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Energy prediction for CNC machining with machine learning
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A B S T R A C T

Nowadays, the reduction of CO2 emissions by moving from fossil to renewable energy sources is on the
policy of many governments. At the same time, these governments are forcing the reduction of energy
consumption. Since large industries have been in the focus for the last decade, today also small and
medium enterprises with production lot size one are increasingly being obliged to reduce their energy
requirements in production. Energy-efficient CNC machine tools contribute to this goal. In machining
processes, the machining strategy also has a significant influence on energy demand. For manufacturing
of lot size one, the prediction of the energy demand of a machining strategy, before a part is
manufactured plays a decisive role. In numerous previous studies, analytical models between the energy
demand and the machining strategy have been developed. However, their accuracy depends largely on
the parameterization of these models by dedicated experiments. In this paper, different machine learning
algorithms, especially variations of the decision tree (’DecisionTree’, ’RandomForest’, boosted
’RandomForest’) are investigated for their ability to predict the energy demand of CNC machining
operations based on real production data, without the need for dedicated experiments. As shown in this
paper, the most accurate energy demand predictions can be achieved with the ’RandomForest’ algorithm.

© 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Many government's environmental policies of the last decades
focus on decarbonizing of their energy power plants and the
reduction of energy consumption [31,37]. With a primary energy
consumption of more than 30%, industrial manufacturing is one of
the main sources of pollution [23]. As a consequence, attention for
energy-efficiency must be paid and is divided in two scopes:
Environmental friendly product design and energy-efficient
production. Hence, a comprehensive energy aware product design
and a low energy production strategy fosters governments
environmental policies [1,7]. Therefore, linking product geometry
features and energy consumption of production is inevitable for
this objective. With focus on CNC machine tools this can be
achieved by linking the NC code, which determines the geometry
of the part, with the energy consumption of the CNC machine tool.

The aim of this paper is contributing to a highly accurate NC
code based energy consumption and power curve prediction for
CNC machine tool aggregates with variable power demand (x, y and
z axis, spindle and tool change system) at CNC machine tool level.
First, this contribution will help to derive low energy machining

strategies with respect to geometry features to create awareness
for design engineers. Second, this helps determining the energy
consumption of a part before manufacturing and therefore
allowing to optimize in design phase for energy demand. Third,
power demand prediction can help for peak power balancing to
reduce the overall power spikes at factory level as a contribution to
an increased electric grid stability [24].

State of the art

In order to develop a prediction model for the energy
consumption during CNC machining, both are inevitable: the
knowledge about characterization of the single elements respon-
sible for the energy consumption during machining as well as a
broader understanding of the already taken efforts in building
predictive models for the energy consumption. Those two domains
are elaborated below:

Characterization of energy consumption in machining

In the past, research in machining was focused on developing
models to predict fundamental variables as stresses, strains, strain-
rates, temperatures, etc. [3]. Recently efforts were made to
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As one of the first, [13] investigated the energy demand for
ifferent manufacturing processes (injection molding, machining,
rinding, cutting, etc.) and characterized the energy needed for
achining with E = (P0 + kcQ)t. Where for a process duration of t, P0

s a constant power consumption required to support the process,
c the specific cutting force and Q the material removal rate.
[36] presented a way to calibrate a force estimation model using

he motor spindle power in flat and ball end milling processes. The
nergy consumption was expressed in terms of material removed
nd contact area E = KTCQ + KTEA, with the tool/material cutting
nergy KTC and the tool/material edge force KTE.
[8] searched for possible improvement measures to reduce the

onstant part of the energy consumption of discrete part
roduction CNC machine tools. Also the effects of stand-by phases
n a lean production setting was found out to effect the energy
onsumption.
[10] proposed a generic model to forecast the energy

onsumption of manufacturing equipment by separation in
tatistical discrete events. The total energy consumption was
alculated with E =

