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Abstract

Demosaicing is an important first step for color image
acquisition. For practical reasons, demosaicing algorithms
have to be both efficient and yield high quality results in the
presence of noise. The demosaicing problem poses several
challenges, e.g. zippering and false color artifacts as well as
edge blur. In this work, we introduce a novel learning based
method that can overcome these challenges. We formulate
demosaicing as an image restoration problem and propose
to learn efficient regularization inspired by a variational en-
ergy minimization framework that can be trained for dif-
ferent sensor layouts. Our algorithm performs joint demo-
saicing and denoising in close relation to the real physical
mosaicing process on a camera sensor. This is achieved by
learning a sequence of energy minimization problems com-
posed of a set of RGB filters and corresponding activation
functions. We evaluate our algorithm on the Microsoft De-
mosaicing data set in terms of peak signal to noise ratio
(PSNR) and structured similarity index (SSIM). Our algo-
rithm is highly efficient both in image quality and run time.
We achieve an improvement of up to 2.6 dB over recent
state-of-the-art algorithms.

1. Introduction

High quality and fast joint demosaicing and denoising
algorithms are essential for practical application on mod-
ern camera hardware. To capture a photograph, modern
digital cameras record light intensities from the scene on
a single charge-coupled-device (CCD) or complementary
metal-oxide-semiconductor (CMOS) sensor. Independent
of the sensor type, each sensor element is able to record the
intensities of either R, G or B color channel according to
the pattern of a color filter array (CFA). The filter layout

Figure 1. Top row: Noisy mosaiced input image in linRGB space.
Bottom row: Output of our algorithm on the noisy input data, de-
mosaiced in linRGB space and then transformed to sRGB space.
The input image is taken from the Microsoft Demosaicing data set
by Khashabi et al. [2].

varies according to the camera type. The most frequently
used CFA is the Bayer CFA [1] which contains twice as
much green pixels as red and blue pixels. This arrangement
mimics the human visual system which is most responsive
to green color. Using the single channel RAW image data
and the specific CFA layout, a couple of operations have to
be performed to generate a full color image since part of
the pixel information is missing. This process to fill in the
missing pixel values is called demosaicing.

Several problems have to be overcome during the de-
mosaicing process. Simple interpolation techniques work



Input
Scene

Image

Acquisition

RAW
Image

Linear

Transformation

Mosaic
(1 channel)

Mosaic

Operator A

Mosaic
(linRGB)

Demosaicing

Demosaiced
(linRGB)

Color & Gamma

Transformation

Result
(sRGB)

Figure 2. Illustration of the camera pipeline. The upper row shows the pre-processing steps applied on the RAW image (linear color scaling
and black level correction) until the single channel mosaic image is acquired by the camera. The lower row shows the color mosaic image
in linear RGB (linRGB) space, obtained through application of the mosaic operator A. In this space, demosaicing is performed. After
demosaicing, the image is color transformed and gamma corrected and finally an image in standard RGB (sRGB) space is produced. The
evaluation of our algorithm is done in both, linRGB and sRGB space.

Figure 3. Left: 2 × 2 Bayer CFA pattern, right: 6 × 6 Fujifilm
Xtrans CFA pattern.

well in homogeneous regions of an image, but interpolat-
ing corners and edges is very challenging especially when
inter-channel correlations are ignored. False color and zip-
pering artifacts are common effects that occur due to the
spatial offset of R, G and B pixels. Another problem is
edge blur arising from commonly applied low-pass inter-
polation filters. Demosaicing the color channels separately
or sequentially leads to severe error propagation, therefore
alternating or iterative algorithms are preferred. Existing al-
gorithms exploit correlations between the color channels to
obtain better results. Another challenge for demosaicing is
the noise arising from the image acquisition process on the
camera sensor which is in fact not only Gaussian [3]. There-
fore, an important property of a demosaicing algorithm is
not only accurate reconstruction of missing pixels, but also
removal of present noise.

