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Abstract—We address three practical problems of Attribute-
Based Encryption (ABE) in this paper: performance, accountabil-
ity and privacy. To do so, we present a novel Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) approach, which combines
white-box accountability, hidden policies and outsourced decryp-
tion. In contrast to existing schemes, the proposed construction
is not only more flexible, but also efficient enough to be used
in more resource-constrained environments. This is because our
construction is designed around efficient Type III bilinear maps
and relies on a dedicated proxy to perform computationally ex-
pensive operations. Furthermore, we provide an implementation
of the proposed design. The conducted evaluation demonstrates
the practicality of the approach under realistic assumptions.

Index Terms—access control, accountability, revocation,
attribute-based encryption, hidden policies, privacy

I. INTRODUCTION

Attribute-Based Encryption (ABE) provides fine-grained
access control on encrypted data. It achieves this by either
attaching an access policy to a user’s secret key (Key-Policy
Attribute-Based Encryption (KP-ABE) [1]) or to the cipher-
text itself (Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [2]). Only those users who hold the necessary attributes
to fulfil an access structure can decrypt a ciphertext. This
unique construction allows data owners to encrypt data once
without knowing the recipients in advance. As a result, ABE
can be especially helpful in highly dynamic environments, e.g.
where users’ permissions may change daily or where parties
regularly join or leave the system.

Problem statement. Although ABE can provide access con-
trol on a fine-granular basis, it still suffers from significant
issues which hinder wide adoption. For example, while ABE
can reduce computational burden when encrypting for multiple
(unknown) parties, it can introduce a significant overhead for
decryption operations. This is because it heavily relies on so-
called bilinear pairings, which allow mapping elements from
two cryptographic groups to a third. In fact, bilinear pairings
have been found to be two to three times computationally
more expensive than scalar multiplications [3]. As a result,
ABE is typically not suitable for resource-constrained devices.
Another issue ABE entails is privacy of users. Indeed, cipher-
texts do not reveal any information about the plaintext. Their
attached policy or attributes, however, may reveal sensitive

information about the recipient or originator. Let us consider
a data-sharing system for medical data, for example. Any third
party storage provider, which hosts a ciphertext can also learn
the access policy or attributes. Depending on the attached
information (e.g. role=“patient” AND condition=“severe”),
unauthorised third parties might infer information about the
recipients health. Finally, malicious users can reveal their
key to unauthorised parties or abuse their credentials (e.g.
before leaving a company). However, in ABE-based systems,
attributes and, thus, the privilege of a key are usually shared
with multiple users. Holding malicious users accountable for
their actions can, therefore, be a challenging endeavour. In
turn, central authorities can, in theory, issue arbitrary well-
formed decryption keys or frame other users in the system
without being caught.

Our approach. While most of the aforementioned issues of
ABE systems have been addressed individually in previous
work, no solution addresses them in a holistic and practical
approach. More specifically, we believe that performance,
privacy and accountability do not necessarily have to be
mutually exclusive in ABE-based systems. As a result, we
present a novel CP-ABE approach, which addresses these
limitations from four angles: First, we leverage features of
cloud computing and allow clients to outsource expensive
decryption operations to more powerful proxies, as shown
by Green et al. [4]. This approach leaves clients only with
a single exponentiation to decrypt a ciphertext. Second, we
design our approach around so-called Type-III or asymmetric
pairings and prime order groups. In contrast to Type-I or
Type-II pairings, pairings of this type offer good performance
and flexibility for high-security parameters [5]. Third, we deal
with privacy issues by allowing clients to hide access policies
from third parties. On each outsourced decryption attempt,
clients can hide and randomise the embedded access policy of
ciphertexts without revealing any information to the proxy. To
do so, we leverage Dual Pairing Vector Spaces (DPVS) [6],
a technique to achieve orthogonality in prime-order groups.
These allow us to use the cancelling properties of bilinear
maps, otherwise only available in so-called composite order
groups. Most notable, the security of composite order groups
relies on the hardness of factoring the group order. As a result,
protocols using composite order groups require large group
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orders, which, in turn, results in inefficient pairing operations.
Finally, we provide white-box traceability [7] of malicious
users and the central authority. This means that secret keys
leaked by either a malicious user or an authority can be traced
back to the originator by an auditor.

Our contributions. Our contributions are in summary as
follows.

• We present a novel CP-ABE approach, which combines
outsourced decryption, hidden policies and white-box ac-
countability.

• We leverage Type-III pairings and DPVS to provide the best
tradeoff between performance and flexibility.

• Our scheme allows holding malicious users and authorities
accountable for their actions in the white-box model.

• We provide an efficient revocation strategy to cope with
requirements imposed by highly dynamic environments.

• We provide a security proof under the Symmetric Ex-
ternal Diffie-Hellman (SXDH) assumption and prove the
accountability property of the system under the q-Strong
Diffie-Hellman Assumption (q-SDH) and Discrete Loga-
rithm Problem (DLP) assumptions.

• Finally, we provide an implementation of our solution and
evaluate it, both theoretically and practically.

The rest of this paper is organised as follows. First, we
define the terminology and provide necessary background in-
formation and assumptions. Second, we define the algorithms
for an accountable CP-ABE system with hidden policies and
outsourced decryption. We, furthermore, provide the security
model and give a concrete construction of the proposed
approach. In Section IV, we prove the security of our scheme
under the SXDH assumption. In addition, we prove the ac-
countability property under the q-SDH and DLP assumptions.
Next, we provide an implementation of our approach and
compare it with existing work. Finally, we summarise existing
work and discuss the relation to our approach. We conclude
this paper in Section VII.

II. PRELIMINARIES

We define the notation and assumptions used throughout
this document.

A. (Asymmetric) Bilinear Groups of Prime Order

We adapt the notation of Boneh and Shacham [8]. Let G1,
G2 be (two) multiplicative cyclic groups of prime order 𝑝. 𝑔1
and 𝑔2 are generators of G1 and G2. Let 𝑒 : G1 × G2 → G𝑇
be a computable map with the following two properties:
• Bilinearity: for all 𝑢 ∈ G1, 𝑣 ∈ G2 and 𝑎, 𝑏 ∈ Z∗𝑝 ,
𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏 .

• Non-degeneracy: 𝑒(𝑔1, 𝑔2) ≠ 1.
In asymmetric pairings G1 ≠ G2. We define vectors of
group elements: Let v = (𝑣1, ... , 𝑣𝑛) be a vector and 𝑔𝑖 ∈
G𝑖 a generator. 𝑔v

𝑖
describes the tuple of elements: 𝑔v

𝑖
=

(𝑔𝑣1
𝑖
, 𝑔𝑣2
𝑖
, ... , 𝑔𝑣𝑛

𝑖
). For any element 𝑎 ∈ Z∗𝑝 we define 𝑔𝑎v

𝑖
=

(𝑔𝑎𝑣1
𝑖
, ... , 𝑔𝑎𝑣𝑛

𝑖
). Likewise, for two vectors v,w the following

applies: 𝑔v+w
𝑖

= (𝑔𝑣1+𝑤1
𝑖

, ... , 𝑔𝑣𝑛+𝑤𝑛

𝑖
). The componentwise

pairing is defined as follows: 𝑒𝑛 (𝑔v1 , 𝑔w2 ) =
∏𝑛
𝑖=1 𝑒(𝑔𝑣𝑖1 , 𝑔

𝑤𝑖

2 ) =
𝑒(𝑔1, 𝑔2)v ·w.

B. Access structure & Linear Secret Sharing Scheme

Definition 1. (Access Structure). Let S = {𝑎1, 𝑎2, ... , 𝑎𝑛} be
a set of attributes. An access structure is a collection A of a
non-empty subset of {𝑎1, 𝑎2, ... , 𝑎𝑛}, i.e. A ⊆ 2{𝑎1 ,...,𝑎𝑛 } {∅}.
We say that A is monotone, if ∀𝐵,𝐶 : 𝑖 𝑓 𝐵 ∈ A and 𝐵 ⊂ 𝐶
then 𝐶 ∈ A. We refer to set sets in A as the authorised set,
and the sets not in A as the unauthorised sets. We henceforth
refer to an access structure as a monotone access structure.

Definition 2. (Linear Secret Sharing Scheme (LSSS)). We
adapt the definition from Sahai et al. [9]. A LSSS policy
Π = (A, 𝜌) is a pair, where A is a 𝑛 × 𝑙 matrix over the
base field F. 𝜌 is the map from [n] to the attribute space Σ.
An attribute set S ∈ Σ satisfies an access structure (A, 𝜌) if
1 = (1, 0, 0, ... , 0) ∈ F𝑙 is contained in 𝑆𝑝𝑎𝑛F (A𝑖 : 𝜌(𝑖) ∈ S),
where A𝑖 is the 𝑖𝑡ℎ row of A.

C. Dual Pairing Vector Spaces

Okamoto and Takashima [6] introduced the concept Dual
Pairing Vector Spaces (DPVS). It uses two dual orthonormal
bases B = (b1, ... , bn), B∗ = (b∗1, ... , b∗n) in Z∗𝑛. The system
has the following properties: bi · b∗j = 0 (mod 𝑝) if 𝑖 ≠ 𝑗 ,

bi ·b∗i = 𝜓 if 𝑖 = 𝑗 , where 𝜓 R←−− Z∗𝑝 . Likewise, 𝑒𝑛 (𝑔bi

1 , 𝑔
b∗
j

2 ) =
1, whenever 𝑖 ≠ 𝑗 .

D. Symmetric External Diffie-Hellman (SXDH) Assumption

Given a bilinear group 𝐺 of prime order 𝑝, the SXDH [10]
assumption states that the Decisional Diffie–Hellman (DDH)
problems are intractable in G1 and G2. Formally, we define
the DDH problem for a group as follows:

Definition 3. Given 𝐺 = (𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒) and gener-
ators 𝑔1 ∈ G1, 𝑔2 ∈ G2 and elements 𝑎, 𝑏, 𝑐 R←−− Z∗𝑝 . Let:

D = 〈𝐺, 𝑔1, 𝑔2, 𝑔
𝑎
1 , 𝑔

𝑏
2 〉

Given a distribution D, we say that any polynomial time
algorithm B that outputs {0, 1} has an advantage 𝜖 if:��𝑃𝑟 [B(D, 𝑇 = 𝑔𝑎𝑏1 ) = 1] − 𝑃𝑟 [B(D, 𝑇 = 𝑔𝑎𝑏+𝑐1 ) = 1]

�� ≥ 𝜖
We henceforth refer to the above definition 𝐷𝐷𝐻1. For

𝐷𝐷𝐻2 the roles of G1 and G2 are reversed.

E. (Asymmetric) Subspace Assumption

Given a bilinear group 𝐺 of prime order 𝑝 and an element
𝑔v , the decisional subspace assumption [11] states that there
does not exist any efficient polynomial time algorithm, which
can distinguish, whether v is chosen randomly from a span
b∗1b

∗
2 or a larger span b∗1b

∗
2b

∗
3.

