
SecWalk: Protecting Page Table Walks Against Fault Attacks

Robert Schilling∗, Pascal Nasahl∗, Stefan Weiglhofer∗, Stefan Mangard∗†
∗Graz University of Technology
firstname.lastname@iaik.tugraz.at
†Lamarr Security Research

Abstract—The correct execution of a memory load
and store is essential for the flawless execution of a
program. However, as soon as devices are deployed in
hostile environments, fault attacks can manipulate memory
operations and subsequently alter the execution of a
program. While memory accesses for simple processors
with direct memory access can efficiently be protected
against fault attacks, larger processors with virtual ad-
dressing lack this protection. However, the number of
systems with larger application-class processors is growing,
leaving many applications unprotected. It requires new
countermeasures to efficiently protect memory accesses of
application-class processors with virtual memory against
fault attacks.

In this work, we present SecWalk, a design to efficiently
protect all memory accesses of a program in the virtual and
physical memory domain against fault attacks. We enhance
residual-based pointer protection with a hardware-based
secure page table walk inside the memory management
unit. The page table walk securely translates a protected
virtual address to a protected physical address by exploit-
ing the redundancy properties of encoded addresses and
a linking mechanism in the memory management unit.
Furthermore, we extend the protection domain for virtual
addresses to the TLB to also protect fast translations.

To evaluate the overhead of our design, we integrate
SecWalk to an FPGA-based hardware implementation of
an open-source RISC-V processor. The hardware evalua-
tion shows that SecWalk extends the area of the design
by 10 %. The software evaluation on a set of microbench-
marks shows an average code and runtime overhead of
11.05 %. To show the applicability on real-life applications,
we port the microkernel seL4 to SecWalk, which yields a
code overhead of 13.1 % and a runtime overhead of 11.6 %.
This evaluation shows the overhead is small considering
that SecWalk automatically protects all memory accesses
of arbitrary applications against fault attacks.

Index Terms—fault attacks, countermeasure, page table
walk, virtual memory, risc-v

I. INTRODUCTION

With the rise of the Internet-of-Things (IoT), powerful
industrial computers, and the revolution of the automo-
tive industry, the complexity of embedded devices is
continually growing. While in the early days of the IoT,

small and simple microcontrollers contented the comput-
ing power requirements, the increasing complexity also
raises the computing workload. Consequently, the trend
of using larger application-class processors running com-
modity operating systems (OSs) is emerging. However,
those devices are attacked using fault attacks to redirect
memory accesses to a different location to bypass privi-
lege checks, signature verifications, or password checks.
The recent publication of software-induced fault attacks
increases the attack surface even more, making many
devices vulnerable to fault attacks.

There are different methodologies for inducing faults,
such as glitching the power or clock signal [1], [29],
inducing electromagnetic radiation [41], or by shooting
with a laser to the chip surface [57]. While those at-
tack methodologies require physical access, the develop-
ment of software-induced fault attacks relaxes this con-
straint. The Rowhammer effect [25] allows an attacker
to manipulate bits in memory by frequently accessing
its neighboring memory cells. This fault methodology
can even be triggered via Javascript [21] or remotely
via the network interface [34], [61]. With the recent
publication of more advanced software-induced fault
attacks, such as Plundervolt [42], VoltJockey [47]–[49],
or CLKscrew [60], fault attacks also become a threat for
larger systems.

Inducing a fault to the system does not necessarily
compromise it or bypasses any security mechanisms.
While past exploitation techniques for faults mainly
focused on attacking cryptographic algorithms [3], [7],
[15], more recent exploits use fault attacks to bypass
security mechanisms of general-purpose software [43],
[44], [62], [63]. Typically, these attacks either modify
the control-flow of a program by skipping instructions,
altering the program counter, or attack the data re-
sulting in powerful exploits such as bypassing secure
boot [12], [14], [65] or bypassing DRM protection mech-
anisms [19], [59]. Fault attacks on the virtual memory
system of an application-class processor are exploited to
gain kernel privileges [69].

In order to thwart fault attacks, dedicated counter-
measures have been developed. While there exist par-

ticular fault countermeasures for specific cryptographic
schemes [9], [26], [35], more general protection schemes
try to harden the execution of an arbitrary program
against fault attacks. They do this mainly by enforcing
the integrity of data and/or the control-flow [38], [39],
[53]. To protect data during storage or transmission
against faults, special encoding schemes [11], [37] add
redundancy to the data. These schemes transform data
into a different representation, i.e., into the encoded
domain, to detect up to a certain number of bitflips.
Improved schemes [17], [37] even support arithmetic
operations directly in the encoded domain, without the
need for decoding. To enforce the correct execution of a
program, control-flow integrity (CFI) schemes [13], [55],
[67] ensure that all instructions are executed correctly
and in the correct sequence.

Memory operations currently lack comprehensive pro-
tection against fault attacks. To efficiently protect all
kinds memory accesses for application-class processors
against fault attacks, it requires dedicated countermea-
sures. Unfortunately, current mitigation mechanisms for
memory accesses, such as AN-B codes [54], employ a
runtime overhead between 200 % and 13000 %, mak-
ing their deployment very expensive and not practical.
Furthermore, they do not support dynamic or shared
memory, thus, limiting the practical application of this
countermeasure. Although other approaches [56] reduce
the performance overhead to a minimum, they can only
protect direct memory requests for processors without
a memory management unit (MMU). Therefore, they
cannot protect applications running on larger systems
with a traditional operating system using virtual memory
management and shared memory for inter-process com-
munication. New and efficient mechanisms are required
to protect larger applications with arbitrary memory
accesses from the virtual memory domain.

Contribution: In this work, we present SecWalk,
an efficient countermeasure to protect virtual memory
accesses against fault attacks. Our approach allows us to
protect all memory accesses of a program against fault
attacks, even for large application-class processors. This
work closes an open gap and protects the page table walk
against fault attacks by linking the redundancy properties
of virtual addresses to physical addresses. We encode
pointers and addresses in the virtual memory domain
using a multi-residue code, which redundancy is stored
in the upper bits of the pointer. The proposed secure page
table walk uses the redundancy of a pointer to securely
translate the virtual address to an encoded and protected
physical address. We exploit the arithmetic properties of

encoded pointers to retrieve the correct page table entries
during the address translation. The translated encoded
physical address is then used to perform the actual secure
memory access. This mechanism allows us to support all
common memory allocations, such as dynamic or shared
memory.

To evaluate the design, we integrate SecWalk into
a hardware implementation of an open-source RISC-V
processor. The evaluation of our prototype implementa-
tion shows that the hardware overhead increases the size
of the processor design by less than 0.5 % in terms of
flip-flops and 10 % in terms of lookup tables. To evaluate
the software overhead, we develop a custom LLVM
based toolchain to automatically instrument programs
with SecWalk. On a set of microbenchmarks, SecWalk
yields an average code overhead of 11.05 % and an
average runtime overhead of 7.17 %. To showcase the
applicability to larger programs, we integrate SecWalk
to the commodity microkernel seL4, and automatically
protect all memory accesses of the kernel an user threads
(virtual and phyiscal accesses) against fault attacks.
Instrumenting all pointer arithmetic and every memory
accesses increases the code size by 13.1 % and the
runtime overhead by 11.6 %.

Summarized, our contributions are:

• We propose SecWalk, a generic method to protect
the page table walk against fault attacks. Combined
with encoded pointers and pointer arithmetic, we
protect all memory accesses of a program against
fault attacks.

• We integrate SecWalk to the open-source RISC-V
processor CVA6 and evaluate its overhead based on
an FPGA implementation.

• To automatically protect arbitrary programs with
SecWalk without user interaction, we develop a
custom LLVM-based toolchain.

• To evaluate the software overhead and to show
the practicability, we evaluate SecWalk on a set of
microbenchmarks we port the microkernel seL4. We
automatically replace all pointers, addresses, and
memory accesses with their protected counterparts
using our toolchain.

Outline: The remainder of this paper is structured
as follows. Section II provides background information
on fault attacks, countermeasures, and discusses the
page-based virtual memory. Section III-A discusses the
threat model and existing fault attacks to virtual memory.
Section IV presents SecWalk, an efficient mechanism to
protect virtual memory accesses against fault attacks.