We identify a general problem in the design of demo-
saicing algorithms: In many approaches, the algorithms
are evaluated on already processed reference images that
are artificially mosaiced again. Recent work by Khashabi
et al. [2] proposed a fundamentally different approach
to tackle the demosaicing problem by providing a novel
method to produce realistic training and ground truth im-
ages for demosaicing research. Their work is based on the
imaging pipeline depicted in Fig. 2: The RAW image that
has to be demosaiced is present in linear RGB (linRGB)
space, and only after demosaicing the images are fully de-
veloped into standard RGB (sRGB) space via color trans-
formation and gamma correction. The specific CFA pattern

(see Fig. 3) is encoded in the mosaic operator A that maps
the intensity values to color values according to the CFA.
Khashabi et al. provide this data in the publicly available
Microsoft Demosaicing data set [2] which is the basis of
our work. This data set also contains noisy training data
with camera noise according to the model proposed in [3].

Demosaicing is an essential step in processing images in
cameras and thus well studied. Many approaches exist that
attempt to solve it, still, no method has been capable of solv-
ing the problem completely. Most algorithms are designed
specifically for a single CFA pattern (i.e. Bayer CFA), trying
to interpolate the missing pixels. For extensive reviews on
demosaicing methods see [4, 5]. Many algorithms exploit
correlation between the color channels. Common assump-
tions are that color differences or color ratios are constant
between the channels [6–8]. If the assumptions do not hold,
zippering artifacts as well as false color artifacts appear at
object boundaries. Other approaches consider additionally
the edge directions for interpolation along an edge rather
than across [8–15]. Additionally to approaches that use lo-
cal edge information, methods in the spirit of the non-local
means algorithm exploit self-similarity and redundancy of
natural images [16–19]. Successful approaches do not only
consider sequential interpolation, but some sort of alternat-
ing refinement strategies or additional post-processing to
get rid of artifacts. Some of the previously mentioned works
have been extended to handle demosaicing and denoising
jointly, but mostly in the pure Gaussian setting [20–23].

There exist also learning based approaches to tackle the
demosaicing problem. A very early work used artificial
neural networks [24], other works are based on Support
Vector Regression [25] or Markov Random Fields [26].
Also, dictionary learning approaches exist [27] with exten-
sions to exploit self-similarity [28]. Khashabi et al. propose
a machine learning method for joint demosaicing and de-



noising based on Regression Tree Fields [2].
Another important group of demosaicing algorithms

form reconstruction approaches that view demosaicing as
an inverse problem [5]. An inverse problem tries to find an
estimate u∗ of the original image g given observed data m
corrupted by noise n:

m = Ag + n → u∗ = A−1(m− n). (1)

The linear operator A models the physical relationship be-
tween the observed data and the original image. This prob-
lem is inherently ill-posed, therefore regularization plays a
crucial role [29] for the solution, i.e.

u∗ = arg min
u

R(u) +
λ

2
‖Au−m‖22. (2)

Via a regularization term R, prior information about nat-
ural images is encoded to compensate for the missing in-
formation, similar to statistical models. Different types
of regularization have been explored in the literature, in-
cluding Total Variation (TV) regularization on color differ-
ences [30] and inter- and intra-channel smoothness of color
differences [31]. A combination of TV and BM3D [32] reg-
ularizers was exploited by [33] for joint demosaicing and
denoising. We argue that handcrafted regularization is not
able to capture natural image statistics well enough, there-
fore we propose to learn a suitable regularization term from
training data.

Our approach combines ideas from learning based ap-
proaches and reconstruction approaches. Given training
data, we learn how to optimally transform a noisy single
channel mosaic image captured by the camera to a full color
image by filling the missing color information accordingly.
We train a powerful regularizer based on a sequential en-
ergy minimization procedure. With our approach we ad-
dress several previously discussed challenges. Contrary to
many works in demosaicing research, we perform demo-
saicing in a linRGB space, and propose a method that can
be trained with different types of CFA patterns and cam-
era types. Our method performs joint denoising and demo-
saicing under non-Gaussian camera noise that is present in
every camera. It does not rely on handcrafted correlation
assumptions, but learns the image statistics to produce nat-
ural images. An example of a noisy, mosaiced image can
be seen in Fig. 1 as well as its demosaiced and denoised
version using our proposed algorithm below.

Our main contributions are as follows:

• We extend the learning method presented in Chen et
al. [34] for restorating color images in the presence of
noise. We establish this method in a new application
domain and show that it is superior to current state-of-
the-art methods.

