
Exploiting Data-Usage Statistics for Website
Fingerprinting Attacks on Android

Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Mangard
Graz University of Technology, IAIK, Austria

raphael.spreitzer@iaik.tugraz.at

ABSTRACT
The browsing behavior of a user allows to infer personal
details, such as health status, political interests, sexual ori-
entation, etc. In order to protect this sensitive information
and to cope with possible privacy threats, defense mecha-
nisms like SSH tunnels and anonymity networks (e.g., Tor)
have been established. A known shortcoming of these de-
fenses is that website fingerprinting attacks allow to infer
a user’s browsing behavior based on traffic analysis tech-
niques. However, website fingerprinting typically assumes
access to the client’s network or to a router near the client,
which restricts the applicability of these attacks.

In this work, we show that this rather strong assump-
tion is not required for website fingerprinting attacks. Our
client-side attack overcomes several limitations and assump-
tions of network-based fingerprinting attacks, e.g., network
conditions and traffic noise, disabled browser caches, expen-
sive training phases, etc. Thereby, we eliminate assump-
tions used for academic purposes and present a practical
attack that can be implemented easily and deployed on a
large scale. Eventually, we show that an unprivileged appli-
cation can infer the browsing behavior by exploiting the un-
protected access to the Android data-usage statistics. More
specifically, we are able to infer 97% of 2 500 page visits out
of a set of 500 monitored pages correctly. Even if the traffic
is routed through Tor by using the Orbot proxy in combina-
tion with the Orweb browser, we can infer 95% of 500 page
visits out of a set of 100 monitored pages correctly. Thus, the
READ_HISTORY_BOOKMARKS permission, which is supposed to
protect the browsing behavior, does not provide protection.

Keywords
Mobile security; side-channel attack; website fingerprinting;
data-usage statistics; mobile malware

1. INTRODUCTION
Mobile devices, like smartphones and tablet computers,

are widely employed and represent an integral part of our

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’16, July 18–22, 2016, Darmstadt, Germany.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4270-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2939918.2939922

everyday life. Due to this tight integration, these devices
store and process sensitive information. In order to protect
this data as well as the users’ privacy, appropriate mech-
anisms must be implemented. For instance, the Android
operating system relies on two fundamental security con-
cepts, namely the concept of sandboxed applications and a
permission system. Sandboxing is ensured by the underlying
Linux kernel by assigning each application a unique user ID
(UID). This means that an application’s resources can only
be accessed by this application itself, whereas applications
running in parallel on the same device do not gain direct
access to other applications. The permission system ensures
that applications must explicitly request specific permissions
for dedicated resources, for example, access to the GPS sen-
sor or the Camera, which might harm the users’ privacy.

Although Android relies on the two concepts of sandbox-
ing and permissions, applications running in parallel on the
same device are still able to gain information about other
applications by exploiting shared resources. Examples are
the list of installed applications, the memory footprint of
applications, the data-usage statistics, and also the speaker
status (speaker on/off). Even though this information seems
to be innocuous, sensitive information can be inferred as has
been demonstrated by Jana and Shmatikov [22] and Zhou et
al. [44]. Studies like these do not exploit specific vulnerabil-
ities of applications but investigate and demonstrate weak-
nesses of fundamental security concepts on mobile devices.
In order to advance the field of mobile security and to pro-
tect the user’s privacy, a thorough understanding regarding
the limitations of fundamental security concepts is required.

In this work, we study the information leakage of the pub-
licly available data-usage statistics on Android. More specif-
ically, Android-based smartphones track the amount of in-
coming/outgoing network traffic on a per-application basis.
This information is used by data-usage monitoring applica-
tions to inform users about the traffic consumption. How-
ever, while this feature might be helpful to stick to one’s
data plan and to identify excessive data consumptions of
applications, we show that this seemingly innocuous infor-
mation allows to infer a user’s visited websites. Thereby, we
demonstrate that the READ_HISTORY_BOOKMARKS permission,
which is intended to protect this sensitive information, is
actually useless as any application without any permission
at all is able to infer visited websites rather accurately.

The exploitation of observed “traffic information” to infer
visited websites is known as website fingerprinting [21, 37].
Thereby, an attacker aims to match observed “traffic infor-
mation” to a previously established mapping of websites and

1

their corresponding “traffic information”. Most of the inves-
tigations in this area of research consider an attacker who
sniffs the traffic information “on the wire”. This means that
the attacker needs to be located on the client’s network or
on the ISP’s router near the client. However, as Android
allows an attacker to capture the required data directly on
the smartphone without any permission, we show that an
attacker is not required to be located somewhere on the vic-
tim’s network. Hence, the rather strong assumption of a
network-based attacker is not required for website finger-
printing attacks. Furthermore, our attack is invariant to
traffic noise of other applications—one of the major draw-
backs of network-based attacks—as Android captures these
statistics on a per-application basis. Compared to existing
website fingerprinting attacks, we significantly reduce the
computational complexity of classifying websites as we do
not require a dedicated training phase, which sometimes re-
quires several hundred CPU hours [38,39]. Instead, we rely
on a simple yet efficient classifier.

Based on our observations, we developed a proof-of-concept
application that captures the data-usage statistics of the
browser application. With the acquired information in a
closed-world setting of 500 monitored websites of interest,
we are able to classify 97% of 2 500 visits to these pages cor-
rectly. The fact that not even Tor on Android (the Orbot1

proxy in combination with the Orweb2 browser) is able to
protect the user’s page visits clearly demonstrates the rather
delicate issue of this fundamental design flaw.

1.1 Further Security Implications
We stress that the presented attack can be combined with

related studies to obtain even more sophisticated attack sce-
narios. For instance, sensors employed in mobile devices—
including the accelerometer, the gyroscope, and also the
ambient-light sensor—have been shown to be exploitable in
order to infer the user’s keyboard inputs without any per-
mission (cf. [1, 3, 31, 34, 36, 41]). In combination with such
sensor-based keyloggers, our attack would allow an adver-
sary to determine when a user visits a specific website and
to gather login credentials for specific websites. Such an
attack does not only endanger the users’ privacy but also
allows for large-scale identity theft attacks. Thus, OS de-
velopers need to deal with this problem in order to prevent
users from such severe privacy threats and identity thefts.

1.2 Contribution
The contributions of this work are as follows. First, we

investigate the information leakage through the data-usage
statistics published by the Android OS. Based on this in-
vestigation, we provide an adversary model for a realistic
attack scenario that allows for large-scale attacks against
the browsing behavior of smartphone users. Furthermore,
we discuss how to capture the required information and we
show how to infer the browsing behavior with a high ac-
curacy, including a setting where traffic is routed through
the anonymity network Tor. We compare our results with
existing fingerprinting attacks and show that our attack (1)
outperforms these attacks in terms of accuracy, (2) can be
deployed significantly easier than existing attacks, and (3) is
more efficient in terms of computational complexity. Hence,
our attack can be easily deployed on a large scale.

1https://guardianproject.info/apps/orbot
2https://guardianproject.info/apps/orweb

1.3 Outline
The remainder of this paper is organized as follows. In

Section 2, we introduce website fingerprinting and related
work. In Section 3, we discuss the feature of data-usage
statistics captured by the Android OS and how this informa-
tion relates to the actual transmitted TCP packets. Based
on these observations, we outline the adversary model and
possible attack scenarios in Section 4 and we discuss our cho-
sen attack approach in Section 5. We extensively evaluate
the results in Section 6 and discuss possible countermeasures
in Section 7. Finally, we conclude this work in Section 8.

2. BACKGROUND AND RELATED WORK
Website fingerprinting can be considered as a supervised

machine-learning problem, namely a classification problem.
The idea is to capture the “traffic signature” for specific
websites—which are known to the attacker—during a train-
ing phase. The “traffic signature” consists of specifically
chosen features like unique packet lengths, packet length fre-
quencies, packet ordering, inter-packet timings, etc. In or-
der to capture this information, the attacker loads different
websites and observes the resulting“traffic signature”, which
is usually done somewhere on the network. During the at-
tack phase, an observed “traffic signature” can be classified
according to the previously trained classifier.

