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A B S T R A C T   

Grasping movements are known to activate the fronto-parietal brain networks both in human and non-human 
primates. However, it is unclear if these activations represent properties of the objects or hand postures or 
both at different stages of the movement. We manipulated the intrinsic properties of the objects and the grasping 
types in order to create twelve unique combinations of grasping movements and we investigated, in healthy adult 
humans, the low-frequency time-domain EEG representation of grasping over different stages of the movement. 
Next, we implemented two multiclass decoders for the grasp type and objects’ properties and evaluated them 
over time. Furthermore, we investigated the similarity between these grasping EEG representations and cate
gorical models that encode properties of the movement and intrinsic properties of the objects. We found that 
properties of the grasping movement (grasp types, number of fingers) and intrinsic object properties (shape and 
size) as represented in EEG are encoded in different brain areas throughout the movement stages. Both object 
properties and grasp types can be decoded significantly above chance level using low-frequency EEG activity 
during the planning and execution of the movement. Moreover, we found that this preferential time-wise 
encoding allows the decoding of object properties already from the observation stage, while the grasp type 
can also be accurately decoded at the object release stage. These findings contribute to the understanding of the 
grasping representation based on noninvasive EEG brain signals, and its evolution over the course of movement 
in relation to categorical models that describe the grasped object’s properties or that encode properties of the 
grasping movement. Moreover, our multiclass grasping decoders are informative for the design and imple
mentation of noninvasive motor control strategies.   

1. Introduction 

Grasping seems an effortless and almost automatic movement. The 
shape and the size of an object play an important role in the way we 
grasp it. Upon distinguishing objects (Biederman, 1987), we can shape 
our hands according to their appearance in order to interact with them 
(Napier, 1956; Smeets and Brenner, 1999). Albeit we can perform 
reach-and-grasp movements with ease, their underlying neural mecha
nisms are highly complex and involve extensive computational re
sources (Fagg and Arbib, 1998; Castiello, 2005). When performing a 
grasping movement, our brain translates the visual representations of an 
object relative to its intrinsic properties such as shape, size, or weight, 
into multidimensional motor commands that inform different grasping 
types and hand configurations (Jeannerod et al., 1995). Therefore, 
grasping an object requires the integration of sensory, motor and visual 

parameters. One of the brain networks that are involved in transforming 
visual features into motor commands is the fronto-parietal loop. To 
better understand the contribution of different brain regions during 
grasping, and potentially inform a more accurate control of a robotic 
limb, it is necessary to understand whether different brain regions 
encode grasping type, objects properties or both, at different stages of 
the grasping movement. 

Several studies have investigated the neural patterns associated with 
grasping movements in non-human primates (Schaffelhofer and Scher
berger, 2016; Castiello, 2005; Donoghue et al., 1998; Michaels and 
Scherberger, 2018) and in humans using different acquisition modal
ities: invasive, such as single-cell recordings (Klaes et al., 2015; Aflalo 
et al., 2015), local field potentials (LFPs) (Mollazadeh et al., 2008), 
electrocorticography (ECoG) (Jiang et al., 2020; Pistohl et al., 2012) and 
noninvasive, such as functional magnetic resonance imaging (fMRI) 
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(Cavina-Pratesi et al., 2007; Culham et al., 2003; Perini et al., 2020; 
Fabbri et al., 2016), functional near-infrared spectroscopy (fNIRS) 
(Koehler et al., 2012; Wriessnegger et al., 2017), positron emission to
mography (PET) (Rizzolatti et al., 1996; Grafton et al., 1996), magne
toencephalography (MEG) (Buch et al., 2012; Taniguchi et al., 2000) 
and electroencephalography (EEG) (Sburlea and Müller-Putz, 2018; Guo 
et al., 2019; Iturrate et al., 2018; Koester et al., 2016; Sburlea AI, Mül
ler-Putz GR, 2019). 

Building upon these findings it becomes relevant to gain a good 
understanding of the neural correlates of grasping at different stages of 
the gradual unfolding of the movement. Non-invasive acquisition mo
dalities, such as EEG, provide high temporal resolution of neural activity 
over large brain regions, making it an appealing technique to study the 
changes of brain patterns associated with the grasping movement over 
time. In addition to the fundamental understanding of the underlying 
mechanisms of grasping movements, several studies have focussed on 
the prediction and classification of grasping movements at the single- 
trial level for the control of a brain-computer interface or an upper- 
limb neuroprosthesis using movement-related cortical potentials 
(MRCPs) (Schwarz et al., 2018; Iturrate et al., 2018; Omedes et al., 2018; 
Hazrati and Erfanian, 2010; Zaepffel et al., 2013; Jochumsen et al., 
2016; Agashe et al., 2015; Ofner, 2019; Muller-Putz et al., 2019). 

In this study, we aim to gain a better understanding of the neural 
mechanisms underlying grasping, as encoded by low-frequency EEG 
amplitudes, and potentially inform future BCIs about the features that 
can lead to a good discriminability among objects and among grasp 
types at different movement stages. We set three research goals. First, we 
will evaluate the performance to classify grasping movements at 
different stages of the movement using non-invasive low-frequency 
time-domain EEG measures of brain activity. Next, we will investigate 
whether object properties and/or grasp types are encoded at these 
stages. And, third, we will study the representation of these grasping 
characteristics and how they drive classification. We hypothesize that 
during the planning and execution stage the decoding performance 
would be higher than at rest stages and that the grasping representation 
from motor related brain areas would drive the performance. Further
more, we surmise that object properties would be represented in the EEG 
channel space covering visual related brain areas earlier in the unfolding 
of the grasping movement, while the grasp type and the number of 
fingers used in the grip would be represented later in the progress of the 
movement by the channels covering brain areas targeted by planning 
and motor processes. To address these questions, we designed a study 
that allowed us to separate between object properties and grasp types. 
Participants observed, grasped, held and released objects of 2 different 
sizes and 2 different shapes using 3 different grips. We used a multiclass 
classification approach to distinguish among grasp types and among 
objects based on their intrinsic properties. Next, we performed repre
sentational similarity analysis in order to further understand the rela
tionship between the EEG representation of grasping (from the 
perspective of grasp type, number of fingers involved and object prop
erties) and categorical models that encode these characteristics of 
grasping. With this analysis, we gained insights about the interplay of 
distinct brain networks during the course of grasping movements, as 
well as about the representational space in which alike grasping 
movements are encoded, using noninvasive EEG signals. 

