to the DSP circuit being more compact than the ‘LUT-based multipliers’.
However, experimental evaluations would be needed to confirm this.

4 Optimizations for lightweight polynomial multiplier
In this section, we present a lightweight architecture for computing polynomial multiplica-
tions in Saber. The architecture requires a minimal amount of LUTs and flip-flops, as well
as reduces the number of memory writings, thus resulting in low power consumption.
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Figure 3: Architecture of the DSP-based multiplier. Orange blocks are multipliers: the
main one is the DSP and the small multiplier is LUT-based and computes a′s + as′ using
bit-shift operations and additions. Blue blocks invert the sign of their input based on
the signs of s0 and s1. Green blocks pack and unpack the coefficients into the input and
output of the DSP block.

4.1 The lightweight architecture
The architecture implements the schoolbook algorithm described in Alg. 1, but only
relies on one 64-bit block of each polynomial to limit the number of flip-flops used. The
architecture uses only 4 MACs to keep the number of LUTs to a minimum. It also employs
the centralized-multiplier optimization described in the previous section, but due to the
small number of MACs, the advantages of such a change are limited. The full architecture
is represented in Fig. 4.

The implementation starts by loading two 64-bit blocks of the secret polynomial, the
first with coefficients 0 to 15 and the last with coefficients 240 to 255. It is thus possible to
negate the coefficients during shifting when needed. Note that following [8], we pack 16
coefficients of a secret polynomial in a 64-bit memory-word. The implementation multiplies
all the coefficients of the public polynomial by the 16 coefficients in a single block of the
secret polynomial before moving on to the next secret polynomial block.

Then, the first two 64-bit blocks of the public polynomial are loaded. Every time one
coefficient is consumed, the buffer is shifted right by 13-bits and whenever there are at least
64 empty bits in the buffer, a new block is loaded. This approach leads to some coefficients
having some empty bits in between. The problem is solved by a multiplexer that loads the
lowest 24 bits of the buffer and–depending on the coefficient number–extracts the right
bits, ignoring possible gaps in between.

Each clock cycle, four MAC units compute four coefficient-wise multiplications. The
proposed architecture uses four MAC units because they offer a good compromise between
performanceand area consumption. Since there are 16 coefficients in a single secret
polynomial block, it takes four cycles to consume one coefficient of the public polynomial.
This means that to fully consume one 64-bit word of the secret polynomial, the multiplier
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takes 4×256 = 1, 024 cycles. Thus, since the entire secret polynomial is stored in 16 words,
one full multiplication with this approach requires 16, 384 cycles, without considering the
memory access overhead.

The architecture described so far can compute all the operations of Alg. 1 except for the
accumulator update in line 4 of the algorithm. High-speed implementations can implement
the accumulator as a long buffer (256× 13 = 3328-bit long), but it can be hard to replace
it with a smaller buffer in lightweight implementations. That is because polynomial
multiplication is a convolution of all coefficients and each input coefficient affects every
output coefficient. Indeed, in the schoolbook multiplication, the entire accumulator is
updated by the end of the inner for loop (line 3-5 of Alg. 1). We solve the problem by
reading and writing the accumulator directly to memory. This means that each clock cycle,
while the multiplication is being computed, the multiplier stores the previous cycle results
in the BRAM while alsoreading the accumulator values needed for the next cycle. We
are working with a 64-bit data bus and a single BRAM with only one read and one write
port, so the number of MAC units to four since a higher number of MAC units would
produce more than 64 bits of data each cycle. Since the memory data bus is constantly
used to read and update the accumulator data, the multiplication needs to pause during
the loading of the input polynomials data. This causes a minor memory overhead access,
but the approach still has the advantage of not needing to explicitly read the computation
results at the end of the multiplication because the results are already stored in memory.

Indeed, this lightweight architecture achieves better memory overheads compared to the
high-speed architecture because it can read and write to memory while the multiplication
is being computed. This is partially due to the size of the input and output polynomials
not changing, but the lightweight architecture also requires multiple readings of the same
data to save on buffer space. Indeed, a complete polynomial multiplication–including read
and write operations–takes 19,471 cycles. Since the pure multiplication cycle count with 4
MAC units is 16,384 cycles, the read/write overhead is 3,087 cycles, or less than 16%. For
comparison, the high-speed implementation with 512 multipliers requires 128 cycles for
the pure multiplication, or 213 cycles with the memory overhead (39%).