P
c
P

i(DtPc,i), whereas, Pc,i being the power
onsumption of a component c in state Si. Later [11] further
eveloped this methodology for the usage in multi-machine
anufacturing systems and expanded the model for different
nergy carriers (electricity, pressured air and coolant).
[34] monitored the energy consumption of CNC machine tools

n order to assign every operation performed by the CNC machine
ool to the correlating energy consumption. In a case study a rule
ased framework was developed to simulate the end milling of
luminium with the operational states: startup, shutdown, idle,
nd machining process.
[27] modelled the energy consumption of a turning process in

rder to optimize the machining process in regards to tool life and
nergy consumption. The proposed model decomposes the total
nergy consumption into the idle energy, the cutting energy as
roposed by [13], as well as the energy consumed by the tool
hange system and the energy needed to produce the cutting tool.
[17] discovered through experiments with a CNC lathe that the

dditional energy losses in machining, which in previous energy
odels were summarized in a constant energy loss, are on the
ontrary dependable on spindle speed and cutting torque. In the
uggested model, energy losses from the electrical machine

(windings and core) as well as the mechanical setup (friction,
transmission) were added.

[12] formulated a multi-objective energy and product quality
model using multi-gene genetic programming. The chosen
approach includes both, statistical and classification strategies.
The model was validated through analyzes of the turning process
of steel and aluminium alloy. In the formulated model the cutting
speed was most influential on the energy consumption.

[22] studied the relationship between the parameters depth of
cut, spindle speed, feed rate, and nose radius of a dry milling
operation and modeled their highly nonlinear impact on the
specific cutting energy. The parameters with the most effect on the
specific cutting energy were found out to be (in descending order):
depth of cut, feed rate, spindle speed and nose radius.

Prediction of energy in machining

After characterizing the energy consumption of CNC machine
tools, the question arose, if those gained insights could be used to
create models to forecast the energy consumption during
machining of a part. As one of the first, [9] noticed the absence
of a suitable forecasting technique for the energy consumption of
CNC machine tools and proposed a model formalism to predict and
optimize the energy-efficiency: the process was divided into
operations, for each of which a static energy consumption was
determined by measurements. In a case study simulating a milling
process, this approach was able to achieve an overall accuracy
within 5%. Only a simple machining operation with a constant
cutting depth was performed. Basic assumptions made in order to
refine this simulation to achieve given accuracy stay unclear.

[4] developed a model to estimate the energy demand of the
spindle and feed aggregates of a CNC machine tool based on the
constant and variable power flows occurring in different oper-
ations. In a case study aluminium milling with differing
parameters was modelled. An error of 3.8–18.1% was achieved
thereby. Only simple operations e.g. pocketing or contour milling
were tested. Also does this model require advanced measurements
in beforehand (masses of axis, idle power).

[20] developed an empirical model to characterize the
relationship between energy consumption and process variables
for different machining processes. In validation tests of the
Fig. 1. Comparison of measurements (a) and predictions (b) of an existing energy model by [2].

716



M. Brillinger, M. Wuwer, M. Abdul Hadi et al. CIRP Journal of Manufacturing Science and Technology 35 (2021) 715–723
prediction model with eight different CNC machine tools an error
of 2.37–8.05% was measured. This was possible by keeping the
parameters like feed rate, depth of cut and thus, material removal
rate constant and neglecting auxiliary processes like the start-up.

[26] trained an artificial neural network (ANN) model with the
data from 250 high-speed ball end milling operations but did not
provide evaluation measures for the predictions. Every sample
consisted of seven inputs (spindle speed, feed rate, feed per tooth,
axial depth of cut, radial depth of cut, tool radius, usage of coolant)
and five power consumption outputs of the aggregates.

[14] analyzed the correlation between NC codes and energy
consumption of single machine components. In the proposed
analytical method the energy needed for every component was
calculated based on the NC instruction and summed up to obtain
the energy needed to execute given NC instruction. Considered
components were the spindle, the feed axes, coolant pump and the
tool change system as well as a constant energy consumption. One
milled and one turned part were produced to evaluate the
calculations. Despite the complex model and simple machining
operations, an error of 9.3% occurred. This model also requires
process parameters, e.g., depth of cut, that were not included in the
NC instruction.