Section V describes the prototype implementation of
SecWalk based on a RISC-V processor and discusses
the toolchain, and in Section VI, we evaluate the per-
formance of the implementation. Section VII discusses
related work and shows how SecWalk is superior. Fi-
nally, Section VIII concludes this paper.

II. BACKGROUND

This section first introduces fault attacks and then
shows how existing redundancy mechanisms can protect
against those attacks. Finally, we introduce the concept
of page-based virtual memory, which SecWalk protects.

A. Fault Attacks

During a fault attack, the attacker influences the
device’s operating conditions with the goal of manip-
ulating an inner state of the system. Such a fault can
be induced in different ways, e.g., by manipulating
the power supply [2], [6], [10], the clock signal [1],
[46], the temperature [24], or by shooting with a laser
or electromagnetic impulse onto the chip surface [5],
[41], [57], [58]. While these fault methodologies re-
quire physical access to the device, more recent attacks
have shown that this constraint can be relaxed. For
example, new methodologies, such as the Rowhammer
effect [25], can manipulate bits in memory solely in
software by frequently accessing neighboring memory
cells. This behavior can even be exploited remotely via
Javascript [21] or over the network interface [34], [61].
More recently, software-induced fault attacks have also
been used to induce faults directly to the CPU, e.g., with
methods such as Plundervolt [42], VoltJockey [47]–[49],
or CLKscrew [60].

B. Error Detection Codes

To counteract fault attacks and to protect data
against unwanted manipulations, error detection
codes (EDCs) [11], [45] are a long-established and
well-studied research field. Their principle is to encode
the data and add additional redundancy bits such
that unwanted manipulations can be detected. While
initially been developed to protect data during storage
or transmission in harsh environments, new EDCs
have been developed, which support the computation
directly on encoded data. Such an encoding scheme
has two advantages: First, it omits the necessity of
decoding the data, which significantly improves the
runtime performance when operating with encoded data.
More importantly, it provides end-to-end protection of
data throughout computation since the system never

uses plain unencoded data. One example of such
improved EDCs are binary linear codes [22], which
natively support the computation of bitwise operations
in the encoded domain. When dealing with arithmetic
operations, so-called arithmetic codes are used, which
natively support arithmetic operations on the encoded
data.

1) AN-B Codes: One example of arithmetic codes
are so-called AN codes [11], [18]. They are defined by
multiplying a data value n with the encoding constant
A, and thereby forming the codeword: nc = n ·A. Note,
the subscript c denotes the encoded value. Using this
multiplication, only multiples of the encoding constant
A are valid codewords; everything in between correlates
to an invalid value. To verify the correctness of a code-
word, a modulo operation with the encoding constant is
performed, which is expected to return zero. To decode
the codeword and to retrieve the original data, an integer
division with the encoding constant A is performed.
By multiplying the data with the encoding constant,
the redundancy information is bound to the codeword
and cannot be separated, thus the name non-separable
encoding scheme. The redundancy properties of the AN
code are defined by the encoding constant A. However,
the proper selection of this constant is a challenging task
and is currently only possible via exhaustive search [40].
Furthermore, also other parameters such as the maximum
data size of the system influence the selection. Unfortu-
nately, AN codes limit the value range for the payload
data to be less than the encoding constant, to maintain
proper error detection. However, this reduces the number
of use cases for this encoding scheme for real-world
applications. Furthermore, AN codes can only protect
the arithmetic operations, but they do not protect the
memory access of the data.

To extend the degree of protection, Forin and Schiffel
et al. [18], [54] extend simple AN odes to AN-B codes.
They add a unique signature Bn to every encoded data
word nc, yielding the encoding rule nc = A · n + Bn,
where Bn is less than the encoding constant A. Since Bn

is less than the encoding constant, an integer division can
still be used to decode the data. However, when applying
a modulo operation with the encoding constant to check
for validity of the data, this must return Bn rather than
zero. Since Bn is unique for every variable, it allows the
code to detect wrong memory accesses. Schiffel et al. au-
tomated this process and developed a compiler toolchain
to keep track of all assigned signatures and to insert the
correct check operations. However, using this encoding
scheme in practice is challenging. First, AN-B codes

have a significant overhead of around 90 % on average
on top of ordinary AN codes. Second, the signature Bn

must be less than the encoding constant A, limiting the
number of variables that can be protected. Furthermore,
every location in memory requires a different signature,
which is not practical.

2) Residue Codes: Residue codes [36] form a second
class of arithmetic codes. In this encoding scheme, a
codeword xc is defined by concatenating the data with
its residue xc = (x, rx = M |x). Here, x denotes the
payload data and rx the redundancy part, the residue.
The residue is computed as the remainder with respect to
a modulus M , which defines the redundancy properties.
Due to this concatenation, the tuple of data and residue
are separable and therefore also called separable encod-
ing scheme. This property allows the system to access
the payload data without expensive decoding operations
easily. Although the modulus M defines the robustness
of this code, a simple bitflip on the data and on the
modulus can create a new valid codeword. Thus, the
Hamming distance between two simple residue encoded
codewords is only 2.

To improve the robustness of residue codes, and
to yield a higher Hamming distance, the number of
residues can be increased, forming a multi-residue
code [51], [52]. The modulus M is now defined by
M = {m0, . . . ,mn}, where mi is the actual modu-
lus for one residue and n is the number of residues.
Similar to AN codes, finding a good set of moduli is
a challenging task and is currently only possible via
exhaustive search but in a more efficient way [40].
Since (multi)-residue codes are arithmetic codes, they
also natively support certain arithmetic operations. Here,
the arithmetic operations are performed both on the
payload data and on the residue. Equation (1) shows
the arithmetic addition operation performed on multi-
residue encoded data. First, the addition is performed on
the plain payload data. Second, the addition is performed
on every residue independently, followed by a modular
reduction with the corresponding moduli mi.

zc = xc + yc = (x+ y,∀i : mi| (ri,x + ri,y)) (1)

Like the addition operation, (multi)-residue codes also
have native support for subtraction and multiplication
operations.

C. Protection of Memory Accesses

Memory accesses are one of the most frequently
used operations in a program after computation; thus,

they require dedicated protection mechanisms against
fault attacks. One protection mechanism tailored for this
purpose are AN-B codes, as discussed before. However,
its large runtime overheads between a factor of 2 and 130
make this scheme impractical for broader deployment.

A different approach to protect memory accesses is
presented in [56]. They encode all addresses and pointers
in a program using a multi-residue code and store the
redundancy information in the upper bits of the pointer.
The processor is extended to support pointer arithmetic
directly on the encoded pointer with an extended in-
struction set. The memory access itself uses the encoded
pointer and performs an xor-based link and unlink oper-
ation during the memory access to protect against wrong
accesses. While this approach has reasonable overhead
and can easily be applied to larger codebases via a cus-
tom toolchain, it only supports direct memory accesses
without an MMU. This restriction limits the application
of the countermeasure only to small processors without
virtual memory management.

D. Page-based Virtual Memory

Page-based virtual memory [31] is a well-known and
widely used architecture to decouple the physical mem-
ory layout from the application and OS. A memory
management unit (MMU) decouples the virtual address
space from the constraint physical address space. The
memory of a program is fragmented into smaller, fixed-
size pages. The operating system creates a mapping
between pages in the virtual address space and the pages
in the physical address space. These mappings, i.e., the
page table entries (PTEs), are stored in the page tables
located in the page directory in the main memory. When
running the program, the MMU uses the page tables to
translate a virtual address to a physical address, called
the page table walk. The physical address is eventually
used for the actual memory access. As this translation is
expensive, modern processors have a small cache in the
MMU for storing the most recent translations, i.e., the
translation look-aside buffer (TLB), to have faster access
to the physical address.

III. THREAT MODEL AND ATTACK SCENARIO

This section first presents the threat model and then
shows how existing attacks in this threat model hijack
virtual memory accesses. Finally, we discuss the required
properties for protected memory accesses in the virtual
memory domain.

A. Threat Model

In this work, we consider a powerful attacker capable
of inducing faults with the goal of redirecting a virtual
memory access. We consider attacks on the memory
access independently of the used methodology, i.e., we
cover physical or software-induced fault attacks. The
attacker aims to hijack the memory access by attack-
ing the register file where a pointer is stored, pointer
arithmetic, the memory access itself, or by manipulating
the translation between the virtual and physical address.
This includes faults to the MMU, the TLB, or to the page
table entries stored in memory. Furthermore, we assume
that the payload data of the application in memory is
protected with a data encoding scheme.