Most related work in the context of website fingerprint-
ing attacks operate in the closed-world setting. In contrast
to the open-world setting, the closed-world setting assumes
that the victim only visits a specific set of monitored web-
sites. Furthermore, most fingerprinting attacks assume a
passive attacker, although studies considering an active at-
tacker also exist [19]. In contrast to passive attackers, active
attackers can influence the transmitted packets, e.g., by de-
laying specific packets. Thus, active attacks rely on stronger
assumptions of the attacker’s capabilities.

Subsequently, we summarize related work according to the
exploited information and how this information is gathered.
We start with attacks that require access to the victim’s
network trace or to the ISP’s router near the victim. After-
wards, we continue with remote adversaries and finally we
discuss the exploitation of shared resources on the victim’s
device, which is the category of attacks our work belongs to.

2.1 On the Wire
Back in 2002, Hintz [21] mentioned that encrypted traffic

does not prevent an adversary from inferring a user’s vis-
ited website. In fact, the simple observation of the amount
of transferred data—which is not protected by means of
SSL/TLS (cf. [30])—allows an adversary to infer the vis-
ited website. Similarly, Sun et al. [37] mentioned that the
observation of the total number of objects and their corre-
sponding lengths can be used to identify websites, even if
the content itself is encrypted.

While early studies [21,37] exploited the actual size of web
objects, a more recent study [27] focused on the exploitation
of individual packet sizes. Such fingerprinting attacks have
been demonstrated to work against the anonymity network
Tor [6, 35, 39] and also against WEP/WPA encrypted com-
munication as well as IPsec and SSH tunnels [2, 28]. Re-
cently, also evaluations of different attacks and countermea-
sures under different assumptions have been done [5, 24].

Instead of inferring specific websites, Chen et al. [7] ex-
tracted illnesses and medications by observing the sequence

2

of packet sizes. Similarly, Conti et al. [8] inferred a user’s
interaction with specific Android applications, e.g., Gmail,
Twitter, and Facebook, based on the transmitted packets. In
order to eavesdrop on the transmitted packets, they routed
the network traffic through their specifically prepared server.

2.2 Remote
Timing attacks on the browser cache [14, 26] can be used

to infer whether or not a user visited a specific website be-
fore. More specifically, by measuring the loading time of
a specific resource, an attacker can determine whether it
was served from the browser’s cache or not. Similarly, CSS
styles of visited URLs can be used to determine the brows-
ing behavior [23]. Gong et al. [15, 16] even demonstrated
that fingerprinting can be done remotely when given the
victim’s IP address. Therefore, the attacker sends ping re-
quests to the user’s router and computes the round-trip time,
which correlates with the victim’s HTTP traffic. Another re-
mote exploitation has been demonstrated by Oren et al. [33],
who showed that JavaScript timers can be used to distin-
guish between memory accesses to the CPU cache and the
main memory, which allows for so-called cache attacks via
JavaScript. Based on these precise JavaScript timers, they
were able infer page visits to a set of 8 websites. Similarly,
Gruss et al. [17] exploited so-called page-deduplication at-
tacks to infer page visits to a set of 10 websites.

2.3 Local
In 2009, Zhang and Wang [42] exploited the /proc file

system to infer inter-keystroke timings and argued that the
privacy risks of the /proc file system need to be investi-
gated further. This has been done, for instance, by Jana
and Shmatikov [22] who demonstrated the possibility to fin-
gerprint websites based on the browser’s memory footprint,
which is available via the /proc file system. In addition,
Zhou et al. [44] demonstrated that the data-usage statistics
of Android applications can be used to infer the user’s ac-
tivities within three Android applications, namely Twitter,
WebMD, and Yahoo! Finance. Later, Zhang et al. [43] ex-
ploited the data-usage statistics of an Android-based Wi-Fi
camera to determine when the user’s home is empty.

Even though Zhou et al. [44] and Zhang et al. [43] started
the investigation of the information leakage through the
data-usage statistics on Android devices for specific applica-
tions, a detailed study regarding the applicability of this
information leakage to infer websites has not been done
yet. Compared to the work of Jana and Shmatikov [22]
who exploit the memory footprint of the browser application
for website fingerprinting attacks, we demonstrate a signif-
icantly more accurate attack by exploiting the data-usage
statistics.

3. ANDROID DATA-USAGE STATISTICS
Android keeps track of the data usage in order to allow

users to stick to their data plan. This accounting informa-
tion is available through the public API as well as through
the /proc file system. More specifically, the TrafficStats

API as well as /proc/uid_stat/[UID]/{tcp_rcv|tcp_snd}

provide detailed information about the network traffic statis-
tics on a per-UID basis. Since every Android application is
assigned a unique UID, these traffic statistics are gathered
on a per-application level. In order to observe the data-usage
statistics of an application, e.g., the browser, the correspond-

0 5 10 15
−2000

0

2000

4000

6000

8000

10000

TCP packet sequence

T
ra

ff
ic

 a
c
c
o

rd
in

g
 t

o
 T

C
P

 p
a

c
k
e

ts
 [

b
y
te

]

1448

1448

1417

1448

1448

1448 71

366
364

Outgoing traffic on server

Incoming traffic on server

0 10 20
−2000

0

2000

4000

6000

8000

10000

TCP packet sequence

T
ra

ff
ic

 a
c
c
o

rd
in

g
 t

o
 d

a
ta

−
u

s
a

g
e

 s
ta

ti
s
ti
c
s
 [

b
y
te

]

1448

1448

1417

1448

1448

1519

366
364

tcp_rcv on smartphone

tcp_snd on smartphone

Figure 1: TCP packet lengths according to tcpdump

and data-usage statistics on the smartphone.

ing UID is required. This information can be retrieved via
the ActivityManager API for all running processes.

Subsequently, we investigate the information leakage of
the data-usage statistics in more detail. We study the infor-
mation leakage for browser applications considering a stan-
dard setting and in case the traffic is routed through the Tor
network. Furthermore, we also investigate the information
leakage depending on the network connection. Finally, we
discuss our observations regarding the API support for the
data-usage statistics and we discuss a mechanism to circum-
vent the REAL_GET_TASKS permission, which is required on
Android Lollipop to retrieve the list of running applications.

3.1 Usage Statistics in a Controlled Scenario
For a first experiment, we set up a local server hosting

a website and we launched tcpdump to dump all incoming
and outgoing TCP packets on this server. Furthermore, we
launched the browser application on one of our test devices
(a Samsung Galaxy SIII) and retrieved its UID. We nav-
igated to the website hosted on our server and monitored
tcp_snd and tcp_rcv for a period of ten seconds with a
sampling frequency of 50 Hz.

Figure 1 illustrates the accumulated TCP packet lengths
(left) and the data-usage statistics on the Android smart-
phone (right). We indicate the outgoing traffic on our server
as well as the incoming traffic on the smartphone above the
x-axis. Similarly, we indicate the incoming traffic on our
server as well as the outgoing traffic on the smartphone be-
low the x-axis. For the sake of readability, we removed mea-
surement samples where the traffic statistics did not change,
i.e., we removed consecutive samples where the tcp_rcv and
tcp_snd values did not change. Furthermore, we labeled
each TCP packet with the corresponding packet length in
both plots. The left plot shows the generated TCP packets
according to our website. The first three outgoing pack-
ets (1448, 1448, 1417) correspond to the HTML page itself
and the following packets (1448, 1448, 1448, 71) correspond
to the retrieval of the embedded image. Interestingly, the
data-usage statistics on the Android smartphone (right) cor-
responds to these TCP packet lengths, except for the last
two packets (1448, 71), which are observed as one “large”
packet (1519=1448+71) instead of two separate packets.

