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Abstract—Masking techniques are an effective countermea-
sure against power side-channel attacks. Unfortunately, correctly
masking a hardware circuit is difficult, and mistakes may lead
to functionally correct circuits with insufficient protection. We
present COCOALMA, a tool that formally verifies the side-channel
resistance of stateful hardware circuits. Although COCOALMA
was initially used to verify programs running on CPUs, we
extended it to verify the security of several industrial masked
hardware implementations. We give an overview of the tool’s
structure, implementation details, optimizations that make it
faster and more scalable than its predecessor REBECCA, and
changes that enable verifying the probing security of any stateful
hardware circuit. Finally, we evaluate COCOALMA with masked
implementations of the PRINCE and AES ciphers.

Index Terms—Side-channels, Hardware masking, Formal ver-
ification

I. INTRODUCTION

Integrated circuits that process sensitive data are susceptible
to passive side-channel attacks like differential power analysis.
Naturally, attackers are interested in the secret keys of sym-
metric ciphers because that would break the confidentiality
of the processed data [22], [23], [26l], [21]. Classical power
analysis attacks exploit the correlation of the circuit’s power
consumption to bits of the secret key. Ultimately, the key is
reconstructed using statistic analysis techniques in a series of
key guesses [22], [27].

Masking is an algorithmic countermeasure against power
analysis attacks. It relies on splitting all secrets and inter-
mediate computations into multiple signals. The circuit is
rewritten so that attackers can only reconstruct the original
value if they can observe all the shares simultaneously. Mask-
ing techniques achieve this by introducing randomness into
the circuit and destroying the correlation between the power-
trace and the original data. Several masking schemes describe
how to make circuits secure against side-channel attacks.
Among them, domain-oriented masking [15] and threshold
implementations [9)] are well studied and widely adopted. The
security of masked hardware circuits is expressed using the
hardware probing model [2], [18], [4], where an attacker can
read the values of d wires. Traditionally, engineers validate
masked hardware implementations empirically by creating
power traces and computing the correlations over many ex-
ecutions. Recently, however, we see several formal masking
verification methods that can substantially reduce the costs
of validating power side-channel resistance of software and
hardware [2f], [1)], [L1].
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Figure 1. The workflow of COCOALMA showing the parsing, tracing, and
verification phases, as well as their artifacts. At the end of the verification
phase, COCOALMA either acknowledges that the analyzed design is secure
or shows that a secret is leaked at a given location in the circuit.

COCOALMA is an open-source masking Venﬁelﬂ that as-
sisted the hardening of a RISC-V processol so it could
safely execute masked software [13]. It considers the exact
description of the hardware that runs the software and accounts
for hardware leakage effects such as glitches. Figure |1| shows
the workflow of COCOALMA. Starting with a hardware design
written in Verilog, COCOALMA uses Yosys [31] to synthesize
a flat gate-level Verilog netlist. Additionally, the parsing phase
extracts a circuit graph of the synthesized design and creates
a labeling template where the user can specify the contents
of each register and input port of the circuit after the reset.
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COCOALMA uses a testbench provided by the user to simulate
the netlist with Verilator [28], resulting in a value change
dump showing how the internal signals changed throughout
the execution. For the analysis of software running on RISC-
V processors, COCOALMA additionally requires the RISC-V
toolchain to compile programs and add them to the testbench
before starting the simulation. The resulting execution trace is
used to determine the value and glitching properties of each
wire in the design. Afterward, the time-constrained probing
model, initial state, simulation trace, and glitching information
are encoded as a SAT problem and solved with CaDiCaL [3]].
If the problem is unsatisfiable, no possible observation would
leak any of the secrets. Otherwise, COCOALMA gives a precise
description of leakage location, the secret bits that are leaked,
and a variety of other debugging information.

Although COCOALMA was first used for analyzing software
running on CPUs [13], its roots in the older verification tool
REBECCA [4] can be leveraged towards stateful hardware
verification of masked cipher implementations. Luckily, all
the principles used in COCOALMA also apply to hardware
masking verification with minor tweaks. In this paper, we
document the inner workings of COCOALMA, its features, and
show the extensions necessary for applying it to cryptographic
accelerator modules. We present the following details about
COCOALMA’s implementation:

o In Section [l we define the supported probing mod-
els, emphasizing the newly supported hardware probing
model, which allows us to prove the security of stateful
hardware circuits. We also discuss the support for random
number generators.

o In Section we give a breakdown of the corre-
lation set methodology and show its encoding into a
SAT formula in Section Here we give a precise
description of the encoding, which is missing in the
original publication [13]], and more efficient than the
encoding used in REBECCA [4]. Finally, in Section [III-C]
we describe details of several optimizations that reduce
the size of the encoding and the number of probing
locations. Here, the hardware probing model requires
special considerations.

o In Section we motivate and describe the execution-
dependent correlation set simplifications. Additionally,
we present the stable signal detection algorithm comput-
ing the stability of each control signal in Section
This optimization allows us to simplify the correlation
sets even in the presence of glitches.

o In Section [V] we demonstrate COCOALMA’s capabili-
ties by verifying the probing security of state-of-the-art
masked implementations of the PRINCE [6], [12], [20]
and AES [30], [7], [17], [15] ciphers as they are popular
in the semiconductor industry. Additionally, we go over
the debugging tools provided with COCOALMA, which
allow a designer to locate the source of the leakage and
see how leakage propagates through the circuit.

