

# Armored Twins: Flexible Privacy Protection for Digital Twins through Conditional Proxy Re-Encryption and Multi-Party Computation

**Felix Hörandner** Graz University of Technology Graz, Austria **Bernd Prünster** Graz University of Technology Graz, Austria

July 06, 2021

www.tugraz.at

- Internet of Things (IoT)
  - Billions of smart devices
  - Connect with each other and Internet services
  - Broad concept with many instantiations
- Digital Twins: Structure for IoT systems
  - Two-way synchronization
  - Convenient monitoring
  - Interaction via digital twin
  - Accumulate data for powerful computation

### Use Cases

Felix Hörandner

- Manufacturing: Products, Equipment, Design
- Aircrafts: Maintenance
- Health: Tailored treatments

[FFDB20]







07.07.2021

### Challenges



#### Sensitive data on different subjects

- Health or personal data
- Multiple stakeholders with different trust
  - Who owns data? Who can simulate?
  - Semi-trusted cloud

### Changing relationships vs. Inflexibility

- New receivers?
- New use cases?
- Device broken?

#### Protection vs. Computation

Encryption hinders computation



| Ambition & Contribution                                                                                                              | TU<br>Graz                                                                                                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                      | Our Contribution: Armored Twins                                                                                                |  |
| Challenges:                                                                                                                          | Protected & flexible digital twin system                                                                                       |  |
| <ul> <li>Sensitive data on different subjects</li> <li>Health or personal data</li> </ul>                                            | <ul> <li>Protect digital twin data</li> </ul>                                                                                  |  |
| <ul> <li>Multiple stakeholders with different trust</li> <li>Who owns data? Who can simulate?</li> <li>Semi-trusted cloud</li> </ul> | <ul> <li>Give owner control</li> </ul>                                                                                         |  |
| <ul> <li>Changing relationships vs. Inflexibility</li> <li>New receivers?</li> <li>New use cases?</li> <li>Device broken?</li> </ul> | <ul> <li>Dynamic maintenance of sharing permissions</li> <li>Recovery/replacement of devices</li> </ul>                        |  |
| <ul> <li>Protection vs. Computation</li> <li>Encryption hinders computation</li> </ul>                                               | <ul> <li>Retain functionality of digital twins (processing)</li> <li>Choose Trade-Off: Privacy vs Computation Costs</li> </ul> |  |





#### Approach: Apply advanced crypto to digital twin system



- Processing without revealing data
- End-to-end confidential data sharing
- Fine-Granular: Based on attributes and policies
- Flexibility
- Enables processing on subsets

 [ZFZ10] Zhao, J., Feng, D., and Zhang, Z. Attribute-Based Conditional Proxy Re-Encryption with Chosen-Ciphertext Security. GLOBECOM 2010
 [BNTW12] Bogdanov, D., Niitsoo, M., Toft, T., and Willemson, J. High-performance secure multi-party computation for data mining applications. International Journal of Information Security 2012

5

Felix Hörandner

07.07.2021





## Background: Proxy Re-Encryption (PRE) [AFGH06]



07.07.2021



- End-to-end confidential
- User: no need to fully trust proxy
- Control: through re-encryption key
- No duplicate data

**Key-Policy Conditional PRE** 

- Ciphertext for attribute set
- Re-Encryption key for policy
- Re-Encryption only successful if attributes satisfy policy [ZFZ10]

 [AFGH06] Ateniese G., Fu K., Green M., Hohenberger S.: ACM Trans. Inf. Syst. Secur. 2006 Improved proxy re-encryption schemes with applications to secure distributed storage.
 [ZFZ10] Zhao, J., Feng, D., and Zhang, Z. Attribute-Based Conditional Proxy Re-Encryption with Chosen-Ciphertext Security. GLOBECOM 2010

Felix Hörandner

### Armored Twins: Protected Digital Twins





Felix Hörandner

07.07.2021

9

- Handle changes in actors and trust relationships
- **KP-CPRE** decouples device from access decisions
- User-managed access
  - Controlled by owner, via private keys
  - Read Access:
    - Generate/remove re-encryption keys
    - Extend/limit policy
  - Write Access: Issue/remove write tokens
  - Example: Change access of processing service