• We approach the demosaicing problem in a realistic
setting by performing demosaicing in linRGB space.
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Figure 4. Illustration of the training scheme. The upper part shows
the sequence of gradient steps Qs to obtain a demosaiced image
uS from the initial input image u0. The internals of each step are
shown below.

• Once trained for a specific camera model and CFA pat-
tern, the algorithm can be efficiently implemented on
hardware and directly applied on the camera chip. The
model consists only of linear convolutions and the ap-
plication of non-linear point-wise activation functions
similar to a neural network.

• We provide insights to the learned model parameters
that are specific for demosaicing.

2. Proposed Method
We view the demosaicing problem as an image restora-

tion problem where missing color information has to be in-
ferred from existing data points respecting natural image
statistics. We approach this task from a variational perspec-
tive, where we define a dynamic energy function to solve
the inverse problem. We formulate the demosaicing process
as a sequence of energy minimization problems where the
model parameters are optimized in an offline discriminative
training scheme. The form of the energy function builds on
the approach of Chen et al. [34] for learning an optimized
diffusion process that was designed for denoising. We pro-
vide an alternative motivation, draw connections to multi-
level learning and propose several extensions to the basic
model. First, the model is extended for color image restora-
tion, and second, we add the flexibility to adapt the data
term for each step. In Fig. 4, an illustration of the method
is shown. The upper part depicts the sequence Q1, . . . , QS

of optimized quadratic energy functions. The input to the
algorithm is a linRGB mosaic image u0 with missing color
information that is computed from the single channel mo-
saic image m, and the output is a demosaiced image us,
s = 1, . . . S, after the application of S energy minimization
steps. The internals of each step are shown in the lower part
of the figure. In the following, the method is explained in
more detail.



2.1. A multilevel view on the demosaicing problem

In a bi-level optimization approach [35,36], we typically
have a higher level loss function and a lower level energy
minimization problem. In our approach, we consider not a
single lower level problem, but a sequence of energy min-
imization problems, therefore we name it multilevel opti-
mization. For the demosaicing problem, we define the loss
function for demosaiced color images uSl ∈ R3HW and the
corresponding ground truth images gl ∈ R3HW , with l the
sample index of the image, as follows:

L(uSl , gl)
L
l=1 =

1

2

L∑
l=1

‖uSl − gl‖22 (3)

where H and W are the height and width of the image, re-
spectively. The image uSl is the output of the sequence of
lower level energy minimization problems for one training
example. Therefore, the image uSl is a demosaiced image
in linRGB space, and can be compared with gl, the corre-
sponding ground truth image in linRGB space.

Alternatively, the loss function can be evaluated in sRGB
space. For this reason, we must first apply the color trans-
formation and a gamma correction function to the images in
linear space to transform them to sRGB space. We denote
the transformation function c(.), and the loss function reads
as follows:

LsRGB(uSl , gl)
L
l=1 =

1

2

L∑
l=1

‖c(uTl )− c(gl)‖22. (4)

The transformation function c(.) applied to a linRGB image
ulin follows the description in [2] and is defined as

c(ulin) = γ(M ulin)− b (5)

with γ(.) the mean gamma correction curve as given in the
Microsoft Demosaicing data set [2], M a color transforma-
tion operator that maps the color values from linRGB to
sRGB space M : R3HW → R3HW , and b the black cor-
rection constant. All variables are given according to the
camera model used for producing the data set and can be
customized if new training data with different camera mod-
els are created using the approach in [2]. In what follows,
we drop the sample indices of uSl for simplicity.

The given loss function is our higher level objective. The
aim of training is to find the parameters θ that minimize the
loss function

min
θ
L(uS(θ), g) (6)

which is subject to a sequence of s = 1, . . . , S energy func-

tions Q being minimized on the training samples u

u1 = arg min
u

Q1(u, u0,m, θ1)

u2 = arg min
u

Q2(u, u1,m, θ2)

...
uS−1 = arg min

u
QS−1(u, uS−2,m, θS−1)

uS = arg min
u

QS(u, uS−1,m, θS).