3

The same observation also holds for the incoming traffic
on the server and the outgoing traffic on the smartphone,
which are indicated below the x-axis. The corresponding
TCP packet lengths can be observed in the outgoing data-
usage statistics (366, 364).

The plots in Figure 1 illustrate the observed TCP packet
lengths when loading the website for the first time, i.e., with-
out any data being cached. When visiting the website for
the second time, the traffic signature slightly changes. More
specifically, the second part of the packet sequence (1448,
1448, 1448, 71) is missing as the embedded image is not re-
quested anymore. However, some packet lengths remain the
same, regardless of whether the website is cached or not.

Sampling Frequency. Zhou et al. [44] reported to be
able to observe single TCP packet lengths with a sampling
frequency of 10 Hz most of the time. We performed ex-
periments with higher sampling frequencies but also ob-
served the aggregation of multiple TCP packet lengths as
one“larger”packet from time to time. A more detailed inves-
tigation of specific browser implementations—which is be-
yond the scope of this paper—might reveal further insights
regarding the missed TCP packet lengths and might allow
to pick up every single TCP packet properly. Nevertheless,
even with some TCP packet lengths being accumulated into
one observation, we can successfully exploit this side channel
with a sampling frequency between 20 Hz and 50 Hz.

3.2 Usage Statistics for Real Websites
In order to investigate the information leakage for real

websites, we developed an application that performs the fol-
lowing actions. First, we launch the browser and retrieve its
UID. Then, we load three different websites (google.com,
facebook.com, and youtube.com) and monitor tcp_snd and
tcp_rcv for a period of ten seconds. The resulting plots
can be seen in Figure 2. According to the notion of Jana
and Shmatikov [22], these measurements are stable, meaning
that these observations are similar across visits to the same
page, and also diverse, meaning that these observations are
dissimilar for visits to different pages. Hence, this plot con-
firms our previous observation that the data-usage statistics
can be used to distinguish websites. A similar plot can be
obtained from the tcp_snd file, i.e., the outbound network
traffic, but has been omitted due to reasons of brevity.

3.3 Usage Statistics in the Tor Setting
Background on Tor. Before we investigate the informa-

tion leakage of the data-usage statistics in case the network
traffic is routed through the Tor network, we start with some
background information on Tor. The major design goal of
Tor [10] is “to frustrate attackers from linking communica-
tion partners” by considering an attacker who can, for in-
stance, observe the network traffic. Therefore, a user runs
a so-called onion proxy that is responsible for handling con-
nections from user applications (e.g., the browser), fetching
directories (e.g., known onion routers), and establishing cir-
cuits (paths) through the network. Such circuits consist of
multiple onion routers—which are connected by means of
a TLS connection—and are updated periodically. However,
establishing such circuits is a costly action that takes some
time, which is why multiple TCP streams share one circuit.
The onion proxy accepts TCP streams from user applica-
tions (browsers) and forwards the data in fixed-size cells (512
bytes) through the TLS connection to the Tor network.

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

5

Packet sequence

D
a

ta
−

u
s
a

g
e

 s
ta

ti
s
ti
c
s
 [

b
y
te

]

google.com

facebook.com

youtube.com

Figure 2: Data-usage statistics for the inbound traf-
fic of three samples per website.

Information Leakage. In order to investigate the infor-
mation leakage for traffic routed through the Tor network,
we installed the Orweb browser and the corresponding Or-
bot proxy. The Orweb browser represents the user applica-
tion and the Orbot proxy represents the onion proxy that
handles connections from the Orweb browser and forwards
the data to the Tor network. Since websites take longer
to load, we increased the time for sampling the data-usage
statistics to 20 seconds. As Tor on Android relies on two
different applications, i.e., the Orweb browser and the Or-
bot proxy, we investigated the information leakage for both
applications. While the Orweb browser communicates with
the Orbot proxy only, the Orbot proxy communicates with
the browser as well as the Tor network. Thus, the data-usage
statistics for the Orbot proxy are slightly higher. However,
both applications revealed the exact same behavior, i.e., the
data-usage statistics yield stable and diverse plots, which
can be exploited for website fingerprinting attacks. We also
installed Firefox 42.0 and configured it to use the Orbot
proxy. Repeating the experiment yields the same result,
i.e., the data-usage statistics gathered for Firefox allow us
to perform website-fingerprinting attacks even if Firefox is
configured to route the network traffic through the Tor net-
work. We stress that this is not a vulnerability of Tor or any
browser but a fundamental weakness of the Android OS.

Even though data is sent through the Tor network in fixed-
size cells (512 bytes), the data-usage statistics leak enough
information to perform website fingerprinting attacks. We
do not even need to extract complex features as in case of
network-based fingerprinting attacks. Instead, the simple
yet efficient observation of the data-usage statistics allows us
to infer the user’s visited websites as if the browser accesses
the website directly (cf. Section 3.2).

3.4 Usage Statistics for Mobile Connections
The above performed experiments have been carried out

with WLAN connections. For the sake of completeness, we
also performed experiments with mobile data connections to
be sure that we observe the same information leakage when
the device is connected, e.g., via the 3G wireless network.
The results confirmed our initial observations regarding the
data-usage statistics also for mobile connections.

4

Table 1: Test devices and configurations
Device OS Browser/Orbot

Acer Iconia A510 Android 4.1.2 Chrome 44.0
Alcatel One Touch Pop 2 Android 4.4.4 Browser 4.4.4 (default browser)
Nexus 9 Android 5.1.1 Chrome 40.0
Samsung Galaxy SII Android 2.3.4 Internet 2.3.4 (default browser)
Samsung Galaxy SII Android 2.3.4 Orweb 0.7 and Orbot 13.0.4a
Samsung Galaxy SII Android 2.3.4 Firefox 42.0 and Orbot 13.0.4a
Samsung Galaxy SIII Android 4.3 Internet 4.3 (default browser)

3.5 API and /proc Support
Table 1 summarizes our test devices and their correspond-

ing configurations. On most of these devices, we accessed
the corresponding files within the /proc file system to re-
trieve the data-usage statistics. However, on the Alcatel
One Touch Pop 2, the uid_stat file does not exist within the
/proc file system, yet the TrafficStats API returned the
accumulated bytes received (getUidRxBytes([uid])) and
transmitted (getUidTxBytes([uid])) for a given UID. Sim-
ilarly, on the Samsung Galaxy SIII, we always retrieved 0
when querying the TrafficStats API, but still we were able
to read the data-usage statistics from the /proc file system.

To summarize our investigations, on some devices an at-
tacker needs to rely on the /proc file system, while on others
the attacker needs to rely on the TrafficStats API. How-
ever, all test devices showed the same information leakage
through the data-usage statistics.

REAL GET TASKS Permission in Lollipop. Since
Android Lollipop (5.0), the REAL_GET_TASKS permission is
required to retrieve all running applications via Activi-

tyManager.getRunningAppProcesses(). However, one can
bypass this permission by retrieving a list of installed appli-
cations via PackageManager.getInstalledApplications().
The returned information also contains the UID for each
of the installed applications. Now, instead of waiting for
the browser application to show up in the list returned via
getRunningAppProcesses(), the malicious application can
also wait for the tcp_rcv file to be created, which indicates
that the application with the given UID has been started.
Another alternative to retrieve all running applications is the
unprivileged ps command. Thus, even on Android Lollipop,
our malicious service can be implemented without any sus-
picious permission and is still able to wait in the background
for the browser application to start.

4. ADVERSARY MODEL AND SCENARIO
Traditional website fingerprinting attacks consider a net-

work attacker who is located somewhere on the victim’s net-
work. As illustrated in Figure 3, the adversary observes the
encrypted communication between a client and a proxy (or
similarly the encrypted communication between the client
and the Tor network). In contrast, we consider an attacker
who managed to spread a malicious application through a
popular app market like Google Play or the Amazon App-
store. The malicious application running in unprivileged
mode represents a passive attacker that observes the incom-
ing and outgoing traffic statistics for any target application,
e.g., the browser. Figure 4 illustrates this attack scenario for
traffic routed through the Tor network. In this case, the user
browses the web with the Browser application (e.g., Orweb)
and the traffic is routed through the Tor network by means
of a dedicated Proxy (e.g., Orbot). However, our attack

Figure 3: Traditional website fingerprinting attack
considering a network attacker.