Formally, we describe the SXDH assumption in G1 as
follows:

Definition 4. Given 𝐺 = (𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒),
(B,B∗) R←−− 𝐷𝑢𝑎𝑙 (Z∗𝑛) and elements 𝜏1, 𝜏2, 𝜇1, 𝜇2

R←−− Z∗𝑝 .
Let:



𝑈1 = 𝑔
𝜇1b

∗
1+𝜇2b

∗
𝒌+1

2 ,𝑈2 = 𝑔
𝜇1b

∗
2+𝜇2b

∗
𝒌+2

2 , ... ,𝑈𝑘 = 𝑔
𝜇1b

∗
k+𝜇2b

∗
2𝒌

2 ,

𝑉1 = 𝑔𝜏1b1

1 , 𝑉2 = 𝑔𝜏1b2

1 , ... , 𝑉𝑘 = 𝑔
𝜏1bk

1

𝑊1 = 𝑔𝜏1b1+𝜏2b𝒌+1
1 ,𝑊2 = 𝑔𝜏1b2+𝜏2b𝒌+2

1 , ... ,𝑊𝑘 = 𝑔
𝜏1bk𝜏2b2𝒌
1

D = 〈𝐺, 𝑔b1∗
2 , ... , 𝑔bk∗

2 , 𝑔b2𝒌+1
2 , ... , 𝑔

b∗
n

2 , 𝑔b1

1 , ... , 𝑔bn

1 ,

𝑈1, ... ,𝑈𝑘 , 𝜇2〉
Above definition is analogous to the subspace assumption

given in [10]. The subspace assumption in G2 is identical,
with the roles of G1 and G2 being reversed. A polynomial-
time algorithm has an advantage 𝜖 in solving the subspace
problem, if:��𝑃𝑟 [B(D, 𝑇 = 𝑉1, ... , 𝑉𝑘 ) = 1]

− 𝑃𝑟 [B(D, 𝑇 = 𝑊1, ... ,𝑊𝑘 ) = 1]
�� ≥ 𝜖

We henceforth refer to 𝐷𝑆1 and 𝐷𝑆2 as the decisional
subspace assumptions in G1 and G2.

F. q-Strong Diffie-Hellman Assumption

Given a randomly chosen element 𝑥 ∈ Z𝑝 , a random gen-
erator 𝑔2 ∈ G2, and a distribution (𝑔1, 𝑔2, 𝑔

𝑥
2 , 𝑔

𝑥2

2 , ... , 𝑔
𝑥𝑞

2 ) ∈
G1 ×G𝑞+12 , the q-Strong Diffie-Hellman Assumption (q-SDH)
assumption [12, 13] states that there is no polynomial time al-
gorithm, which can compute the tuple (𝑐, 𝑔1/(𝑥+𝑐)

1 ) efficiently.
Formally, we define the q-SDH assumption as follows:

Definition 5. Given 𝐺 = (𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒), and 𝑥 R←−−
Z𝑝 , let:

D = 〈(𝑔1, 𝑔
𝑥
1 , 𝑔

𝑥2

1 , ... , 𝑔
𝑥𝑞

1 , 𝑔2, 𝑔
𝑥
2 ) ∈ G𝑞+11 × G2

2〉
A polynomial-time algorithm has an advantage 𝜖 in solving

the q-SDH problem, if:��𝑃𝑟 [B(D, 𝑇 = (𝑐, 𝑔1/(𝑥+𝑐)
1 )) = 1]

�� ≥ 𝜖
III. SYSTEM DEFINITION

We, begin by defining the necessary algorithms for a white-
box accountable CP-ABE scheme with outsourced decryption
and hidden policies. Next, we describe the security model and
present a concrete implementation of the proposed approach.

A. Algorithms

A white-box accountable CP-ABE scheme with outsourced
decryption and hidden policies consists of the following algo-
rithms:
Setup(1𝜆, Σ) → 𝑀𝑃𝐾, 𝑀𝑆𝐾 . The Setup algorithm generates
necessary system parameters. It takes as input the security
parameter 𝜆 and the attribute space Σ. It outputs the master
public key 𝑀𝑃𝐾 , the master secret key 𝑀𝑆𝐾 and the set of
attribute group keys K associated with Σ.
KeyGen(𝑀𝑃𝐾 , 𝑀𝑆𝐾 , S, 𝐼𝐷)→ 𝑆𝐾S . The KeyGen algorithm
generates a secret key for a given set of attributes and a user
ID. It takes as input the master secret key 𝑀𝑆𝐾 , a set of (user)
attributes S and a user id 𝐼𝐷. It returns the secret key 𝑆𝐾S
associated with S and 𝐼𝐷.

Encrypt(𝑀 , Π, 𝑀𝑃𝐾)→ 𝐶𝑇 . The Encrypt algorithm encrypts
a message under a given access structure. It takes as input a
message 𝑀 , a LSSS Π = (A, 𝜌) and the master public key
𝑀𝑃𝐾 . It returns the initial ciphertext 𝐶𝑇 .
ReEncrypt(𝐶𝑇 , 𝑀𝑃𝐾 , K)→ 𝐶𝑇 . The ReEncrypt embeds the
attribute group keys K in the ciphertext. Furthermore, it adds
random group elements to the ciphertext parts. It takes as input
the initial ciphertext 𝐶𝑇 , the master public key 𝑀𝑃𝐾 and a
set of attribute group keys K. It returns the ciphertext 𝐶𝑇 .
GenTK(𝑀𝑃𝐾 , 𝑆𝐾S , 𝑘 , 𝐶𝑇 , K𝐼 ) → 𝑇𝐾 , 𝑅𝐾S . The GenTK
algorithm generates a ciphertext-specific transformation key,
where any attribute information is hidden. It takes as input the
master public key 𝑀𝑃𝐾 , a secret key 𝑆𝐾S and a re-encrypted
ciphertext 𝐶𝑇 . It returns the transformation key 𝑇𝐾 and a
retrieving number value 𝑅𝐾S .
GenCT(𝐶𝑇 , 𝑆𝐾S) → 𝐶𝑇 ′. The GenCT algorithm generates
a ciphertext by combining user’s secret attribute information.
It takes as inoput a reencrypted ciphertext 𝐶𝑇 and a 𝑆𝐾S . It
returns a temporary ciphertext 𝐶𝑇 ′.
OutsourcedDecrypt(𝑀𝑃𝐾 , 𝑇𝐾 , 𝐶𝑇 ′) → 𝐶𝑇 ′′. The Out-
sourcedDecrypt algortihm transforms a ciphertext by perform-
ing expensive pairing operations. It takes as input the master
public key 𝑀𝑃𝐾 , a transformation key 𝑇𝐾 and a transformed
ciphertext 𝐶𝑇 ′. It returns the pairing free ciphertext 𝐶𝑇 ′′.
Decrypt(𝑀𝑃𝐾 , 𝐶𝑇 , 𝐶𝑇 ′′, 𝑅𝐾S)→ 𝑀 . The Decrypt algorithm
recovers the plain text message. It takes as input the master
public key 𝑀𝑃𝐾 , the re-encrypted ciphertext 𝐶𝑇 , the pairing
free ciphertext 𝐶𝑇 ′′ and the retrieving number value 𝑅𝐾S . It
outputs the plaintext message 𝑀 .
Trace(𝑆𝐾S) → ⊥ or (𝐼𝐷, 𝑘). The Trace algorithm indicates
whether a user with 𝐼𝐷 or an authority was dishonest. It takes
as input a suspected 𝑆𝐾S . It outputs ⊥ if the key is not well-
formed. Otherwise, it outputs the tuple (𝐼𝐷, 𝑘).
Revoke(𝐼𝐷, S𝑅) The Revoke algorithm revokes a (sub-) set
of attribute for a given user. It takes as input a user 𝐼𝐷 and
a set of to be revoked attributes S𝑅. It removes the user with
𝐼𝐷 from all the attribute groups in S𝑅 and invalidates affected
ciphertexts. It, furthermore, generates new group keys for all
affected attribute-groups.

B. Security Model

We can now formally describe the security requirements of
a of a white-box accountable CP-ABE scheme with hidden
policies, revocation and outsourced decryption. Informally,
security means that an adversary does not learn anything
about the plaintext. Hidden policies means that a third party,
performing outsourced decryption, does not learn the access
policy. White-box accountability entails that shared keys can
be traced back to the originator.

The security of a of a white-box accountable CP-ABE
scheme with hidden policies, revocation and outsourced de-
cryption is described by the following game:
Setup. First, the challenger C runs the Setup algorithm. It
generates 𝑀𝑃𝐾 and 𝑀𝑆𝐾 and sends 𝑀𝑃𝐾 to the adversary
A.



Phase 1. The adversary A queries 𝑞1 keys for attribute sets
S1, ...S𝑞1.
Challenge. The adversary generates two equal length mes-
sages 𝑀0 and 𝑀1. Furthermore, it generates two equal length
access structures A∗0, A∗1. They may not be satisfied by any
previously queried attribute set S𝑖 . C flips a coin 𝛽 ∈ {0, 1}
and encrypts 𝑀𝛽 under the challenge access structure A∗

𝛽
. It

sends the ciphertext 𝐶𝑇 to A.
Phase 2. A runs key generation and decryption queries. To
do so, it queries keys for attribute sets S𝑞1+1, ... ,S𝑞 . However,
they may not satisfy previously generated access structures A∗.
Guess. The adversary outputs a guess 𝛽′ for 𝛽.

The winning advantage of an adversary in this game is
defined to be 𝑃𝑟 [𝛽 = 𝛽′] − 1

2 .

Definition 6. A white-box accountable ABE scheme with hid-
den policies, revocation and outsourced decryption is Chosen-
Plaintext Attack (CPA) secure and provides hidden policies if
the advantage over all Probabilistic Polynomial-Time (PPT)
algorithms in the aforementioned game is negligible.

The white-box accountability property can be described by
two games: A dishonest authority game and a dishonest user
game.

The dishonest authority game assumes that a malicious
authority frames other users. It is described as follows:
Setup. First, the adversary A executes the Setup algorithm
and generates 𝑀𝑃𝐾 and 𝑀𝑆𝐾 . Then, it sends the generated
parameters to the challenger C. C aborts, if the parameters are
not well-formed.
Key Generation. C commits to a value 𝑘 R←−− Z∗𝑝 . Now A
runs the KeyGen algorithm returns the generated key 𝑆𝐾S to
C. C aborts if 𝑆𝐾S is not well-formed.
Key Forgery. The adversary A generates a secret key 𝑆𝐾 ′S′ .C aborts if 𝑆𝐾S is not well-formed.