[16] proposed an energy-efficiency monitoring model that was
not dependent on torque or force, but on the energy consumption
of the CNC machine tool. In the several tests that were performed
on one of the CNC milling machines, the cutting power was
predicted with an accuracy of 1.57–3.11%; by keeping the
parameters (such as, spindle seed, feed rate and cutting depth)
constant for each test.

[2] included auxiliary operations as start-up and non-cutting
movements into the proposed NC code based energy model. On a
simple test piece (machining one pocket) the difference between
prediction and test piece was 5.23%. In Fig. 1 the plots of the
measurement and the prediction are compared: The power peak
was neglected by the prediction and the prediction does not fit the
actual measurements but generalizes on a large scale (see Table 1).

[6] proposed an energy prediction model created with the help
of an ANN. The network with two hidden layers was able to predict
the energy consumption in a not further specified test with an
error of 2.46%.

[18] developed a multi-objective predictive mathematical
energy model for a turning process based on different methods
of data analysis (response surface methodology, grey relational
analysis and principal component analysis) to optimize machining
parameters.

[25] proposed an energy model based on the force estimation
with finite element modeling simulation. The conducted experi-
ments involving dry turning of a titanium alloy could be predicted
with an error in the range of 1–8%. The evaluation tests were
conducted by machining a fixed length (60mm) with constant
cutting speeds.

[19] created an model by training an ANN to predict the cutting
energy while machining carbon steel. The training data was
obtained from 27 machining operations, with different input
parameters (spindle speed, feed rate, depth and width of cut). The
difference between measured and predicted cutting energy was
1.50%.

[21] developed an analytical predictive model by decoupling
the energy of the components of the CNC machine tool from the
cutting energy. On validation tests on two different CNC machine
tools the model differed from the measurements within an error of
0.36-0.55%. For the model extensive measurements of every
decoupled state were necessary, what limits the usage to
predefined operations.

[29] decomposed the NC code into single instructions and
proposed a model to predict the energy consumption to further use
those results for online optimization. A polynomial regression
model (PRM) and an ANN were tested with different pocketing,
slotting and drilling operations, where an error of 0.02–1.08%
occurred. Only material removing NC instructions were taken into
account and the depth of cut was fixed.

[5] generalizes an energy prediction model over multiple
process parameters and processes in order to optimize tool paths.
The model based on Gaussian process regression (GPR) predicted
the energy consumption within an error of 3.288–5.744%. Only
certain operations were studied (face milling, pocketing, plunge,
air cut and rapid motion) and the depth of cut was fixed. It was
noted, that the accuracy of the predictions fell if the machining
parameters of the test part were too different from the training
data.

[30] developed a Therblig-based energy model to calculate the
energy demand while machining. In a case study the model was
2.23-10.22% off the actual measurements. Besides the simple test
piece (face milling, slotting and drilling), extensive manual work
had to be done to assign the corresponding Therbligs to each of the
215 NC instructions.

[15] compared the ability of different algorithms to train energy
prediction models from milling and grinding operations. It was
shown that deep learning algorithms exceed in prediction accuracy
compared to the Gaussian process regression (GPR).

Table 1
Comparison of the different forecasting models.