2. Materials and methods 

2.1. Participants 

We recruited 16 healthy right-handed participants between the age 
of 20–32 years (9 females, mean age = 25.3 years, SD = 3.5 years) who 
were free of neurological diseases and had a normal or corrected-to- 
normal vision. The extent of hand-lateralization/dominance was 
examined with an adapted version of the Edinburgh Handedness In
ventory (Oldfield, 1971), which assesses the preferably used hand for 

several grasping types. The study was conducted in accordance with the 
Declaration of Helsinki (1975) and it was approved by the local ethics 
committee of the Medical University of Graz. After a standardized in
struction, the participants signed the informed consent form. The 
participation was honored with 7.50€ per hour. 

2.2. Experimental paradigm 

Participants underwent a short practice session in order to famil
iarize themselves with the task paradigm, which was implemented in the 
MATLAB-based Psychtoolbox (version 3). After the familiarization 
phase, the main experiment started. The participants were seated in 
front of a computer screen which showed the paradigm of the experi
ment. The task was to replicate the shown grasping as closely as possible, 
using their right hand and the respective object, which was centrally 
placed between the screen and the participant. In the first 3 s of the trial 
(fixation phase), participants were instructed to fixate their gaze on a 
cross located in the middle of the screen and to avoid eye movements. 
Next, in the observation phase, an image of the grasping movement 
involving the object (lying on the table in front of the participant) was 
shown on the screen for 4 s. During this phase, participants were 
instructed to observe the grasping posture as well as the shape and size 
of the shown object. In the following execution phase, the previously 
observed movement should be executed after an ‘x’ symbol appeared on 
the screen. Before the movement execution, participants were asked to 
focus their gaze on the object and keep it there until the end of the 
movement. Participants could execute the movement within 4 s and 
were instructed to hold it until the “Relax" instruction appeared on the 
screen. In the last phase (relaxation phase), the “Relax" -instruction 
appeared for 2 s, followed by the instruction “Get ready.”, marking the 
preparation time for the next trial. During the observation and relaxa
tion phase, participants were not restricted in their eye movements. 
During the fixation, observation, and relaxation phase, the right hand 
was placed on a resting position on a black mousepad, which facilitated 
the recording of resting muscle and joint tracking activity. 

The experiment consisted of 24 runs (of approximately 7 minutes 
each) in which participants were asked to perform three different types 
of grasp: power, five-finger precision, two-finger precision, in a random 
order using one of the four different objects: large cylinder (diameter =
5 cm, length = 24 cm), small cylinder (diameter = 3 cm, length = 24 
cm), large sphere (radius = 8 cm) and small sphere (radius = 5 cm) (see 
Fig. 1). All the objects were made of wood and had the same texture. 
They were manually painted with the same color. The images of 
grasping movements were taken with a professional Nikon D3500 
camera, located on a fixed tripod to ensure the same characteristics of 
the images. Each run contained 27 trials and the object that was grasped 
remained the same for the entire run. Each trial lasted 15 s, resulting in a 
total measuring time of approximately 3 h. In total, each of the 12 
grasping conditions was executed 54 times. After every run, the par
ticipants had the opportunity to take a small break. 

2.3. Data acquisition 

EEG data was recorded using a 64-EEG channel ActiCap system 
connected to two 32-channel BrainAmp amplifiers (BrainProducts, 
Germany). Brain activity was measured by 61 channels, which covered 
all brain regions, according to the 10-10 international system. EOG ac
tivity was measured with three electrodes mounted on the outer canthi 
of the left and right eyes and above the nasion. The ground electrode was 
placed on AFz and the reference electrode was attached to the left 
mastoid. 

In order to track the participants’ movements as well as to determine 
their exact kinematics, we used an optical tracking device (Leap Motion 
Inc., San Francisco, CA, USA). Additionally, muscle activity (EMG) was 
recorded with a bracelet of eight equidistant EMG sensors (Myo bracelet, 
Thalmic Labs Inc., Ontario Canada), which was mounted on the right 
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arm (below the elbow), above the extrinsic hand muscles. Before use, an 
individual calibration of the bracelet, which is connected via Bluetooth, 
was necessary. These behavioral data were recorded for the investiga
tion purposes of another study. The Lab Streaming Layer (LSL) (htt 
ps://github.com/sccn/labstreaminglayer) was utilized to enable simul
taneous acquisition of the different data streams. In addition, a photo
diode was used to align the data to the visual presentation of the stimuli 
on the monitor. 

2.4. Data preprocessing 

Data was preprocessed in Matlab R2016b. As a first step, the data was 
filtered, using a Butterworth fourth-order, zero-phase, band-pass filter 
between 0.1 and 40 Hz and then downsampled to 100 Hz. From a total of 
648 trials, on average 4 trials were missing per participant due to absent 
markers during the recording. Next, we performed an independent 
component analysis (ICA) over all four objects in order to extract 
maximally independent components, which represent synchronous ac
tivity within certain cortical areas and thereby exclude artifactual 
components. To further eliminate artifacts in the functional data, we 
applied SASICA (Semi-Automatic selection of Independent Component 
Analysis) (Chaumon et al., 2015), which automatically marks artifactual 
components for rejection (which correspond to muscle or eye move
ments), based on several selection algorithms. Both tools are imple
mented in the EEGLAB toolbox. The single components were then 
visually inspected for definite rejection. After that, the single runs were 
again filtered by making use of a Butterworth fourth-order, zero-phase, 
band-pass filter from 0.1 to 3 Hz, and MRCPs were computed for 61 EEG 
channels. We removed the first second from the fixation period due to 
artifact contamination coming from the break period. Therefore, we 
define the beginning of the trial as the second one of the fixation period 
and we will refer to it as the “0” point. Next, we split the trial into stages 
of the movement: the fixation stage starts from the “0” point until second 
2; the observation stage is between second 2 and second 5; the planning 
and execution stage is between second 5 and second 8; the holding stage 
is between second 8 and second 10; the releasing stage is between sec
ond 10 and second 12. 