Figure 4: Client-side website fingerprinting attack
exploiting side-channel information.

works analogously in case the browser connects to websites
directly. Furthermore, our attack also works against the
Proxy application, as has been discussed in Section 3.3.

According to the notion of Diaz et al. [9], our attacker is
passive as it cannot add, drop or change packets. However,
this also means that our attacker is lightweight in terms of
resource usage as it runs in the background and waits for the
browser application to start. Below we describe two possible
attack scenarios, one where the training data is gathered on
dedicated devices and another one where the attack applica-
tion gathers the training data directly on the device under
attack. Note that the INTERNET permission is not required
at all due the following reasons. Since Android Marshmal-
low (6.0), the INTERNET permission is granted automatically3

and below Android 6.0, ACTION_VIEW4 Intents can be used to
access the Internet via the browser without this permission.

Since the application neither requires any suspicious per-
mission nor exploits specific vulnerabilities except accesses
to publicly readable files and the Android API, the sanity
checks performed by app markets (e.g., Google Bouncer) will
not detect any malicious behavior. Thus, the application can
be spread easily via available app markets. Based on the pre-
sented adversary model and the low effort to spread such a
malicious application, there is a significantly higher attack
potential than in previous fingerprinting attacks. Further-
more, as discussed in Section 1.1, an attacker could combine
website fingerprinting attacks with sensor-based keyloggers
to launch large-scale identity theft attacks.

3http://developer.android.com/guide/topics/
security/normal-permissions.html

4http://www.leviathansecurity.com/blog/
zero-permission-android-applications

5

4.1 Possible Attack Scenarios
In order to exploit the information leakage, we consider

two different attack scenarios.
Scenario 1. For this scenario we assume that the ma-

licious application does not capture the required training
data on the device itself. Instead, a more powerful adver-
sary gathers the training data on specifically deployed de-
vices. The application only waits for the browser to start,
gathers the traffic information, and sends the gathered data
to the remote server that infers the visited websites. In order
to match the device name of the attacked device with the
training devices, the android.os.Build API can be used.

Scenario 2. For this scenario we assume that the mali-
cious application captures the required training data directly
on the device. Therefore, it triggers the browser to load a
list of websites, one after each other, via the ACTION_VIEW

Intent. While the browser loads the website, the malicious
application captures the traffic statistics from tcp_rcv and
tcp_snd, which then acts as training data. After collect-
ing the required training data, the application waits in the
background until the unsuspecting user opens the browser
and starts browsing the web. Then, the application gathers
the traffic statistics from tcp_rcv and tcp_snd again, and
matches the collected information against the previously es-
tablished training data to infer the visited websites.

A technicality that needs to be solved in case of scenario
2 is that users should not notice the gathering of the train-
ing data. For that purpose, we note that Zhou et al. [44]
demonstrated the possibility to (1) wait for the screen to dim
before launching the browser, and (2) to close the browser
after loading the website. Thereby, the user does not ob-
serve any suspicious behavior, even though the application
launches the browser application in the foreground. How-
ever, the main drawback of this approach is that the device
might switch to sleep mode and pause all activities, which
means that gathering the training data takes some time.

4.2 Assumptions
According to Wang et al. [38], existing fingerprinting at-

tacks rely on two assumptions. We briefly summarize these
assumptions and argue why our attack approach is more
realistic than existing fingerprinting attacks.
1. The attacker knows the start and the end of a packet trace.

This assumption is based on the observation that users
take some time to load the next webpage. We justify
this assumption by arguing that we are able to determine
when the browser starts. Thus, we are able to observe the
first trace. Afterwards, we assume that the user takes
some time to load the next page.

2. The client does not perform any other activity that can
be confused with page-loading activities, for example, a
file download. Hayes and Danezis [18] pointed out that it
is highly unlikely that an attacker will be able to gather
traffic information without background traffic, which lim-
its the applicability of existing website fingerprinting at-
tacks. However, Android captures the data-usage statis-
tics on a per-application basis and, thus, our approach is
invariant to network activities of other applications. For
instance, our attack also works in case an e-Mail app,
WhatsApp, or any other app fetches updates in the back-
ground while the user browses the web. In contrast, it is
highly unlikely that the network traffic on the wire does
not contain any background traffic.

Another thing that needs to be clarified is the browser’s
caching behavior. For our experiments, we do not clean
the cache before loading a page as we assume that adver-
saries might be interested in identifying frequently visited
websites of a user. If users frequently visit specific websites,
then these sites are most probably already cached. Still, spe-
cific parts of the TCP packets are equal between cached and
non-cached pages, as has been discussed in Section 3.1. Our
experiments with the Orweb browser use the default set-
tings, meaning that caching of websites is disabled. Thus,
we provide insights for both settings of the caching behavior.

5. ATTACK DESCRIPTION
Based on the presented adversary model and attack sce-

narios, we now describe the attack in more detail. First,
we discuss how to gather the required traffic statistics for
a set of monitored websites. Afterwards, we describe the
employed classifier to infer the visited websites.

5.1 Gathering Traffic Signatures
The list of monitored websites might, for example, be cho-

sen according to specific interests like political interests, sex-
ual orientation, illnesses, or websites that are supposed to
be blocked. For our evaluation, we decided to use popular
websites among different categories according to alexa.com.
The fact that Tor browsers, e.g., Orweb, do not cache pages,
leads to the realistic scenario that an adversary wants to
monitor landing pages (cf. [18]). Thus, we consider our cho-
sen setting for the evaluation as being realistic.

Algorithm 1 summarizes the basic steps to establish the
required training data denoted as traffic signature database
T . The algorithm is given a list of monitored websites W ,
the desired number of samples per website n, a profiling time
τ , and a sampling frequency f . For each website wi ∈W , the
algorithm loads this website within the browser. While the
browser application loads the website wi, we gather the data-
usage statistics f times per second for a period of τ seconds.
Each tuple (wi, ti), which is denoted as one sample for a
specific website wi, is added to T . These steps are repeated
until n samples have been gathered for each website. Finally,
the algorithm returns the traffic signature database T .

Algorithm 1: Gathering training samples.

Input: List of monitored websites W , number of
samples per website n, profiling time τ ,
sampling frequency f

Output: Traffic signature database T

Launch browser application and retrieve its UID
repeat n times

foreach website wi in W do
simultaneously
Launch website wi in browser
while profiling time τ not passed do

f times per second
read tcp_rcv and append to tIN
read tcp_snd and append to tOUT

end
ti ← {tIN , tOUT }
Add tuple (wi, ti) to T

end

end

6

5.2 Classification
The traffic signature database T requires only minor pre-

processing before the actual classification. More specifically,
we removed samples of websites that did not load, i.e., we
removed tuples (wi, ti) from T where all entries in ti are 0.
Furthermore, if n − 1 samples for a specific website are re-
moved, we remove the remaining sample as well. We justify
this as follows. If this single remaining sample of a specific
website is used for training, then it cannot be used for eval-
uation purposes. Similarly, if we do not have a single sample
for training, then this site will never be classified correctly.

We use the Jaccard index as a metric to determine the
similarity between two websites. In case of our measure-
ment samples, the Jaccard index as defined in Equation 1
compares two traces t1 and t2 based on unique and distin-
guishable packet lengths.

Jaccard(t1, t2) =
|t1 ∩ t2|
|t1 ∪ t2|

(1)

We consider the traces of the inbound and outbound traf-
fic separately. Hence, our classifier aims to find the maxi-
mum similarity for a given trace tA = {tINA , tOUTA} com-
pared to all traces ti = {tINi , tOUT i} within the previously
established traffic signature database T . We illustrate this
similarity measure in Equation 2.