Reference Method Machining Op. Aggregates Accuracy

Axes Spindle Tool change Coolant pump Auxiliaries

[9] Rule based Milling � � � � �5%
[4] Rule based Milling � � � � 3.8–18.1%
[20] Rule based Milling &turning � � � � 2.37–8.05%
[26] Artificial Neural Network Milling � � N/A
[14] Rule based Milling &turning � � � � 9.3%
[16] Rule based Milling � � � � 1.57–3.11%
[2] Rule based Milling � � � � � 5.23%
[6] Artificial Neural Network Milling � � � 2.46%
[18] Rule based Milling � � 4.79%

[25] Finite Element Method Turning � � � 1–8%
[19] Artificial Neural Network Milling � � � 1.50%
[21] Rule based Milling � � � � 0.36–0.55%
[29] ANN &Polynomial regression Milling � � � � 0.02–1.08%
[5] Gaussian process regression Milling � � � � 3.288–5.744%
[30] Rule based Milling � � � � � 2.23–10.22%
[15] Deep Learning Milling &grinding � � � � � N/A
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The shown literature study in the field of energy prediction of
NC machine tools do not fully cover the topic with respect to the
otivation of this paper. The missing links are elaborated in the

ollowing chapter and an approach is developed.

esearch gap

Derived from the previous mentioned state of the art, the
esearch gap can be summarized as follow:

Previous research papers investigated the energy consumption
f a CNC machine tool in comparison to simulated data like depth
f cut and production strategy. Furthermore, a reference part to
arameterize energy consumption models had to be produced.
owards data acquisition, low-frequency data with a sampling
nterval of 200ms or more were collected via the standard OPC-UA
nterface. In the evaluation state outliers in the gathered data were
xcluded due to the negligible influence of single power spikes on
he overall energy consumption. [33] evaluated that besides
ignificant effort made to understand the complex interactions
ausing energy consumption in machining, the validity of
nalytical energy models remain highly questionable.
Mitigating these disparities, our approach uses only direct

ccessible data from CNC machine tool and neither simulation data
or rule-based energy models are included, which is the origin of this
aper. Furthermore, no special reference part for energy consumption
odel parameterization is needed. Gathering high-frequency data
ith sampling interval of 2ms is done via a innovative SIEMENS Edge
evice. Outliers in the collected data set are included. Our approach is
o investigate three different machine learning models, namely
ecisionTree’, ’RandomForest’ and boosted ’RandomForest’, for high
recision energy prediction of CNC machining strategies.

pproach of study

As previously shown, numerous parameters on the energy
onsumption of a machining process exist. In this study the
arameters are limited to one CNC machine tool, one material and
ry machining. After those preliminary restrictions the approach
f study is depicted in Fig. 2:

 First, a training part is machined and high frequency measure-
ments and the NC instructions are acquired.

 Based on this data, a Machine Learning model is trained.
 Post this, the validation part is machined.
 The NC instructions from the validation part are passed to the
already trained model.

5 The model then predicts the energy consumption.
6 The actual measurements obtained while machining the part
are compared to the predicted values.

Besides the restrictions met, the state of the art shown above
takes into account multiple parameters for the energy consump-
tion (e.g. material removal rate, spindle speed, feed rate, effective
cutting, air cutting, idle, start-up and shut down, etc.). Therefore,
measures were taken to enable the Machine Learning model to
distinguish between those operations.

Methodology and challenges

In this chapter we describe each step individually. We elaborate
on how the study is carried out and the challenges occurring.

Data acquisition

The data from the machining process is the foundation for
developing a prediction model. In this chapter the procedure is
elaborated to derive a data set for the Machine Learning model out
of the obtained data from the experiments [35].

Manufacturing process
Part For our approach two different parts, shown in Fig. 3, are

machined. The raw material is an aluminium alloy (AlCuMgPb, ISO
No. 1645) with the size 125.3mm � 19.34mm � 14.52mm.

CNC machine tool The machining parts are machined on a
SPINNER U5630 5-axis simultaneous CNC machine tool with a
SINUMERIK 840D SL v4.8 numerical control unit (NCU).

Tools The tools being used in the machining process are given in
Table 2. While four tools are used in both manufacturing processes,
the other seven are used in either of the two. Hence, the validation
data set contains tools which are not in the training set.