(7)

The variables us, s = 1, . . . , S represent the intermediate
solutions of the sequential energy minimization procedure.
Each intermediate solution us is dependent on the previous
solution us−1, the initial single channel mosaic image m
and the model parameters θs. The variable θs is a place-
holder for all parameters of the respective energy function.

So far, the approach resembles a bi-level optimization
framework, where the aim is to obtain the optimal parame-
ters θ of the lower level energy minimization problem that
result in a minimal higher level (overall) loss of the train-
ing problem. In our case, we have a multilevel problem,
because the lower level problem consists of a sequence of
energy minimization problems. Next, we define the con-
crete form of the energy minimization problems.

2.2. The sequential energy minimization model

Let us define a sequence of quadratic lower level energy
functions Qs. We define the lower level problem Qs as

Qs(u,us−1) = f(us−1)+

〈u− us−1,∇f(us−1)〉+
1

2
‖u− us−1‖22

(8)

which is the linearization of a differentiable function f at
us−1 plus a proximal regularization term [37]. For simplic-
ity we dropped the dependency of the function Qs on the
parameters θs and m. We can minimize Qs in closed form:

us = arg min
u

Qs(u, us−1)

us = us−1 −∇f(us−1).
(9)

The result in Eq. 9 is a simple gradient descent, hence the
sequence of quadratic optimization problems in Eq. 7 re-
duces to a fixed number S of gradient descent steps on
the parametrized quadratic energies f(u, us−1,m, θs) that
adapt to the current progress of the algorithm. Through
learning, we optimize the parameters θs of the gradient
steps ∇f for each update of the input image us.

The optimal model parameters θs for each gradient step
of the sequence s = 1, . . . S are obtained via standard back-
propagation [38]. The loss function is evaluated after S gra-
dient steps. The gradient of the loss function to the param-
eters θs for each us are then computed as follows:

∂L(uS , g)

∂θs
=
∂L(uS , g)

∂uS
· ∂uS

∂uS−1
· · · ∂u

s+1

∂us
· ∂u

s

∂θs
. (10)



In the next subsection, we will elaborate on the specific
form of the energy function for the demosaicing problem.

2.3. Energy function for the demosaicing problem

We view the demosaicing problem as an inverse image
restoration problem where missing pixels have to be deter-
mined based on the underlying image statistics. Inspired by
a variational approach, we choose the function f as follows:

f(u,m, θ) = R(u, θ) +D(u,m, θ) (11)

which is the standard approach for solving inverse prob-
lems in image processing. This function consists of a reg-
ularization term R, applied on the image u ∈ R3HW , and
a data fidelity term D that measures the similarity of the
initial single channel mosaic image m ∈ RHW to u, both
parametrized with parameters θ. The regularization part is
essential for performance of our algorithm and encodes the
low-level image statistics.

The form of the regularizer we use is inspired by the
Field of Experts prior by Roth and Black [39] and is defined
as

R(u, θ) =

N∑
i=1

HW∑
p=1

ρi((Kiu)p) (12)

with
(Kiu)p =

∑
c∈{r,g,b}

(kc,i ∗ u)p (13)

where on the right hand side kc,i ∗ u denotes the 2D con-
volution. The penalty functions ρi, i = 1, . . . , N are fully
trainable functions and are applied point-wise on the filtered
image. Each channel uc of the linRGB image u ∈ R3HW

is convolved with one channel kc,i of the RGB kernels
ki ∈ R3K2

and the result is summed over all channels to
to exploit inter-channel dependencies. The data term mod-
els the data fidelity and incorporates the physical process of
demosaicing via the operator A:

D(u, u0, θ) =
λ

2
‖Au−m‖22 (14)

with A : R3HW → RHW that maps the linRGB image u to
the mosaic space according to the CFA sensor layout and a
weighting parameter λ. Note that this term corresponds to
the right hand side in Eq. 2.