Sim(tA = {tINA , tOUTA}, ti = {tINi , tOUT i}) =

Jaccard(tINA , tINi) + Jaccard(tOUTA , tOUT i)
(2)

Based on this similarity metric, we implemented our clas-
sifier as outlined in Algorithm 2. The algorithm is given a
list of monitored websites W , a traffic signature database T ,
and the signature t to be classified. As T contains multiple
samples (wi, ti) for one website, we compute the similarity
of t with all these traffic signatures tj with 1 ≤ j ≤ n corre-
sponding to a specific website wi. Afterwards, we compute
the average similarity with all these traces for this specific
website wi. Finally, we return the website wi with the high-
est average similarity si compared to the given trace t.

Algorithm 2: Classification algorithm.

Input: List of monitored websites W , traffic signature
database T , traffic signature t

Output: Website w

foreach website wi in W do
Retrieve all samples (wi, t1), . . . , (wi, tn) ∈ T
si = avg(Sim(t1, t), . . . , Sim(tn, t))
Add tuple (wi, si) to S

end
Return (wi, si) ∈ S, s.t. si is maximized

Compared to network-based fingerprinting attacks, our at-
tack relies on a simple yet efficient classifier. We do not
need a dedicated training phase that requires several hun-
dred CPU hours for some network-based fingerprinting at-
tacks (cf. [38, 39]). Still, the testing time of our classifier
is comparable to existing fingerprinting attacks and yields
highly accurate results as will be discussed in Section 6.5.

6. EVALUATION AND RESULTS
We now evaluate the classification rate for a standard

browser application and continue with a setting where the

am
az

on
.c
om

bi
ng

.c
om

cr
ai
gs

lis
t.o

rg

eb
ay

.c
om

fa
ce

bo
ok

.c
om

go
og

le
.c
om

im
gu

r.c
om

lin
ke

di
n.

co
m

liv
e.

co
m

ne
tfl
ix
.c
om

re
dd

it.
co

m

tw
itt
er

.c
om

w
ik
ip
ed

ia
.o

rg

ya
ho

o.
co

m

yo
ut

ub
e.

co
m

amazon.com
bing.com

craigslist.org
ebay.com

facebook.com
google.com
imgur.com

linkedin.com
live.com

netflix.com
reddit.com
twitter.com

wikipedia.org
yahoo.com

youtube.com
0

0.2

0.4

0.6

0.8

1

Figure 5: Confusion matrix for the 15 most popular
websites in the US.

Table 2: Google websites that have been merged

google.co.in google.co.jp google.de
google.co.uk google.com.br google.fr
google.ru google.it google.es
google.ca google.com.mx google.com.hk
google.com.tr google.co.id google.pl
google.com.au google.co.kr googleadservices.com

traffic is routed through the Tor network. We also investi-
gate how the classification rate decreases over time and we
evaluate the scalability of our attack for larger sets of mon-
itored websites. Finally, we compare our results to related
work. All experiments in this section have been performed
with data-usage statistics captured via WLAN connections.

6.1 Intra-Day Classification Rate
For our first experiment, we took the 15 most popular

websites in the US according to alexa.com and we gathered
n = 5 samples for each of these websites to establish the
signature database T . In order to estimate the performance
of our classifier, we performed a leave-one-out cross valida-
tion. Thus, for each sample (wi, ti) ∈ T , we removed this
sample (one at a time) from the traffic signature database
T , and called the classification algorithm (Algorithm 2) with
the traffic signature database T \ (wi, ti) and the traffic sig-
nature ti to be classified.

Figure 5 illustrates the resulting confusion matrix. We
indicate the ground truth along the y-axis and the inferred
website along the x-axis. Since each of the five page visits
to each of these 15 websites has been classified correctly,
we achieve a classification rate of 100%. More specifically,
each sample (wi, ti) has been classified correctly considering
the traffic signature database T \ (wi, ti) for training the
classifier.

If we have a look at the 100 most popular websites glob-
ally, then we observe a classification rate of 89% for a total
of 500 page visits. After further investigations of the result-
ing confusion matrix, we noticed that several misclassifica-
tions occur because google*.* pages have been misclassi-
fied among each other. For example, google.es has been
misclassified as either google.fr, google.it, or google.pl.
Nevertheless, we do not aim for a detailed classification of
different Google domains and, hence, we merged all websites
as shown in Table 2 to be classified as google.com.

7

20 40 60 80

10

20

30

40

50

60

70

80

90

0

0.2

0.4

0.6

0.8

1

Figure 6: Confusion matrix for the 100 most popular
websites globally with google*.* pages merged.

Performing the classification again, we achieve a classifi-
cation rate of 98% for these 500 page visits. The correspond-
ing confusion matrix can be seen in Figure 6. Merging these
Google websites leads to a total of 9 misclassified websites
among these 500 page visits, with mail.ru at index 36 being
the most commonly misclassified website (4 times).

6.2 Classification Rate for Tor
We also evaluated our attack for traffic routed through

Tor. Therefore, we gathered n = 5 samples for the top 100
websites in the US by capturing the data-usage statistics of
the Orweb browser, but we used a profiling time of 20 sec-
onds as websites accessed via Tor take more time to load.
Again, we performed a leave-one-out cross validation result-
ing in a classification rate of 95% for these 500 page visits.

If we instruct the classifier to return a set of k possible
websites, which are sorted according to their probability for
being the correct one, then the success rate steadily increases
with the number of websites k taken into consideration. As
can be seen in Figure 7, taking the two most probable web-
sites (k = 2) into consideration, we achieve a classification
rate of 97% and taking the three most probable websites
(k = 3) into consideration yields a classification rate of 98%.
Similar classification rates can be observed for the standard
Android browser where the traffic is not routed through Tor.
Although the standard browser yields slightly better clas-
sification rates, we did not observe significant differences
between the classification rates when accessing websites di-
rectly and when accessing websites via Tor.

Security Implications. Even though browsers (e.g., Or-
web or “private/incognito”modes) do not store the browsing
history and the network traffic is protected against specific
attacks while being routed through the Tor network, an un-
privileged application can infer the user’s browsing behavior
for monitored websites. Thus, the READ_HISTORY_BOOKMARKS
permission does not protect the user’s privacy and even rout-
ing the network traffic through Tor provides a false sense
of privacy for Android users. Furthermore, given the fact
that Orweb disables JavaScript and Flash by default, users
do not use Orweb to access sites that heavily rely on these
techniques. Hence, attackers explicitly targeting Tor users
can significantly reduce the set of monitored websites, which
increases the success rate. However, we do not blame the
browsers for these security implications but the Android OS.

1 2 4 6 8 10
0.95

0.96

0.97

0.98

0.99

1

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

k

Standard browser

Orweb browser

Figure 7: Classification rates considering the k most
probable websites returned from the classifier.

0 1 2 3 4 5 6 7
0.8

0.85

0.9

0.95

1

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

Days between gathering training data and test data (∆)

Figure 8: Decreasing accuracy for samples captured
∆ days after the training data.

6.3 Inter-Day Classification Rate
We also performed experiments with an outdated training

set. In order to do so, we used Orweb to collect measurement
samples for the top 100 websites in the US a few days af-
ter gathering the training data. The evaluation in Figure 8
shows that the accuracy decreases rather slowly. For test
data that has been gathered on the same day as the train-
ing data (∆ = 0), 95% of all page visits can be inferred.
Using the same data to classify 500 page visits captured two
days later (∆ = 2) still yields a classification accuracy of
93%. Testing measurement samples captured after five days
(∆ = 5) yields a classification accuracy of 91%. Even data
gathered one week later (∆ = 7) achieves a classification
rate of 85%. Hence, even slightly outdated training data
allows to infer websites accurately.