II. SECURITY MODELS

Masked implementations split all intermediate data signals x
into d+1 uniformly random pieces x;, with z = 2o ®...Bz4.
In practice, for ¢ # d, the signal shares xz; are sampled
from a random number generator, whereas x4 is chosen as
TP 9P ... P a1 to fit the equality. This countermeasure
tries to prevent an attacker, who can observe intermediate com-
putations through side-channels, from learning anything about
the processed data. When investigating whether a masked
implementation is actually side-channel resistant, several se-
curity models describe the capabilities of an attacker and the
real-world effects they can observe. COCOALMA implements
three different probing models that consider different attacker
capabilities and system behavior. More specifically, this work
extends COCOALMA to support continuous probing as part of
the hardware probing model.

Software probing model. The original probing model
defined by Ishai et al. [18] considers the stable state of
computations, ignoring hardware side-effects such as glitches
and transitions. Their seminal paper says that an attacker in
this probing model can choose d intermediate values that they
can observe. The attacker can then interactively query the
execution of the system several times with different inputs
and starting states. The inputs of the computation are declared
either (a) public, which means that learning them does not
benefit the attacker, (b) fixed uniformly random values called
masks, or (c) parts of a secret called shares. The attacker’s
goal is to learn all the shares of a secret and use them to
reconstruct the secret value they are not supposed to know.
Proving that an implementation is d-probing secure requires
showing that no attacker adhering to this probing model can
learn the secrets, irrespective of their strategy.

Time-constrained probing modelE] When COCOALMA
was first presented [13], its primary goal was verifying the
masking of software programs running on an accurate descrip-
tion of the underlying hardware. Naturally, this required an
adequate probing model that translates software probing into
the hardware domain. The time-constrained probing model
uses the gate-level description of the hardware and an ex-
ecution trace generated by simulating the hardware running
the software, instead of a purely algorithmic description. The
goals of the attacker are the same as in the software probing
model. However, this model is more realistic, as the attacker
can probe d observation tuples (g,t), where g is a logic gate
or register and ¢ is a cycle in the execution trace. This gives an
attacker access to all the intermediate values of gate g in cycle
t, including all the values caused by hardware effects such as
glitches and register transition leakage. The two parameters
g and t are not coupled, meaning that the attacker can also
probe the same gate in multiple clock cycles or even probe d
different gates in the same clock cycle. Although this model
limits each probe to observing only one clock cycle, instead of
running throughout the computation, its inclusion of hardware
effects significantly enhances the capabilities of an attacker.

3Barthe et al. [2]] and Moos et al. [24] call this the robust probing model.



Due to the different signal timings in hardware, an attacker
observing gate ¢ = a ® b in this model would also observe
the signals a and b in addition to g. Registers are synchronous
elements triggered by a clock, making them the only hardware
elements exempt from this phenomenon. Another effect that
increases the attacker’s capabilities is transition leakage, which
causes the power consumption to correlate with the linear
combination g'~! @ g* of the old signal value in cycle ¢ — 1
and the new signal value in cycle ¢. Transition leakage applies
to all hardware elements equally, including registers.

Hardware probing model. This paper extends the tool
COCOALMA with a model where probes are not bound to
one clock cycle like in the time-constrained probing model.
The attacker’s goals remain the same as before, only that
in this more rigorous model, the probes record continuously
throughout the whole computation. More precisely, instead of
choosing a clock cycle for each observed location, the attacker
observes all values, including those caused by glitches and
transitions, that pass through a wire. In a sense, this is a
more powerful rephrasing of the original probing model of
Ishai et al. [18], as they also did not limit the duration of
the probes for stateful circuits. As this model significantly
increases the capabilities of an attacker, hardware designers
employ random number generators to create fresh uniformly
random masks in each clock cycle, intending to break any
correlations that might otherwise be observed. These mask-
generating circuits are usually not part of the masked hard-
ware designs and are only used as black-boxes that provide
random inputs to the masked circuit. We incorporate this in
COCOALMA, allowing designers to label input ports of a
circuit as random. The values read from these ports behave
similarly to fixed masks, only that they represent a new mask in
each clock cycle, which is then considered during verification.
The semantics of public and share signals remains the same,
and we even allow fixed masks, just like in the other probing
models.

III. VERIFICATION METHOD

COCOALMA tries to verify the side-channel resistance of a
masked implementation in one of the given security models.
A correctly masked implementation computes the values of
arbitrary logic functions without exposing the value of the se-
cret to an attacker through intermediate computations. There-
fore, a masked implementation must ensure that intermediate
signals do not correlate with secrets; that is, the value of an
intermediate signal should be statistically independent of all
secrets. COCOALMA checks whether these properties hold by
tracking the correlations of each logic operation throughout
the computation [4], [13]. For instance, if a circuit were to
compute the expression f = aAb, then f correlates positively
with a, b, and the constant | because they have the same value
in three out of four cases. For the same reason, f correlates
negatively with the linear combination a @b because they only
have the same value in one of four cases, i.e., when both a and
b are L. An exact algorithm that computes these correlations
would solve the #SAT problem [14], meaning that computing

Table 1
PROPAGATION RULES FOR STABLE AND TRANSIENT CORRELATION SETS

Gate type of f Stable set S} Transient set T}
Constant LorT {L} {L}
Input Port pt {r'} {p'}
Negation —a St Tt
Register “<gra St= 1 SL- !
Linear a®b St ® St D) ® (T}
Non-linear Z C Z (St @ (SE) (Te) ®(Ty)
Multiplexer | c?a : b [ (S ® (St USH [ (TH ® (TF) ® {T})

correlations is at least #P-Complete [29]], which is harder
than NP by definition. Because of the structure of secrets
and the uniform randomness of secret shares and masks, it
is sufficient to track the correlations to linear combinations
of the inputs [4]. Furthermore, the correlations yield a sound
over-approximation that reduces the complexity of the problem
and is also used in COCOALMA. In the following sections, we
describe this over-approximation and its implementation, but
refer to the soundness proofs in the original publication [4].