Note, fault attacks on other parts of the processor, e.g.,
the instruction pipeline, the instruction pointer, or on the
actual computation on other data, are not in the scope
of this work. It requires orthogonal countermeasures,
e.g., hardware-enforced control-flow integrity tailored to
fault attacks [13], [55], [67], which ensures the authentic
and genuine execution of the instruction stream and
its control-flow graph. The computation can either be
protected with instruction replication or by using a data
encoding scheme that supports encoded arithmetic oper-
ations. For a complete protection against fault attacks, a
combination of the protection of memory accesses such
as SecWalk, the control-flow, and the computation is
required. We now show how faults are used to hijack
memory accesses in the virtual memory domain.

B. Faults on Virtual Memory

When dealing with larger application-class processors
with virtual memory and MMUs, no efficient protection
mechanism exists, leaving virtual memory accesses vul-
nerable to fault attacks. Especially, the page table walk,
which translates a virtual to a physical address, is prone
to fault attacks, which eventually leads to wrong memory
accesses. Fig. 1 illustrates the unprotected page table
walk leading to a wrong address translation due to a
fault. The virtual address VA is translated to a physical
address PA during the page table walk. A precise fault
in this page table translation can redirect the page table
walk to return a different physical address PAF , thus
redirecting the subsequent memory access to a different
location. This attack vector exists even if virtual or
physical addresses include redundancy mechanisms such
as data encoding. There is no efficient way of protecting
the page table walk, and thus, memory accesses from
the virtual domain against fault attacks. Similar to that,
also the MMU internal optimization buffer, i.e., the

VA

Page Table
 Walk

PA

PA
F False

True

Memory

Fig. 1: Attack vector: A faulted page table translation
leads to a wrong memory access.

translation look-aside buffer (TLB), suffers from the
same attack vector. A fault can redirect the TLB to
return a different and wrong page table entry, and thus,
redirecting a memory access to a wrong location.

Such an attack is presented in [64], where they
use electromagnetic fault injection to induce faults to
the MMU of a System-on-Chip. In their experiments,
they are able to fault the virtual to physical mapping,
therefore, redirecting the memory access to a different
location.

[69] describes a kernel privilege escalation, where the
Rowhammer effect is used to manipulate the PTE stored
in memory. By inducing faults to the PTE, the attacker
is able to redirect the virtual to physical mapping of
an attacker-controlled page. Eventually, this results in
having read and write access to the attacker process’s
own page tables, yielding access to all physical memory
allowing the attacker to escalate privileges.

C. Requirements for Protected Virtual Memory Accesses

To protect memory accesses in the virtual memory
domain against fault attacks with an easy application
and to mitigate attacks as discussed above, a protection
scheme needs to fulfill the following requirements.

1) Pointers and addresses require an efficient protec-
tion mechanism against fault attacks, which also
covers pointer arithmetic.

2) A link between the accessed data and the protected
memory address is required to ensure the correct
memory element was accessed.

3) In order to protect the virtual memory domain, the
translation between virtual and physical addresses,
including the TLB, must propagate the address
redundancy.

4) To support arbitrary applications, the protection
mechanism of virtual memory must support shared
memory. Therefore, any linking between payload
data and addresses must only operate on physical
addresses.

5) To support legacy codebases and to enable the
easy deployment, the memory protection must be
applied automatically, i.e., during compilation, and
must not require source code modifications.

Previous protection mechanisms for memory accesses
are either not efficient or do not support the protection of
virtual and shared memory [54], [56]. Hence, there is a
need for new and efficient protection schemes, protecting
all memory accesses against fault attacks.

IV. DESIGN

This section presents SecWalk, an efficient protection
scheme against fault attacks for all memory accesses in
the virtual and physical memory domain, fulfilling the
key requirements discussed above. We first introduce
the design of protected pointers and then discuss the
protected page table walk and TLB protection needed
for virtual and shared memory.

A. Protected Pointers and Memory Accesses

Residual codes are an efficient method to protect
arithmetic operations against fault attacks. These codes
can also be used to protect pointers and their respec-
tive pointer arithmetic. Similar to [56], we embed the
redundancy of the residue code in the upper bits of
the pointer by reducing its address space. Our design
uses the moduli set M = {5, 7, 17, 31, 127} to pro-
tect pointers and addresses, which yields a Hamming
distance of D = 5, capable of detecting up to four
bitflips. Fig. 2 shows a virtual memory address, where
the upper bits denote the residue redundancy and the
lower 39-bits the original pointer value. This separation
– a residue-code is a separable code – supports the
direct access to the payload data without a dedicated
decode operation, which is crucial for a fast memory
lookup on the unencoded address space. The address
space of the pointer is reduced to 39-bits allowing the
pointer to store up to 25-bits for redundancy purpose.
The smaller address space aligns with existing systems
such as Linux [20] for RISC-V, which only uses 39-
bits in its virtual address space. To efficiently operate
on encoded pointers, we add new instructions to encode,
decode, add, and subtract encoded pointers.

To protect the actual memory access, we establish a
link between the encoded address and the actual data
in the memory access. The linking operation scrambles
the actual data when being written to memory and
unscrambles it when reading it back using its encoded
address information. We use a simple xor-based link
on byte granularity, where each encoded byte address

63
0

Redundancy VPN[2] VPN[1] VPN[0] PO
25 9 9 9 12

Fig. 2: Encoded virtual address in Sv39. The upper 25-
bits denote the redundancy information of the multi-
residue code.

scrambles the corresponding byte in the data. Only
when reading from the correct memory location, the
unscramble operation succeeds, and the correct data is
loaded into the register of the processor. As the payload
data uses a data encoding scheme, the unlink operation
of a wrong memory access destroys the payload’s redun-
dancy properties. Thus, the wrong access is detectable in
software.

B. Secure Page Table Walk

The page table walk is the main operation to trans-
late a virtual address to a physical address, which is
eventually used for the memory access. In a protected
program, all addresses, virtual and physical ones, are
protected using the residual-based encoding scheme as
described before. We now present the secure page table
walk that translates a protected virtual address to a
protected physical address and establishes a protected
link in between. The design focuses on the RISC-V
Sv39 virtual memory system [66], but the protection
mechanism itself is generic and can also be applied to
other virtual memory architectures.

In Sv39, a 39-bit virtual address is grouped to a 27-bit
virtual page number (VPN) and a 12-bit page offset (PO).
During the three-step deep page table walk (the page
table walk may abort early for larger pages), the VPN
is translated to a 44-bit physical page number (PPN).
The page offset remains untranslated. The final physical
address is computed by concatenating the retrieved PPN
with the page offset, forming a 64-bit address for the
memory access. In Fig. 2, we show the layout of a virtual
address. Note, the upper bits of the address are used to
store the redundancy information of the multi-residue
code of the virtual address.

To achieve a secure page table walk, we need to
establish a link between the protected virtual address and
the translated physical address. Only when performing
the correct page table walk, this link can be verified, and
the page table walk is genuine. The verification is done
by checking the integrity of the encoded PPN in the page
table entry after applying the respective unlink operation.

R VPN2 VPN1 VPN0 PO

Page Directory

satp.ppn
enc

pte.ppn
enc

pte.ppn
enc

1st level translation 2nd level translation 3rd level translation

VA
enc

PA
enc

Memory

V
P

N
en

c

 Unlink Unlink Unlink

Unlink

Fig. 3: Secure page table walk with linked page table entries.

Otherwise, the translation yields an invalid PPN in
terms of the encoding scheme. Due to the redundancy
properties of the encoding scheme, the invalid PPN can
be detected. However, the link, which is based on the
virtual address, must not influence the actual physical
address nor the data stored in the memory. This property
is needed to support shared memory, where different
virtual addresses map to the same physical address and
data.

To design a protected link between the virtual and
physical address of the page table walk and to make
faults detectable, we add redundancy to a page table
entry. We encode the PPN within the PTE using the same
multi-residue code as used for pointers. We extend the
size of the PPN by 8-bits to a total size of 52-bit, to
include the redundancy information of the multi-residue
code. Together with the 12-bit page offset, this forms
a 64-bit physical address. Since the PPN is aligned to
the page size of 4 KiB or larger, the lower 12-bits of
the physical address pointed by the PPN are always
zero. Eventually, PPN × 212 forms a valid codeword in
terms of the multi-residue code, which can be verified.
In Fig. 4, we show the modified PTE, including the
redundancy of the encoded PPN that we use to verify the
correct translation. By including 25-bits of redundancy
in the physical page number, we also reduce the physical
address space to 39-bits.