This slowly decreasing classification rate allows an ad-
versary to keep the traffic signature database T for some
time, meaning that the adversary does not need to update
the database for the monitored websites on a daily basis.
Thereby, the attacker’s effort and workload can be reduced
significantly, which leads to more practical attacks. Further-
more, this also indicates that the training samples can be
gathered after the actual attack samples, which represents
another advantage for the attacker (cf. [27]).

8

Table 3: Websites with the highest number of mis-
classifications in the inter-day setting

∆ Website # misclassifications

2 days ask.com 5 times
2 days twitch.tv 5 times
2 days cnn.com 3 times

5 days bbc.com 5 times
5 days indeed.com 5 times
5 days nytimes.com 5 times
5 days twitch.tv 5 times
5 days espn.go.com 4 times

6 days bbc.com 5 times
6 days indeed.com 5 times
6 days nytimes.com 5 times
6 days twitch.tv 5 times
6 days espn.go.com 4 times

7 days bbc.com 5 times
7 days bleacherreport.com 5 times
7 days indeed.com 5 times
7 days nytimes.com 5 times
7 days twitch.tv 5 times
7 days xfinity.com 5 times
7 days homedepot.com 4 times

Table 3 shows the worst websites (according to their clas-
sification accuracy) in case the attack samples are captured
∆ days after the training data. As news sites tend to change
frequently, it is not surprising that the classification rate de-
creases for such websites. Based on this observation, an at-
tacker can selectively rebuild the training set for frequently
changing websites like news portals, while the training data
for more static websites can be kept for a longer period.

We point out that we did not employ any measures to
ensure that we exit Tor with a specific country IP. Instead,
every time we gathered new test samples, we reconnected to
the Tor network by restarting the Orbot proxy. Neverthe-
less, the classification rates indicate a high success rate even
with a training set that is not completely up to date.

6.4 Scalability for Larger World Sizes
In order to investigate the scalability of our attack for a

larger set of monitored websites, we consider the top 500
websites. However, we did not route the network traffic
through Tor as this would have taken significantly longer.
Our results indicate that we are able to classify 97% of 2 500
page visits out of a set of 500 monitored websites.

6.5 Comparison with Related Work
As our attack only requires an unprivileged Android ap-

plication, it is easier to perform than wiretapping attacks
where the attacker observes TCP packets on the victim’s
network. Considering the ease of applicability, the compu-
tational performance of the classifier, and the classification
rates, our attack outperforms existing fingerprinting attacks.

Table 4 provides a comprehensive comparison of website
fingerprinting attacks in the closed-world setting. For each
attack, we present the attacker or the exploited informa-
tion in column 2. Column 3 indicates the caching behavior
of the browser. Column 4 shows the employed classifier.
For the sake of brevity, we do not list the exact features
that are used for classification purposes, but we refer the
interested reader to the corresponding works. Column 5
shows the attacked countermeasure, where “none” refers to

no specific countermeasure, “SSH tunnel” means that the
client hides its network traffic through a proxy where the en-
crypted communication between the client and the proxy is
observed, and “Tor” means that the traffic is routed through
the anonymity network Tor. As most website fingerprinting
attacks consider a closed-world setting, we state the num-
ber of monitored websites in column 6. Furthermore, we
indicate the accuracy within the last column.

The only works in Table 4 that exploit client-side side-
channel information are the work of Jana and Shmatikov [22]
as well as ours. To be more precise, Jana and Shmatikov
do not exploit information that relates to the TCP packet
lengths. Instead, they exploit the memory footprint of the
browser while rendering the monitored website. However,
our approach of exploiting the data-usage statistics allows a
significantly more accurate inference of visited websites.

Compared to wiretapping attacks against the anonymity
network Tor, we observe that our approach of exploiting
client-side information leaks yields mostly better results.
Though, the works of Wang and Goldberg [39] and Wang et
al. [38] achieve a rather similar classification accuracy. For
instance, on a set of 100 monitored websites, they achieve
a classification accuracy of 91% [39] and 95% [38], respec-
tively. However, training their classifiers, which are based
on the optimal string alignment distance and a weighted
k-NN, takes a significant amount of time (608 000 CPU sec-
onds [39]). This, however, is not feasible for every attacker.
As our classifier does not require a training phase, we signif-
icantly reduce the computational effort. Our test algorithm
scales linearly with the number of monitored websites and
the corresponding samples, i.e., O(|W | · n). A naive imple-
mentation of our classifier (Algorithm 2)—without any spe-
cific optimizations—in Matlab takes a testing time of about
0.4 seconds on an Intel Core i7-5600U CPU for a set of 100
monitored websites and 5 samples per website. This testing
time is comparable to the testing time of 0.7 seconds re-
ported by Wang and Goldberg [39], but in contrast to their
work we do not require an expensive training phase.

Wiretapping vs. Side-Channel Observations. The
subtle difference between observing traffic information on
the wire and the side-channel information of the data-usage
statistics requires further considerations. In the wiretapping
scenario it is impossible to miss single packets, whereas in
in the side-channel scenario the attacker might miss single
packets which are then observed as one “large” packet due
to the accumulation of TCP packets within the data-usage
statistics. However, wiretapping attacks against Tor need to
rely on the observation of padded packets only, whereas we
also observe unpadded packets due to the separation of the
browser and proxy application on the smartphone.

To summarize this comparison, we consider it easier to
deploy a malicious application than to wiretap the victim’s
network, but we trade the exact observation of single TCP
packet lengths (or padded packets in case of Tor) for a
slightly less accurate side-channel observation. The most
significant advantage of our attack is that it only requires an
unprivileged Android application and a simple (yet efficient)
classifier. Thus, in contrast to wiretapping attacks, the pre-
sented attack can be deployed on a large scale. In addition,
our client-side attack overcomes many limitations and as-
sumptions of network-based fingerprinting attacks that are
considered unrealistic, i.e., it is invariant to background traf-
fic and does not require expensive training phases.

9

Table 4: Comparison of website fingerprinting attacks in the closed-world setting

Work Exploited information Caching Classifier Countermeasure # websites Classification rate

Ours Client-side data-usage statistics Enabled Jaccard index None 500 97%
Jana and Shmatikov [22] Client-side memory footprint Enabled?a Jaccard index None 100 35%

Cai et al. [6] TCP packets captured via tshark Disabled Damerau-Levenshtein distance SSH tunnel 100 92%
Herrmann et al. [20] Client-side tcpdump Disabled Naive-Bayes classifier SSH tunnel 775 96%
Liberatore and Levine [27] Client-side tcpdump Disabled Jaccard index SSH tunnel 500 79%
Liberatore and Levine [27] Client-side tcpdump Disabled Naive-Bayes classifier SSH tunnel 500 75%

Ours Client-side data-usage statistics Disabled Jaccard index Tor 100 95%
Herrmann et al. [20] Client-side tcpdump Disabled Multinomial Naive-Bayes classifier Tor 775 3%
Cai et al. [6] TCP packets captured via tshark Disabled Damerau-Levenshtein distance Tor 100 84%
Panchenko et al. [35] Client-side tcpdump Disabled Support vector machines Tor 775 55%
Wang and Goldberg [39] TCP packetsb Disabled Optimal string alignment distancec Tor 100 91%
Wang and Goldberg [39] TCP packetsb Disabled Levenshtein distance Tor 100 70%
Wang et al. [38] TCP packetsd Disabled k-nearest neighboure Tor 100 95%

aWe are not sure whether caching has been disabled for the Android browser.
bThey parsed TCP packets to obtain the underlying Tor cells but did not specify how to obtain the TCP packets.
cTraining took 608 000 CPU seconds.
dThey used the same data set as in [39].
eThe computational complexity of the training phase is similar to [39] (cf. footnote c).

7. DISCUSSION OF COUNTERMEASURES
We now provide an overview of existing countermeasures.

However, most of these countermeasures have been proposed
to mitigate wiretapping attacks and, thus, we discuss the
relevance of these defense mechanisms against our attack.