2.5. Multi-class classification analysis 

We designed two multiclass classifiers in order to discriminate be
tween grasp types: power, precision with five fingers and precision with 
two fingers, and between intrinsic properties of the objects: large cyl
inder, small cylinder, large sphere and small sphere. We examined the 
performance of these classifiers in the five stages of the movement: 

fixation, observation, planning and execution, holding and releasing. 
Both classifiers were based on regularized linear discriminant anal

ysis (LDA) and were using low-frequency amplitude (time-domain) 
features of the 61 channels from the respective time windows. From the 
band-pass filtered data between 0.1 and 3 Hz, we extracted one feature 
every 250 ms. We assumed that all our classes have the same covariance 
structure, hence we fitted a multiclass linear model. We used regulari
zation and 10*10 fold cross-validation for training and testing. We chose 
within class accuracy as our metric of performance, and we computed it 
as the percentage of correctly classified trials for that class taken from 
the total number of trials of that class. We also evaluated the discrimi
nation among grasp types and among objects during the movement 
progression, independent of the movement stages, in order to better 
understand the dynamics of the process. We evaluated every 50 ms the 
discrimination accuracy of the multiclass decoder. We included this 
analysis in the Supplementary Material Fig. S3. 

To get an overall understanding of the behavior of these two classi
fiers (for grasp type and for object properties) across the stages of the 
movement, we also computed accuracy as the percentage of correctly 
classified trials from the total number of trials independent of the class. 
To examine the statistical significance of our results we used pairwise 
Student t-test evaluation and corrected our p-values by accounting for 
multiple comparisons using the Bonferroni-Holm correction (Holm, 
1980). 

2.6. Similarity analysis 

To assess the extent to which different brain regions encode different 
attributes of the grasping movement, we performed a representational 
similarity analysis (Kriegeskorte et al., 2008). For each of the five stages 
(temporal windows), we conducted a searchlight analysis (Su et al., 
2012; Sburlea and Müller-Putz, 2018) over the channel space. Specif
ically, from the average EEG pattern over the trials of each of the twelve 
conditions, we extracted standardized (z-scored) EEG amplitude pat
terns at different spatial locations. For the analysis, we defined 31 
neighborhoods (regions of interest) in the channel space. One neigh
borhood had five members: one centroid and four equidistant neighbors, 
and had 2 members in common with another neighborhood. All the 
information within one neighborhood was concatenated into a vector. 
This vector defined the pattern of activity for the region with a given 
centroid in the channel space. We computed the EEG reference repre
sentations based on the searchlight analysis of the time-domain EEG 
data in the five movement stages: fixation, observation, planning and 
execution, holding, and release. The searchlight analysis yielded a total 
of 31 reference representation dissimilarity matrices (RDMs) 

Fig. 1. (A). Display of the four different objects (rows: large sphere, small sphere, large cylinder, small cylinder) and the three different grasping types (columns: 
power, five-finger precision, two-finger precision), resulting in 12 different conditions; (B). Pictures of a participant in different stages of the experiment; (C). 
Timeline of a trial and presentation cues. 
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(Kriegeskorte et al., 2008) with dimension 12 × 12 (condition x condi
tion) for each movement stage. 

We used 1-r (where r is the Pearson correlation) as the distance 
metric between the patterns of different conditions. Next, we ranked and 
scaled the distances between 0 and 1, and computed the RDMs between 
pairs of grasping conditions. Specifically, to construct the reference 
RDMs we compared the normalized neural patterns of activity of the 
different grasping conditions, extracted previously for each movement 
stage. Then we computed categorical models for three categories: grasp 
type, object properties and number of fingers. The RDMs of these cate
gorical models were binary representations, which contained a 0 for 
each pair of stimuli falling into the same category and a 1 for each pair of 
stimuli falling into different categories. 

To visualize the distances between the representations of different 
grasping movements, we used multidimensional scaling (MDS) (Kruskal 
and Wish, 1978). MDS is a general dimensionality reduction method 
that projects entities in a low-dimensional space, such that their dis
tances reflect their similarities. Specifically, similar entries will be 
located closer to one another, while dissimilar ones will be farther apart. 
For MDS visualization as a 2D plot, we used the Matlab function 
mdscale, which performs nonmetric MDS for two dimensions with the 
squared stress criterion. To examine the statistical significance of our 
results we used Kendall’s Tau b correlation coefficient to assess the 
similarity between the EEG representations and the categorical models 
and corrected the associated p-values by accounting for multiple 

comparisons using the Bonferroni-Holm correction (Holm, 1980). 

3. Results 

3.1. Behavioral analysis 

The median reaction time from the execution cue, across conditions 
and subjects, was 535 ms and the 25th to 75th percentile range was 
[430, 675] ms. We present the reaction times of every trial for all sub
jects and conditions in the Supplementary Material Fig. S1. We per
formed a Wilcoxon ranksum test to evaluate if the reaction times were 
consistent among conditions and we found no statistically significant 
difference (alpha = 0.05), which indicates that subjects had a similar 
reaction time in all the conditions. 

The duration of the movement was consistent across conditions and 
subjects and its median was 1.44 s and the 25th to 75th percentile range 
was [1.40, 1.47] s. We present the duration of the movement for every 
condition and subject in the Supplementary Material Fig. S2. We per
formed a Wilcoxon ranksum test to evaluate if the duration of the 
movement was consistent among conditions and we found no statisti
cally significant difference (alpha = 0.05), which indicates that subjects 
performed the grasping movement in every condition with the same 
time length. 

Fig. 2. Neurophysiological results. (A). Grand average topoplots showing the low-frequency amplitude content for the average of all grasping conditions. Vertical 
dashed lines indicate the cues of the paradigm (at second 2: image observation, at second 6: movement execution, and at second 10: release and relax). (B). MRCP 
traces for each of the 12 grasping conditions in channel C1 marked with a magenta dot (top of the panel). Individual traces correspond to subjects. 
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3.2. Neurophysiology 

Fig. 2 presents the unfolding of the neural correlates of grasping in 
the low-frequency amplitude across different stages of the movement. In 
Fig. 2A, we show the grand average patterns of all conditions and we 
observe around second 6 a slight negativity in the parietal areas. This 
negativity pattern becomes more pronounced towards second 7, which 
coincides with the initiation of the movement. This pattern is known as 
the movement-related cortical potential (MRCP), and it is associated 
with the planning and execution of the movement. It appears on the 
contralateral side over fronto-central, central and parietal regions. A 
similar pattern can be observed during the release stage around second 
11 when another movement is planned and executed. Fig. 2B shows, for 
channel C1, the average MRCP traces of each subject for every grasping 
condition. 