The dishonest user game consists of two parts: The first
game, describes a dishonest user which manages to generate
a 𝑆𝐾S for a different 𝐼𝐷.
Setup. The challenger C runs the Setup algorithm and gen-
erates 𝑀𝑃𝐾 and 𝑀𝑆𝐾 . It sends the 𝑀𝑃𝐾 to the adversary
A.
Key Query. The adversary A queries 𝑞 keys for a set of 𝐼𝐷𝑠
and attributes (𝐼𝐷𝑖 ,S𝑖). For every tuple, related to {𝑐𝑖}𝑖∈[𝑞 ] ,
C runs the KeyGen algorithm and returns the generated key
𝑆𝐾S𝑖 to A.
Key Forgery. A generates a secret key 𝑆𝐾S related to (𝐼𝐷, 𝑐).
If (𝐼𝐷, 𝑐) has not been queried before and 𝑆𝐾S is well-formed,
A wins the game.

The second game, describes a dishonest user which manages
to tamper with the 𝐼𝐷.
Setup. The challenger C runs the Setup algorithm and gen-
erates 𝑀𝑃𝐾 and 𝑀𝑆𝐾 . It sends the 𝑀𝑃𝐾 to the adversary
A.
Key Query. The adversary A queries 𝑞 keys for a set of
𝐼𝐷𝑠 and attributes (𝐼𝐷𝑖 ,S𝑖). For every tuple, related to
{𝑐𝑖 , 𝑘𝑖}𝑖∈[𝑞 ] , where 𝑘𝑖 is bound to 𝐼𝐷, C runs the KeyGen
algorithm and returns the generated key 𝑆𝐾S𝑖 to A.

Key Forgery. A generates a secret key 𝑆𝐾S related to
(𝐼𝐷, 𝑐, 𝑘). If (𝐼𝐷, 𝑐) has not been queried before, 𝑘 has not
been seen before, and 𝑆𝐾S is well-formed, A wins the game.

Definition 7. A white-box accountable ABE scheme with
hidden policies, revocation and outsourced decryption fulfils
the white-box accountability property if the advantages over
all PPT algorithms in the games mentioned above is negligible.

C. Scheme Construction

In this section, we propose a novel CP-ABE scheme based
on (but not limited to) Ziegler and Marsalek’s [14] and Li
et al.’s [15] construction. The enhanced scheme provides
traceability of malicious users while offering hidden policies
and outsourced decryption.
Setup(1𝜆, Σ) → 𝑀𝑃𝐾, 𝑀𝑆𝐾 . The algorithm performs the
following steps:

1. Let 𝐺 = (𝑝,G1,G2,G𝑇 , 𝑒)
2. Sample dual orthonormal bases (D,D∗) R←−− 𝐷𝑢𝑎𝑙 (Z4

𝑝)
3. Let d1, ... ,d4 denote elements of D
4. Let d∗

1, ... ,d
∗
4 denote elements of D∗

5. Choose 𝑔1, 𝑓1, ... , 𝑓𝑈
R←−− G1, 𝑔2

R←−− G2
6. Choose 𝑎, 𝛼 R←−− Z∗𝑝 .
7. Choose group keys 𝜅𝜆1 ... 𝜅𝜆𝑈

R←−− Z∗𝑝 for each 𝑈𝑖 ∈ U
8. Choose H𝑇 : G𝑇 → Z∗𝑝
9. Output the master public key 𝑀𝑃𝐾 , the master secret key
𝑀𝑆𝐾 and the group keys K:

𝑀𝑃𝐾 : 〈𝐺, 𝑔d1

1 , 𝑔
d∗
1

2 , 𝑔
d∗
2

2 , 𝑓 d1

1 , ... , 𝑓 d1

𝑈
, 𝑔𝑎d1

1 ,

𝑦 = 𝑒(𝑔1, 𝑔2)𝛼d1 ·d∗
1 , 𝑦1 = 𝑒(𝑔1, 𝑔2)d2 ·d∗

2 ,

𝑋 = 𝑔
𝑥d∗

1

2 , 𝑌 = 𝑔
𝑦d∗

1

2 〉
𝑀𝑆𝐾 = 〈𝑔𝛼d1

1 〉,K = {𝜅𝜆𝑖 }
KeyGen(𝑀𝑃𝐾 , 𝑀𝑆𝐾 , S, 𝐼𝐷) → 𝑆𝐾S . First, the algorithm
interacts with user 𝐼𝐷. Then, the user chooses 𝑘 R←−− Z∗𝑝 and
calculates the commitment value 𝑅 = 𝑔𝑎𝑘d1

1 . It sends 𝑅 and
a proof of knowledge of 𝑘 without revealing the value of 𝑘 .
Finally, the algorithm chooses 𝑡 R←−− Z∗𝑝 and outputs:

𝑆𝐾S = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S , 𝑇1, 𝑇2, 𝑇3〉

= 〈𝑔
𝛼d1

(𝑥+𝐼𝐷+𝑦𝑑)
1 · 𝑔𝑎𝑡𝑘d1

1 , 𝑔
𝑡d∗

1

2 , 𝑔
𝑥𝑡d∗

1

2 , 𝑔
𝑦𝑡d∗

1

2 ,

{ 𝑓 𝑡 (𝑥+𝐼𝐷+𝑦𝑑)d1
𝑥 }𝑥∈S , 𝐼𝐷〉

Encrypt(𝑀 , Π, 𝑀𝑃𝐾) → 𝐶𝑇 . First, the algorithm generates
a secret 𝑠 R←−− Z∗𝑝 . Next, it calculates a share vector ®𝑣 =
(𝑠, 𝑣2, ... 𝑣𝑛) ∈ Z∗𝑝 . Then, it computes 𝜆𝑖 = ®𝑣 ·A𝑖 and generates
𝑟1, ... , 𝑟𝑙

R←−− Z∗𝑝 . It outputs:

𝐶𝑇 = 〈𝐶 = 𝑀 · 𝑦𝑠 , 𝐶 ′ = 𝑔𝑠d
∗
1

2 , 𝐶2 = 𝑔
𝑥𝑠d∗

1

2 , 𝐶3 = 𝑔
𝑦𝑠d∗

1

2 ,

{𝐶𝑖 = 𝑔𝑎𝜆𝑖d1

1 · 𝑓 −𝑟𝑖d1

𝜌(𝑖) , 𝐷𝑖 = 𝑔
𝑟𝑖d

∗
1

2 }〉

ReEncrypt(𝐶𝑇 , 𝑀𝑃𝐾 , K) → 𝐶𝑇 . The algorithm first ran-
domly chooses 𝜂1, ... 𝜂𝑙 , 𝛿

R←−− Z∗𝑝 . It outputs the final
ciphertext:



𝐶𝑇 = 〈𝐶, 𝐶̃ = 𝑔H𝑇 (𝑀 )1 , 𝐶 ′ = 𝐶 ′ · 𝑔𝛿d
∗
2

2 , 𝐶2, 𝐶3,

{𝐶𝑖 = {𝐶𝑖 · 𝑔 (𝜂𝑖+𝜅𝑡𝑖 )d2

1 , 𝐷𝑖}〉
GenTK(𝑀𝑃𝐾 , 𝑆𝐾S , 𝑘 , 𝐶𝑇 , K𝐼 ) → 𝑇𝐾 , 𝑅𝐾S . First, the
algorithm computes a set {𝜔𝑖 ∈ Z∗𝑝}, such that

∑
𝑖∈𝐼 𝜔𝑖𝜆𝑖 = 𝑠,

where 𝐼 = {𝑖 : 𝜌(𝑖) ∈ S}. Next, it chooses 𝑧, 𝑑 R←−− Z∗𝑝 and
calculates:

𝑇𝐾 = 〈𝐾 ′1 = 𝐾1 · 𝑔𝑧d2

1 , 𝐾 ′2 = (𝐾2 · 𝑔𝑑d
∗
2

2 )𝑇1 · 𝐾3 · 𝐾𝑇3
4 ,

{(𝐾𝜌 (𝑖), 𝜔𝑖)}𝑖∈𝐼 , 𝐼〉
𝑅𝐾S = 𝑧𝛿𝐼𝐷 − 𝑑𝑘 𝐼𝐷 (∑︁

𝑖∈𝐼
𝜂𝑖 +

∑︁
𝑖∈𝐼

𝜅𝑡𝑖
)

GenCT(𝐶𝑇 , 𝑆𝐾S) → 𝐶𝑇 ′. The algorithm outputs the trans-
formed ciphertext:

𝐶𝑇 ′ = 〈𝐶, 𝐶̃, 𝐶 ′ = (𝐶 ′)𝑇1𝐶2𝐶
𝑇3
3 , {𝐶𝑖 , 𝐷𝑖}〉

OutsourcedDecrypt(𝑀𝑃𝐾 , 𝑇𝐾 , 𝐶𝑇 ′) → 𝐶𝑇 ′′. The algorithm
computes:

𝑇0 = 𝑒𝑛 (𝐾 ′1, 𝐶 ′)
= 𝑒𝑛 (𝐾1 · 𝑔𝑧d2

1 , (𝑔𝑠d
∗
1

2 𝑔
𝛿d∗

2

2 )𝐼𝐷𝑔𝑥𝑠d
∗
1

2 𝑔
𝑦𝑠𝑑d∗

1

2 )
= 𝑒(𝑔1, 𝑔2)𝛼𝑠d1 ·d∗

1 · 𝑒(𝑔1, 𝑔2)𝑎𝑡𝑠𝑘 (𝑥+𝐼𝐷+𝑦𝑑)d1 ·d∗
1 ·

· 𝑒(𝑔1, 𝑔2)𝑧 𝛿𝐼𝐷d2 ·d∗
2

𝑇1 =
∏
𝑖∈𝐼

(
𝑒𝑛 (𝐶𝑖 , 𝐾 ′2) · 𝑒𝑛 (𝐾𝜌 (𝑖), 𝐷𝑖)

)𝜔𝑖

= 𝑒(𝑔1, 𝑔2)𝑎𝑡𝑠 (𝑥+𝐼𝐷+𝑦𝑑)d1 ·d∗
1 ·

· 𝑒(𝑔1, 𝑔2) (
∑

𝑖∈𝐼 𝜂𝑡𝑖+
∑

𝑖∈𝐼 𝜅𝑡𝑖 )𝑑𝐼𝐷d2 ·d∗
2

Finally the algorithm returns 𝐶𝑇 ′′:

𝐶𝑇 ′′ = 〈𝐶 ′, 𝐶 ′, 𝑇1, 𝑇2〉
Decrypt(𝑀𝑃𝐾 , 𝐶𝑇 , 𝐶𝑇 ′′, 𝑅𝐾S , 𝑇2)→ 𝑀 . First, the algorithm
checks if 𝐶 = 𝐶 ′ and 𝐶̃ = 𝐶 ′. Next, it computes:

𝑀 =
𝐶 · 𝑦𝑅𝐾S1

𝑇0/𝑇𝑇2
1

If 𝑔H(𝑀 )1 = 𝐶 ′ the algorithm returns 𝑀 .
Decryption Correctness:

𝑀 =
𝐶 · 𝑦𝑅𝐾S1

𝑇0/𝑇𝑇2
1

=
𝑀 · 𝑦𝑠 · 𝑒(𝑔1, 𝑔2)d2 ·d∗

2 (𝑧 𝛿𝐼𝐷−𝑑𝐼𝐷𝑘 · (
∑

𝑖∈𝐼 𝜂𝑖+
∑

𝑖∈𝐼 𝜅𝑡𝑖 )