The page table walk subsequently reads new page
table entries, based on the VPN of the virtual address,
from memory, to determine the final physical address.
In SecWalk, the PTEs are linked with the corresponding
part of the VPN. Before using the PTE, it needs to be
unlinked, followed by the verification of the residual

Fig. 4: Sv39 page table entry with the extended encoded
PPN to store the redundancy information.

integrity of the encoded PPN. If this check succeeds,
the correct PTE was loaded from memory, and no wrong
lookup was performed. If the check fails, it corresponds
to an invalid memory read of the PTE or a manipulation
of the PTE in memory. These steps, i.e., the page table
walk, are repeated until the final PTE is successfully
loaded and the last encoded PPN is obtained. The last
PPN itself is linked a second time with the fully encoded
VPN, thus providing an end-to-end link between the
encoded VPN and PPN. Finally, the physical address
is computed by taking the encoded PPN and performing
an encoded addition with the encoded page offset.

We achieve the link by applying a special linking
function Px to the PTEs during the page setup. During
the page table walk, we apply the respective inverse
unlink operation P−1

x . Note that x denotes the bitwidth
on which the linking is applied, which is 64-bit for
linking the PTE. The final 52-bit encoded PPN in the
last-level PTE is linked twice with a linking function
where x = 52. This last step is needed to also incorporate
the residual redundancy of VPNenc to the page table
walk. As soon as the page table walk is faulted and
a wrong PTE is loaded, the unlinking step destroys
the data such that the redundancy verification fails,
which eventually causes a trap in the processor. Here,

a fault during the address translation is transformed to
a data error on the PTE, which is detectable due to its
redundancy properties.

In RISC-V, the page table walk starts with a base
register storing the initial physical page number. Similar
to PPNs within a PTE, we also encode the initial PPN
to the multi-residue domain stored within the control
and status (CSR) register satp_enc.ppnenc. Note, we
require a new CSR for this purpose to fit in the extended
encoded PPN. The protected translation of the encoded
virtual address VAenc to the encoded physical address
PAenc works as follows. The suffix enc denotes multi-
residue encoded data, � the encoded addition, and � an
encoded subtraction. For Sv39, PAGE SIZE is 212, and
PTE SIZE is 8.

1) Let a be satp_enc.ppnenc × PAGE SIZE and i
= 2.

2) Let VPNenc = VAenc � Enc(PO), where PO is the
12-bit page offset of the virtual address. Verify the
lower 12-bit of VPNenc to be zero.

3) Let the linked PTEl be the value of the linked PTE
at address a � VA.vpn[i] × PTE SIZE.

4) Perform the unlink step: PTE = P−1
64 (PTEl,

VA.vpn[i]).
5) If PTE.r = 1 or PTE.x = 1, we have a leaf PTE.

Go to step 7.
6) The PTE is a pointer to the next level of the page

table. Check the integrity the residue integrity of
PTE.ppnenc × PAGE SIZE. Fail if not valid. Let
a be PTE.ppnenc × PAGE SIZE and i = i− 1. If
i < 0, fail out. Continue at step 3.

7) A leaf PTE was found. Perform the second un-
link operation of the PPN by PTE.ppnenc =
P−1
52 (PTE.ppn × PAGE SIZE, VPNenc) and check

the residual integrity of PTE.ppnenc. Fail if not
valid.

8) The page table translation finished. The translated
encoded physical address is given as
PAenc = PTE.ppnenc � POenc.

Note, original physical memory access and physical
memory protection (PMP) checks of RISC-V during the
address translation are still in place. The page table walk
returns an encoded physical address, which then is used
for the linked memory access. In Fig. 3, we visualize the
page table walk, using the steps as described before.

Linking Function: The general idea of the secure
page table walk uses a linking function Px(y, k) to link
the PTE with its corresponding parts of VPN. This link
is performed on the whole PTE and in the last step only
on the encoded PPN, thus requiring two different block

sizes (52- and 64-bit). In the linking function x denotes
the block size, y the data being linked, and k the linking
key.

To make the link secure but also practical, the
un/linking function needs to fulfill three requirements.

1) The linking function Px(y, k) needs to be a bi-
jective mapping, implying that there exists an
inverse unlinking function P−1

x (y, k) such that
y = P−1

x (Px (y, k) , k). During the page directory
setup, the PTE gets linked using its corresponding
part of the VPN as the linking key k. When
performing the page table walk, the respective
unlink operation is applied to retrieve the correct
PTE data again.

2) The unlinking function is used to detect wrong
page table walks by verifying the redundancy of
the unlinked PTE. Thus, the unlinking function
must not yield a correct codeword in terms of the
data encoding scheme if wrong data is accessed.

3) Third, the linking function needs to provide diffu-
sion over the whole data word, e.g., over the 64-bit
PTE when x = 64. The diffusion is needed to mix
all bits of the PTE, i.e., the status bits and the PPN.
Thus, an arbitrary fault on the PTE, even only on
a status bit, also affects the redundancy bits of the
encoded PPN. Therefore, a simple byte-granular
xor-based linking function, such as the one used
in [56], is not sufficient as there is no intra-word
diffusion.

Many functions fulfill these requirements, but we aim for
a small and efficient design in this work. We use a two-
round reduced version of the PRINCE block cipher [8]
to perform a 64-bit link, meeting the requirements dis-
cussed above. A round-reduced version of PRINCE is
sufficient as the linking function only requires a diffu-
sion and no cryptographic strength. The second linking
function uses a two-round reduced version of PRINCE
as well, but with a reduced block size to 52-bit. The
encryption operation of the cipher performs the linking
operation, and the decryption operation performs the
unlinking step, respectively.

C. TLB Design

The translation between virtual and physical addresses
is a complex multi-step process, including multiple mem-
ory accesses under the hood. Modern processors have a
dedicated cache for storing the most recent translations
to speed up this operation, i.e., the translation look-
aside buffer (TLB). This buffer stores the most recent
translations between virtual and physical addresses to

avoid a costly MMU translation. The TLB is indexed
using the VPN of the virtual address and returns the
corresponding PTE if available. We apply the same
64-bit linking mechanism to secure this translation as
used in the page table walk. The PTE in the TLB is
linked using the encoded VPNenc of the virtual address.
When retrieving a PTE entry from the TLB, the PTE
is unlinked, and the redundancy of the included PPN is
verified. Only when using the correct encoded VPNenc

for unlinking, the redundancy properties of the encoded
PPN are preserved and the lookup is valid. Otherwise,
if the wrong or faulted VPN is used for unlinking, the
redundancy properties of the encoded PPN are destroyed.
In this case, the MMU traps and stops the application.

D. Page Directory Setup

When setting up virtual memory, it is necessary to
create the corresponding mappings between virtual and
physical addresses, i.e., the page directory. This con-
figuration is a manual task and is typically performed
in software when the OS initializes a new process,
or a process asks for more memory. As discussed in
Section IV-B, the different levels of the page table are
linked using parts of the VPN as the linking key with
a final link of the whole encoded VPN at the end. It is
the page directory setup’s responsibility to create these
links.

There are different approaches possible for es-
tablishing these links. While creating this link can
purely be done in software, we aim for a hardware-
centric approach since the linking functionality is
needed anyways for the TLB. We add a new in-
struction vpnlink1 rd, rs1, rs2, which creates
the 64-bit link between the layers of the page
tables. Furthermore, we add a second instruction
vpnlink2 rd, rs1, rs2, which creates the final
52-bit link for the last PPN.

E. Shared Memory Support

SecWalk natively supports shared memory. By not
having a hard link between the virtual address and the
data in memory, a process can map the same physical
page to multiple virtual addresses. Similarly, multiple
processes can map the same physical page in their
address space to allow inter-process communication. Due
to the design of the page table walk, shared memory does
not require to share any information between multiple
mappings, as it is required for other protection schemes
in of related work.