Data acquisition The power measurements are not performed
with a conventional electricity meter but with a SIEMENS edge
device. This high frequency software sensor installed onto the NCU
provides high resolution data with a sampling interval Dt of 2ms.
This has be shown by [32] to be beneficial compared to
conventional low frequency data. The NC code used in this study
is acquired in a retroactive readout process from the NCU. This NC
code is extracted after the machining and therefore, compared to
the output of a CAM software, contains additional internal machine
instructions and possible changes of the machine operator,
ensuring the usage of the accurate NC code responsible for the
measurements [28].
Fig. 2. Approach of study. Fig. 3. Manufactured parts used for the study.
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Merge measurements and NC code
The NC code, containing all the NC instructions to machine a

given part, and the power demand measurements are matched via
a time stamp. Dependent on the execution length of each
individual NC instruction i, m consecutive measurement results j
have to be assigned to the NC instruction. To merge those two data
sets, every power demand measurement Pi,j is multiplied by the
sampling interval of the measurement device Dt to obtain the
current energy consumption. The total energy consumption Etotal is
then:

Etotal ¼
Xn
i¼1

Xm
j¼1

Pi;jDt ð1Þ

Syntax interpretation

In this step of the study, the NC code has to be processed to
make the hidden information accessible for further usage, e.g. the
category of operation (rapid positioning, material removal,
miscellaneous function, etc.) or the go-to positions, in the text
of the unprocessed NC instructions, see Fig. 4. For this data
transformation task domain knowledge is necessary in order to
improve the data quality set containing information, that can be
used later by a ML algorithm. Following chapters are elaborating
this issue.

Negligible code lines
A part of the retained machine instructions don’t contain

information in regard to the energy consumption (e.g. ”STOPRE”,

”GETSELT”, etc.). All those instructions that do not lead to an
significant energy consumption higher than the idle power
consumption can be identified and summarized into a negligible
category.

Multiple elements in one instruction
One NC instruction can contain more than one element,

responsible for different, simultaneous CNC machine tool oper-
ations. However, the energy consumption measurement for the NC
instruction is conducted as a whole and retrospective separation
and allocation to the respective CNC machine tool aggregates is not
possible.

Feature extraction and feature engineering

The input parameters, called features, are generated from the
data set with respect to their relevance for the machining process
according to the analytical and technological considerations. A part
of the needed information can be directly used from the data set in
the given form (e.g. the spindle speed). In other cases, the
information needs to be transformed prior the be ready for the
Machine Learning model. In the feature engineering process,
domain knowledge or additional information, like the diameters of
the tools, is added and mathematical transformations, like the path
between two positions, are implemented on the information prior
to transferring it to the data set for the Machine Learning model.
The model is trained and validated with 37 input features, of which
a selection is deeper discussed hereafter.

Length of tool path
As the literature above suggests, one main parameter of the

cutting power consumption is the material removal rate Q ¼ vcA.
Multiplied with the specific cutting force kc one obtains the power
demand Pc = kcQ. Given those prerequisites, one can calculate the
energy consumption of a milling process:

As the run time of one NC instruction Dti is not directly
utilizable out of the data, one has to substitute it by the feedrate vc
and the length of the tool path lp. With further simplifications one
finally obtains:

Ec ¼ kc�Q� lpvc
¼ kc�A�lp

ð2Þ

where, kc is a material constant that can be neglected in this
regression study as only one material (aluminium alloy) is used. It
is assumed that the cross section A is also constant for a given
operation. In Eq. (2), it is shown that the cutting lengths for every

feed axis~li is an important feature in the data set, which can be
calculated by the difference of the current position of the tool ~xi
and the position ~xiþ1 after execution of the NC instruction i:

~li ¼ D~xi ¼~xi �~xiþ1 ð3Þ

The cutting lengths ~li are calculated for every feed axis
separately and not with the amount of the vector j~xi �~xiþ1j. The
power consumption is measured and later predicted for every axis
separately, therefore also a separate cutting length for every axis is
needed.

Table 2
Tools used to machine the parts.