𝑒 (𝑔1 ,𝑔2)𝛼𝑠d1 ·d∗
1 ·𝑒 (𝑔1 ,𝑔2)𝑎𝑡𝑠𝑘 (𝑥+𝐼𝐷+𝑦𝑑)d1 ·d∗

1 ·𝑒 (𝑔1 ,𝑔2)𝑧 𝛿𝐼𝐷d2 ·d∗
2(

𝑒 (𝑔1 ,𝑔2)𝑎𝑡𝑠 (𝑥+𝐼𝐷+𝑦𝑑)d1 ·d∗
1 ·𝑒 (𝑔1 ,𝑔2) (

∑
𝑖∈𝐼 𝜂𝑖+

∑
𝑖∈𝐼 𝜅𝑡𝑖 )𝑑𝐼𝐷d2 ·d∗

2

) 𝑘
=
𝑀 · 𝑒(𝑔1, 𝑔2)𝛼𝑠d1 ·d∗

1

𝑒(𝑔1, 𝑔2)𝛼𝑠d1 ·d∗
1

= 𝑀 �

KeySanityCheck(𝑀𝑃𝐾 , 𝑆𝐾S)→ 1 or 0. The algorithm returns
1 if the secret key 𝑆𝐾S passes the key sanity check. Otherwise,
it returns 0. 𝑆𝐾S passes the key sanity check if

𝑒(𝐾1, 𝑔
d∗
1

2
𝑇1
𝑋𝑌𝑇3 ) = 𝑦 · 𝑒(𝑔𝑎d1

1
𝑇2
, 𝐾𝑇1

2 𝐾3𝐾
𝑇3
4 ) ≠ 1 (1)

∀𝑥 ∈ S, 𝑠.𝑡. 𝑒(𝐾𝑥 , 𝑔d
∗
1

2 ) = 𝑒( 𝑓 d1
𝑥 , 𝐾𝑇1

2 𝐾3, 𝐾
𝑇3
4 ) ≠ 1 (2)

Trace(𝑆𝐾S) → ⊥ or (𝐼𝐷, 𝑘). If KeySanityCheck(𝑆𝐾S) → 0
the algorithm returns ⊥. Otherwise, 𝑆𝐾S is well-formed and
the algorithm returns (𝐼𝐷, 𝑘). If 𝐼𝐷 does not exist, then the
authority must be dishonest. If 𝐼𝐷 exists and 𝑔𝑎d1

1
𝑘

is equal to
the user committed value the user is misbehaving. Otherwise,
the attribute authority is dishonest.
Revoke(𝐼𝐷, 𝑈𝑅). First, the algorithm removes the user 𝐼𝐷
from all attribute groups 𝑈 ∈ 𝑈𝑅. Second, it generates
new attribute group keys for all 𝜅𝑖 ∈ 𝑈𝑅. Then, it calls
ReEncrypt on all affected ciphertexts. The new attribute group
key needs to be delivered to all valid users through a secure
communication channel.

IV. SECURITY-PROOF

We first prove that our construction is secure under the SXDH
assumption. Next, we prove the accountability property of the
proposed scheme.

A. CPA security of our construction

Theorem 1. If the SXDH assumption holds, the presented CP-
ABE scheme is CPA secure. For any adversary A, there exist
probabilistic algorithms B0,B1, ... ,B𝑣 , which running times
are the same as those of A, such that, given the maximum
number of key queries 𝑣, the following holds:

𝐴𝑑𝑣𝐴𝐵𝐸A (𝜆) ≤, 𝐴𝑑𝑣𝐷𝐷𝐻2
B0

(𝜆) +
𝑣∑︁
𝑖=1

𝐴𝑑𝑣𝐷𝐷𝐻1
B𝑖 (𝜆) + 𝑣

𝑞

We follow the approach by [11] and adapt the proof given
in [14]. We rely on semi-functional ciphertexts and semi-
functional keys and provide algorithms to generate them. The
provided algorithms are not part of the final system. They do
not need to be efficiently computable from 𝑀𝑃𝐾 or 𝑀𝑆𝐾 .
KeyGenSF. The algorithm selects 𝑡, 𝑧3, 𝑧4, 𝑧, 𝑑

R←−− Z∗𝑝 and
generates a semi-functional secret key as:

𝑆𝐾 (𝑆𝐹 )S = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S , 𝑇1, 𝑇2, 𝑇3〉

= 〈𝑔
𝛼d1

(𝑥+𝐼𝐷+𝑦𝑑)
1 · 𝑔𝑎𝑡𝑘d1

1 · 𝑔𝑧3d3+𝑧4d4

1 , 𝑔
𝑡d∗

1

2 , 𝑔
𝑥𝑡d∗

1

2 , 𝑔
𝑦𝑡d∗

1

2 ,

{ 𝑓 𝑡 (𝑥+𝐼𝐷+𝑦𝑑)d1
𝑥 }𝑥∈S , 𝐼𝐷, 𝑘, 𝑑〉

𝑇𝐾 (𝑆𝐹 ) = 〈𝐾 ′1 = 𝐾1 · 𝑔𝑧d2

1 , 𝐾 ′2 = (𝐾2 · 𝑔𝑑d
∗
2

2 )𝑇1 · 𝐾3 · 𝐾𝑇3
4 ,

{(𝐾𝜌 (𝑖), 𝜔𝑖)}𝑖∈𝐼 , 𝐼〉
𝑅𝐾 (𝑆𝐹 )S = 𝑧𝛿𝐼𝐷 − 𝑑𝑘 𝐼𝐷 (∑︁

𝑖∈𝐼
𝜂𝑖 +

∑︁
𝑖∈𝐼

𝜅𝑡𝑖
)



EncryptSF. The algorithm selects 𝑠, 𝑡3, 𝑡4, 𝜂1, ... , 𝜂𝑙 , 𝛿
R←−− Z∗𝑝

and encrypts a message 𝑀 as:

𝐶𝑇 (𝑆𝐹 ) = 〈𝐶 = 𝑀 · 𝑦𝑠 , 𝐶 ′ = 𝑔𝑠d
∗
1

2 · 𝑔𝛿d
∗
2

2 · 𝑔𝑡3d
∗
3+𝑡4d∗

4

2 ,

𝐶2 = 𝑔
𝑥𝑠d∗

1

2 , 𝐶3 = 𝑔
𝑦𝑠d∗

1

2 ,

𝐶𝑖 = 𝑔
𝑎𝜆𝑖d1

1 · 𝑓 −𝑟𝑖d1

𝜌(𝑖) · 𝑔
(𝜂𝑖+𝜅𝑖)d2

1 , 𝐷𝑖 = 𝑔
𝑟𝑖d

∗
1

2 }〉

Decrypting a normal ciphertext with a semi-functional key
will succeed because d3,d4 are orthogonal to all remain-
ing vectors in 𝐶 ′. Likewise, decrypting a semi-functional
ciphertext will succeed for a normal key because d∗

3,d
∗
4

are orthogonal to all the remaining exponents in 𝐾1. If the
ciphertext and the key are semi-functional, decryption will fail.
The pairing 𝑒𝑛 (𝐾 ′1, 𝐶 ′) will then contain an additional term:

𝑒(𝑔1, 𝑔2)𝑡3𝑧3𝐼𝐷d3 ·d∗
3+𝑡4𝑧4𝐼𝐷d4 ·d∗

4 = 𝑒(𝑔1, 𝑔2) (𝑡3𝑧3+𝑡4𝑧4) 𝐼𝐷𝜓

We define the following games between any polynomial-time
adversary A and a challenger C:

– 𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙: is the real security game
– 𝐺𝑎𝑚𝑒𝑖 for 𝑖 = 0, 1 ... 𝑣: 𝐺𝑎𝑚𝑒𝑖 is like 𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙 , except

that the challenge ciphertext is semi-functional and the
first 𝑖 keys given to the attacker are semi-functional. For
𝐺𝑎𝑚𝑒0 all keys are normal, and for 𝐺𝑎𝑚𝑒𝑣 all keys are
semi-functional.

– 𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙: Is like 𝐺𝑎𝑚𝑒𝑣 , except that the ciphertext is
a semi-functional encryption of a random message 𝑀 in
G𝑇 .

We prove the following lemmas to show that for each
transition from 𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙 to 𝐺𝑎𝑚𝑒𝑣 , the attacker’s advantage
cannot change by a non-negligible amount.

Lemma 1. Suppose that there exists an adversaryA. If the ad-
versary has an advantage |𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙

A (𝜆) −𝐴𝑑𝑣𝐺𝑎𝑚𝑒0
A (𝜆) | =

𝜖 , there exists an algorithm B0 such that 𝐴𝑑𝑣𝐷𝑆2
B0
(𝜆) = 𝜖 with

𝑘 = 2 and 𝑛 = 4.

Proof. B0 is given a distribution D and 𝑇1, 𝑇2, as defined in
Section II-E:

D = 〈𝐺, 𝑔b1

1 , 𝑔b2

1 , 𝑔
b∗
1

2 , ... , 𝑔
b∗
4

2 ,𝑈1,𝑈2, 𝜇2〉
B0 needs to decide whether 𝑇1, 𝑇2 are distributed as
𝑔
𝜏1b

∗
1

2 , 𝑔
𝜏1b

∗
2

2 or 𝑔𝜏1b
∗
1+𝜏2b

∗
3

2 , 𝑔
𝜏1b

∗
2+𝜏2b

∗
4

2 . B0 starts by simulating
𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙 or 𝐺𝑎𝑚𝑒0 with A, depending on the distribution of
𝑇1, 𝑇2. Given a security parameter 𝜆, B0 first generates a ran-
dom invertible matrix 𝐴 ∈ Z2𝑥2

𝑝 . It sets the dual orthonormal
bases D,D∗ to:

d1 B b1, d2 B b2, (d3,d4) B (b3, b4)𝐴,
d∗
1 B b∗1, d∗

2 B b∗2, (d∗
3,d

∗
4) B (b∗3, b∗4) (𝐴−1)𝑡

Now, B0 chooses random values 𝑎, 𝛼 R←−− Z∗𝑝 and computes
the 𝑀𝑃𝐾 and 𝑀𝑆𝐾 according to the Setup algorithm. Since

𝑀𝑆𝐾 is known to B0, it can respond to key queries for a
set S by calling the key generation algorithm. We can now
build the challenge ciphertext. First, the adversary A defines
the challenge access structures A0, A1. It then generates two
messages 𝑀0 and 𝑀1 and sends them to B0. B0 now flips a
coin 𝛽. B0 encrypts 𝑀𝛽 under the challenge access structure
A𝛽 and implicitly sets 𝑠 B 𝜏1:

𝐶𝑇 = 〈𝐶 = 𝑀𝛽 · 𝑒𝑛 (𝑔1b1 , 𝑇1)𝛼, 𝐶 ′ = 𝑇1 · 𝑇2, 𝐶2 = 𝑇 𝑥1 , 𝐶3 = 𝑇 𝑦1 ,

𝐶𝑖 = 𝑔
𝑎𝜆𝑖b1

1 · 𝑓 −𝑟𝑖b1

𝜌(𝑖) · 𝑔
(𝜂𝑖+𝜅𝑖)b2

1 , 𝐷𝑖 = 𝑔
𝑟𝑖f

∗
1

2 }〉

Finally, it returns the ciphertext 𝐶𝑇 . If 𝑇1, 𝑇2 are equal to 𝑔𝜏1b
∗
1

2 ,
𝑔
𝜏1b

∗
2

2 then B0 has successfully simulated 𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙 . However,
if 𝑇1,𝑇2 are equal to 𝑔

𝜏1b
∗
1+𝜏2b

∗
3

2 , 𝑔
𝜏1b

∗
2+𝜏2b

∗
4

2 , the ciphertext
element 𝐶 ′ has an additional term 𝜏2b

∗
3 + 𝜏2b∗4. B0 can obtain

the coefficients in the basis d∗
3,d

∗
4 by multiplying the matrix

𝐴−1 with the transpose of the vector. Since 𝐴 is uniformly
random, the coefficients are uniformly random, and B0 has
correctly simulated 𝐺𝑎𝑚𝑒0. As a result, B0 can leverage
the adversaries’ advantage 𝜖 between 𝐺𝑎𝑚𝑒𝑅𝑒𝑎𝑙 and 𝐺𝑎𝑚𝑒0
against the subspace assumption in G2: 𝐴𝑑𝑣𝐷𝑆2

B0
(𝜆) = 𝜖 . �

Lemma 2. Suppose that there exists an adversaryA. If the ad-
versary has an advantage |𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝑖−1

A (𝜆) −𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝑖A (𝜆) | =
𝜖 . Then there exists an algorithm B𝑖 such that 𝐴𝑑𝑣𝐷𝑆1

B𝑖 (𝜆)
= 𝜖 − 1/𝑞 with 𝑘 = 2 and 𝑛 = 4.

Proof. B𝑖 is given a distribution D, as defined in Section II-E
and and 𝑇1, 𝑇2:

D = 〈𝐺, 𝑔b1∗
2 , 𝑔b2∗

2 , 𝑔b1

1 , ... , 𝑔b4

1 ,𝑈1,𝑈2, 𝜇2〉

B𝑖 needs to decide whether 𝑇1, 𝑇2 are distributed as
𝑔𝜏1b1

1 , 𝑔𝜏1b2

1 or 𝑔𝜏1b1+𝜏2b3

1 , 𝑔𝜏1b2+𝜏2b4

1 . It begins by simulating
𝐺𝑎𝑚𝑒𝑖 or 𝐺𝑎𝑚𝑒𝑖−1 with A, depending on the distribution
of 𝑇1, 𝑇2. Given a security parameter 𝜆, B𝑖 first generates a
random invertible matrix 𝐴 ∈ Z2𝑥2

𝑞 . Then, B𝑖 sets the dual
orthonormal bases D,D∗ to:

d1 B b1, d2 B b2, (d3,d4) B (b3, b4)𝐴,
d∗
1 B b∗1, d∗

2 B b∗2, (d∗
3,d

∗
4) B (b∗3, b∗4) (𝐴−1)𝑡

Now, B0 chooses random values 𝑎, 𝛼 R←−− Z∗𝑝 and computes
the parameters according to the Setup algorithm. Since 𝑀𝑆𝐾
is known to B𝑖 , it can respond to key queries for a set S by
calling the standard key generation algorithm. Furthermore, B𝑖
knows 𝑔d3

1 and 𝑔d4

1 . It can, therefore, easily generate semi-
functional keys. For the first 𝑖 − 1 key queries, B𝑖 runs the
semi-functional key generation algorithm and returns them to
A. For the 𝑖th key query for a set of attributes S, B𝑖 responds
with:



𝑆𝐾S = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S , 𝑇1, 𝑇2, 𝑇3〉
= 〈(𝑔b1

1 )𝛼/(𝑥+𝐼𝐷+𝑦𝑑) · (𝑇1)𝑡 𝑘 , 𝑔𝑡b
∗
1

2 , 𝑔
𝑥𝑡b∗

1

2 , 𝑔
𝑦𝑡b∗

1

2 ,

{ 𝑓 𝑡 (𝑥+𝐼𝐷+𝑦𝑑)b1
𝑥 }𝑥∈S , 𝐼𝐷, 𝑘, 𝑑〉

𝑇𝐾𝐶𝑇 = 〈𝐾 ′1 = 𝐾1 · 𝑇2, 𝐾
′
2 = 𝐾2 · (𝑔b

∗
2

2 )𝑑𝐾3𝐾
𝑇3
4 ,

{(𝐾𝜌 (𝑖), 𝜔𝑖)}𝑖∈𝐼 , 𝐼〉

B0 implicitly sets 𝑎 B 𝜏1. If 𝑇1, 𝑇2 are equal to 𝑔𝜏1b1

1 , 𝑔𝜏1b2

1 ,
then the key is properly distributed. However, if 𝑇1,𝑇2 are
equal to 𝑔𝜏1b1+𝜏2b3

1 , 𝑔𝜏1b2+𝜏2b4

1 , the key is semi-functional. The
exponent vector then includes an additional term 𝑡𝜏2b3 +𝜏2b4.
For the remaining key queries, B𝑘 simply runs the regular key
generation algorithms.

Next, the adversary A defines the challenge access struc-
tures A0, A1. It then generates two messages 𝑀0 and 𝑀1 and
sends them to B0. B1 now flips a coin 𝛽. B1 implicitly sets
𝑠 B 𝜏1. It encrypts 𝑀𝛽 under the challenge access structure
A∗
𝛽

as follows:

𝐶𝑇 =〈𝐶 = 𝑀𝛽 ·
(
𝑒𝑛 (𝑔b1

1 ,𝑈1)
)𝛼

= 𝑀𝛽 ·
(
𝑒𝑛 (𝑔1, 𝑔2)𝛼d1d

∗
1

)𝑠
,

𝐶 ′ = 𝑈1 ·𝑈2, 𝐶2, 𝐶3,

{𝐶𝑖 = 𝑔𝑎𝜆𝑖b1

1 · 𝑓 −𝑟𝑖b1

𝜌(𝑖) · 𝑔
(𝜂𝑖+𝜅𝑡𝑖 )b2

1 , 𝐷𝑖 = 𝑔
𝑟𝑖b

∗
1

2 }〉

where B1 implicitly sets 𝑠 B 𝜇1. The semi-functional part
of the ciphertext now contains 𝜇2b

∗
3 + 𝜇2b

∗
4. The distribution

for the 𝑖 − 1 first keys is independent of the random matrix
𝐴. Likewise, the challenge ciphertext is independent of the
random matrix 𝐴. The coefficients are uniformly random
(except for 1/𝑞 probability from [16]). Summarising, B𝑖 can
properly simulate either 𝐺𝑎𝑚𝑒𝑖−1 or 𝐺𝑎𝑚𝑒𝑖 , depending on
the distribution of 𝑇1, 𝑇2. As a result, B0 can leverage the
adversaries’ advantage 𝜖 between 𝐺𝑎𝑚𝑒𝑖−1 and 𝐺𝑎𝑚𝑒𝑖 against
the subspace assumption in G1: 𝐴𝑑𝑣𝐷𝑆1

B𝑖 (𝜆) = 𝜖 − 1/𝑞. �

Lemma 3. For any adversary A,
𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝑖A (𝜆) =𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙

A (𝜆).
Proof. To prove this lemma, we show that an
adversary A cannot distinguish between the
joint distributions of 𝐺𝑎𝑚𝑒𝑣 : (𝑀𝑃𝐾,𝐶𝑇 (𝑆𝐹 ) ,
{𝑆𝐾 (𝑆𝐹 )S𝑙 }𝑙=1,...,𝑖 , {𝑇𝐾 (𝑆𝐹 )𝑙

}𝑙=1,...,𝑖) and 𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙 :
(𝑀𝑃𝐾,𝐶𝑇 (𝑅) , {𝑆𝐾 (𝑆𝐹 )S𝑙 }𝑙=1,...𝑖 , {𝑇𝐾 (𝑆𝐹 )𝑙

}𝑙=1,...𝑖), where
𝐶𝑇 (𝑅) is a semi-functional encryption of a random message
in G𝑇 under a random access structure. We again define
a matrix 𝐴. This time, we set 𝐴 B (𝜉𝑖, 𝑗 ) R←−− Z2𝑥2

𝑝

and define new orthonormal bases F B (f1, ... , f4), and
F∗ B (f∗

1 , ... , f
∗
4 ):

©­«
f1
f2
f3
f4

ª®¬ B ©­«
1 0 0 0
0 1 0 0
𝜉1,1 𝜉1,2 1 0
𝜉2,1 𝜉2,2 0 1

ª®¬ ©­«
d1
d2
d3
d4

ª®¬ ,©­­«
f∗
1

f∗
2

f∗
3

f∗
4

ª®®¬ B
©­«
1 0 −𝜉1,1 −𝜉2,1
0 1 −𝜉1,2 −𝜉2,2
0 0 1 0
0 0 0 1

ª®¬
©­­«
d∗
1

d∗
2

d∗
3

d∗
4

ª®®¬
Next, we express our public parameters, the challenge

ciphertext and the secret keys in 𝐺𝑎𝑚𝑒𝑣 with the bases of
F, F∗. We change the coefficients (𝑠, 𝛿) in the ciphertext term
to random coefficients (𝑠′, 𝑠′′) ∈ Z𝑝 × Z𝑝 of f∗

1 , f
∗
2 . We let:

𝑆𝐾 (𝑆𝐹 )S𝑙 = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S〉
= 〈𝑔𝛼/(𝑥+𝐼𝐷+𝑦𝑑)f1