ID EX

Decoder

Compressed
Decoder

Is
su

e

Regfile
Read

LSU

Multiplier

CSR
Write

Regfile
Write

Sc
or

eb
oa

rd

commit

Commit

DTLB

PTW

E
P
C

C

A
U

S
E

 V

Instruction Queue

Mispredict

to
 c

ac
he

 c
on

tr
ol

le
r

tim
er

ex
te

rn
al

 in
te

rr
up

t u
ni

t

Branch

Controller

In-order
Architechtural
Commit

in
te

rr
up

t

Backend

In-order Issue OoO WB

fr
o
m

 D
e
co

d
e
r

Issue

Scoreboard

E
P
C

C

A
U

S
E

 V

Re-
aligner

Privilege Check

Exception

CSR Buffer

Branch Unit

Frontend

PC
Select

4

npc

epc
mtvec

epc

Speculative Regime

Frontend

fr
om

 M
M

U

I$

In
st

r S
ca

n

instr

32

branch?

call/ret?

taken?

imm

PC

ITLB

CSR
Write

BHT

BTB

RAS

D$

ALU

Res Enc

Res ALU

Ptr Reduce

Res PTW

satp_enc

satp_enc

Fig. 5: CVA6 hardware architecture with SecWalk. The
yellow parts indicate changes in the design.

V. IMPLEMENTATION

In this section, we first describe the hardware architec-
ture of SecWalk and then discuss its custom toolchain to
automatically instrument and protect arbitrary programs.

A. Hardware Implementation

We integrate SecWalk into the open-source RISC-V
processor CVA6 [68], formerly known as Ariane. CVA6
is a 64-bit, application-class, 6-stage, single issue, in-
order RISC-V CPU written in SystemVerilog capable
of running operating systems. In Fig. 5, we show the
modified hardware architecture of the processing system
(the yellow parts indicate changes or additions). To
support new instruction to deal with encoded pointers,
e.g., add, subtract, encode, or decode, we extend the
decoder and add a dedicated residue ALU. Furthermore,
we add a CSR satp_enc to store the multi-residue
encoded base address of the page directory needed for
the page table walker. To support the linking operations
needed for the page table setup, we add two new instruc-
tions vpnlink1 and vpnlink2, to the decoder, which
perform the 64-bit and 52-bit linking operation based on
a round-reduced implementation of the PRINCE cipher.

In Fig 6, we show the modified load-and-store
unit (LSU) of the system. The LSU adds a new XOR-
unit to the load- and store-unit, which is responsible
for performing the linked memory address using the
compressed encoded address coming from the ptr-reduce
module. Furthermore, the MMU adds the residue-based
page table walker, which transforms the encoded virtual
address to the encoded physical address used for memory
access in the load- or store-unit. The MMU has dedicated
access to the memory to retrieve the page table entries
needed for the address translation.

AGU

Load Unit

MMU
ITLB

DTLB

PTW

Store UnitStore Unit

Store Buffer

operator

operand A

immediate

vaddr

lsu_ctrl+

FSM

D$

1
 0

 2

FSM

LSU Bypass

Issue

FSM

Is
ss

ue

Re
su

lt
A
rb

ite
r

commit

R
e
s

A
LU res_data

res_agu_valid

1

0 P
rio

rity
 S

e
le

ct

XOR

Ptr
Reduce

XOR

XOR

Res
PTW

en_linking

paddr

Fig. 6: Hardware architecture the load-store-unit of
CVA6.

As shown in Fig. 6, we extend the MMU with a
dedicated residue page table walker (ResPTW), detailed
in Fig 7. The residue PTW performs the additional
operations needed by the existing PTW and MMU to
enable secure virtual memory accesses. The block dia-
gram in Fig. 7 shows an overview of the implementation
of the ResPTW, where it receives its data from the
PTW or MMU and provides the results to the same two
units. The original PTW, together with the residue PTW,
performs the multi-level address translation according to
the design of SecWalk. When an intermediate PTE is
read, the 64-bit vpnunlink1 operation decodes the
whole PTE using the corresponding part of the V PN
as the linking key. If a leaf PTE is read, the residue
PTE performs the final 52-bit vpnunlink2 operation
to unlink the encoded page number using VPNenc as the
linking key. Both vpnunlink operations are based on
a round-reduced version of the PRINCE block cipher
with different block sizes. The final address is computed
by adding the encoded page offset to the final PPN from
the leaf PTE. Note, a residue addition is performed rather
than a simple concatenation to yield an encoded physical
address, which can be used to access the memory.

If the TLB already contains the requested translation,
the PTW is not needed, and the MMU only requests
the computation of PAenc. The vpnunlink operations
of the residue PTW are used to decode the accessed
entry from the TLB. Note, all residual operations, i.e.,
an addition, contain an integrated check with respect to
the redundancy bits. As soon as an invalid codeword
is detected, the MMU traps, leading to aborting the
program execution.

Although the prototype of SecWalk is based on the
CVA6 processor, the protection mechanism is generic.
Thus, SecWalk is compatible with other 64-bit RISC-V

M
M

U

state

op_a

op_b

op_a

op_b

Cmp

+
res

Res
Encode

VPN
UNLINK1

VPN
UNLINK2

P
T
W

 /
 M

M
U

res_fault

52

52

24

64

64

result

Res
Encode

24

FSM

PTW VA.vpn[i]_enc

VPN_enc

64

64

64

3

64

64

Cmp
0

12

12

decoded_rdata

decoded_pterdata_xorcorr

Fig. 7: Residue page table walker exploiting the redun-
dancy properties of residue codes.

designs such as Rocket [?], (Sonic)Boom [?], [?], or
and many others. The only hard requirement is being
able to modify the core, i.e., having access to the source
code. Furthermore, the protected page table walk itself is
generic; thus, it is also applicable to other architectures.
For example, the ARM AArch64 architecture supports
a similar 39-bit addressing scheme, where SecWalk can
be added if core changes are possible.

B. Toolchain Implementation

To automatically compile arbitrary software for
SecWalk, we develop a custom toolchain based on the
LLVM compiler [30]. We extend the RISC-V backend
of the compiler to automatically encode all pointers to
the multi-residue domain and to emit residue operations
for pointer arithmetic. Furthermore, we replace all mem-
ory accesses with linked memory accesses, which use
the residue encoded pointer for addressing. Note, the
toolchain currently does not support the automatic in-
strumentation of inline assembly code. If a program uses
inline assembly, it requires the developer to manually
modify the assembly code to use protected pointers and
memory accesses.

To run a protected program, it requires support from
the operating system. When starting a new application,
the operating system takes care to set up the memory
mappings of the process. This part of the program
requires a modification to take the linked page table
entries into account. It needs to incorporate vpnlink1
and vpnlink2 to set up the link such that the hardware
page table walker can unlink them when needed. This
task is a manual process and is not covered by the
LLVM-based toolchain.

VI. EVALUATION

In this section, we first provide an evaluation showcas-
ing the overheads of SecWalk in terms of hardware, code

size, and runtime. We then discuss the security properties
and how it protects against the defined threat model.

A. Hardware Evaluation

To measure the hardware overhead, we synthesize the
design for a Xilinx Kintex-7 series FPGA. Our evalua-
tion shows, the prototype implementation of SecWalk
increases the area of the design by less than 0.5 %
in terms of flip-flops and 10 % in terms of lookup
tables. In Tab. I, we further split the utilization of the
overheads between the handling of protected pointers and
the changes related to virtual address translation in the
MMU. Note, the hardware changes of SecWalk do not
affect the critical path of CVA6, and the synthesis still
reaches the original target frequency of 50 MHz.

B. Performance Evaluation

To evaluate the performance of SecWalk, we measure
the code and runtime overhead of set of microbench-
marks and then extend the evaluation to a microker-
nel. We use the custom LLVM-based toolchain to au-
tomatically instrument the programs and to transform
all pointer arithmetic and memory instructions to the
protected domain. The startup code configures the MMU
and maps the virtual and physical pages accordingly. In
Fig. 8, we summarize the runtime and code overhead
for the microbenchmark suite. SecWalk adds an average
runtime overhead of 7.17 % and an average code size
overhead of 11.05 %.