3.3. Multi-class classification 

Fig. 3 presents the multi-class classification results for grasp type (A) 
and for object properties (B). We found higher classification results for 
the precision two fingers type of grasp than for the other two types 
throughout all the stages but the fixation, at which all the results were at 
chance level (33%). The power grasp was better classified than the 
precision five fingers type in all the stages of the grasping. 

The classification based on the object intrinsic properties showed the 
highest within-class accuracy during the planning and execution stage. 
The accuracies were comparable also in the release stage. During the 
observation stage we could discriminate well objects based on their 
shape, but not on their size. At the fixation and holding stages, the ac
curacy was around chance level (25%). 

Fig. 4 summarizes the classification results by removing the class 
specificity and reporting the results for the two classification approaches 
and over the grasping stages. As anticipated from Fig. 3, for the classi
fication of grasp type, during the planning and executing stage, as well 
as during the release stage we reached the highest accuracy. Moreover, 
the obtained accuracy was significantly higher than during the fixation 
and holding phases when the movement was absent and minimized, 

respectively. During the observation stage, the accuracy was signifi
cantly larger than during the fixation stage, but not significantly 
different than during the holding stage. The high accuracy obtained at 
the release stage suggests that the categorization of release movements 
is highly related to grasp types. 

Regarding the classification of objects, we obtained the highest ac
curacy during the planning and execution and during the observation 
stages. Moreover, the accuracy in the two stages was not statistically 
different, indicating the possibility to correctly predict the object to be 
grasped from the EEG features before the movement execution. Inter
estingly, during the fixation stage when subjects were already presented 
with the object that they would have to grasp later on, their accuracy 
was only slightly above chance level. Hence, the classification of the 
object in the context of grasping is not only driven by visual information 
but also by the motor command (grasp type) presented during the 
observation stage when the accuracy was significantly higher. During 
the release stage, we obtained significantly higher accuracy than during 
the fixation and holding stages, indicating once again the relevance of 
the movement information and only the visual processing for the clas
sification of the objects in the context of grasping. 

3.4. Representational similarity analysis 

Next, in order to get more insights about the representation of the 
features that drive the accuracy, we conducted the representational 
similarity analysis between the EEG reference representations and three 
categorical models that encode grasp type, number of fingers used for 
grasping and object properties. Hence, in Fig. 5A we present the three 
categorical models as binary models, in which a distance equal to 0 in
dicates belonging to the same category and a distance equal to 1 in
dicates belonging to another category. Fig. 5B shows the distribution of 
the representation similarity over fronto-central, central, centro-parietal 
and parietal brain areas between the EEG representational dissimilarity 
matrices and the three categorical models. 

During the fixation stage, the largest similarity (smallest distance) is 
observed over parietal areas on the ipsilateral side for the comparison 
with the model that encodes object properties (bottom row); while grasp 

Fig. 3. Multi-class classification according to grasp type (A) and object properties (B) at different stages of the movement: fixation, observation, planning and 
execution, holding, and release. 
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type and number of fingers were not presented at this stage and there
fore not represented in the EEG representations. At the observation 
stage, the grasp type (top row) and number of fingers (middle row) are 
very well represented over contralateral fronto-central and central 
areas, while object properties appear encoded in parietal areas. Next, at 

the planning and execution stage, the grasp type and number of fingers 
show similar representations over the central and centro-parietal areas 
related to motor processing; while object properties appear represented 
in the fronto-central and parietal areas. At the holding stage, only the 
grasp type and the number of fingers show similarities with the EEG 

Fig. 4. Accuracy as a percentage of correctly classified trials from the total number of trials independent of the class, at different stages of the movement for the two 
classifiers based on grasp types: power, precision with five fingers and precision with two fingers (on the left) and on intrinsic properties of the object: large cylinder, 
small cylinder, large sphere, small sphere (on the right). The stars indicate the level of statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). 
The dotted line marks the chance level of each classifier. Regarding the boxplots, we show the median with a red line, and the bottom and top edges mark the 25th 
and the 75th percentiles, while the whiskers cover the entire range of the data excluding the points that are considered outliers. 

Fig. 5. Representational similarity analysis. (A). Categorical models describing grasp type (top), number of fingers (middle) and object properties (bottom). The 12 
conditions are ordered as follows: 1. large cylinder power, 2. large cylinder precision5, 3. large cylinder precision2, 4. small cylinder power, 5. small cylinder 
precision5, 6. small cylinder precision2, 7. large sphere power, 8. large sphere precision5, 9. large sphere precision2, 10. small sphere power, 11. small sphere 
precision5, 12. small sphere precision2. (B). RSA patterns between the standardized low-frequency amplitude EEG and the three categorical models from A across the 
five stages of the grasping movement. The 31 dots overlapping the RSA pattern mark the centroids of the regions of interest used in the searchlight analysis. 
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patterns. These similarities are represented on the contralateral side at 
fronto-central and central areas. Finally, at the release stage, the grasp 
type and the number of fingers are more strongly represented than the 
object properties. The representation similarity with the first two cate
gorical models appears over centro-parietal and parietal areas; while 
objects are represented ipsilaterally over central and centro-parietal 
areas. 

For the next analysis, we focused on the planning and execution 
stage. Specifically, in Fig. 6A we use multidimensional scaling to 
describe the relationship between the twelve grasping conditions over 
six brain regions. These six regions are depicted with dotted circles in 
Fig. 6A. Each region contains five channels and we specify the label of 
the centroid of each region. The lines that connect the grasp pictograms 
correspond to the four objects: large cylinder (red), small cylinder 
(green), large sphere (blue), small sphere (yellow). 