Revisiting the update rule from Eq. 9, we define the final
model and compute the gradient as

∇fs(us−1,m, θs) = ∇Rs(us−1, θs)+∇Ds(us−1,m, θs).
(15)

Setting ρ′i(.) = φi(.) which we call activation functions the
derivative of the regularization termR writes for each color
channel c

∇Rsc(us−1, θs) =

N∑
i=1

KsT
c,ivec

(
φsi (K

s
i u

s−1)p
)HW
p=1

(16)

with KsT
c,i the convolution operator for one channel of a

RGB kernel rotated by 180° (equivalent to k̄sc,i in Fig. 5).
The operator vec vectorizes the argument pixel-wise by
stacking the elements in a column vector.

The derivative of the data term is

∇Ds(us−1,m, θs) = λsAT(Aus−1 −m). (17)

The gradient scheme from Eq. 9 is therefore

us = us−1 −∇Rs(us−1, θs)−∇Ds(us−1,m, θs). (18)

as illustrated in the lower part of Fig. 4. The activation func-
tions φsi (.) are modeled using radial basis functions (RBFs)
and have the following form:

φsi (z, w) =

M∑
j=1

wsij exp

(
− (z − µj)2

2σ2

)
(19)

with mean values µj and standard deviation σ. To sum up,
the parameter vector θs holds all parameters that define the
model for gradient step s, that are the kernels ksi , the activa-
tion functions φsi with weights wsij and the weighting factor
for the data term λs. All these parameters are optimized
during training.

2.4. Adapting the data term

The data term as we described it in Eq. 14 implicitly as-
sumes Gaussian distributed noise. Following the analysis
of Foi et al. [3], this is not entirely true for the demosaic-
ing problem. According to them, the noise in RAW images
is mostly due to shot and read noise occurring on a camera
sensor. Foi et al. categorized these types of noise into a mix-
ture of Poisson and Gaussian distributed noise and propose
a method for generating synthetic noise of this type. Their
algorithm is also used for generating the noisy images of
the Microsoft Demosaicing data set [2]. We conclude that
the Gauss assumption does not hold for the data term when
trained on the noisy data, and therefore we add the possibil-
ity to learn the exact function by our training algorithm. We
name the alternative data term F

F(u, u0, θ) = λΨ(Au−m). (20)

Setting Ψ′(.) = ψ(.), the derivative of the data term is given
by

∇Fs(us−1,m, θs) = λsATψs(Aus−1 −m) (21)

with ψs(., v) analogous to Eq. 19. For the extended model,
the parameter vector θs holds additionally parameters for
the data term, the functions ψs with weights vsj .



Noise-free Panasonic Noisy Panasonic Noisy Canon

Method
PSNR
(linRGB)

PSNR
(sRGB)

PSNR
(linRGB)

PSNR
(sRGB)

SSIM
(linRGB)

SSIM
(sRGB)

PSNR
(linRGB)

PSNR
(sRGB)

SSIM
(linRGB)

SSIM
(sRGB)

Matlab [40] 35.22 29.92 34.16 27.56 0.966 0.917 36.38 29.10 0.977 0.919
OSAP [15] 38.29 31.07 36.25 29.93 0.966 0.928 39.00 31.95 0.976 0.939
WECD [11] 38.62 31.50 36.51 30.29 0.966 0.932 - - - -
NLM [16] 38.42 32.09 36.55 30.56 0.970 0.939 38.82 32.28 0.980 0.948

DMMSE [10] 38.82 31.71 36.67 30.24 0.967 0.930 39.48 32.39 0.979 0.943
LPA [12] 39.24 32.40 37.00 30.86 0.969 0.938 39.66 32.84 0.980 0.947
CS [14] 39.41 32.89 37.20 31.41 0.972 0.941 39.82 33.24 0.980 0.946

JMCDM [19] 38.28 32.14 37.44 31.35 0.971 0.942 39.49 32.41 0.976 0.932
RTF [2] 39.39 32.40 37.77 31.77 0.976 0.951 40.35 33.82 0.983 0.955

FlexISP [33] 40.00 33.77 38.28 31.76 0.974 0.941 40.71 33.44 0.984 0.949
SEM (Ours) 40.92 34.56 38.93 32.93 0.980 0.960 41.09 34.15 0.985 0.953

SEM+D (Ours) 39.36 33.16 38.17 32.35 0.978 0.956 40.35 33.86 0.983 0.953

Table 1. Demosaicing and denoising results for the Bayer CFA. We tested our algorithm on noise-free and noisy Panasonic and noisy
Canon images from the Microsoft Demosaicing data set. The first two columns show results on the test set for the noise-free Panasonic
images, the next four columns show results for the noisy Panasonic images, and the last four columns show results on the noisy Canon
images (our algorithm is trained on the Panasonic images). For the noise-free images we use 8 and for the noisy images 16 sequential
energy minimization steps (SEM). The SEM+D model is trained on the noisy data only and includes learning the data term on 8 steps. All
models are trained with filter size 5× 5× 3.