4.2 Different area/performance trade-offs
The main goal of the proposed architecture is to achieve minimal power consumption
and extremely small area requirements. This clearly has substantial consequences on the
overall cycle count. It is also possible to target different area/performance trade-offs by
increasing the number of MAC units to 8 or 16. Such a change would only have minor
consequences on the LUTs requirements but would drastically reduce the cycle count to

Memory public	polynom
ialMACMAC MAC MAC

{ai,	2ai,
3ai,	4ai}

secret	polynomial

Figure 4: Lightweight polynomial multiplier architecture. Each secret block is of 64 bits,
thus containing 16 secret coefficients.
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about a half or a quarter of the current cycle count.
However, using 8 or 16 MAC units would prevent the current approach from reading

and writing the accumulator directly to BRAM. Possible solutions include using a buffer
to temporarily store a part of the accumulator or increasing the amount of data that can
be stored to BRAM per cycle, either by changing the data bus or by working with more
BRAMs in parallel.

5 Results
The proposed target-specific architectures were described in Verilog by integrating them
in the open-source code provided in [8]. The resulting architecture was implemented
using Xilinx Vivado 2020.1 for the target platform Xilinx ZCU102 board, containing an
UltraScale+ XCZU9EG-FFVB1156-2 FPGA. An additional implementation was realized
on Artix-7 XC7A12TLCSG325-2L.

In Table 1, we report the cycle count and the area consumption of the polynomial
multipliers when implemented with area-optimization strategies. There is, as expected,
great differences between the lightweight implementation and the high-speed ones. Note
that the lightweight multiplier results also include its memory overhead since it performs
read and write operations during the computations. The high-speed results do not include
the overhead, since there is no need to read the results from the accumulator after each
multiplication when the multiplier is used to compute an inner product, as in Saber.
We can see that the lightweight polynomial multiplier only requires very few LUTs and
flip-flops, making it ideal for resource-constrained devices. Its power consumption is also
very low. On a low-power Artix-7 board, the multiplier consumes 0.106 W, of which only
0.048 W comes from the dynamic consumption. Note, however, that the multiplier is
designed to be part of a larger architecture. It has thus many inputs and outputs, and
when it is implemented by itself on the board, its ports are directly connected to the FPGA
IO pins. The vast majority (89%) of the dynamic power consumption comes from driving
the IO pins, and the power consumption of the logic is only 0.001 W. This, however, comes
at the expense of performance, since a full multiplication between polynomials with 256
coefficients requires 19,471 cycles.

We then report three high-speed implementations. ‘High Speed I’ refers to the cen-
tralized multiplier optimization presented in Section 3.1, where 256 and 512 refer to the
number of coefficient-wise multipliers, while ‘High Speed II’ refers to the DSP-offloaded
optimization described in Section 3.2. The ‘High Speed I - 256’ implementation achieves a
low cycle count while requiring only a moderate area consumption, especially considering
that the LUTs and FFs reported only make up 6.87% and 1.92% of those available in
the Ultrascale+ FPGA. The ‘High Speed I - 512’ and ‘High Speed II’ implementations
achieve virtually the same cycle count, with the slight difference due to the pipelining
inside the DSPs. The lower usage of LUTs in the second implementation is clearly due to
the offloading to the DSP blocks. Note that the proposed optimization targets exclusively
modern FPGAs with 27x18 DSP splices and cannot work on lower-end FPGAs with
smaller DSPs. As future generations of FPGAs are expected to bring larger DSPs, this
optimization might bring even better results on future FPGAs.

5.1 Comparisons with existing low-power implementations
The proposed low-power multiplier is the first dedicated lightweight architecture for Saber.
Thus, comparisons with the previous implementations are not straightforward. The RISQ-
V accelerator [7] proposed an NTT-based hardware co-processor for several post-quantum
algorithms including Saber. It is reported that a single multiplication in hardware takes
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Table 1: Implementation results of several target-specific polynomial multipliers. LW
refers to the lightweight multiplier. HS-I (High Speed I) refers to the centralized multiplier
optimization, with either 256 or 512 MAC units, while HS-II refers to the DSP optimized
multiplier. A7 refers to Artix-7, while U+ refers to Ultrascale+.