1 · 𝑔𝑎𝑡𝑙f1

1 · 𝑔𝑧
′
𝑙,3f3+𝑧′𝑙,4f4

1 , 𝑔
𝑡𝑙f

∗
1

2 , 𝑔
𝑥𝑡𝑙f

∗
1

2 ,

𝑔
𝑦𝑡𝑙f

∗
1

2 , { 𝑓 𝑡𝑙f1
𝑥 }𝑥∈S〉

𝑇𝐾 (𝑆𝐹 )
𝐶𝑇

= 〈𝐾 ′1 = 𝐾1 · 𝑔𝑧𝑙f2

1 , 𝐾 ′2 = (𝐾2 · 𝑔𝑑𝑙f
∗
2

2 )𝑇1𝐾3𝐾
𝑇3
4 ,

{(𝐾𝜌 (𝑖), 𝜔𝑖)}𝑖∈𝐼 , 𝐼〉
𝑅𝐾S𝑙 = 𝑧𝑙𝛿 − 𝑑 (

∑︁
𝑖∈𝐼

𝜂𝑖 +
∑︁
𝑖∈𝐼
)𝜅𝑡𝑖

𝐶𝑇 (𝑆𝐹 ) = 〈𝐶 = 𝑀 · 𝑦𝑠 , 𝐶 ′ = 𝑔𝑠
′f∗

1

2 · 𝑔𝑠
′′f∗

2

2 · 𝑔𝑡
′
3f

∗
3 +𝑡′4f∗

4

2 ,

𝐶𝑖 = 𝑔
𝑎𝜆𝑖f1

1 · 𝑓 −𝑟𝑖f1

𝜌(𝑖) · 𝑔
(𝜂𝑖+𝜅𝑖)f2

1 , 𝐷𝑖 = 𝑔
𝑟𝑖f

∗
1

2 }〉

We set 𝑠′ = 𝑠 − 𝑡3𝜉1,1 − 𝑡4𝜉2,1, 𝑠′′ = 𝛿 − 𝑡3𝜉1,2 − 𝑡4𝜉2,2, {𝑧′
𝑙,3 =

𝑧𝑙,3 + 𝜉1,1 (𝛼 + 𝑎𝑡𝑙) + 𝑧𝑙𝜉1,2, 𝑧
′
𝑙,4 = 𝑧𝑙,4 + 𝜉2,1 (𝛼 + 𝑎𝑡𝑙) + 𝑧𝑙𝜉2,2,

𝑟1, ... , 𝑟𝑙 , 𝜆1, ... , 𝜆𝑙
R←−− Z∗𝑝 }𝑙=1,...,𝑣 , . The values 𝜉1,1, ... , 𝜉2,2,

𝑡1,3, ... , 𝑡𝑣,3, 𝑡1,4, ... , 𝑡𝑣,4, 𝑟1, ... , 𝑟𝑙 , 𝜆1, ... , 𝜆𝑙 are all uniformly
distributed in Z∗𝑝 . Thus, the challenge ciphertext can be seen as
a semi-functional encryption of a random element in G𝑇 under
a random access structure. From the adversary’s perspective,
both (D,D∗) and (F, F∗) are consistent with the same public
key. We can therefore express the challenge ciphertext and the
queried keys in two ways: In 𝐺𝑎𝑚𝑒𝑣 over the bases (D,D∗)
and in 𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙 over the bases (F, F∗). Thus, the adversary
cannot distinguish between 𝐺𝑎𝑚𝑒𝑣 and 𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙 . �

Lemma 4. For any adversary A, 𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙

A (𝜆) = 0.

Proof. The value of 𝛽 is independent from the adversary’s
view in 𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙 . Hence, 𝐴𝑑𝑣𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙

A (𝜆) = 0. �

In 𝐺𝑎𝑚𝑒𝐹𝑖𝑛𝑎𝑙 the challenge ciphertext is a semi-functional
encryption of a random element in G𝑇 under a random access
structure. It is independent of the provided messages and
access structures. Hence, our CP-ABE scheme provides hidden
policies.

B. Proof of accountability

Since 𝑘 is only known to the user, we rely on the same
technology proposed by [17]. We assume that the simulator
knows 𝑘 , relying on some knowledge extractor.

Theorem 2. If the q-SDH and DLP assumptions hold, the
presented CP-ABE scheme provides accountability of dishon-
est users.



We follow the approach by Li et al. [15]. We prove the
following lemmas to show that the attacker’s advantage cannot
change by a non-negligible amount.

Lemma 5. Suppose there exists an adversary A which can
win the first dishonest user game with a non-negligible advan-
tage 𝐴𝑑𝑣A . In that case, there exists a probabilistic algorithm
B, which can break the q-SDH assumption with an advantage
𝜖/2.

Proof. To prove this lemma, we assume that A queries 𝑞 keys.
Each query is recorded in the tuple (𝐼𝐷𝑖 , 𝑑𝑖 , 𝑐𝑖 = 𝐼𝐷𝑖+𝑦𝑑𝑖). A
forged key is described by the tuple (𝐼𝐷∗, 𝑑∗, 𝑐∗ = 𝐼𝐷∗+ 𝑦𝑑∗).
Analogous to the proof by Li et al. [15], we consider two
types of adversaries, related to the conditions 𝑐∗ ∈ {𝑐𝑖}𝑖∈[𝑞 ]
and 𝑐∗ ∉ {𝑐𝑖}𝑖∈[𝑞 ] : The first adversary manages to either query
𝐼𝐷 = −𝑥 in the key query phase or manages to forge a 𝑆𝐾
related to 𝑐∗ ∉ {𝑐𝑖}𝑖∈[𝑞 ] . The second adversary does not query
𝐼𝐷 = −𝑥 in the key query phase but manages to forge a 𝑆𝐾
related to 𝑐∗ ∈ {𝑐𝑖}𝑖∈[𝑞 ] . To indicate which adversary we are
dealing with, B randomly chooses 𝑏𝑚𝑜𝑑𝑒 ∈ {1, 2}.

At first, B is given a distribution D according to the q-SDH
problem, defined in Section II-F. Let 𝐴𝑖 = {𝑔𝑥𝑖1 }0≤𝑖≤𝑞 . Next, B
randomly chooses elements {𝑐𝑖}1≤𝑖<𝑞 . Then, it defines 𝑓 (𝑧) =∏𝑞−1
𝑖=1 (𝑧 + 𝑐𝑖) =

∑𝑞−1
𝑖=0 𝜂𝑖𝑧

𝑖 , where 𝜂𝑖 ∈ Z∗𝑝 are the coefficients
of the polynomial. B, then, computes 𝑔1 =

∏𝑞−1
𝑖=0 𝐴

𝜂𝑖
𝑖

, 𝑄 =
𝑔𝑥1 =

∏𝑞

𝑖=1 𝐴
𝜂𝑖−1
𝑖

= (𝑔′)𝑥 𝑓 (𝑥) Like in the original proof, we
know that 𝑓 (𝑥) ≠ 0 because if 𝑓 (𝑥) = 0, then 𝑥 = 𝑐𝑖 . Now,
B computes the parameters according to the Setup algorithm.
However, B chooses 𝜃1, ... , 𝜃𝑈

R←−− Z∗𝑝 and sets { 𝑓𝑖}𝑖∈𝑈 =
{𝑔𝜃𝑖1 }𝑖∈𝑈 . Furthermore, if 𝑏𝑚𝑜𝑑𝑒 = 1, B chooses 𝑦 R←−− Z∗𝑝
and sets 𝑋 = 𝑍 = 𝑔𝑥2 , 𝑌 = 𝑔𝑦2 . Else, if 𝑏𝑚𝑜𝑑𝑒 = 2, B chooses
𝑥 ′ R←−− Z∗𝑝 and sets 𝑋 = 𝑔𝑥

′
2 , 𝑌 = 𝑍 = 𝑔𝑥2 .

Next, A queries keys for (𝐼𝐷1,S1), ..., (𝐼𝐷𝑞 ,S𝑞). For
every key query 𝑖, B computes the hash list (𝐼𝐷𝑖 ,S𝑖 , 𝑑𝑖).
Then, B computes 𝑓𝑖 (𝑧) = 𝑓 (𝑧)/(𝑧 + 𝑐𝑖) =

∏𝑞−1
𝑗=1, 𝑗≠𝑖 (𝑧 + 𝑐 𝑗 ) =∑𝑞−2

𝑖=0 𝛾 𝑗 𝑧
𝑗 , where 𝛾 𝑗 ∈ Z𝑝 are the coefficients of the polyno-

mial. B then computes 𝜆𝑖 =
∏𝑞−2
𝑗=0 𝐴

𝛾𝑖
𝑗
= (𝑔′) 𝑓𝑖 (𝑥) = 𝑔1/(𝑥+𝑐𝑖)

1 .
If 𝑏𝑚𝑜𝑑𝑒 = 1 and 𝑔−𝐼𝐷1 = 𝑔𝑥1 , B can directly calculate 𝑥 of
q-SDH directly, since B can compute (𝑐, 𝑔1/(𝑥+𝑐)

1 ) with any 𝑐.
As a result, B can break the q-SDH assumption. Else, B sets
𝑑𝑖 = (𝑐𝑖 − 𝐼𝐷𝑖)/𝑦 ∈ Z∗𝑝 . If 𝑑𝑖 = 0, B aborts. Else, if 𝑑𝑖 ≠ 0,
B chooses 𝑡 R←−− Z∗𝑝 , and returns the secret key 𝑆𝐾S𝑖 :

𝑆𝐾S𝑖 = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S , 𝑇1, 𝑇2, 𝑇3〉

= 〈𝜆𝛼d1

𝑖
· 𝑔𝑎𝑡𝑘d1

1 = 𝑔
𝛼d1

(𝑥+𝐼𝐷𝑖+𝑦𝑑𝑖 )
1 · 𝑔𝑎𝑡𝑘d1

1 , 𝑔
𝑡d∗

1

2 ,

𝑋 𝑡d
∗
1 = 𝑔

𝑥𝑡d∗
1

2 ,𝑌 𝑡d
∗
1 = 𝑔

𝑥𝑡d∗
1

2 , { 𝑓 𝑡 (𝐼𝐷+𝑦𝑑)𝑥 𝑔𝑥
𝜃𝑖−𝑡d1

1 }𝑥∈S , 𝐼𝐷, 𝑘, 𝑑𝑖〉

If 𝑏𝑚𝑜𝑑𝑒 = 2, B chooses 𝑑𝑖 = (𝑥 + 𝐼𝐷𝑖)/𝑐𝑖 ∈ Z∗𝑝 , If 𝑑𝑖 = 0,
B aborts again. Else, if 𝑑𝑖 ≠ 0, B computes the key as follows.

𝑆𝐾S𝑖 = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S , 𝑇1, 𝑇2, 𝑇3〉

= 〈𝜆𝛼/𝑑𝑖d1

𝑖
· 𝑔𝑎𝑡𝑘d1

1 = 𝑔
𝛼d1

(𝑥+𝐼𝐷𝑖+𝑦𝑑𝑖 )
1 · 𝑔𝑎𝑡𝑘d1

1 , 𝑔
𝑡d∗

1

2 ,

𝑋 𝑡d
∗
1 = 𝑔

𝑥𝑡d∗
1

2 ,𝑌 𝑡d
∗
1 = 𝑔

𝑥𝑡d∗
1

2 , { 𝑓 𝑡 (𝐼𝐷+𝑦𝑑)𝑥 𝑔𝑥
𝜃𝑖 𝑡d1

1 }𝑥∈S , 𝐼𝐷, 𝑘, 𝑑𝑖〉

After each key query, B adds the tuple (𝐼𝐷𝑖 , 𝑑𝑖 , 𝐻𝑖 =
𝑔𝐼𝐷𝑖

1 𝑌 𝑑𝑖 ) to a hash list.
Next, A generates a well-formed secret key 𝑆𝐾S related

to (𝐼𝐷∗, 𝑑∗), which has not been queried before. Let 𝐻∗ =
𝑔𝐼𝐷

∗
1 𝑌 𝑑

∗
. B then searches in the stored hash list. If there exists

no tuple with the same hash value, B sets 𝐵𝑚𝑜𝑑𝑒 = 1. In turn,
if there exists a tuple, equal to the hash, B sets 𝐵𝑚𝑜𝑑𝑒 = 2. If
𝑏𝑚𝑜𝑑𝑒 ≠ 𝐵𝑚𝑜𝑑𝑒, B aborts.