In Fig. 6B we quantify the similarity between the EEG representa
tions of grasping conditions over each of the six brain regions and the 

three categorical models, during the planning and execution stage using 
Kendall’ Tau b which ranges between − 1 (negative association) and 1 
(positive association), with 0 indicating the absence of association, and 
we report the associated p-values corrected for multiple comparisons. 
We found that grasp type and number of fingers are more strongly 
represented over central (rho = 0.26, p = 0.01; rho = 0.35, p = 0.002, 
respectively) and parietal areas (rho = 0.27, p = 0.015; rho = 0.39, p =
0.001); while object properties are strongly represented over frontro- 
central (rho = 0.42, p = 0.0001) as well as over parietal areas (rho =
0.25, p = 0.01). 

4. Discussion 

We found that properties of the grasping movement (grasp types, 
number of fingers) and intrinsic object properties (shape and size) are 
represented in the low-frequency time-domain EEG activity of different 
brain areas throughout the movement stages. Both object properties and 

Fig. 6. A. Multidimensional scaling of grasping 
conditions at six brain regions during the plan
ning and execution stage of the movement. The 
color of the lines connecting the pictograms 
correspond to the four objects: large cylinder 
(red), small cylinder (green), large sphere (blue) 
and small sphere (yellow). B. Statistical assess
ment of similarity during the planning and 
execution stage of movement over the six brain 
regions presented earlier. Kendall’s tau b corre
lation coefficient (top row) and the associated 
Bonferroni-Holm corrected p-values between the 
EEG RDMs of the six regions and the three cate
gorical RDMs that capture grasp type, number of 
fingers and object properties.   
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grasp types can be decoded significantly above chance level during the 
planning and execution of the movement. Moreover, we found that this 
preferential time-wise representation allows the decoding of object 
properties already from the observation stage, while the grasp type can 
also be accurately decoded at the planning and execution stage and at 
the object release stage. 

To disentangle the properties of objects from types of grasps over the 
course of the movement, we designed twelve conditions in which we 
combined three grasp types with four objects. These combinations 
allowed us to later group the conditions according to the two factors (i. 
e., grasp type and object properties). Next, we trained and tested two 
multi-class classifiers on data, independent of the type of grasp and 
object properties, respectively. Moreover, we used representational 
similarity analysis to inspect the EEG representations of grasping during 
the course of the movement in relation to three categorical models that 
encode types of grasp, numbers of fingers involved in grasping, and 
properties of the objects. 

Grasping involves the processing of the object’s intrinsic properties 
such as shape and size, and the transformation of these properties into a 
hand configuration resulting in a type of grasping movement (Jeannerod 
et al., 1995; Turella and Lingnau, 2014). Reaching and grasping 
movements have been described by the interaction between perceptual 
and motor systems, through the communication between dorsal and 
ventral streams (van Polanen and Davare, 2015). 

In monkeys, the inferior parietal lobule and the inferior premotor 
area (area F5) have been shown to participate in the transformation of 
an object’s intrinsic properties into specific grasp types (Murata et al., 
2000; Rizzolatti and Fadiga, 1998; Michaels and Scherberger, 2018). 
Both areas have been found to contain neurons that encode not only the 
shape, size, and orientation of objects, but also specific types of grasping 
postures necessary to grasp them. Studies on humans with lesions to the 
parietal lobe confirm that object’s intrinsic properties relevant for 
grasping are processed by the parietal lobe, and also demonstrate the 
dissociation between the visual processing of objects (“pragmatic” 
analysis) and the meaning of the grasp type related with the context of 
the movement (“semantic” analysis) performed by the temporal lobe 
(Binkofski et al., 1998; Jeannerod et al., 1995). 

The fronto-parietal network relates the visual processing of the ob
ject properties with the spatial configuration of the fingers into a suit
able type of grasping, by exchanging information through the ventral 
and dorsal route. When one of these routes is disturbed or interrupted 
due to optic ataxia, lesions to the occipito-temporal lobe or parietal lobe, 
either the discrimination of the objects or the correct grasp type 
configuration is compromised (Goodale et al., 1991; Jeannerod et al., 
1994). Grasping movements have been also investigated in other pa
tients with different motor disabilities such as paraplegia or tetraplegia 
(Bockbrader, 2019; Ajiboye et al., 2017; Rastogi et al., 2020; Muller-
Putz et al., 2019; Ofner et al., 2019). 

In terms of neurophysiology, in the current study, we found the 
MRCP to occur in contralateral central and centro-parietal regions 
during the planning and execution stage of grasping and to be more 
centrally localized during the release stage. Previous studies investi
gating goal-directed grasping movements in humans using EEG have 
shown MRCP patterns with similar representations in terms of ampli
tude and localization. Specifically, we reported in a previous study 
(Schwarz et al., 2018) involving cue-based palmar, pincer and inter
mediate grasping movements that the associated MRCP patterns were 
found over central and parietal brain areas. Other EEG patterns associ
ated with grasping movements have been reported by (Iturrate et al., 
2018), in which they investigated power and precision grasps with a 
focus on broadband rhythms, in particular, the alpha frequency band 
and its associated connectivity between the different brain areas 
involved in grasping. The beta frequency band has also been shown by 
(Zaepffel et al., 2013) to carry information about the prior knowledge of 
grip and force parameters upon the planning and execution stages of 
grasping movements. In a recent paper (Guo et al., 2019), the authors 

have shown for precision grasps that the visual properties of the object 
and the orientation of the grasping, as represented in EEG, have different 
representations during the planning and execution of the movement. In 
previous studies (Sburlea and Müller-Putz, 2018; Sburlea AI, Müller-
Putz GR, 2019), we investigated in healthy subjects the relation among a 
large variety of grasping movements in terms of their neural and 
behavioral representations in different stages of the movement. We 
found that the shape and size of the grasped object are encoded in the 
higher frequency EEG representation during the hand-preshaping stage; 
however, the encoding of these object properties, as well as the type of 
grasp in the low-frequency EEG, remained unclear. 