A. Correlation Sets

Instead of painstakingly computing the exact correlation
factor for each linear combination of inputs, COCOALMA
over-approximates the correlations. In particular, COCOALMA
only considers whether the correlation factor is non-zero,
and ignores its exact value. All linear combinations a gate
correlates to are grouped together and tracked as so-called
correlation sets. The exact correlations are approximated us-
ing propagation rules that determine the correlation set of
f = a®b by considering the correlation sets of a and b, as well
as the used logic operation ©. Using the previous example
f = a A'b, we have shown that the correlation set contains
all linear combinations of a and b, i.e., {1,a,b,a®b}. In
contrast, f = a & b only correlates with itself, ie., the set
{a ® b}, because the value of a @ b coincides with L, a,
and b in exactly half of the cases, yielding a correlation
factor of zero. Consequently, knowing f would not reveal any
information about a and b. In general, we cannot compute the
correlation set of the output of a logical operation precisely
from the correlation sets of its inputs, so COCOALMA over-
approximates these sets.

Table [I] presents the propagation rules COCOALMA uses
to compute the correlation sets of a gate using its inputs.
The propagation rules define two kinds of correlation sets
necessary for the verification: (a) stable sets S} that define
the normal behavior of a gate f, and (b) transient sets T]?
that define the behavior of f in the presence of glitches and
transition leakage effects. Both types of correlation sets are
defined for each clock cycle ¢, as gates change their value
over time. Although the hardware probing model only talks
about these transient correlation sets, the stable correlation sets
are necessary for synchronizing elements such as registers.
For simpler exposition and encoding, Table [I| shows the
computation of correlation sets using the operators ® and



(-). Here, ® is the element-wise exclusive-or between two
correlation sets, i.e., X @Y = {z®y|x € X,y € Y}. The
operator (-) adds a correlation with L to a correlation set, i.e.,
(X)=XU{l}

The presented propagation rules are based on COCOALMA’S
original publication [13]], [4] but were adapted for stateful
hardware verification with continuously recording probes.
Naturally, constants only correlate to L, and negations only
change the sign of the correlation but do not impact the
correlations themselves. As discussed previously, linear gates
only correlate to the linear combination of the inputs, so the
correlation set is computed as the element-wise exclusive-
or of the inputs’ correlation sets. For non-linear gates, the
correlation set is computed similarly, only that in this case,
a bias is introduced in each input’s correlation set. Using the
introduced notation, the correlation set of gate f = a A b,
where a and b are inputs, is computed as

({a}) ® ({b}) = {L,a; @ {L,b} = {L,a,b,a®b} . (1)

For transient correlations, linear gates behave like non-linear
gates. Glitches induced by different signal timings can force a
gate to forward a constant or either of the inputs, in addition to
the correct correlations. A multiplexer correlates to both of its
data inputs a and b, as well as their linear combinations with
the selector ¢, i.e., a® c and b c. For the transient correlation
set, COCOALMA assumes that all three input signals can be
combined non-linearly.

When verifying masked software running on a processor,
the input pins of the hardware design are not relevant, as
they are part of the micro-architecture and not visible to
the programmer. Secret shares, masks, and public values are
all stored in both the RAM and the ROM, and for the
verification process, we label their locations and simulate the
design to execute a program [13]]. Verifying masked hardware
is different, as there are no such memory blocks, and the
registers get cleared with a reset signal. Computation-relevant
data, such as plaintexts, keys, and masks, is provided by the
environment through the input ports of the circuit. Therefore
we extend COCOALMA with support for input ports and
introduce an appropriate propagation rule, which states that
an input port only correlates to its value in cycle ¢. In our
implementation, public values, shares, and masks have the
same value throughout the execution of the circuit. However,
input ports labeled as random are provided by an external
random number generator and change their value in each
cycle, and therefore, the correlation set also changes each
cycle. In addition, to the support for input ports, we also
optimized the propagation rules for registers. Since the probes
in the hardware probing model record data continuously, we
do not need to account for transition leakage because all values
passing through a wire are recorded anyway.

Computing correlation sets from other correlation sets can
result in over-approximations that include non-existent corre-
lations. For example, representing the exclusive-or function
f=a®bas f = (aA-b)V (-aAb) would result in the
spurious correlation set {L, a,b,a®b}, when in reality f only

correlates with {a @ b}. This means that a hardware designer
applying this over-approximative method must be aware of
false leakage reports and debug them properly. Oftentimes, as
illustrated in this toy example, the over-approximative error
can be fixed by either re-writing the circuit or removing the
problematic correlation term from the correlation set.

However, despite being imprecise, this over-approximation
is easy to encode and retains some useful information. For
example, function f = (a ® b) A ¢ is correctly claimed
to correlate with {L,c,a®b,a ®b P c}, even though the
correlation set of f was computed using the correlation sets
of g = a @b and c. This result reflects the intuition that we
cannot “remove” masking from a signal by combining it with
another value, i.e., the correlation set does not contain values
where a appears without b.