Tool Diameter and angle Part

Training Validation

Ball Mill ;4 mm �
Center Drill ;8 mm &90� � �
Chamfer Mill ;8 mm &60� �
Chamfer Mill ;10 mm &90� �
End Mill ;3 mm � �
End Mill ;6 mm �
End Mill ;10 mm � �
End Mill ;16 mm �
Reamer ;5 mm �
Twist Drill ;2.8 mm �
Twist Drill ;4.7 mm � �
Fig. 4. Syntax interpretation of the NC code.

719
Feed rate determination
The feed rate is included in the data set as variable parameters

and set for each tool and each operation mode. Hence, an external
database with those settings has to be build. Therefore, based on
the tool and operation mode for each NC instruction, the correct
feed rate can then be assigned (see Fig. 5).



I

c
Y
r

M

n
w
a
lt

Q

t
i
t
lt
N

T

b
r
c

E

c
t

C

o

T
V

M. Brillinger, M. Wuwer, M. Abdul Hadi et al. CIRP Journal of Manufacturing Science and Technology 35 (2021) 715–723
nternal machine variables
Positions in the NC code can be given not by their numerical

oordinates but by a variable name. While variables like X_HOME,
_HOME, etc. can be replaces by their numerical value, others
emain unknown.

aterial engaging and effective machining
As the tool engages into the part, the material removal rate Q is

ot constant. During engaging the material removal rate increases
ith the length of the tool path lrun, from the beginning until
ttaining a constant material removal rate at a specific length
hreshold.

 ¼ variable; if lrun < lthreshold:
constant; otherwise:

�
ð4Þ

An additional feature marks all those NC instructions that meet
he condition lrun< lthreshold. For the Machine Learning model those
nstructions will be recognizable as a group of instructions that
ake place at a beginning of every removal process. The value of
hreshold is retained by minimizing the error of the predictions for
C instructions of the engaging process.

ool diameter
The removed area A correlates to the tool diameter dtool as

igger tools will be used to remove more material at a time. As the
emoved area A correlates to the material removal rate Q and in
onsequence to the energy consumption.

c ¼ kc�f ðdtoolÞ�lp ð5Þ
If material and tool path length lp are constant, the energy

onsumption of a bigger tool is higher than the energy consump-
ion of a known tool.

ategorical variables
Of large importance for the energy consumption is the

perating state of the machine. This is defined by the ’G’ and

’M’ codes in the NC instruction. E.g. the command ’G01’ is not less
then ’G02’ but defines a different operating method of the machine,
therefore those variables cannot be handled in the same way as
continuous variables like e.g. the tool diameter discussed earlier.
Those variables are turned into an one-hot encoded feature matrix,
with every possible operating state as a separate feature. Than, for
every NC command the activated operating states are set to ’1’
while the others remain deactivated with a value of ’0’.

Model training and prediction

Three different models have been trained using the 'scikit-learn’
package: ’RandomForest’, ’DecisionTree’ and ’DecisionTree’ includ-
ing the ’AdaBoost’ method. As the later does not support
multioutput predictions, for every output a separate model was
trained. The models have been trained with all of the training data,
gathered during machining of the training part, while the data
obtained during machining of the validation part was used to
evaluate the predictions of the three algorithms.

Results and discussion

The statistical measures, specifying the quality of the pre-
dictions, are given in Table 3 for all five considered CNC machine
tool aggregates (x, y and z axis, spindle and tool change system) and
for the three trained algorithms. The total deviation of the energy
predictions from the measurements for a real part geometry
including auxiliary operations like tool change system and start up
phase is 7.16% for the DecisionTree model. The comparison
between the algorithms for one of those aggregates (y axis) is
depicted in Fig. 6. Although there are exceptions for specific

Fig. 5. Determination of feed rate through external database.

able 3
alidation of the three investigated machine learning algorithms with the test data set.