Now, if 𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 1, B checks whether 𝑔−𝐼𝐷1 = 𝑋 .
If that is the case, B can directly compute (𝑐, 𝑔1/(𝑥+𝑐)

1 ) from
any 𝑐. B can thus break the q-SDH assumption. Else, let
𝑐∗ = 𝐼𝐷∗ + 𝑦𝑑∗. B then computes 𝜆∗ = (𝐾1𝑔

−𝑎𝑡d1
𝑘

1 )1/𝛼d1 =
𝑔

1/(𝑥+𝐼𝐷∗+𝑦𝑐∗)
1 = (𝑔′) 𝑓 (𝑥)/(𝑥+𝐼𝐷∗+𝑦𝑐∗) . When 𝑏𝑚𝑜𝑑𝑒 = 1,
𝑐∗ ∉ {𝑐𝑖}𝑖∈[−𝑙−1] . Let 𝑓 (𝑧) = 𝛾(𝑧) (𝑧 + 𝑐∗) + 𝛾−1, where
𝛾(𝑧) = ∑𝑙−2

𝑖=0 𝛾𝑖𝑧
𝑖 and 𝛾𝑖 ∈ Z𝑝 . We compute 𝑓 (𝑧)/(𝑧 + 𝑐∗) =∑𝑙−2

𝑖=0 (𝛾𝑖𝑧𝑖 + 𝛾−1)/(𝑧 + 𝑐∗) and 𝜆∗ = (𝑔′)
∑𝑙−2

𝑖=0 (𝛾𝑖 𝑧𝑖+𝛾1)/(𝑧+𝑑∗) ,
where 𝛾𝑖 = 0. 𝑓 (𝑧) =

∏𝑙−1
𝑖=1 (𝑧 + 𝑐𝑖). Finally, B can solve

the q-SDH problem by calculating: (𝜆∗ · ∏𝑙−2
𝑖=0 𝐴

−𝛾𝑖
𝑖
)𝛾−1 =((𝑔′)𝛾−1/(𝑥+𝑐∗) · (𝑔′)

∑𝑙−2
𝑖=0 𝛾

𝑥𝑖

𝑖
∏𝑙2
𝑖=0 (𝑔′)−𝛾𝑖 𝑥

𝑖 )𝛾−1 = (𝑔′)1/(𝑥+𝑐∗) . It
returns (𝑐∗, (𝑔′)1/(𝑥+𝑐∗) ) as the solution to the q-SDH problem.

In turn, if 𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 2, B can compute 𝑥 =
(𝐼𝐷𝑖 − 𝐼𝐷∗)/(𝑑𝑖 − 𝑑∗). Since, 𝑌1 = 𝑔𝑥1 , 𝐻𝑖 = 𝐻∗ = 𝑔

𝐼𝐷𝑖

1 𝑔𝑥𝑑𝑖 =
𝑔𝐼𝐷

∗
1 𝑔𝑥𝑑

∗
1 , 𝐼𝐷𝑖 +𝑥𝑑𝑖 = 𝐼𝐷∗ +𝑥𝑑∗. As a result, B can break the

q-SDH assumption for 𝑏𝑚𝑜𝑑𝑒 = 2.
As can be seen, the choice of 𝑏𝑚𝑜𝑑𝑒 is independent of
A. The distribution of the public key is the same as in the
real scheme. 𝑆𝐾S is well-formed. Assuming, B calculates
a well-formed 𝑆𝐾S with probability 𝜖 , we can analyse the
probability of B breaking the q-SDH assumption. Like in
the proof of Li et al. [15], B aborts with at least probability
(𝑙 − 1)/𝑝, if 𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 1. For 𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 2,
B does not abort. As a result, 𝑃𝑟 [𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 1/2].
We conclude that B can solve the q-SDH problem with the
following probability:

𝑃𝑟 [B 𝑛𝑜𝑡 𝑎𝑏𝑜𝑟𝑡 & 𝑤𝑖𝑛|𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 1]
· 𝑃𝑟 [𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 1]
+ 𝑃𝑟 [B 𝑛𝑜𝑡 𝑎𝑏𝑜𝑟𝑡 & 𝑤𝑖𝑛|𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 2]
· 𝑃𝑟 [𝐵𝑚𝑜𝑑𝑒 = 𝑏𝑚𝑜𝑑𝑒 = 2]

= 𝜖 (1 − (𝑙 − 1)/𝑝) · 1/4 + 𝜖 · 1/4
= 𝜖/(2 − (𝑙 − 1)) · 𝜖/4𝑝
≈ 𝜖/2.

�

Lemma 6. Suppose an adversary A which can win the second
dishonest user game with a non-negligible advantage 𝐴𝑑𝑣A .



In that case, there exists a probabilistic algorithm B, which
can break the DLP with an advantage 𝜖 .

Proof. B first generates the public parameters according to the
Setup algorithm. A then queries 𝑞 keys. (𝐼𝐷𝑖 ,S𝑖). For every
𝑖𝑡ℎ query, B extracts 𝑘𝑖 from 𝑔𝑎𝑘𝑖d1

1 . Given the DLP and a
tuple (𝑔1, 𝑔

𝑧
1), B chooses 𝛾𝑖 , 𝑡𝑖

R←−− Z𝑝 and sets 𝑡 (𝑖) = 𝛾𝑖𝑧

implicitly by computing 𝑔𝑎𝑘𝑖𝑑
(𝑖)

1 = (𝑔𝑧1)𝑎𝑘𝑖𝛾𝑖 , 𝐾𝑖,2 = 𝑔𝑑
(𝑖) 𝑡𝑖 =

(𝑔𝑧)𝛾𝑖 𝑡𝑖 . Then, B sends 𝑆𝐾S𝑖 to A. In the next phase, A
outputs a secret key for the tuple (𝐼𝐷, 𝑑, 𝑘). We assume 𝑆𝐾
to be well-formed. That means (𝐼𝐷, 𝑑) = (𝐼𝐷𝑖 , 𝑑𝑖) and 𝑘 ≠ 𝑘𝑖 .

𝑆𝐾S = 〈𝐾1, 𝐾2, 𝐾3, 𝐾4, {𝐾𝑥}𝑥∈S , 𝑇1, 𝑇2, 𝑇3〉

= 〈𝑔
𝛼d1

(𝑥+𝐼𝐷𝑖+𝑦𝑐)
1 · 𝑔𝑎𝑡𝑘d1

1 , 𝑔
𝑡d∗

1

2 , 𝑔
𝑥𝑡d∗

1

2 , 𝑔
𝑦𝑡d∗

1

2

{ 𝑓 𝑡 (𝑥+𝐼𝐷+𝑦𝑐)d1
𝑥 }𝑥∈S , 𝐼𝐷, 𝑘, 𝑑〉

The adversary A, then generates a forged key as follows:

𝑆𝐾S = 〈𝐾 ′1, 𝐾 ′2, 𝐾 ′3, 𝐾 ′4, {𝐾𝑥}𝑥∈S , 𝑇 ′1 , 𝑇 ′2 , 𝑇 ′3〉

= 〈𝑔
𝛼d1

(𝑥+𝐼𝐷𝑖+𝑐)
1 · 𝑔𝑎𝑡′𝑘′d1

1 , 𝑔
𝑡′d∗

1

2 , 𝑔
𝑥𝑡′d∗

1

2 , 𝑔
𝑦𝑡′d∗

1

2

{ 𝑓 𝑡′ (𝑥+𝐼𝐷+𝑦𝑑)d1
𝑥 }𝑥∈S , 𝐼𝐷, 𝑘 ′, 𝑑〉

We observe that 𝛼d1

(𝑥+𝐼𝐷𝑖+𝑐) and 𝑑 is unknown to A. How-
ever, if A can successfully generate 𝐾 ′1, it can calculate:
𝐾 ′1 = 𝐾1 · 𝑔𝑎𝑝1

1 ⇒ 𝑘𝑑 + 𝑝1 = 𝑘 ′𝑑 ′, where 𝑝1 ∈ Z𝑝 . Likewise,
𝐾 ′𝑥 = (𝐾𝑥) 𝑝2 ⇒ 𝑑𝑝2 = 𝑑 ′. A can now solve the equation
𝑘𝑑 + 𝑝1 = 𝑘 ′𝑑 ′, 𝑑𝑝2 = 𝑑 ′ and calculate 𝑑 = 𝑝1/(𝑘 ′𝑝2− 𝑘). We
can argue that the probability 𝑘 ′𝑝2 = 𝑘 is negligible. Finally,
B can calculate the solution to the DLP problem: We set
𝑑 = 𝛾𝑖𝑧. Then, A can calculate the solution: 𝑧 = 𝑑/𝛾𝑖 =
𝑝1/(𝛾𝑖 (𝑘 ′𝑝2 − 𝑘)). We conclude that if A can successfully
generate 𝑆𝐾 ′S , where 𝑘 ≠ 𝑘 ′, there exists an algorithm which
can break the DLP assumption with an advantage 𝜖 . �

V. EVALUATION

We provide an implementation of our solution, and compare
it to existing work. This section describes the process and
highlights the results.

Implementation details. We implemented two versions of
our proposed solution in Kotlin. To do so, we relied on
two different libraries for pairing-related functionality: Java
Pairing-Based Cryptography Library (JPBC) [18] and the
IAIK ECCelerateTM1 library. To put our solution in perspective
against existing work, we implemented the similar-featured
scheme presented in [15] using the JPBC library.

Platform. We evaluated our construction on two different
platforms: We used an Intel(R) Xeon(R) CPU E5-2699 v4
@ 2.20GHz on Debian 10 - 5.9.0-0.bpo.5-amd64 to represent
a powerful cloud server and a Raspberry Pi 3 Model B+ on
Raspbian GNU/Linux 10 - 5.4.83-v7+ to represent a more
resource constrained device. These two platforms show how

1https://jce.iaik.tugraz.at

the proposed construction copes with different platforms and
available computing resources.

Setting. We carried out multiple benchmarks using the Java
Microbenchmark Harness (JMH)2. To initialise the test sys-
tem, we used 5 warmup forks with 5 warmup iterations. For
benchmarking, we used 10 forks with 10 iterations.

Policies. For each test, we generated random access policies
from two up to 100 attributes.

Security. We relied on the proposed parameters by Guillevic
[19] and Kiraz and Uzunkol [20]. They are equivalent to a
security level of AES-128 and provide near-term security (at
least ten years) as defined by NIST [21]. In detail, we selected
groups of size G1 = 256, G2 = 512, G𝑇 = 3072 with an
embedding degree 𝑘 = 12, for the proposed construction. For
symmetric pairings as used by [22], we set 𝑟 = 160 and 𝑞 =
3000.