B. SAT Encoding

The upper bound for the size of the correlation sets is expo-
nential in the number of inputs, so COCOALMA cannot store
or enumerate them explicitly and instead relies on an implicit
encoding method that utilizes a SAT solver. While the used
encoding is similar to the one presented by Bloem et al. [4],
it was significantly optimized and streamlined in COCOALMA
to simplify the implementation of all the propagation rules in
Table |l As mentioned previously, the user needs to label each
input port p € Z as either a share s € K' of the i-th secret,
a fixed random mask m € M, a random port with a new
value r € R! in each clock cycle ¢, or a public value that is
ignored. For simpler notation, we do not implicitly associate
correlation sets or propositional variables with clock cycles
or gates in the circuit, and instead specify them with C_ and
‘P_, where the subscript is used to differentiate them. In our
SAT encoding, a correlation set C, is represented by a set of
propositional variables P, = {x, | p € I}, such that every
valid assignment to the propositional variables P, corresponds
to an element in the correlation set C,.. Additionally, just like
Z, P, can be further split as P, = |J, KL UM, U(J, RL.
Example [I] gives an intuition of the introduced variable sets
and correlation set encoding.

Example 1: Let T = {sg, s1,m} be the labeled input ports
given by the user, where s = sg @ s1 is a secret with shares
K° = {50, 51}, and fixed uniformly random masks M = {m}.
Let C, = {L,s1,80 D m,so® s, &m} be a correlation set.
Then P, = {x5,, %5, , Tm } are the propositional variables used
for encoding C,, where KO = {z,,, 7, }, and M, = {z,,},
and there are no random ports. The propositional variables
in P, are constrained in such a way that the only satis-
fying assignments for the propositional tuple (zs,,Zs,,Zm)
are (L, L, 1), (L, T,L1), (T,L,T), and (T, T, T). These
assignments represent the elements of C,, where x,, indicates
whether the port p appears in the current term of C,.

COCOALMA maps the correlation terms in C, to satisfying
assignments to the propositional variables P, by translating
the propagation rules from Table [I| into satisfiability con-
straints. However, in order to simplify the exposition, we only



demonstrate how we encode the correlation set operations (-),
U, and ®, as well as the creation of a correlation set with
only one element. All of the propagation rules from Table
can be obtained by applying different combinations of these
individual encodings, e.g., the transient rule for linear gates is
obtained by combining the encodings of (-) and ®.

First off, the correlation set of an input port only contains
the port itself. Therefore, we restrict all of its propositional
variables that correspond to other ports to be L, whereas
the propositional variable representing the port itself must be
set to T. More precisely, for a port p in clock cycle ¢, the
propositional variables P, are constrained with

Tpt N /\

T €Py,aF#pt

“Ta, 2

where only random input ports are different in each clock
cycle and p = p’ in all other cases.

Extending a correlation set C, with the | element, written
as (C.), is required for the propagation rules of linear and
non-linear operations. When translating this into constraints
for propositional variables P,, COCOALMA introduces a new
set of variables P/, and a fresh propositional variable ¢. The
SAT solver can pick the value of g freely. Depending on the
choice, all propositional variables P., are forced to equal their
corresponding variables in P, or forced to be L. We write
this constraint as

A welane). (3)

24 €Px, ), P,

All satisfying assignments of P, correspond to elements of
the correlation set (C,). Each time the propagation rules in
Table [[| use the (-) operator, we introduce the variables P,
and q and apply the given constraint.

Encoding the propagation rule for multiplexers requires
a similar constraint when representing the union of two
correlation sets. Given the correlation set C, = C, U Cy,
we introduce corresponding propositional variables P, and a
fresh propositional variable g. We subsequently constrain the
introduced propositional variables with

A Za < (@A Ta) V (7 AN Ya)) , (D)
2a€P2, o €Px, Ya EPy

where whenever ¢ = T an element of C, is encoded, and
otherwise an element of C,. This encoding ensures that C,
contains all elements of C;, and C,, even if they are duplicates.

Finally, COCOALMA encodes the element-wise exclusive-or
of two correlation sets C, = C; ® C, using their correspond-
ing propositional variables and a straightforward equivalence
encoding

/\ Zo ¢ (Ta D Ya) - &)

2a€P2, o €P2, Ya €EPy

Unlike the encoding of unions, no additional fresh proposi-
tional variables are necessary as there is no choice involved.

The constraints (2)-(5) only show how each of the prop-
agation rules shown in Table [I| can be translated into SAT.

COCOALMA needs an additional encoding for the conditions
under which information leakage occurs. With correlation sets,
we check whether there is an element of the correlation
set where all shares of a secret are present, without being
hidden by uniformly random values, such as fixed masks,
random input ports, or shares of other secrets. Looking back
at Example |1} we see that each time both shares sy and s
appear in a correlation term, they are masked by mask m. This
means that the correlation set does not leak information about
s = sg @ s1. When checking this leakage property using the
SAT encoding, we require two constraints.

First, we enforce that for each secret, either all shares are
active, or all shares are inactive. Furthermore, we say that at
least one secret must be active in order to have a leak. We
encode this property by introducing one fresh propositional
variable k; for each secret and constraining them with

\//%)A/\ N\ ki, (6)

NS oA

The first conjunct guarantees that at least one of the secrets
is present in the correlation term. The rest of the expression
ensures that either all shares of a secret are active in a
correlation term, or none of them are, which is necessary since
shares of incomplete secrets are uniformly random.

Second, we enforce that no masks appear in the correlation
term, so the secrets are not hidden by uniformly random
values, as discussed in Example |1 We represent this in the
SAT encoding as

/\ Ly | A /\ /\ -z, |, (7

Ty EMy t z.€RL

which ensures that a satisfying solution must assign all the
variables representing masks and random values with L.