In a recent study (Fabbri et al., 2016), looked into the representation 
of object properties and grasp types using fMRI and found that object 
elongation is the most strongly represented object feature during 
grasping and is coded preferentially in the primary visual cortex as well 
as the anterior and posterior superior-parieto-occipital cortex. By 
contrast, primary somatosensory, motor, and ventral premotor cortices 
coded preferentially the number of digits while ventral-stream and 
dorsal-stream regions coded a mix of visual and motor dimensions. 
Moreover, the difference between the number of fingers involved in the 
grasping movement has been shown to be specifically encoded in the 
ventral premotor cortex (Cavina-Pratesi et al., 2018). Indeed, our cur
rent findings using low-frequency time-domain EEG activity indicate 
that at the planning and execution stage, the channels covering 
fronto-central and parieto-occipital brain regions are involved in pro
cessing object’s properties, while the channels covering the primary 
somatosensory, motor and parietal brain regions are recruited for the 
processing of grasp types and number of fingers used for grasping. 

In terms of classification, we obtained significantly higher perfor
mance for the classification of grasp types during the planning and 
execution stages, and release stages compared to the other stages; while 
the classification of objects was already significantly higher than the 
chance level during the observation stage. On a finer time scale, we 
found a high discriminability between objects in the first 300 ms of the 
observation stage, associated with the visual representation of the ob
jects in occipital areas. Objects could be separated with consistent per
formance throughout the entire planning and execution stage, while 
grasp types reached peak performance after the movement cue. Our 
findings are comparable with the performance reported earlier (Schwarz 
et al., 2018); however, different types of grasping movements have been 
previously evaluated. 

The observation stage, which can also be seen as a delay period of the 
grasping movement, has been shown to improve the visuomotor per
formance, by involving networks associated with object memorization 
which are arguably independent of the posterior parietal cortex associ
ated with the grasping movement (Himmelbach and Karnath, 2005; 
Sburlea and Müller-Putz, 2018; Sburlea AI, Müller-Putz GR, 2019). The 
relevance of the delay period has been highlighted by the case of pa
tients with optic ataxia, which consisted of severe bilateral damage to 
the homolog of the monkey’s “dorsal stream” of visual processing, 
causing visuomotor difficulties (Milner et al., 2001; Blangero et al., 
2008). Their findings indicate that vision can guide action through 
alternative networks than the ones involving the parietal lobe. The 
recruitment of these alternative networks helped the patient’s grasping 
difficulties, at the cost of taking more time to process vision into action. 
In our study, we also observed a different representation of object 
properties and grasping types during the observation stage. Indeed, 
parietal activations were present in the representation of object prop
erties, while motor and sensorimotor areas described the grasp types as 
well as the number of fingers necessary for the grasping movement. The 
interplay between visual inputs and motor intentions has been also re
ported by (Hebart et al., 2012) as the information exchange between 
visual cortex and inferior parietal cortex as a function of sensory evi
dence (Schone and Hunter, 2021). 

A potential limitation in our study is the level of force involved in 
different grasping movements. Very recently, an intracortical BCI study 
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(Rastogi et al., 2020) in humans with tetraplegia, showed that force 
could be decoded in multiple grasp types. Nevertheless, authors have 
shown that grasp type was classified more accurately and had greater 
population-level representation than force. Therefore, decoding force 
information becomes even more meaningful when the decoder can 
reliably capture the grasp type information. Indeed, in our study we 
have not measured force levels because the task did not involve lifting or 
transportation of the objects; however, we observed high discrimination 
between grasp types also considering the number of fingers involved, 
which indicates that force does not play a pivotal role in the grasping 
movements presented in this study. 

One relevant aspect of grasping is the context of the movement. 
Objects for daily life use are grasped according to the action to be per
formed (e.g., using the knife to cut a slice of bread requires a different 
grip than using the knife to spread the butter on the slice of bread). 
Recent studies have shown that visual and haptic inputs play an 
important role in skilled grasping (van Polanen and Davare, 2015; 
Camponogara and Volcic, 2019) and can influence the behavior of the 
movement in different phases, with haptics being more crucial in the 
initial phases and vision being more important for the final on-line 
control. Moreover, another recent study (Jarque-Bou et al., 2019) 
illustrated from a behavioral perspective using muscle and kinematic 
recordings of hand movements, the grasping interaction with daily life 
objects in one of the largest available datasets on goal-driven actions. 
Therefore, grasping objects for a daily living adds context to movement 
and should be considered in future studies. 

To summarize, in this study we have shown that the information 
about grasp types and object properties encoded in the low-frequency 
time-domain EEG is not represented in isolation just by the channels 
over one brain region across the stages of grasping movement, but that 
channels covering different brain regions process these two types of 
information at several stages of the movement. Hence, we concluded 
that grasp types and object properties can be successfully decoded above 
chance level not only at the planning and execution stage of the move
ment but also at the observation (object properties) and the release 
(grasp type) stages. These findings are relevant for the implementation 
of future systems that study the control of grasping movements. In the 
future, we plan to evaluate such decoders also in individuals with spinal 
cord injury or in stroke end-users. 
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Jarque-Bou, Néstor J., Margarita Vergara, Joaquín L. Sancho-Bru, Verónica gracia- 
ibáñez, Alba roda-Sales. 2019. “A Calibrated Database of Kinematics and EMG of the 
Forearm and Hand during Activities of Daily Living.” Scientific Data. https://doi. 
org/10.1038/s41597-019-0285-1. 

A.I. Sburlea et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.ynirp.2021.100012
https://doi.org/10.1016/j.ynirp.2021.100012
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref1
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref1
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref1
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref2
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref2
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref2
https://doi.org/10.1016/s0140-6736(17)30601-3
https://doi.org/10.1037/0033-295x.94.2.115
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref5
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref5
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref5
https://doi.org/10.1016/j.bandc.2008.02.009
https://doi.org/10.1016/j.cobme.2019.09.002
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref8
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref8
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref8
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref8
https://doi.org/10.1038/s41598-018-38277-w
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref10
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref10
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref11
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref11
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref11
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref11
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref12
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref12
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref12
http://refhub.elsevier.com/S2666-9560(21)00010-6/opt1GfDYF62u1
http://refhub.elsevier.com/S2666-9560(21)00010-6/opt1GfDYF62u1
http://refhub.elsevier.com/S2666-9560(21)00010-6/opt1GfDYF62u1
https://doi.org/10.1007/s00221-003-1591-5
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref14
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref14
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref14
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref15
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref15
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref15
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref16
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref16
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref16
https://doi.org/10.1038/349154a0
https://doi.org/10.1038/349154a0
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref19
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref19
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref19
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref19
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref20
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref20
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref20
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref20
https://doi.org/10.1016/j.medengphy.2010.04.016
https://doi.org/10.1016/j.medengphy.2010.04.016
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref22
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref22
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref22
https://doi.org/10.1162/0898929053467514
https://doi.org/10.1162/0898929053467514
https://doi.org/10.4064/-6-1-159-168
https://doi.org/10.4064/-6-1-159-168
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref25
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref25
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref25
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref25
https://doi.org/10.1038/s41597-019-0285-1
https://doi.org/10.1038/s41597-019-0285-1