To showcase the applicability of our design for a
larger application, we port the formally verified mi-
crokernel seL4 [16], [27], [28] to SecWalk, which is
used in many security-critical applications. seL4 already
supports RISC-V, but still requires minor adoptions for
our design. First, we shift the operating system’s address
space to fit into the modified address layout of encoded
pointers with its reduced address space. The instrumen-
tation of the assembly code of seL4 requires manual
modification, but these changes are minimal. The most
crucial change in software is setting up the page tables
using the custom linking instructions. These instructions

TABLE I: Hardware utilization of SecWalk.

Hardware Overhead LUTs [%] Flip-flops [%]

Protected Pointers 6.4 0.12
Residue PTW 3.6 0.32

Sum 10.0 0.44

ae
s

cc
fivar

str
in

g fft

kec
ca

k

sim
plea

dd
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
ve

rh
ea

d
[%

]

3.
15

7.
57 9.

41

5.
54

9.
53

7.
88.

7

17
.7

3

10
.2

5

6.
73

12
.7

3

10
.1

8

Runtime
Code

Fig. 8: Performance evaluation of SecWalk using mi-
crobenchmarks.

are used to create the link between the virtual and
physical addresses in the page directory, which are un-
linked during the page table walk. When compiling seL4
with the extensions of SecWalk, we see an increase of
13.1 % in code size, which is solely coming from using
protected pointers and pointer arithmetic. Conceptually,
the only actual software overhead for the protection of
virtual memory is the setup of page tables using the new
linking instructions, which is negligible. When running
the protected seL4 kernel on the prototype, the runtime
in terms of cycles increases by 11.6 %. Both overhead
numbers are reasonable considering that all pointers,
all pointer arithmetic, and every memory access of the
system is protected against fault attacks.

C. Security Evaluation

The protection of addresses and pointers in the virtual
memory domain using the multi-residue code with the
described set of moduli yields codewords with a Ham-
ming distance of D = 5 bits. Thus, this encoding scheme
is able to detect up to four bitflips on pointers and
addresses and its supported pointer arithmetic. Suppose
the compiler detects an operation that is not supported by
multi-residue codes, i.e., a bitwise operation. In that case,
it decodes the encoded pointer, performs the unsupported
operation on the plain data, and then re-encodes the data
back to the multi-residue domain. While the prototype
implementation currently leaves the pointer unprotected
for a short moment, other forms of redundancy, e.g.,
spatial redundancy, can be used to protect the pointer
during such an operation. For example, instruction repli-
cation [4], [23] can be used to protect pointer arithmetic
through unsupported operations by the multi-residue
code. Note, such unsupported operations only occur
very rarely, as pointer arithmetic tends to use simple
operations such as additions and subtractions, which can
operate in the protected domain.

The page table entries contain a multi-residue encoded
PPN with a Hamming distance of D = 5 bits. The
secure page table walk incorporates multiple operations
in the encoded multi-residue domain. Throughout the
translation of the virtual address, all residue additions of
the page table walk are followed by a check operation
in hardware, as depicted in Fig. 7. Thus, faults cannot
accumulate over multiple operations on the multi-residue
code. Summarized, the page table walk adds a protection
against four random bitflips.

VII. RELATED WORK

Starting with the ARMv8.3-A instruction set, ARM
developed a feature named ARM pointer authentica-
tion [33], [50]. This feature adds new instructions allow-
ing the software to sign and verify a pointer cryptograph-
ically. The truncated MAC is thereby stored in the upper
bits of the pointer, reducing its address space. Before
accessing the memory, the pointer is authenticated, and
the MAC is removed from the pointer. Then, a memory
load or store operation can access the memory using the
authenticated pointer. While ARM pointer authentication
has similar design decisions, its scope of protection is
different. They protect special pointers at runtime, i.e.,
the stack pointer, to protect against classical software
attackers [32]. However, they cannot protect pointer
arithmetic, nor can they protect the memory access itself.

There are related works in the context of protecting
memory accesses against fault attacks. AN-B codes [54]
assign each variable a dedicated signature B at compile-
time. When reading the data back from the memory, this
signature is verified using the underlying data encoding
scheme of AN-B codes. If this signature cannot be veri-
fied, it means the memory access was redirected and read
from a different location. Due to the static assignment
of these signatures at compile-time, AN-B codes can
only protect static memory and no dynamic allocations.
Furthermore, they do not support shared memory, thus
providing only a limited scope of protection for their
expensive costs.

The work in [56] adds redundancy to the pointer to
perform linked memory accesses. To compensate for the
overheads of encoded pointer arithmetic, they extend the
processor with new instructions and develop a compiler
using them. While their overheads are reasonably low,
their protection mechanism only supports bare-metal
applications of small embedded use cases. There is no
support for virtual and shared memory; thus, it cannot
protect memory accesses of application-class processors
against faults.

SecWalk is superior to other protection mechanisms
for memory accesses. While it has a low performance
penalty, SecWalk outperforms related work in terms of
supported features. SecWalk supports the protection of
virtual memory accesses against fault attacks, including
dynamic allocations and shared memory between differ-
ent processes. In Tab. II, we summarize the comparison
of SecWalk against AN-B codes and purely encoded
pointers.

VIII. CONCLUSION

The correct execution of a load or store operation
is essential for the security of the system. With the
rise of more powerful embedded systems, operating
systems with virtual memory are commonly deployed
in the IoT. When fault attacks are considered, virtual
memory accesses cannot be trusted as there are different
attacks possible, which redirect the memory to a different
location. Currently, there is no economic mechanism
available that protects virtual memory accesses against
fault attacks, including dynamic and shared memory.

In this work, we closed this gap and presented
SecWalk, an efficient design to protect all memory
accesses of a program in the virtual and physical do-
main against fault attacks. SecWalk protects all point-
ers and addresses in the virtual address space using a
multi-residue code with no additional storage overhead.
Furthermore, this encoding scheme supports encoded
operations, thus also protecting the pointer arithmetic.
We extend the domain of protection, and develop a
secure page table walk, that propgates the redundancy
from the virtual address to the physical address used
for the memory access. The core idea of SecWalk is
to add redundancy to page table entries, add a linking
mechanism between virtual and physical addresses, and
then verify the redundancy properties on the page table
walk. The protection is comprehensive, covering the
virtual address domain, the address translation within the
MMU and TLB, and the actual memory access using
the translated physical address. Furthermore, SecWalk

TABLE II: Feature comparison of SecWalk comapared
to related work.

Protection Scheme Protection of Protection of OverheadVirtual Memory Shared Memory

ARM Pointer
7 7 LowAuthentication

AN-B Codes 3 7 High
Encoded Pointer 7 7 Low
SecWalk 3 3 Low

supports arbitrary applications, including dynamic and
shared memory.

We implemented SecWalk on an open-source RISC-V
processor and mapped the design to an FPGA to show-
case the hardware overhead. We developed a custom
LLVM-based toolchain to automatically instrument arbi-
trary programs without user interaction. To evaluate the
performance of SecWalk, we compile and execute a set
of microbenchmarks. Furthermore, we integrate SecWalk
to the existing microkernel seL4 to show its applicability
on real-life applications using dynamic and shared mem-
ory. Our evaluation shows, the hardware, and software
overheads of SecWalk are reasonable, considering that it
protects all memory accesses of a program against fault
attacks.

ACKNOWLEDGMENT

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 681402).

REFERENCES

[1] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whe-
lan, “The Sorcerer’s Apprentice Guide to Fault Attacks,” Pro-
ceedings of the IEEE, vol. 94, 2006.

[2] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low
Voltage Fault Attacks on the RSA Cryptosystem,” in Fault
Diagnosis and Tolerance in Cryptography – FDTC, 2009.

[3] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault
Injection Attacks on Cryptographic Devices: Theory, Practice,
and Countermeasures,” Proceedings of the IEEE, vol. 100,
2012.

[4] T. Barry, D. Couroussé, and B. Robisson, “Compilation of
a Countermeasure Against Instruction-Skip Fault Attacks,”
in Cryptography and Security in Computing Systems –
CS2@HiPEAC, 2016.

[5] E. Biham and A. Shamir, “Differential Fault Analysis of Secret
Key Cryptosystems,” in Advances in Cryptology – CRYPTO,
1997.

[6] J. Blömer and J. Seifert, “Fault Based Cryptanalysis of the Ad-
vanced Encryption Standard (AES),” in Financial Cryptography
– FC, 2003.

[7] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the Importance
of Checking Cryptographic Protocols for Faults (Extended
Abstract),” in Advances in Cryptology – EUROCRYPT, 1997.