Constraints (6) and go hand in hand, and both are
required when testing whether a given correlation set leaks
information about the secrets. When checking the security of
a circuit in one of the supported security models, COCOALMA
determines the observations an attacker can make, where each
observation is made up of multiple correlation sets. For the
software probing model, COCOALMA takes all the d-tuples O
of probing locations (g, t) and tests the non-linear combination
of their stable correlation sets

& (st (8)

(g,t)€O

where g is the chosen gate, and ¢ is the chosen clock cycle. The
same applies to the time-constrained probing model, where
COCOALMA checks the transient correlation sets T; instead.
In contrast, for the full hardware probing model, the probing
locations O are a d-tuple of gates g instead, and concern all
the clock cycles ¢ for the given gates. Therefore, COCOALMA
must check the correlation set

X R (1) . ©)

geO t



which significantly increases the observations an attacker can
make. For example, using a register to store one share of
a secret early in the computation and store the other share
later in the computation would still allow an attacker to
reconstruct the secret. Naturally, longer executions of a circuit
get progressively harder to verify.

C. Encoding Optimizations

Although the shown SAT encoding is sufficient for showing
whether the circuit leaks information about the processed
secrets, the size of the produced constraints and formulas is
unnecessarily large. In this section, we present some of the
optimizations that dramatically reduce the effort of showing
that a masked hardware circuit is secure.

Variable elimination. The sets of propositional variables
‘P, often include variables constrained through unit clauses, so
their assignment is predetermined and equal in all satisfying
solutions. Constraint (2)) is an example of such a situation.
Building constraints for such variables is unnecessary, and
they can be removed entirely, substantially reducing the size
of formula given to the SAT solver. In practice, COCOALMA
implements this by storing P, as a dictionary of propositional
variables, as well as a set of variables trivially set to T. All
variables from P, that are not present are known to have the
value L. Consequently, whenever creating any of the shown
constraints (3)—(7), we first check for trivial simplifications
using the properties of logic operators. Although this opti-
mization might seem superficial, it single-handedly reduces the
number of variables and clauses by anywhere between 90%
and 98% for the probing verification problems we have inves-
tigated so far. Notably, this optimization does not reduce the
complexity of the queries given to the SAT solver, as solvers
usually detect unit clauses anyway, but instead significantly
reduces the memory consumption. Without this optimizations,
verifying the probing security of longer executions would not
be possible because the formula would not fit into memory.

Covering sets. Due to the nature of the propagation rules
from Table [IL some correlation sets are supersets of others.
Take the propagation rules for non-linear gates as an example.
For gate f = a A b, the stable correlation set is computed as
St = (SEy®(SE) = {L}USLUSFU(SE @ St), which implies
that S! C S} and S} C S}. Consequently, it is sufficient to
perform the security checks for S%, ignoring both S}, and S}
because their elements are already covered. For element-wise
exclusive-or operations like C, = C, ® C,, the resulting set
C. covers C, whenever L € C,, and C, whenever L € C,.
It turns out that in the software probing model, we only need
to check gates that are inputs to XOR gates, selectors of a
multiplexer, inputs to a register, and circuit outputs. In the
time-constrained probing model, we only check register inputs
and circuit outputs because in that model linear gates behave
non-linearly due to glitches. In the full hardware probing
model, the covering properties are slightly more complex, and
we check all gates that have at least one clock cycle where
another gate does not cover them.

Table II
SIMPLIFICATION RULES FOR STABLE CORRELATION SETS

Gate type f Stable set Cr f Stable set Cr
Linear a® L Ca ad®T Ca
Non-linear anl S ant Ca
aV L Ca aVT -
1?7a:b Cp T?a :b Ca

Multiplexer || ¢? L : b | (Cc) ® (Cp) c?T b | {Ce)® (Cp)

c?a: L | (Co)®(Ca) || c?a: T | (Cc) ® (Ca)

IV. SIMULATIONS

Although the method presented in Section is sufficient
to check the security of a masked implementation in the
supported probing models, it does not consider how the control
signals change over time. As mentioned in the introduction,
COCOALMA uses simulations to obtain information about the
exact values of control signals and subsequently uses them to
simplify the correlation sets accordingly.

In the hardware probing model, all values marked as sensi-
tive, i.e., secret shares, mask registers and random input ports,
are assumed to be uniformly random. This is a requirement
for the execution environment, in this case the testbench,
which performs the secret sharing steps and includes a random
number generator that drives the random input ports in each
clock cycle. In any reasonable probing model, the attacker can
only control the values of un-shared plaintext values, and we
assume they can request an unlimited number of encryptions
for the DPA attack. If the attacker were able to mess with
the random number generator of the environment, they would
be able to break any conceivable masking scheme, so this is
out-of-scope in the hardware probing model.

Other input signals, such as control signals, which marked
as public are assumed to be independent of the secrets and
masks processed in the hardware circuit, so their values can
be taken directly from a circuit simulation. Since their values
are known, COCOALMA uses them to perform simplifica-
tions while applying the propagation rules. Consider the gate
f = anb, where a is a public value and b has a correlation
set Cp. Because COCOALMA knows the value of a, f is
simplified accordingly. If @ = 1, then we know that f = |
independently of b, meaning that f is also a public value
and does not need a correlation set. Similarly, if a = T,
we know that f = b, and we can reuse the correlation set
as Cy = Cp. Table [lI] defines analogous simplifications for
all propagation rules with multiple inputs when the constant
signal is stable. Using the simulated execution of the circuit
and the labeling provided by the user, each gate g at each clock
cycle ¢ is classified as either being a control signal or having
a correlation set, but never both. Empty entries in Table
indicate that the gate does not have a correlation set and is
instead declared a control signal.