Neuroimage: Reports 1 (2021) 100012

10

Jeannerod, M., Arbib, M.A., Rizzolatti, G., Sakata, H., 1995. Grasping objects: the 
cortical mechanisms of visuomotor transformation. Trends Neurosci. 18 (7), 
314–320. 

Jeannerod, M., Decety, J., Michel, F., 1994. Impairment of grasping movements 
following a bilateral posterior parietal lesion. Neuropsychologia 32 (4), 369–380. 

Jiang, Tianxiao, Pellizzer, Giuseppe, Priscella Asman, Bastos, Dhiego, Bhavsar, Shreyas, 
Tummala, Sudhakar, Prabhu, Sujit, Nuri, F., Ince, 2020. Power modulations of ECoG 
alpha/beta and gamma bands correlate with time-derivative of force during hand 
grasp. Front. Neurosci. 14 (February), 100. 

Jochumsen, Mads, Khan Niazi, Imran, Kim, Dremstrup, Ernest Nlandu Kamavuako, 2016. 
Detecting and classifying three different hand movement types through 
electroencephalography recordings for neurorehabilitation. Med. Biol. Eng. Comput. 
54 (10), 1491–1501. 

Klaes, Christian, Spencer, Kellis, Aflalo, Tyson, Lee, Brian, Pejsa, Kelsie, 
Shanfield, Kathleen, Hayes-Jackson, Stephanie, et al., 2015. Hand shape 
representations in the human posterior parietal cortex. J. Neurosci.: The Official 
Journal of the Society for Neuroscience 35 (46), 15466–15476. 

Koehler, Saskia, Egetemeir, Johanna, Stenneken, Prisca, Koch, Stefan P., Paul, Pauli, 
Fallgatter, Andreas J., Herrmann, Martin J., 2012. The human execution/ 
observation matching system investigated with a complex everyday task: a 
functional near-infrared spectroscopy (fNIRS) study. Neurosci. Lett. 508 (2), 73–77. 

Koester, Dirk, Schack, Thomas, Jan, Westerholz, 2016. Neurophysiology of grasping 
actions: evidence from ERPs. Front. Psychol. 7 (December), 1996. 

Kriegeskorte, Nikolaus, Mur, Marieke, Peter, Bandettini, 2008. Representational 
similarity analysis - connecting the branches of systems neuroscience. Front. Syst. 
Neurosci. 2 (November), 4. 

Kruskal, Joseph, Wish, Myron, 1978. Multidimensional Scaling. https://doi.org/ 
10.4135/9781412985130. 

Michaels, Jonathan A., Scherberger, Hansjörg, 2018. Population coding of grasp and 
laterality-related information in the macaque fronto-parietal network. Sci. Rep. 8 
(1), 1710. 

Milner, A.D., Dijkerman, H.C., Pisella, L., McIntosh, R.D., Tilikete, C., Vighetto, A., 
Rossetti, Y., 2001. Grasping the past. Delay can improve visuomotor performance. 
Curr. Biol.: CB 11 (23), 1896–1901. 

Mollazadeh, Mohsen, Aggarwal, Vikram, Singhal, Girish, Law, Andrew, Adam, Davidson, 
Schieber, Marc, Thakor, Nitish, 2008. “Spectral modulation of LFP activity in M1 
during dexterous finger movements.” conference proceedings, pp. 5314–5317. Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society. 
IEEE Engineering in Medicine and Biology Society. Conference.  

Muller-Putz, Gernot R., Rudiger Rupp, Patrick Ofner, Joana Pereira, Andreas Pinegger, 
Andreas Schwarz, Marcel Zube, Ute Eck, Bjorn Hessing, and Matthias Schneiders. 
2019. “Applying intuitive EEG-controlled grasp neuroprostheses in individuals with 
spinal cord injury: preliminary results from the MoreGrasp clinical feasibility study.” 
2019 41st Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC). https://doi.org/10.1109/embc.2019.8856491. 

Murata, A., Gallese, V., Luppino, G., Kaseda, M., Sakata, H., 2000. Selectivity for the 
shape, size, and orientation of objects for grasping in neurons of monkey parietal 
area AIP. J. Neurophysiol. 83 (5), 2580–2601. 

Napier, J.R., 1956. “The prehensile movements of the human hand.” the Journal of Bone 
and joint surgery. British 38-B (4), 902–913. 

Ofner, Patrick, et al., 2019. Attempted arm and hand movements can be decoded from 
low-frequency EEG from persons with spinal cord injury. Scientific Reports 9 (1), 
1–15. 

Omedes, Jason, Schwarz, Andreas, Gernot, R., Müller-Putz, Montesano, Luis, 2018. 
Factors that affect error potentials during a grasping task: toward a hybrid natural 
movement decoding BCI. J. Neural. Eng. 15 (4), 046023. 

Perini, Francesca, Powell, Thomas, Watt, Simon J., Downing, Paul E., 2020. Neural 
representations of haptic object size in the human brain revealed by multivoxel fMRI 
patterns. J. Neurophysiol. 124 (1), 218–231. 

Pistohl, Tobias, Andreas, Schulze-Bonhage, Ad Aertsen, Carsten, Mehring, Tonio, Ball, 
2012. Decoding natural grasp types from human ECoG. Neuroimage 59 (1), 
248–260. 

Polanen, Vonne van, Davare, Marco, 2015. Interactions between dorsal and ventral 
streams for controlling skilled grasp. Neuropsychologia. https://doi.org/10.1016/j. 
neuropsychologia.2015.07.010. 