Comparison. We now compare our construction in terms of
flexibility and overhead against related work. Table I highlights
our findings. We describe the overhead by the number of
pairing (𝑃) and exponentiation (𝐸) operations. Furthermore,
we estimate the ciphertext and key size by the number of
group elements of size |G| or |G𝑇 |. The value |𝑃𝐾 | describes
the length of the public parameters. |𝑆𝐾 | denotes the length
of the user key. We use |𝐶𝑇 | to describe the ciphertext size.
From the table, we can see that our construction can compete
with existing work. Indeed, Encrypt operation only introduces
a nominal overhead. In turn, Decrypt operation clearly outper-
forms existing work due to it being a single exponentiation.
Turning to storage requirements, we find a similar pattern.
The only outlier can be observed when looking at the public
key. The size of the public parameters for our construction
grows linearly with the number of attributes. In contrast, all
the analysed related-work supports the large attribute universe.
This means that the public parameters are independent of the
number of attributes used. The table also highlights that our
construction manages to combine hidden policies, accountabil-
ity and revocability. Finally, the table outlines the supported
access policies. Like ours, the construction by Ning et al. [23]
supports LSSS, which is generally speaking more flexible than,
e.g. access structures based on access trees or AND-gates.

Timing benchmarks. Figure 1 shows the timing benchmarks
conducted on the Intel(R) Xeon(R) CPU E5-2699 v4 @
2.20GHz. From the graph, we can see that our construction
(in red and green) outperforms the construction proposed by
Li et al. (in blue) for almost all operations. We attribute this
to the fact that our construction is designed around Type III
pairings instead of Type I pairings. Li et al.’s scheme, however,
outperforms our scheme in the setup phase, as it accounts for
a large attribute universe. The graph, furthermore, confirms
our assumption that the Decrypt operation is constant and
independent of the number of used attributes. Li et al.’s scheme
does not provide outsourced decryption. Hence, the operations

2https://openjdk.java.net/projects/code-tools/jmh/

https://jce.iaik.tugraz.at


TABLE I: Comparison of the proposed scheme with existing constructions. 𝑛 is the number of attributes in the system. 𝑙
symbolises the number of user attributes. We use 𝑖 to specify the complexity (e.g. the number of attributes) of a policy. We
denote 𝑃 as the time for a pairing operation and 𝐸 as the time for an exponentiation. Cells in bold highlight the best value
for each column.

Li et al. [24] Ning et al. [23] Qiao et al. [25] Li et al. [15] Ours
|𝑃𝐾 | 2 |G | + |G𝑇 |2 |G | + |G𝑇 |2 |G | + |G𝑇 | (𝑛 + 4) |G | + |G𝑇 | 2 |G | + |G𝑇 |2 |G | + |G𝑇 |2 |G | + |G𝑇 | 7 |G1 | + |G𝑇 | (2𝑛 + 4) |G1 | + 8 |G2 | + 2 |G𝑇 |
|𝑆𝐾 | (4𝑛 + 4 |𝐼𝐷 |) |G | (𝑙 + 6) |G | (𝑙 + 4) |G |(𝑙 + 4) |G |(𝑙 + 4) |G | (2𝑙 + 4) |G | (2𝑙 + 2) |G1 | + 6 |G2 |
|𝐶𝑇 | (4𝑖 + 8 |𝐼𝐷 |) |G | + |G𝑇 | (2𝑖 + 3) |G | + |G𝑇 | (4𝑖 + 1) |G | + |G𝑇 | (2𝑙 + 4) |G |(2𝑙 + 4) |G |(2𝑙 + 4) |G | 2𝑖 |G1 | + (2𝑖 + 6) |G2 | + |G𝑇 |
Encrypt (4𝑖 + 8 |𝐼𝐷 | + 1)𝐸 (3𝑖 + 4)𝐸(3𝑖 + 4)𝐸(3𝑖 + 4)𝐸 (5𝑖 + 2)𝐸 (5𝑖 + 3)𝐸 (6𝑖 + 4)𝐸
Decrypt (4𝑛 + 4 |𝐼𝐷 |)𝑃 (𝑙 + 3)𝐸 + (2𝑛 + 2)𝑃 2𝑖𝐸 + (2𝑖 + 1)𝑃 (𝑙 + 4)𝐸 + (3𝑙 + 1)𝑃 1𝐸1𝐸1𝐸
Trace (4𝑖 + 4 |𝐼𝐷 |)𝐸(4𝑖 + 4 |𝐼𝐷 |)𝐸(4𝑖 + 4 |𝐼𝐷 |)𝐸 3𝐸 + (2𝑙 + 8)𝑃3𝐸 + (2𝑙 + 8)𝑃3𝐸 + (2𝑙 + 8)𝑃 (5𝑖 + 2)𝐸 + (2𝑖 + 1)𝑃 + 𝑢𝐸 (𝑙 + 6)𝐸 + (4𝑙 + 2)𝑃 (2𝑙 + 12)𝐸 + (2𝑙 + 2)𝑃
Hidden policies 3 7 7 3 3

Revocation 7 3 7 7 3

Policy AND LSSS Access tree AND∗𝑚 LSSS
Group Prime Composite Prime Prime Prime
Model Black-Box White-Box Black-Box White-Box White-Box

TABLE II: Execution Time of Encrypt and Decrypt operations
on a Raspberry Pi 3 Model B+.

Attribute count Encrypt

2 326 ms
10 890 ms
20 1 638 ms
30 2 429 ms
40 3 274 ms
50 4 135 ms
60 5 116 ms
70 6 064 ms
80 7 084 ms
90 8 157 ms
100 9 983 ms

Decrypt

162 ms
162 ms
162 ms
162 ms
163 ms
163 ms
162 ms
162 ms
162 ms
162 ms
162 ms

are missing from the graph.
In turn, Table II shows the benchmark results of operations per-
formed on the Raspberry Pi 3 Model B+ for the JPBC library.
We intentionally evaluated Encrypt and Decrypt operations on
this platform, as these operations are typically not carried out
by a cloud server. From the table, we can see that the time
for Encrypt operation increases linearly with the number of
used attributes. For a policy with two attributes, the execution
time is around 300ms. For a policy with 100 attributes, the
execution takes around 10s. At first glance, this result looks
like a significant overhead. However, ABE provides one-to-
many encryption. That means that a ciphertext only needs to
be encrypted once, regardless of the number of recipients. In
turn, the Decrypt operation takes around 160ms, independent
of the number of attributes.

VI. RELATED-WORK

We present the major concepts of privacy-aware accountable
ABE and discuss their relevance to our work.

Li et al. [24] first presented a privacy aware CP-ABE
scheme with user accountability to prevent illegal key sharing.
User accountability is achieved in a black-box model by
embedding user specific information in attribute private key.
In contrast to our construction, expensive pairing operations
need to be run on the client. Xhafa et al. [26] propose a

multi-authority CP-ABE scheme with user accountability and
hidden access policies. The solution targets a patient-centric
model of health information exchange. The scheme allows
identifying a misbehaving user who shared their decryption
key. It embeds a user global identity into the user’s private
key. The scheme does not account for resource-constrained
devices. In particular, expensive bilinear pairing operations are
performed on the client device. Liu et al. presented traceable
white-box [27] and black-box [28] CP-ABE schemes. Both
schemes rely on composite order bilinear groups. As a result,
concrete implementations of the schemes result in less efficient
pairing operations and are thus less efficient for resource-
constrained environments. Ning et al. [29, 30] propose two
white-box traceable, large universe CP-ABE systems. Both
systems rely on prime order bilinear groups, like ours does.
Their constructions support any monotone access structure
and guarantee constant storage for tracing. The decryption
operation, however, still relies on pairing operations, and might
therefore not be applicable in resource-constrained environ-
ments. They, later [31, 32], improved their construction. It
allows identifying malicious authorities, i.e. authorities that
illegally distribute keys, and malicious users, i.e. users that
share their key. The construction is designed in the white-
box model and supports arbitrary monotone access structures.
However, the construction depends on composite-order groups
and is, therefore, limited to more powerful devices. Qiao
et al. [25] propose a novel black-box compulsory traceable
CP-ABE approach for fog systems. Compulsory means that
the tracing ciphertext must not be distinguishable form a
normal ciphertext. The approach scales well and is efficient.
In contrast to our scheme, decryption requires expensive
bilinear pairing operations to be run on the client device.
In our construction, the client is left with only a single
exponentiation. Ning et al. [23] propose a CP-ABE system
which relies on novel non-interactive commitments for traitor
tracing. The resulting scheme relies on composite order groups
with three distinct primes. Our construction, in contrast, relies
on more efficient prime order bilinear groups and does not
require pairing operations on client devices. Most recently,
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Li et al. [15] (JPBC) Ours (JPBC) Ours (Eccelerate)

(a) Setup, 𝜆 = 256 (b) GenUserKey, 𝜆 = 256 (c) Encrypt, 𝜆 = 256 (d) ReEncrypt, 𝜆 = 256

(e) GenTK, 𝜆 = 256 (f) Outsourced-Decrypt, 𝜆 = 256 (g) Decrypt, 𝜆 = 256 (h) Trace, 𝜆 = 256

Fig. 1: Performance comparison of the proposed scheme with the schemes presented in [15]. The graphs show the timing
results for different operations and different implementations. Tests were executed on an Intel(R) Xeon(R) CPU E5-2699 v4
@ 2.20GHz.

Li et al. [15] published one of the first works to combine
hidden access structures and accountability. They present a
CP-ABE scheme with hidden-policies for Internet of Things
(IoT) systems which offers white-box accountability for users
and authorities. The performance of encryption and decryption
scales linearly with the number of attributes. Thus, the scheme
is limited to more powerful devices as expensive pairing
operations are performed by the client. Arguably, a client can
outsource decryption to some external proxy. This, however,
entails that the proxy learns the plaintext message M. In our
construction, the decryption proxy does not learn the plaintext
message or the access policy. Additionally, our construction
provides revocable attributes.

Summarising, we improve state-of-the-art by combining
hidden-access policies with malicious user tracing, all while
reducing the computational burden on client devices.

VII. CONCLUSION

ABE is an emerging technology providing fine-grained
access control in highly dynamic environments. On a closer
look, however, the practical adoption of ABE is often limited
due to open questions such as performance, privacy and ac-
countability. This paper tackles these limitations and provides
a novel CP-ABE approach which improves the state-of-the-art
from two angles: First, our construction combines numerous
features such as hidden-policies, outsourced decryption and
white-box accountability. Second, the provided solution still
outperforms similar constructions by an order of magnitude.
Summarising, the presented approach narrows the gap between
heterogeneous environments and ABE-based access control. It,

thus, paves the way towards a holistic ABE solution and shows
the real potential of ABE in such cloud environments. As the
research has demonstrated, however, some questions still need
to be answered. For example, in Time-Sensitive Networking
(TSN) networks, even a seemingly small overhead such as the
one in our construction might disrupt regular operations. A full
discussion on this topic lies beyond the scope of this paper.
In the future, we will therefore explore additional techniques
to improve the construction. Possible techniques include, but
are not limited to: outsourcing the encryption operation or
removing bilinear pairings altogether.
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