A. Signal Stability

Unlike with stable correlation sets, applying simplifications
based on the simulation trace is not straightforward for tran-
sient correlation sets, where COCOALMA must also consider



Table IIT
SIGNAL STABILITY COMPUTATIONS

Table IV
VERIFICATION RESULTS FOR TWO VERSIONS OF PRINCE-TI

Gate type of f Computation of sz(f) in current clock cycle Algorithm |#Sec. #Rand. |#Rnds. #Cyc. SW TC HW
Constant LorT T PRINCE-TI| 192 48 1 3 [V0.72s X 1.97s X 2.43s
Input Port P -cr(p) PRINCE-TI| 192 192 1 3 |V¥337s V¥ T7.21ls V11.57s
Negation -a st(a) PRINCE-TI| 192 192 2 5 |V187.8s v 150.6s v 236.9s
Register <ra ~ o' (a) A (v (a) <> vI'(f)) PRINCE-TI| 192 192 | 3 7 |V0.77h ¥3.80h v 17.92h
Linear a®b st(a) A st(b) AES-DOM|256 46 | 1 21 |V1953s5 v/ 1.82h v/2.89h

. aNb | stla) A=vi(a)V st(b) A =vi(b) V st(a) A st(b)
Non-linear |\ | i(a) Avi(a) v st(b) A vi(b) V si(a) A si(b)

. o . st(c) A (vi(e) A st(a) V =vI(c) A st(b))V . . . . L
Multiplexer | c?a : b V st(a) A si(b) A (vi(a) < vi(b) their signals stable and avoid glitches. Since public signals

glitches. Glitches are hardware phenomena that behave like
temporary faults while switching values. A gate f = a® b
will pass on a’s value if its signal arrives at f before the new
signal of b. After both signals arrived, the fault is corrected,
and f becomes the value it is supposed to have. Ultimately,
the signal must be stable at the end of a clock cycle, when the
clock triggers the registers and synchronizes the computation.

However, there are certain conditions when a gate cannot
experience a glitch, e.g., when the values a and b come directly
out of a register and do not change from the previous clock
cycle. In that particular case, even though the signal timings
are different, the value transmitted through the wires did not
change the entire time, and no glitching is possible. As a
result, even the signal produced by f would be stable and
glitch-free. This property recursively propagates throughout
the whole circuit and allows us to determine which values
can be used for the simplifications shown in Table |lI} even for
transient correlation sets.

COCOALMA uses the concrete values of a simulation trace
to determine the glitching behavior of public values such as
control signals. Assume the same situation as before, with
f = anb, where a is a public value and b might correlate with
masks or shares, and thus, has a correlation set C,. Knowing
whether f can forward b is crucial, as it might lead to an
information leak in a later part of the circuit. If a = L and
its signal is stable, meaning it cannot produce glitches, then
f is a public value with f = L. Therefore, a being a stable
public signal set to L effectively stops the propagation of a
correlation set from b to f. In the rest of this section, we
outline a recursive method for determining whether a signal
is stable in a given clock cycle.

In the following exposition, we introduce three predicates
that help define the algorithm computing the signal stability.
We use the s#(z) predicate to say that the signal x is stable. The
predicate cr(x) is true whenever the signal z is associated with
a transient correlation set. Finally, predicate vi(x) represents
the value of signal x taken from the execution trace. All three
predicates also have a version that applies to the previous
clock cycle: st (z), c¢r/(z), and vI'(x). The rules computing
the stability of any given signal f are shown in Table All
values of the predicates are computed directly, and none of
them are given to the SAT solver.

First, all input ports are held stable by the environment.
That is, another circuit that controls the input ports must keep

and signals with correlation sets are mutually exclusive in
COCOALMA, an input port is only considered stable when
it does not have a correlation set. Similarly, the output of
a register is stable if the register does not change its value
from the previous cycle and does not have a correlation set
associated with its input. If the value did change, we consider
the signal unstable because it can cause glitches in gates
connected to it during the clock-cycle transition. Linear gates
such as XOR are only stable if both of their inputs are stable.
If one of the inputs produces a glitch, then an XOR would
forward it to all gates it is connected to since the other signal
cannot stop it.

Non-linear gates such as AND (OR) can remain stable even
if one of their inputs produces glitches. If at least one of the
inputs of an AND (OR) gate is stable at L (T), then no change
or glitch in the other input can make it unstable. Otherwise, the
output of an AND (OR) gate is only stable if both of its inputs
are also stable. The conditions under which a multiplexer is
stable are similar. For instance, if selector ¢ is stable with the
value T (L), then the output of the multiplexer is stable if
and only if the selected input a () is stable. In contrast, if
selector c is not stable, the output is only stable if the inputs
a and b are stable and have equivalent values.

V. CASE STUDIES

In this section, we investigate the probing security of the
masked hardware implementations PRINCE-TI [6] and AES-
DOM [16]. In particular, we analyze the complexity of verify-
ing round-reduced versions in all three of the supported prob-
ing models. Additionally, we demonstrate how COCOALMA’S
debugging functionalities allow us to identify potential issues
and fix them accordingly. All experimental results shown in
Table were captured on a notebook with the Intel Core
i7-8550U 1.8GHz CPU and 16 GiB of RAM.