3. Experiments and Results
To evaluate our joint demosaicing and denoising method,

we report results in terms of peak signal to noise ratio
(PSNR) and structured similarity index (SSIM) [41] on the
Microsoft Demosaicing data set [2]. We trained our algo-
rithm on 200 training images given in the data set until the
PSNR values on the validation set (100 images) increased
again. The model was optimized in linRGB space, and eval-
uated in both linRGB and sRGB space. For optimization we
used the popular LBFGS-B algorithm [42]. The reported
PSNR values in Tab. 1 and Tab. 2 are the mean over the
individual color channel PSNR values, where the log is ap-
plied after taking the mean. The final result is computed as
the mean over 200 test images. We abbreviate our sequen-
tial energy minimization model SEM for easier reference,
and the model with additional data term learning from Sec-
tion 2.4 SEM+D. The number of gradient steps is specified
when reporting the concrete results.

In Tab. 1, we present demosaicing and denoising results
for the Bayer CFA. We tested our algorithm on Panasonic
and Canon images from the Microsoft Demosaicing data
set. The result images from the data set were used to repro-
duce the evaluation results. There are some missing values
marked with ’-’ because the data has not been available in
the data set. We provide results for our SEM model trained
on noise-free images with 8 steps (column 1-2), and a SEM
model trained on noisy images with 16 steps (column 3-
10). The SEM+D model was trained with 8 steps and in-
cludes learning the data term. This model is trained on

noisy data because adapting the data term only makes sense
in the presence of noise. These facts explain the inferior
performance on the noise-free data, and on the noisy data
due to the lower number of steps. We also report results on
noisy Canon images with our model trained on Panasonic
images to show the generalization to unseen data. All mod-
els trained for the Bayer CFA use a filter size of 5×5×3. In
Tab. 2, we present demosaicing results on the noise-free im-
ages with Fujifilm Xtrans CFA. Here we only compare with
results from Khashabi et al. [2] because most other methods
are specifically designed for the Bayer CFA.

Method
PSNR

(linRGB)
PSNR

(sRGB)

RTF [2] 36.94 30.56
SEM8 (Ours) 38.45 31.96
SEM16 (Ours) 39.60 33.09

Table 2. Demosaicing results on the Fujifilm Xtrans CFA. We com-
pare with the RTF model in terms of PSNR, and show results for
trained models with 8 (SEM8) and 16 (SEM16) energy minimiza-
tion steps with fiter size 7× 7× 3.

Overall, we outperform all competing methods listed in
Tab. 1 and Tab. 2 by a significant margin. The results in
sRGB space can still be improved if we optimized the model
using the sRGB loss function. The algorithm does not only
yield high quality results, but is also very efficient: We
demosaic a 132 × 220 test image using the 16 step SEM



model with filter size 5 × 5 × 3 in 0.11s with the cur-
rent Python based GPU implementation using the Theano
framework [43], and a 5MP image in 8s. The code runs on
an Intel Core i7 CPU using a Nvidia GeForce GTX 980TI
graphics card. However, this time can be beaten easily by
an optimized hardware implementation as our model only
consists of convolutions and the point-wise application of
activation functions.

To show that our model learns meaningful model param-
eters, we visualize the learned activation and penalty func-
tions as well as the RGB kernels in Fig. 5. The learned
functions show similar forms as reported in [34]. Addition-
ally, some functions show asymmetries (row 2, 5 and 6) due
to the up- or down-weighting of color channels. The learned
RGB kernels show clearly that relationships between the
different color channels are encoded during training. In
Fig. 6 we show learned derivatives and corresponding data
terms for the first 6 steps of the trained SEM+D model. For
this model, the data term was initialized to the derivative of
a Huber `1 norm. If the noise characteristic was Gaussian,
the optimal form of the data term would be quadratic. In the
first step, the data term stays a `1 norm, and in the follow-
ing steps the data term is quadratic. For a higher number
of steps the data term gets non-quadratic. This result shows
that the Gauss assumption works quite well in practice, but
the assumption is not entirely accurate.