Rastogi, Anisha, Vargas-Irwin, Carlos E., Willett, Francis R., Abreu, Jessica, 
Crowder, Douglas C., Murphy, Brian A., Memberg, William D., et al., 2020a. Neural 
representation of observed, imagined, and attempted grasping force in motor cortex 
of individuals with chronic tetraplegia. Sci. Rep. 10 (1), 1429. 

Rastogi, Anisha, Willett, Francis R., Abreu, Jessica, Crowder, Douglas C., Murphy, Brian 
A., Memberg, William D., Vargas-Irwin, Carlos E., et al., 2020b. The Neural 
Representation of Force across Grasp Types in Motor Cortex of Humans with 
Tetraplegia. https://doi.org/10.1101/2020.06.01.126755. 

Rizzolatti, G., Fadiga, L., 1998. Grasping objects and grasping action meanings: the dual 
role of monkey rostroventral premotor cortex (area F5). Novartis Found. Symp. 218, 
81–95 discussion 95–103.  

Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., Fazio, F., 
1996. “Localization of grasp representations in humans by PET: 1. Observation 
versus execution.” experimental brain research. Experimentelle hirnforschung. Exp. 
Cereb. 111 (2), 246–252. 

Sburlea AI, Müller-Putz GR. n.d. “How similar are the neural patterns when observing 
grasping hand postures to the behavioral patterns when executing the grasp?” In 
Proceedings of the 8th Graz Brain-Computer Interface Conference 2019 Bridging 
Science and Application, edited by Gernot R. Müller-Putz, Jonas C. Ditz, Selina C. 
Wriessnegger, 279–84. Verlag der Technischen Universität Graz. 

Sburlea, Andreea I., Müller-Putz, Gernot R., 2018. Exploring representations of human 
grasping in neural, muscle and kinematic signals. Sci. Rep. 8 (1), 16669. 

Schaffelhofer, Stefan, Scherberger, Hansjörg, 2016. Object vision to hand action in 
macaque parietal, premotor, and motor cortices. eLife 5 (July). https://doi.org/ 
10.7554/eLife.15278. 

Schone, Hunter, R., et al., 2021. Expert tool users show increased differentiation between 
visual representations of hands and tools. J. Neurosci. 41 (13), 2980–2989. 

Schwarz, Andreas, Ofner, Patrick, Pereira, Joana, , Andreea Ioana Sburlea, Gernot, R., 
Müller-Putz, 2018. Decoding natural reach-and-grasp actions from human EEG. 
J. Neural. Eng. 15 (1), 016005. 

Smeets, J.B., Brenner, E., 1999. A new view on grasping. Mot. Contr. 3 (3), 237–271. 
Su, L., Fonteneau, E., Marslen-Wilson, W., Kriegeskorte, N., 2012. Spatiotemporal 

searchlight representational similarity analysis in EMEG source space. Second 
International Workshop on Pattern Recognition in NeuroImaging. https://doi.org/1 
0.1109/prni.2012.26. 

Taniguchi, M., Kato, A., Fujita, N., Hirata, M., Tanaka, H., Kihara, T., Ninomiya, H., 
et al., 2000. Movement-related desynchronization of the cerebral cortex studied with 
spatially filtered magnetoencephalography. Neuroimage 12 (3), 298–306. 

Turella, Luca, Lingnau, Angelika, 2014. Neural correlates of grasping. Front. Hum. 
Neurosci. 8 (September), 686. 

Zaepffel, Manuel, Trachel, Romain, , Bjørg Elisabeth Kilavik, Brochier, Thomas, 2013. 
Modulations of EEG beta power during planning and execution of grasping 
movements. PloS One 8 (3), e60060. 

A.I. Sburlea et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S2666-9560(21)00010-6/sref27
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref27
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref27
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref28
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref28
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref29
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref29
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref29
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref29
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref30
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref30
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref30
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref30
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref31
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref31
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref31
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref31
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref32
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref32
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref32
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref32
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref33
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref33
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref34
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref34
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref34
https://doi.org/10.4135/9781412985130
https://doi.org/10.4135/9781412985130
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref36
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref36
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref36
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref37
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref37
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref37
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref38
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref38
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref38
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref38
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref38
https://doi.org/10.1109/embc.2019.8856491
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref40
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref40
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref40
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref41
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref41
http://refhub.elsevier.com/S2666-9560(21)00010-6/opt2vrDBXGDMV
http://refhub.elsevier.com/S2666-9560(21)00010-6/opt2vrDBXGDMV
http://refhub.elsevier.com/S2666-9560(21)00010-6/opt2vrDBXGDMV
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref42
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref42
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref42
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref43
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref43
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref43
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref44
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref44
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref44
https://doi.org/10.1016/j.neuropsychologia.2015.07.010
https://doi.org/10.1016/j.neuropsychologia.2015.07.010
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref46
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref46
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref46
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref46
https://doi.org/10.1101/2020.06.01.126755
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref48
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref48
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref48
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref49
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref49
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref49
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref49
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref52
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref52
https://doi.org/10.7554/eLife.15278
https://doi.org/10.7554/eLife.15278
http://refhub.elsevier.com/S2666-9560(21)00010-6/optwrr2Kdta7b
http://refhub.elsevier.com/S2666-9560(21)00010-6/optwrr2Kdta7b
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref54
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref54
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref54
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref55
https://doi.org/10.1109/prni.2012.26
https://doi.org/10.1109/prni.2012.26
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref57
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref57
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref57
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref58
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref58
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref59
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref59
http://refhub.elsevier.com/S2666-9560(21)00010-6/sref59

	Disentangling human grasping type from the object’s intrinsic properties using low-frequency EEG signals
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Experimental paradigm
	2.3 Data acquisition
	2.4 Data preprocessing
	2.5 Multi-class classification analysis
	2.6 Similarity analysis

	3 Results
	3.1 Behavioral analysis
	3.2 Neurophysiology
	3.3 Multi-class classification
	3.4 Representational similarity analysis

	4 Discussion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