A. Verifying PRINCE-TI

PRINCE is a state-of-the-art lightweight block cipher. It
is designed with hardware implementations in mind, so that
ideally, the entire encryption process can be done in one
clock cycle [5] when no masking is applied. PRINCE takes
as input a 64-bit plaintext block and encrypts it with a 128-
bit key. The encryption process consists of two phases with
six rounds each. In the first phase, the first round adds the
round key onto the data block, whereas the other five rounds
apply a 4-bit S-Box, an affine transformation, and then mix
the round key into the data block. After the first phase, the



data block is transformed using the 4-bit S-Box, another affine
transformation, and the inverse 4-bit S-Box, before starting
the second phase. In the second phase, each round applies the
inverse operations performed in the rounds of the first phase,
meaning that the first five rounds add the round key, apply the
inverse affine transformation followed by the inverse 4-bit S-
Box. The last round of the second phase only adds the round
key to the data block.

Unlike the unmasked version of PRINCE, the threshold
implementation PRINCE-TI [6]] cannot be completed in one
clock cycle. This restriction is due to the re-sharing phase
present in threshold implementations, which requires addi-
tional synchronization to prevent leakage caused by glitches.
For first-order probing security, the implementation splits all
the plaintext and key bits into two shares and treats them as
secrets. PRINCE-TT uses random inputs to re-share the outputs
of its sixteen 4-Bit S-Boxes, where each S-Box requires twelve
random bits. In the official implementation, this process is
optimized in such a way that four S-Boxes share the same
randomness, so the re-sharing only requires a total of 48
random bits.

The first row of Table shows the results produced by
COCOALMA, where 192 (i.e., 128 key bits and 64 plaintext
bits) pairs of ports are labeled as shares of secrets, and 48 ports
are labeled as coming from a random number generator. The
first round of the cipher needs three clock cycles to complete
since we first need to load the inputs into internal registers
and start the encryption. Within one second, COCOALMA has
proven that the implementation is secure in the software prob-
ing model (SW), indicated with (v) in Table However,
COCOALMA claims it found a leak (X) in the time-constrained
probing model (TC) in the third clock cycle and provides us
with debugging information.

B. Debugging Information

After finding a leak in a hardware circuit, COCOALMA
attempts to simplify the leaking correlation. For example,
COCOALMA could report that the output of a gate correlates
with the linear combination of many secrets. This information,
while correct, is often not useful for a designer because
looking through the implementation and tracking the data
dependencies of so many secret bits is extremely cumbersome.
Therefore, COCOALMA attempts to minimize the number of
secrets in the leaking correlation term. In particular, we go
through all secret bits and greedily assume that the leaking
correlation term does not contain them but still leaks infor-
mation. If the SAT solver returns UNSAT, we know that the
investigated secret must appear in the correlation term. At the
end of this procedure, COCOALMA has produced a minimized
example of a leaking correlation term.

Next, COCOALMA provides a leakage graph, which allows
the designer to visualize the structure of the leaking part
of the circuit. In particular, the leakage graph highlights the
leaking gates and only includes gates that influence the leak.
We perform this graph minimization by starting at the leaking
gates and computing their cone of influence.

inv_sr_out2[1] >0
{ir(3]@i_r(41@i (51} mux1_out2[1]
- Ny,

>
{i_pt[11Pi_key[1]1Pi_key[65]}
> 1
sell

unstable

comp_sh2[1]

{ir(3]@i_r(41@i_r(51®
i_pt[11@i_key[1]1@i_key[65]}

Figure 2. The PRINCE-TI leakage found with COCOALMA. Signal names
are shown on top of lines, whereas the problematic correlation term or signal
stability is shown below.

Finally, COCOALMA produces a leakage trace where the
correlation terms of all relevant correlation sets are displayed.
In particular, we take the model produced by the SAT solver
and show the ports p € Z whose corresponding propositional
variables in P, are assigned to T, indicating they are part of
the correlation term. The designer can combine this informa-
tion with the leakage graph to deduce the cause of the leak.

C. Debugging PRINCE-TI

In the particular case of PRINCE-TI, we have identified the
leak at multiplexer mux1_out2[1], as shown in Figure E}
Here, the control signal sell determines whether the output
is the inverse of the shift rows operation inv_sr_out2[1],
or the compression operation comp_sh2[1]. Here, a glitch
on the control signal sell causes the multiplexer to for-
ward both inputs in the third clock cycle. Unfortunately,
inv_sr_out2[1] correlates to the uniformly random value
r=1i_r[3]®i_r[4]di_r[5], whereas comp_sh2[1]
correlates with r@i_pt[1]di_key[1l]dhi_key[65].
Observing these two values allows an attacker to compute
i_pt[l14i_key[l]6hi_key[65], breaking the security
guarantees promised by masking schemes.

Although the leakage is observable at mux1_out2[1], its
root cause is somewhere else. Under closer inspection of the
leakage trace and leakage graph, we see that the shift rows
operation, in combination with glitches, causes a forwarding
of the random bits used to re-share the thirteenth S-Box,
making them observable at inv_sr_out2[1]. Since the
same random bits are used to re-share the first S-Box, which
eventually leads to comp_sh2[1], the random bits cancel
out at the multiplexer. Ultimately, the reuse of random bits
causes a leak in the presence of glitches. We fix this by
increasing the size of the random input i_r from 48 to 192
bits, and avoiding the reuse of random inputs for the re-sharing
of S-Box outputs. The second and third row of Table [[V]|show
the verification results for the fixed version of PRINCE-TI,
where we were able to verify up to two rounds of the cipher
in under four minutes.