7.1 Existing Countermeasures
Traffic Morphing. Wright et al. [40] suggested traffic

morphing, which requires the cooperation of the target web
server or proxy as well as the browser. Each packet from a
website is padded or split in such a way that the traffic infor-
mation of the actual website matches the traffic information
of a different website. As a result, an attacker observing the
traffic information will most likely misclassify this website.

HTTPOS. A browser-based defense mechanism denoted
as HTTP or HTTPS with Obfuscation (HTTPOS) has been
proposed by Luo et al. [29]. HTTPOS focuses on changing
packet sizes and packet timings, which can be done, for in-
stance, by adding bytes to the referer header or by using the
HTTP range option to fetch specific portions of websites.

BuFLO. Dyer et al. [11] presented Buffered Fixed-Length
Obfuscator (BuFLO) that sends fixed-length packets at fixed
intervals for a fixed amount of time. While the authors claim
that BuFLO significantly reduces the attack surface, it is
rather inefficient in terms of bandwidth overhead. Again,
BuFLO requires the cooperation of the involved proxies.
Cai et al. [4] proposed an extension denoted as Congestion-
Sensitive Buffered Fixed-Length Obfuscator (CS-BuFLO).

Glove. Nithyanand et al. [32] proposed Glove, which tries
to cluster similar websites according to pre-selected features.
Based on these clusters, transcripts of packet sizes (denoted
as super-traces) are computed, which are later transmitted
whenever a page in the corresponding cluster is loaded. This
super-trace is obtained by inserting, merging, splitting, and
delaying packets. The major drawback of Glove is that the
traces must be updated regularly, which is rather expensive.

7.2 Discussion
The above mentioned countermeasures aim at preventing

website fingerprinting attacks. Nevertheless, network-level
defenses do not provide effective countermeasures against
client-side attacks. For instance, if the traffic is routed
through the Tor network, then the traffic might be protected

on the network. However, unless the browser itself is actively
involved in these defense mechanisms, these countermea-
sures do not provide protection against client-side attackers.
We demonstrated this by exploiting the data-usage statis-
tics of browser applications that route the traffic through
the Tor network. Furthermore, application-level defenses
like HTTPOS might prevent such attacks at first glance,
but Cai et al. [4] already demonstrated that a network at-
tacker can circumvent this countermeasure. Besides, many
network-level defenses add a significant overhead in terms
of bandwidth and data consumption, which is impractical
for mobile devices with a limited data plan. We consider
further investigations regarding the effectiveness of counter-
measures against client-side attacks as an interesting open
research problem. Furthermore, new proposals for counter-
measures should consider mobile devices.

Client-Side Countermeasures. Besides these proposed
countermeasures, which mostly target network-level attack-
ers, fixing fundamental design flaws of Android should be
considered as absolutely necessary. Zhou et al. [44] sug-
gested two permission-based approaches. The first one is a
new permission that allows applications to monitor the data-
usage statistics. The second one is to let applications define
how data-usage statistics should be published. We, however,
do not consider these approaches as viable countermeasures
for the following reasons. First, many users either do not pay
attention to the requested permissions or they do not under-
stand the meaning of these permissions (cf. [13, 25]). Sec-
ond, the permission system also confuses developers which
leads to overprivileged applications [12]. Besides, develop-
ers might not be aware that the data-usage statistics of their
application leaks sensitive information and, thus, should im-
pose restrictions on how to publish these statistics.

A more general approach to prevent such side-channel at-
tacks has been suggested by Zhang et al. [43]. The basic
idea of their approach is that an application (App Guardian)
pauses/stops suspicious background processes when the ap-
plication to be protected (principal) is executed. This idea
sounds quite appealing but still struggles with unsolved is-
sues like a proper identification of malicious processes.

A first solution to defend against such attacks would be to
update these statistics according to a more coarse-grained
granularity. We stress that data-usage statistics capturing

10

single TCP packet lengths represents a significant threat.
Updating data-usage statistics in a more coarse-grained in-
terval, e.g., on a daily basis, should suffice for users to keep
an eye on their data consumption. Future work might come
up with more advanced countermeasures and the above out-
lined approach of App Guardian [43] definitely follows the
right direction towards the prevention of such attacks. Still,
we urge OS developers to address this issue immediately.

8. CONCLUSION
In this work, we investigated a new type of client-side web-

site fingerprinting attack that exploits the data-usage statis-
tics published by Android. We argue that incognito/private
browsing modes, the READ_HISTORY_BOOKMARKS permission,
and even routing the network traffic through Tor provides
a false sense of privacy for smartphone users. Even though
the browser itself does not store any information about vis-
ited websites and the traffic is protected while being routed
through Tor, the data-usage statistics leak sensitive informa-
tion. We demonstrated that any application can accurately
infer a user’s visited websites without any suspicious per-
mission. Hence, the READ_HISTORY_BOOKMARKS permission—
which is supposed to protect a user’s browsing behavior—is
actually irrelevant as it does not provide protection.

Compared to existing website fingerprinting attacks, our
attack can be deployed significantly easier and allows for
more accurate classifications of websites. The ease of ap-
plicability allows even less sophisticated attackers to per-
form accurate website fingerprinting attacks on a large scale,
which clearly proves the immense threat arising from this in-
formation leak. As a user’s browsing behavior reveals rather
sensitive information, we urge the need to address this is-
sue on the operating system level. Furthermore, due to the
simple (yet accurate) classification algorithm, real-time de-
tection of the user’s browsing behavior in combination with
sensor-based keyloggers allows for large-scale identity theft
attacks which must be prevented by all means.

Acknowledgment
This work has been supported by the Austrian Research Pro-
motion Agency (FFG) and the Styrian Business Promotion
Agency (SFG) under grant number 836628 (SeCoS) and in
part by the European Commission through the FP7 program
under project number 610436 (project MATTHEW).

9. REFERENCES
[1] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith.

Practicality of Accelerometer Side Channels on
Smartphones. In Annual Computer Security
Applications Conference – ACSAC 2012, pages 41–50.
ACM, 2012.

[2] G. D. Bissias, M. Liberatore, D. Jensen, and B. N.
Levine. Privacy Vulnerabilities in Encrypted HTTP
Streams. In Privacy Enhancing Technologies – PET
2005, volume 3856 of LNCS, pages 1–11. Springer,
2005.

[3] L. Cai and H. Chen. TouchLogger: Inferring
Keystrokes on Touch Screen from Smartphone
Motion. In USENIX Workshop on Hot Topics in
Security – HotSec. USENIX Association, 2011.

[4] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO:
A Congestion Sensitive Website Fingerprinting

Defense. In Workshop on Privacy in the Electronic
Society – WPES 2014, pages 121–130. ACM, 2014.

[5] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and
I. Goldberg. A Systematic Approach to Developing
and Evaluating Website Fingerprinting Defenses. In
Conference on Computer and Communications
Security – CCS 2014, pages 227–238. ACM, 2014.

[6] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson.
Touching from a Distance: Website Fingerprinting
Attacks and Defenses. In Conference on Computer
and Communications Security – CCS 2012, pages
605–616. ACM, 2012.

[7] S. Chen, R. Wang, X. Wang, and K. Zhang.
Side-Channel Leaks in Web Applications: A Reality
Today, a Challenge Tomorrow. In IEEE Symposium
on Security and Privacy – S&P 2010, pages 191–206.
IEEE Computer Society, 2010.

[8] M. Conti, L. V. Mancini, R. Spolaor, and N. V. Verde.
Analyzing Android Encrypted Network Traffic to
Identify User Actions. IEEE Transactions on
Information Forensics and Security, 11:114–125, 2016.

[9] C. Dı́az, S. Seys, J. Claessens, and B. Preneel.
Towards Measuring Anonymity. In Privacy Enhancing
Technologies – PET 2002, volume 2482 of LNCS,
pages 54–68. Springer, 2002.

[10] R. Dingledine, N. Mathewson, and P. F. Syverson.
Tor: The Second-Generation Onion Router. In
USENIX Security Symposium 2004, pages 303–320.
USENIX, 2004.