We provide also some qualitative results in Fig. 7. The
images are taken from both test and validation images of
the Microsoft Demosaicing data set [2] and are shown in
linRGB space. We compare result images of the top 5 meth-
ods (CS, JMCDM, RTF, FlexISP, SEM (Ours), from top to
bottom). When inspecting the images, we observe no false
colors or zippering artifacts introduced by our method, as
well as a superior denoising performance also in very dark
areas (results are best viewed in color on screen).

3.1. Implementation details

In the following, we give some implementation details
of our algorithm. To obtain the initial images for our train-
ing algorithm, we perform single channel interpolation, i.e.
treating each channel separately and interpolate bilinearly
(for the Bayer CFA) or linearly (for the Fujifilm Xtrans
CFA). The pixel values at the CFA pixel grid positions are
faithfully kept in place, and empty pixels are interpolated to
start the optimization closer to the solution. We use 50 to
75 RGB filters per SEM step and initialize them with RGB
Discrete Cosine Transform (DCT) basis filters for the Bayer
CFA, or randomly for the Fujifilm Xtrans CFA. The results
show that our model is not sensitive to kernel initialization,
because both models achieve similar results. The activa-
tion functions are initialized to the derivative of a Student-t
function which has been proven to be a successful regular-
izer [44, 45].

Figure 5. Examples for learned corresponding activation functions
(blue), penalty functions (red) and RGB kernels (from left to right)
by our sequential energy minimization model. Each line shows the
network internals for one step and one specific filter. The filters are
shown layer-wise for each color channel and in RGB.

Figure 6. Learned derivative (blue) and corresponding data term
(red) for the first 6 steps of the SEM+D model, from left to right.

Through the convolutions of the input images, some ar-
tifacts appear at the image boundaries if we do not take care
of boundary conditions. We assume in our model symmet-
ric boundary conditions. The border handling was carefully
implemented in our model by first padding the image, con-
volving it in valid mode, zero-padding the result, convolv-
ing it with the transpose kernel in full mode, and cropping
the resulting image by adding pixels from outside the orig-
inal image boundary back to the image according to the
assumed boundary conditions. This treatment is a key in-
gredient that only minimal artifacts at the image boundaries
are introduced. For further details on implementation and
computing gradients we refer the interested reader to the
supplemental material of [34].

3.2. Experiments with real RAW images

To prove the practical applicability of our algorithm, we
took photographs with a standard consumer camera and
tested it on the obtained RAW images. The image shown in
Fig. 8 is taken with a Sony A6000, the pre-processing in lin-
RGB space was done using the dcraw 1 software to obtain
a single channel mosaic image with black level correction

1http://www.cybercom.net/˜dcoffin/dcraw/



and color scaling. The shown test image is 2000 × 2964
pixels large. We compare the output of the dcraw software
with the output of our algorithm in sRGB space to show
the denoising capabilities of our algorithm explicitly, and
observe that the result is remarkable. This result verifies
that our algorithm works also in a real world setting, and
shows that the algorithm generalizes well to images taken
with cameras having different hardware characteristics than
the images used for training.

4. Conclusion and Outlook
In this paper, we presented a novel method for effective

joint demosaicing and denoising that yields both quantita-
tive and qualitative superior results compared to the current
state-of-the-art. We believe that the strengths of our algo-
rithm are the following: First, we do not make model as-
sumptions, but let the algorithm learn the underlying im-
age statistics to produce natural results, second, the algo-
rithm can be trained for different CFA patterns without any
modifications other than the mosaic operator A, and third,
the application of the trained model is very efficient be-
cause it consists only of convolutions and point-wise appli-
cation of the activation function. Due to this structure our
model lends itself very well to a hardware implementation.
However, an open question remains how we can reduce the
model complexity further in order to achieve even better run
time with the same demosaicing performance.
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