D. Verifying AES-DOM

Rijndael, better known as the Advanced Encryption Stan-
dard (AES), is an extremely popular, secure, and widely
adopted block cipher [8]. The 128-bit version of AES takes
as input a 128-bit plaintext and encrypts it through ten rounds
using a 128-bit key. First, the cipher adds the initial secret key



to the plaintext to create the cipher’s state and then expands
the key into ten individual round keys. The first nine rounds
apply the S-Box to each state byte, re-order the bytes, apply
a linear transformation to 32-bit chunks, and mix the state
with the round key. The last round does not apply the linear
transformation as it does not contribute to security.

AES is not intended for masked implementations because
it has a highly non-linear S-Box that is applied sixteen times
per round. In order to minimize the used design area, masked
AES implementations opt for only one S-Box module that is
sequentially fed new bytes each clock cycle [25]], [16].

We have analyzed the probing security of the DOM-
protected [16] implementation of AES by Gross et al. in
all three security models. The open-source implementation of
AES-DOME] is written in VHDL and not in Verilog, so it is not
directly compatible with our verification flow. However, due
to the modularity of COCOALMA, we can produce a netlist
with another synthesis flow, e.g., GHDLE], and extend it with
a compatibility wrapper in Verilog so we can use Verilator for
the tracing step of the original verification flow depicted in
Figure[T] Although this is convenient, it is not strictly required,
and COCOALMA also supports execution traces produced by
other simulators in VCD format.

Executing the first round of the cipher requires one cycle
of setup and twenty computation cycles. Notably, because of
the parallelism in hardware designs, AES-DOM computes the
linear operations of the first round just-in-time for their use as
S-Box inputs in the second round. Therefore, the first 21 cycles
only include the key addition, sixteen S-Box applications,
and the byte re-ordering. The implementation processes 256
secrets, that is, 128 key bits and 128 plaintext bits. In each
clock cycle, the AES-DOM consumes 46 uniformly random
bits, yielding a total of 966 random bits for the first round of
the cipher. The last column of Table [IV| shows the verification
results for the first round of AES-DOM. The verification was
successful in all three probing models, and since the AES-
DOM implementation is more complex than PRINCE-TI, it
naturally takes longer to verify. COCOALMA only takes about
three hours to verify that the implementation of AES-DOM is
secure in the hardware probing model.

VI. RELATED WORK

The formal verification of power analysis countermeasures
is a well-established research field [1l], [2], [4], [13], [10],
[L1], [19]. The community has been investigating two fun-
damentally different principles. On the one hand, there are
approximative methods like those used in REBECCA [4],
maskVerif [2], and COCOALMA. In contrast to REBECCA
and COCOALMA, maskVerif opts for a language-based
verification approach, tracks the symbolic representation of
probing locations, and simulates the observations an attacker
can make using uniformly random values. On the other hand,
model counting methods inspect the truth table of a given

4https://github.com/hgrosz/aes-dom
Shttps://github.com/ghdl/ghdl-yosys-plugin

function and check whether the correlation strength is zero
for all secret values. Tools such as QMvVerif [10] and
OMSInfer [11] apply these methods to overcome the short-
comings of heuristics used in faster approximative methods.
Similarly, probability-distribution tracking approaches such as
SILVER [19]] (implicitly) rely on model counting to determine
the distribution type for any possible observation an attacker
can make.

To our knowledge, maskVerif and SILVER were not used
for stateful hardware verification. The authors of OMvVerif
and QMSInfer claim they support stateful hardware verifi-
cation, but the tools are not open-source, so we could not
replicate their results.

VII. FUTURE WORK

The current version of COCOALMA is a significant improve-
ment over its predecessor REBECCA [4]. However, there are
still open questions that could yield performance improve-
ments or usability improvements.

The model of glitches used in COCOALMA seems too con-
servative, but we have no empirical evidence to the contrary. In
particular, we assume that glitches are unpredictable and can
forward any combination of the new and old signal values,
even constants. This assumption might be too strict, and
some combinations would not be observable in a power trace.
Similarly, we assume the worst-case interaction between tran-
sition and glitch leakage, which might also be unnecessarily
cautious. Eliminating these overly paranoid precautions would
single-handedly reduce the verification complexity. Another
avenue for increasing the scalability would be to consider
implementation modules separately and tie the individual
proofs together using composability notions [2].

VIII. CONCLUSION

Although COCOALMA was originally designed for verifying
software in the time-constrained probing model, it can also
verify stateful hardware circuits in the hardware probing
model. COCOALMA improves upon REBECCA in terms of
scope and verification capabilities. It supports more security
models, includes an elegant correlation-set encoding, supports
circuit simulation, and uses it throughout the verification. The
native support for stateful verification allows a tighter integra-
tion into the design flow, and as demonstrated with PRINCE-TI
and AES-DOM, COCOALMA can be applied to industry-scale
designs. We have successfully identified a leakage location
in PRINCE-TI, which cannot be found by only analyzing the
PRINCE-TI S-Box, as it requires the full context of the cipher’s
implementation. Through the debugging support provided by
CoCOALMA, we found the cause of the information leakage
and fixed it by adding more random inputs. Furthermore, we
have also demonstrated the modularity and adaptability of
COCOALMA by verifying an AES-DOM design that uses an
entirely different synthesis flow in another HDL language.

Overall, we think COCOALMA is an excellent addition to
any synthesis flow and can be used for the early detection of
mistakes.
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