[11] K. P. Dyer, S. E. Coull, T. Ristenpart, and
T. Shrimpton. Peek-a-Boo, I Still See You: Why
Efficient Traffic Analysis Countermeasures Fail. In
IEEE Symposium on Security and Privacy – S&P
2012, pages 332–346. IEEE Computer Society, 2012.

[12] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android Permissions Demystified. In
Conference on Computer and Communications
Security – CCS 2011, pages 627–638. ACM, 2011.

[13] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android Permissions: User Attention,
Comprehension, and Behavior. In Symposium On
Usable Privacy and Security – SOUPS 2012, page 3.
ACM, 2012.

[14] E. W. Felten and M. A. Schneider. Timing Attacks on
Web Privacy. In Conference on Computer and
Communications Security – CCS 2000, pages 25–32.
ACM, 2000.

[15] X. Gong, N. Borisov, N. Kiyavash, and N. Schear.
Website Detection Using Remote Traffic Analysis. In
Privacy Enhancing Technologies – PET 2012, volume
7384 of LNCS, pages 58–78. Springer, 2012.

[16] X. Gong, N. Kiyavash, and N. Borisov. Fingerprinting
Websites Using Remote Traffic Analysis. In
Conference on Computer and Communications
Security – CCS 2010, pages 684–686. ACM, 2010.

[17] D. Gruss, D. Bidner, and S. Mangard. Practical
Memory Deduplication Attacks in Sandboxed
Javascript. In European Symposium on Research in
Computer Security – ESORICS 2015, volume 9326 of
LNCS, pages 108–122. Springer, 2015.

[18] J. Hayes and G. Danezis. Better Open-World Website
Fingerprinting. CoRR, abs/1509.00789, 2015.

11

[19] G. He, M. Yang, X. Gu, J. Luo, and Y. Ma. A Novel
Active Website Fingerprinting Attack Against Tor
Anonymous System. In Computer Supported
Cooperative Work in Design – CSCWD 2014, pages
112–117. IEEE, 2014.

[20] D. Herrmann, R. Wendolsky, and H. Federrath.
Website Fingerprinting: Attacking Popular Privacy
Enhancing Technologies with the Multinomial
Näıve-Bayes Classifier. In Cloud Computing Security
Workshop – CCSW, pages 31–42. ACM, 2009.

[21] A. Hintz. Fingerprinting Websites Using Traffic
Analysis. In Privacy Enhancing Technologies – PET
2002, volume 2482 of LNCS, pages 171–178. Springer,
2002.

[22] S. Jana and V. Shmatikov. Memento: Learning
Secrets from Process Footprints. In IEEE Symposium
on Security and Privacy – S&P 2012, pages 143–157.
IEEE Computer Society, 2012.

[23] A. Janc and L. Olejnik. Web Browser History
Detection as a Real-World Privacy Threat. In
European Symposium on Research in Computer
Security – ESORICS 2010, volume 6345 of LNCS,
pages 215–231. Springer, 2010.

[24] M. Juárez, S. Afroz, G. Acar, C. Dı́az, and
R. Greenstadt. A Critical Evaluation of Website
Fingerprinting Attacks. In Conference on Computer
and Communications Security – CCS 2014, pages
263–274. ACM, 2014.

[25] P. G. Kelley, S. Consolvo, L. F. Cranor, J. Jung,
N. M. Sadeh, and D. Wetherall. A Conundrum of
Permissions: Installing Applications on an Android
Smartphone. In Financial Cryptography – FC 2012,
volume 7398 of LNCS, pages 68–79. Springer, 2012.

[26] B. Liang, W. You, L. Liu, W. Shi, and M. Heiderich.
Scriptless Timing Attacks on Web Browser Privacy. In
Dependable Systems and Networks – DSN 2014, pages
112–123. IEEE, 2014.

[27] M. Liberatore and B. N. Levine. Inferring the Source
of Encrypted HTTP Connections. In Conference on
Computer and Communications Security – CCS 2006,
pages 255–263. ACM, 2006.

[28] L. Lu, E. Chang, and M. C. Chan. Website
Fingerprinting and Identification Using Ordered
Feature Sequences. In European Symposium on
Research in Computer Security – ESORICS 2010,
volume 6345 of LNCS, pages 199–214. Springer, 2010.

[29] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C.
Chang, and R. Perdisci. HTTPOS: Sealing
Information Leaks with Browser-side Obfuscation of
Encrypted Flows. In Network and Distributed System
Security Symposium – NDSS 2011. The Internet
Society, 2011.

[30] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar. I
Know Why You Went to the Clinic: Risks and
Realization of HTTPS Traffic Analysis. In Privacy
Enhancing Technologies – PET 2014, volume 8555 of
LNCS, pages 143–163. Springer, 2014.

[31] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury. Tapprints: Your Finger Taps Have
Fingerprints. In Mobile Systems – MobiSys 2012,
pages 323–336. ACM, 2012.

[32] R. Nithyanand, X. Cai, and R. Johnson. Glove: A
Bespoke Website Fingerprinting Defense. In Workshop
on Privacy in the Electronic Society – WPES 2014,
pages 131–134. ACM, 2014.

[33] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and
A. D. Keromytis. The Spy in the Sandbox: Practical
Cache Attacks in JavaScript and their Implications. In
Conference on Computer and Communications
Security – CCS 2015, pages 1406–1418. ACM, 2015.

[34] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang.
ACCessory: Password Inference Using Accelerometers
on Smartphones. In Mobile Computing Systems and
Applications – HotMobile 2012, page 9. ACM, 2012.

[35] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel.
Website Fingerprinting in Onion Routing Based
Anonymization Networks. In Workshop on Privacy in
the Electronic Society – WPES 2011, pages 103–114.
ACM, 2011.

[36] R. Spreitzer. PIN Skimming: Exploiting the
Ambient-Light Sensor in Mobile Devices. In Security
and Privacy in Smartphones & Mobile Devices –
SPSM@CCS, pages 51–62. ACM, 2014.

[37] Q. Sun, D. R. Simon, Y. Wang, W. Russell, V. N.
Padmanabhan, and L. Qiu. Statistical Identification of
Encrypted Web Browsing Traffic. In IEEE Symposium
on Security and Privacy – S&P 2002, pages 19–30.
IEEE Computer Society, 2002.

[38] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and
I. Goldberg. Effective Attacks and Provable Defenses
for Website Fingerprinting. In USENIX Security
Symposium 2014, pages 143–157. USENIX
Association, 2014.

[39] T. Wang and I. Goldberg. Improved Website
Fingerprinting on Tor. In Workshop on Privacy in the
Electronic Society – WPES 2013, pages 201–212.
ACM, 2013.

[40] C. V. Wright, S. E. Coull, and F. Monrose. Traffic
Morphing: An Efficient Defense Against Statistical
Traffic Analysis. In Network and Distributed System
Security Symposium – NDSS 2009. The Internet
Society, 2009.

[41] Z. Xu, K. Bai, and S. Zhu. TapLogger: Inferring User
Inputs On Smartphone Touchscreens Using On-board
Motion Sensors. In Security and Privacy in Wireless
and Mobile Networks – WISEC 2012, pages 113–124.
ACM, 2012.

[42] K. Zhang and X. Wang. Peeping Tom in the
Neighborhood: Keystroke Eavesdropping on
Multi-User Systems. In USENIX Security Symposium
2009, pages 17–32. USENIX Association, 2009.

[43] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and
X. Wang. Leave Me Alone: App-Level Protection
against Runtime Information Gathering on Android.
In IEEE Symposium on Security and Privacy – S&P
2015, pages 915–930. IEEE Computer Society, 2015.

[44] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan,
X. Wang, C. A. Gunter, and K. Nahrstedt. Identity,
Location, Disease and More: Inferring Your Secrets
from Android Public Resources. In Conference on
Computer and Communications Security – CCS 2013,
pages 1017–1028. ACM, 2013.

12