### Recovery from device-loss

- Replace old device
- Re-encryption to grant access
- Seamlessly route requests to new device



## Processing vs. Highly-Sensitive Data



#### Sharing subsets

- Sufficient for many use cases
- Users can decide for themselves
- But processing services still learn something

#### For highly-sensitive data

- Don't want to expose even parts
- Valuable results
- Alternative: Integrating Secure Multi-Party Computation

# <sup>11</sup> Background: Secure Multi-Party Computation (MPC)





- Secret sharing-based MPC [BNTW12]
- Nodes jointly compute function F
- Nodes do not learn plain inputs or output
- As long as insufficiently many nodes are corrupted

12 07.07.2021

## Extension: Processing with Multi-Party Computation





### Privacy-Preserving Processing

- Does not reveal input/result to nodes
- Only processing service learns result



- Well known: AES, ECDSA, and ECIES
- Focus on:



13

## Implementation and Evaluation: KP-CPRE



KP-CPRE [ZFZ10], RELIC toolkit, 128bit security, sharing AES keys, single-threaded



### Practical performance

[ZFZ10] Zhao, J., Feng, D., and Zhang, Z. Attribute-Based Conditional Proxy Re-Encryption with Chosen-Ciphertext Security. GLOBECOM 2010

Felix Hörandner

### Implementation and Evaluation: Contact Tracing



 Concrete use case to evaluate MPC performance

#### Contact tracing

- Sensitive location information
- Compare path of 1 infected person to n other people
- For each person: How many times too close?

#### Parameters

- Variable number of users
- Each with one phone (device)
- Recording path of 50 points (100 items/device)
- Each in different epochs (no re-use of keys)
- Split for 3 nodes (300 shares/device)
- Implementation: SCALE-MAMBA
  - 3 nodes with 30ms round-trip time

| (2+) <u>Control Access</u> : per user, on phone (OnePlus 6T) |         |                                           |        |
|--------------------------------------------------------------|---------|-------------------------------------------|--------|
| PRE.RKGen                                                    | 53.99   | $\times$ #devices/user $\times$ #nodes    |        |
| SIG.Sign                                                     | 1.44    | $\times 1$                                |        |
| UseCase- $\Sigma =$                                          | 163.39  | (per user)                                |        |
| (3+) Sync. to Cloud: per device, on phone (OnePlus 6T)       |         |                                           |        |
| MPC.Split                                                    | 0.02    | × #items/device                           |        |
| AES.Enc                                                      | < 0.01  | $\times$ #shares/device                   |        |
| PRE.Enc                                                      | 51.13   | $\times$ #epochs $\times$ #nodes          |        |
| UseCase- $\Sigma =$                                          | 7672.41 | (per user, over epochs)                   |        |
| 6+ <u>Processing</u> : cumulated, on PC (AMD Ryzen 5600X)    |         |                                           |        |
| PRE.ReEnc                                                    | 4.52    | $\times$ #devs. $\times$ #epochs $\times$ | #nodes |
| SIG.Verify                                                   | 0.19    | × #users                                  | )      |
| PRE.Dec                                                      | 2.35    | $\times$ #devices $\times$ #epochs        | on     |
| AES.Dec                                                      | < 0.01  | $\times$ #shares                          | each   |
| MPC.Compute                                                  | 6530.58 | × #users +12433.61                        | node   |
| PKE.Enc                                                      | 0.18    | $\times 1$                                | J      |
| PKE.Dec                                                      | 0.12    | × #nodes                                  | -      |
| MPC.Combine                                                  | 0.08    | $\times 1$                                |        |

UseCase- $\Sigma$  = **8242.24** (*per user*) + 12433.61 (*const.*)

### Summary: Key Messages



### **Our Contribution:** Digital twin system

- Protect sensitive digital twin data
- Give owner control
- Support multiple stakeholders with different trust
- Flexibility: Provide dynamic maintenance of sharing permissions and recovery
- Retain functionality of digital twins (processing, interaction)
- Trade-off: Privacy vs. Computational Complexity

### **Evaluation**

Practical performance

#### Key-Policy Conditional Proxy Re-Encryption Protect digital twin data

1.

Approach:

- Gives flexibility
- Enable processing on subsets
- Multi-Party Computation 2.
  - Processing without revealing data

# Thank you! Any Questions?