[8] J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Kneze-
vic, L. R. Knudsen, G. Leander, V. Nikov, C. Paar, C. Rech-
berger, P. Rombouts, S. S. Thomsen, and T. Yalçin, “PRINCE
- A Low-Latency Block Cipher for Pervasive Computing Ap-
plications - Extended Abstract,” in Advances in Cryptology –
ASIACRYPT, 2012.

[9] K. Bousselam, G. D. Natale, M. Flottes, and B. Rouzeyre,
“On Countermeasures Against Fault Attacks on the Advanced
Encryption Standard,” in Fault Analysis in Cryptography, 2012.

[10] C. Bozzato, R. Focardi, and F. Palmarini, “Shaping the Glitch:
Optimizing Voltage Fault Injection Attacks,” IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2019.

[11] D. T. Brown, “Error Detecting and Correcting Binary Codes for
Arithmetic Operations,” IRE Trans. Electron. Comput., vol. 9,
1960.

[12] A. Cui and R. Housley, “BADFET: Defeating Modern Secure
Boot Using Second-Order Pulsed Electromagnetic Fault Injec-
tion,” in Workshop on Offensive Technologies – WOOT, 2017.

[13] R. de Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene,
K. D. Bosschere, B. Preneel, B. D. Sutter, and I. Verbauwhede,
“SOFIA: Software and control flow integrity architecture,” in
Design, Automation & Test in Europe – DATE, 2016.

[14] J. V. den Herrewegen, D. F. Oswald, F. D. Garcia, and
Q. Temeiza, “Fill your Boots: Enhanced Embedded Bootloader
Exploits via Fault Injection and Binary Analysis,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021.

[15] C. Dobraunig, M. Eichlseder, H. Groß, S. Mangard, F. Mendel,
and R. Primas, “Statistical Ineffective Fault Attacks on Masked
AES with Fault Countermeasures,” in Advances in Cryptology
– ASIACRYPT, 2018.

[16] D. Elkaduwe, G. Klein, and K. Elphinstone, “Verified Protection
Model of the seL4 Microkernel,” in Verified Software: Theories,
Tools, Experimentsy – VSTTE, 2008.

[17] C. Fetzer, U. Schiffel, and M. Süßkraut, “AN-Encoding Com-
piler: Building Safety-Critical Systems with Commodity Hard-
ware,” in Computer Safety, Reliability and Security – SAFE-
COMP, 2009.

[18] P. Forin, “Vital coded microprocessor principles and application
for various transit systems,” IFAC Proceedings Volumes, vol. 23,
1990.

[19] Free60.org, “Reset Glitch Hack,”
http://free60.org/wiki/Reset Glitch Hack, [accessed 2021-
05-05].

[20] A. Ghiti, “Virtual memory layout on risc-v linux,”
https://www.kernel.org/doc/html/latest/riscv/vm-layout.html,
2021, [accessed 2021-02-26].

[21] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A
Remote Software-Induced Fault Attack in JavaScript,” in De-
tection of Intrusions and Malware & Vulnerability Assessment
– DIMVA, 2016.

[22] R. W. Hamming, “Error detecting and error correcting codes,”
Bell Labs Technical Journal, vol. 29, 1950.

[23] J. S. Hu, F. Li, V. Degalahal, M. T. Kandemir, N. Vijaykrishnan,
and M. J. Irwin, “Compiler-Directed Instruction Duplication for
Soft Error Detection,” in Design, Automation & Test in Europe
– DATE, 2005.

[24] M. Hutter and J. Schmidt, “The Temperature Side Channel and
Heating Fault Attacks,” in Smart Card Research and Advanced
Applications – CARDIS, 2013.

[25] Y. Kim, R. Daly, J. S. Kim, C. Fallin, J. Lee, D. Lee, C. Wilk-
erson, K. Lai, and O. Mutlu, “Flipping bits in memory without
accessing them: An experimental study of DRAM disturbance
errors,” in International Symposium on Computer Architecture
– ISCA, 2014.

[26] Á. Kiss, J. Krämer, P. Rauzy, and J. Seifert, “Algorithmic
Countermeasures Against Fault Attacks and Power Analysis for
RSA-CRT,” in Constructive Side-Channel Analysis and Secure
Design – COSADE, 2016.

[27] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: formal verification
of an operating-system kernel,” Commun. ACM, vol. 53, 2010.

https://doi.org/10.1109/JPROC.2005.862424
https://doi.org/10.1109/FDTC.2009.30
https://doi.org/10.1109/FDTC.2009.30
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1109/JPROC.2012.2188769
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1145/2858930.2858931
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1007/978-3-540-45126-6_12
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-29656-7_6
https://doi.org/10.1007/978-3-642-29656-7_6
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.13154/tches.v2019.i2.199-224
https://doi.org/10.1109/TEC.1960.5219855
https://doi.org/10.1109/TEC.1960.5219855
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
https://www.usenix.org/conference/woot17/workshop-program/presentation/cui
http://ieeexplore.ieee.org/document/7459489/
https://doi.org/10.46586/tches.v2021.i1.56-81
https://doi.org/10.46586/tches.v2021.i1.56-81
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-540-87873-5_11
https://doi.org/10.1007/978-3-540-87873-5_11
https://doi.org/10.1007/978-3-642-04468-7_23
https://doi.org/10.1007/978-3-642-04468-7_23
https://doi.org/10.1007/978-3-642-04468-7_23
https://www.kernel.org/doc/html/latest/riscv/vm-layout.html
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1109/DATE.2005.98
https://doi.org/10.1109/DATE.2005.98
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1007/978-3-319-08302-5_15
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1007/978-3-319-43283-0_7
https://doi.org/10.1007/978-3-319-43283-0_7
https://doi.org/10.1007/978-3-319-43283-0_7
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1743546.1743574

[28] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: formal verification
of an OS kernel,” in Workshop on System Software for Trusted
Execution – SysTEX@SOSP, 2009.

[29] T. Korak and M. Hoefler, “On the Effects of Clock and Power
Supply Tampering on Two Microcontroller Platforms,” in Fault
Diagnosis and Tolerance in Cryptography – FDTC, 2014.

[30] C. Lattner and V. S. Adve, “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation,” in Inter-
national Symposium on Code Generation and Optimization –
CGO, 2004.

[31] S. H. Lavington, “The Manchester Mark I and Atlas: A Histor-
ical Perspective,” Commun. ACM, vol. 21, 1978.

[32] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J. Ekberg, and
N. Asokan, “PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication,” in USENIX Security Symposium, 2019.

[33] A. Limited, “Arm architecture reference manual armv8, for
armv8-a architecture profile,” https://documentation-service.
arm.com/static/5fa3bd1eb209f547eebd4141, 2020, [accessed
2020-09-22].

[34] M. Lipp, M. T. Aga, M. Schwarz, D. Gruss, C. Maurice,
L. Raab, and L. Lamster, “Nethammer: Inducing Rowham-
mer Faults through Network Requests,” arXiv abs/1805.04956,
2018.

[35] T. Malkin, F. Standaert, and M. Yung, “A Comparative
Cost/Security Analysis of Fault Attack Countermeasures,” in
Fault Diagnosis and Tolerance in Cryptography – FDTC, 2006.

[36] J. L. Massey, “Survey of residue coding for arithmetic errors,”
International Computation Center Bulletin, vol. 3, 1964.

[37] J. L. Massey and O. N. Garcı́a, “Error-correcting codes in com-
puter arithmetic,” in Advances in Information Systems Science,
1972.

[38] M. Medwed and S. Mangard, “Arithmetic logic units with high
error detection rates to counteract fault attacks,” in Design,
Automation & Test in Europe – DATE, 2011.

[39] M. Medwed and J. Schmidt, “A Generic Fault Countermeasure
Providing Data and Program Flow Integrity,” in Fault Diagnosis
and Tolerance in Cryptography – FDTC, 2008.

[40] ——, “Coding Schemes for Arithmetic and Logic Operations -
How Robust Are They?” in Information Security Applications
– WISA, 2009.

[41] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and
E. Encrenaz, “Electromagnetic Fault Injection: Towards a Fault
Model on a 32-bit Microcontroller,” in Fault Diagnosis and
Tolerance in Cryptography – FDTC, 2013.