FPGA Cycles Clock Freq. LUT FF DSP
(MHz)

LW A7 19,471 100 541 301 0
HS-I 256 U+ 256 250 10,844 5,150 0
HS-I 512 U+ 128 250 22,118 4,920 0
HS-II U+ 131 250 15,625 14,136 128
[5] A7 8,1761 125 2,927 1,279 38
[8] U+ 256 250 13,8692 5,150 0
[8] U+ 128 250 29,1412 4,907 0

71,349 cycles of the RISC-V processor, but without knowing the clock cycles of the processor
and co-processor, it is not possible to obtain the hardware cycle count.

We can also compare the results with SW implementations on lightweight ARM
platforms. [4] reports about 317,000 cycles for a matrix-vector multiplication in Saber. We
can thus estimate a single polynomial multiplication requiring about ∼35,000 cycles. Very
recently, significant improvements have been reported [12] using an NTT-based multiplier
that can work with Saber. The authors report that computing the inner product requires
57,000 cycles, with a clock speed of 24 MHz. Considering the NTT overhead is spread
across multiple computations, the SW implementation can result in shorter computation
times, especially in matrix-vector multiplications. We remark that the proposed lightweight
implementation is a proof-of-concept that demonstrates the feasibility of such a minimal
resource consumption. Indeed, when implemented on a small and low-power Artix-7 FPGA
(XC7A12TLCSG325-2L), our implementation consumes less than 7% of the LUTs, less
than 2% of the flip-flops and minimal power. A similar architecture with twice as many
MAC units can reduce the computation times in half with only a small increase in resource
consumption.

5.2 Comparisons with existing high-speed implementations
The fairest comparison is with the 256 and 512 multiplier implementations of [8], given
the similarities in approaches. Indeed, the cycle count for the corresponding multipliers
is virtually the same, with small differences due to the pipelining in the DSPs. However,
the area consumption of the proposed architecture is noticeably lower while guaranteeing
the same performance levels. The ‘High Speed I - 256’ optimization reduces the LUT
count by 22%, with a comparable flip-flop count. Similarly, we see that the ‘High Speed I -
512’ optimization reduces the LUT count by 24% when compared to the 512 multiplier
implementation of [8]. The proposed DSP-reliant implementation reduces the LUT count
(-46%) while requiring 128 DSP blocks and significantly more FFs. It is also interesting
to compare the ‘High Speed I - 512’ multiplier with the 256-MAC multiplier in [8]. The
former requires only a moderate increase in LUT consumption (27%) but can compute a
full polynomial multiplication in half the time, ignoring memory overhead.

1This value is obtained by multiplying the cycle count reported in section IV.A (1168) by 7, which is
compatible with the cycle count (∼7.7K) obtained by comparing the cycle counts of the optimized and
non-optimized implementations, after accounting for the frequency differences.

2To guarantee a fairer comparison, we re-implemented the open-source code of [8] with the same
software and implementation strategy as those used for the implementation of the proposed architectures.
The reported numbers thus differ from the original paper.



12 Optimized Polynomial Multiplier Architectures for Post-Quantum KEM Saber

Other Saber implementations ([5, 10, 9]) do not report multiplier-specific results.
However, the implementation proposed in [8] offers better area/performance trade-offs than
the implementations reported in [5] and [10], and our high-speed multipliers significantly
improve on the multiplier of [8]. Thus, a complete Saber implementation with any of our
high-speed polynomial multipliers would offer better area/performance trade-offs than
the implementations in [5, 10]. Note that while specific area comparisons are not possible
with [10], our DSP-based multiplier uses half of the DSPs used in [10] and achieves twice
the performance. It would also be interesting to compare the proposed architectures with
the Karatsuba-based multiplier proposed in [9]. Given the overall results, it is expected
that their multiplier can achieve a very low cycle count, while probably requiring a higher
area consumption than our multipliers. However, their multiplier seems to require a much
lower clock frequency (100 MHz vs 250 MHz) and lacks the flexibility as well as the ease
of implementation of our proposed architectures.

6 Conclusion
We proposed two techniques to significantly reduce the area consumption of high-speed
schoolbook-based polynomial multipliers in Saber. Compared to the literature, our
multipliers reduce the LUT consumption by 22 to 46% and can achieve 4 times the
performance for each DSP included. We also proposed the first lightweight polynomial
multiplier for Saber that achieves minimal power consumption and consumes less than 6%
of the LUTs on the smallest FPGA in the Artix-7 family.
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