[42] K. Murdock, D. Oswald, F. D. Garcia, J. V. Bulck, D. Gruss,
and F. Piessens, “Plundervolt: Software-based Fault Injection
Attacks against Intel SGX,” in IEEE Symposium on Security
and Privacy – S&P, 2020.

[43] P. Nasahl and N. Timmers, “Attacking autosar using software
and hardware attacks,” in escar USA, 2019.

[44] C. O’Flynn, “BAM BAM!! On Reliability of EMFI for in-situ
Automotive ECU Attacks,” ePrint 2020/937, 2020.

[45] W. W. Peterson, Error-correcting codes. M.I.T. Press [u.a.],
1961.

[46] G. Piret and J. Quisquater, “A Differential Fault Attack Tech-
nique against SPN Structures, with Application to the AES
and KHAZAD,” in Cryptographic Hardware and Embedded
Systems – CHES, 2003.

[47] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Break-
ing SGX by Software-Controlled Voltage-Induced Hardware

Faults,” in Asian Hardware Oriented Security and Trust Sym-
posium – AsianHOST, 2019.

[48] ——, “VoltJockey: Breaching TrustZone by Software-
Controlled Voltage Manipulation over Multi-core Frequencies,”
in Conference on Computer and Communications Security –
CCS, 2019.

[49] ——, “VoltJockey: Abusing the Processor Voltage to Break
Arm TrustZone,” GetMobile Mob. Comput. Commun., vol. 24,
2020.

[50] I. Qualcomm Technologies, “Pointer authentication on
armv8.3,” https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf, 2017,
[accessed 2020-09-16].

[51] T. R. N. Rao, “Biresidue Error-Correcting Codes for Computer
Arithmetic,” IEEE Trans. Computers, vol. 19, 1970.

[52] T. R. N. Rao and O. N. Garcia, “Cyclic and multiresidue codes
for arithmetic operations,” IEEE Trans. Inf. Theory, vol. 17,
1971.

[53] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I.
August, “SWIFT: Software Implemented Fault Tolerance,” in
International Symposium on Code Generation and Optimization
– CGO, 2005.

[54] U. Schiffel, A. Schmitt, M. Süßkraut, and C. Fetzer, “ANB-
and ANBDmem-Encoding: Detecting Hardware Errors in Soft-
ware,” in Computer Safety, Reliability and Security – SAFE-
COMP, 2010.

[55] R. Schilling, M. Werner, and S. Mangard, “Securing conditional
branches in the presence of fault attacks,” in Design, Automation
& Test in Europe – DATE, 2018.

[56] R. Schilling, M. Werner, P. Nasahl, and S. Mangard, “Pointing
in the Right Direction - Securing Memory Accesses in a Faulty
World,” in Annual Computer Security Applications Conference
– ACSAC, 2018.

[57] B. Selmke, S. Brummer, J. Heyszl, and G. Sigl, “Precise Laser
Fault Injections into 90 nm and 45 nm SRAM-cells,” in Smart
Card Research and Advanced Applications – CARDIS, 2015.

[58] S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction
Attacks,” in Cryptographic Hardware and Embedded Systems
– CHES, 2002.

[59] M. Steil and F. Domke. The xbox 360 security system and its
weaknesses. https://www.youtube.com/watch?v=uxjpmc8ZIxM.
[accessed 2021-05-05].

[60] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Manage-
ment,” in USENIX Security Symposium, 2017.

[61] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida,
H. Bos, and K. Razavi, “Throwhammer: Rowhammer Attacks
over the Network and Defenses,” in USENIX Annual Technical
Conference, 2018.

[62] N. Timmers and C. Mune, “Escalating Privileges in Linux Using
Voltage Fault Injection,” in Fault Diagnosis and Tolerance in
Cryptography – FDTC, 2017.

[63] N. Timmers, A. Spruyt, and M. Witteman, “Controlling PC on
ARM Using Fault Injection,” in Fault Diagnosis and Tolerance
in Cryptography – FDTC, 2016.

[64] T. Trouchkine, S. K. Bukasa, M. Escouteloup, R. Lashermes,
and G. Bouffard, “Electromagnetic fault injection against a
complex cpu, toward new micro-architectural fault models,”
Journal of Cryptographic Engineering, 2021.

[65] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and
S. Ermeneux, “Laser-Induced Fault Injection on Smartphone
Bypassing the Secure Boot-Extended Version,” IEEE Trans.
Computers, vol. 69, 2020.

https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1109/FDTC.2014.11
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/359327.359331
https://doi.org/10.1145/359327.359331
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://www.usenix.org/conference/usenixsecurity19/presentation/liljestrand
https://documentation-service.arm.com/static/5fa3bd1eb209f547eebd4141
https://documentation-service.arm.com/static/5fa3bd1eb209f547eebd4141
http://arxiv.org/abs/1805.04956
http://arxiv.org/abs/1805.04956
https://doi.org/10.1007/11889700_15
https://doi.org/10.1007/11889700_15
https://doi.org/10.1109/DATE.2011.5763261
https://doi.org/10.1109/DATE.2011.5763261
https://doi.org/10.1109/FDTC.2008.11
https://doi.org/10.1109/FDTC.2008.11
https://doi.org/10.1007/978-3-642-10838-9_5
https://doi.org/10.1007/978-3-642-10838-9_5
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/FDTC.2013.9
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP40000.2020.00057
https://eprint.iacr.org/2020/937
https://eprint.iacr.org/2020/937
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1109/AsianHOST47458.2019.9006701
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3319535.3354201
https://doi.org/10.1145/3427384.3427394
https://doi.org/10.1145/3427384.3427394
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1109/T-C.1970.222937
https://doi.org/10.1109/T-C.1970.222937
https://doi.org/10.1109/TIT.1971.1054579
https://doi.org/10.1109/TIT.1971.1054579
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1007/978-3-642-15651-9_13
https://doi.org/10.1007/978-3-642-15651-9_13
https://doi.org/10.1007/978-3-642-15651-9_13
https://doi.org/10.23919/DATE.2018.8342268
https://doi.org/10.23919/DATE.2018.8342268
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1145/3274694.3274728
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/978-3-319-31271-2_12
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/10.1007/3-540-36400-5_2
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/atc18/presentation/tatar
https://www.usenix.org/conference/atc18/presentation/tatar
https://doi.org/10.1109/FDTC.2017.16
https://doi.org/10.1109/FDTC.2017.16
https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1109/FDTC.2016.18
https://doi.org/10.1109/TC.2018.2860010
https://doi.org/10.1109/TC.2018.2860010

[66] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and
K. Asanović, “The RISC-V Instruction Set Manual Volume II:
Privileged Architecture Version 1.12-draft,” EECS Department,
University of California, Berkeley, Tech. Rep., 2020.

[67] M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard,
“Sponge-Based Control-Flow Protection for IoT Devices,” in
European Symposium on Security and Privacy – EuroS&P,
2018.

[68] F. Zaruba and L. Benini, “The Cost of Application-Class
Processing: Energy and Performance Analysis of a Linux-ready
1.7GHz 64bit RISC-V Core in 22nm FDSOI Technology,”
arXiv abs/1904.05442, 2019.

[69] G. P. Zero, “Exploiting the dram rowhammer bug to gain ker-
nel privileges,” https://googleprojectzero.blogspot.com/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html, 2015, [accessed
2020-10-22].

https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200829-c159933/riscv-privileged.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20200829-c159933/riscv-privileged.pdf
https://doi.org/10.1109/EuroSP.2018.00023
http://arxiv.org/abs/1904.05442
http://arxiv.org/abs/1904.05442
http://arxiv.org/abs/1904.05442
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

	Introduction
	Background
	Fault Attacks
	Error Detection Codes
	AN-B Codes
	Residue Codes

	Protection of Memory Accesses
	Page-based Virtual Memory

	Threat Model and Attack Scenario
	Threat Model
	Faults on Virtual Memory
	Requirements for Protected Virtual Memory Accesses

	Design
	Protected Pointers and Memory Accesses
	Secure Page Table Walk
	TLB Design
	Page Directory Setup
	Shared Memory Support

	Implementation
	Hardware Implementation
	Toolchain Implementation

	Evaluation
	Hardware Evaluation
	Performance Evaluation
	Security Evaluation

	Related Work
	Conclusion
	References