Algorithm Measure x axis y axis z axis Spindle Tool change system

’RandomForest’ Total deviation (%) 0.2 �2.56 3.29 11.66 46.14
Mean deviation (Ws) 5.02 1.62 3.1 199.62 2.38
RMSE 48.45 11.73 32.95 1301.92 18.03
Explained variance 0.72 0.54 0.9 0.42 0.52

’DecisionTree’ Total deviation (%) �9.12 �18.47 3.96 8.9 11.75
Mean deviation (Ws) 7.44 3.77 5.69 258.76 3.21
RMSE 58.77 13.96 54.5 1368.99 17.72

Fig. 6. Comparison of the prediction quality for the y-axis of part B of different
Machine Learning algorithms.
Explained variance 0.59 0.35 0.73 0.36 0.54

’AdaBoost’ + ’DecisionTree’ Total deviation (%) �14.25 �29.18 �10.71 �13.48 15.19
Mean deviation (Ws) 5.61 3.24 3.63 277.71 2.91
RMSE 51.98 12.96 53.1 1330.77 19.33
Explained variance 0.68 0.45 0.74 0.4 0.45
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measures and aggregates, the most accurate predictions can be
achieved with ’RandomForest’ algorithm. In Fig. 7, the plot of the
predictions of the energy consumption of the y axis aggregate is
compared to the measurements. Hence, the energy demand curve
of the machining process gets predicted accurately. Also the peaks,
although differing in their value, are correctly predicted by the
trained model.

Tool change system

For the tool change system the ’DecisionTree’ algorithm
achieves the lowest total deviation compared to the ’Random-
Forest’.

This is caused by performing the tool change operation only
several times during machining. Besides those singular events the
tool change system is turned off. In contrast to the other aggregates,
where a regression problem is to be solved, in this case an algorithm
has to distinguish between the NC instructions, where a tool change
operation takes place, and those, where not. This decision problem is

better performed by the ’DecisionTree’ than by a model, that was
build using the ’bagging’ method (e.g. ’RandomForest’). In ’bagging’,
the data set is split into smaller sub data sets and those are used to
train sub models, whichleads to an averagingeffectora smoothingof
the regression function. For singular operations as the tool change
operation this leads to disadvantageous predictions caused by
underfitting in the single sub data sets.

Spindle

The errors for the predictions of the energy consumption of the
spindle (see Fig. 8) are higher than for the remaining aggregates.
This is caused by three main issues:

� The acceleration and the deceleration of the spindle are
responsible for exceptional high power peaks. This leads to a
high range of current energy consumption between those rare
peaks and effective CNC machine tool operation. The algorithm
averaging those, leads to a high error.

Fig. 7. Comparison of the prediction quality for the y-axis for the whole machining cycle.
Fig. 8. Comparison of the prediction quality for the spindle aggregate for the whole machining cycle.
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 Those power peaks occur rather rarely compared to effective
machining. This leads to an underfitting of the models of this
power peaks. This problem of unbalanced data influences also
other domains with power peaks, like rapid movement of the
axis.

 Acceleration and the deceleration are not only energy intense
processes but also time consuming. The NCU moves ahead after
initiating the spindle deceleration while the spindle is still
decelerating and acts like a generator, thereby influencing the
energy consumption of the following NC instructions.

eak consumption

The deviation of the predictions for the peaks in Fig. 7 are posed
n several reasons concerning especially the energy consumption
f CNC machine tools and the milling process:

 There are NC instructions, which are directly followed by an
identical copy of themselves, e.g. ’G0 G40 G60 G90 Z=
$TC_CARR40[_TC1]-_TOOLL[2]*_FAK1’ or ’G90 D0 SPOS=0 POS
[X]=_X FA[X]=RED_RAPID_SPEED POS[Y]=_Y FA[Y]=RED_RA-
PID_SPEED POS[Z]=_Z FA[Z]’, whereas only one of those
instructions leads to an significant energy consumption of the
machining operation. This is a challenge in data acquisition,
which leads to high prediction errors: Having two identical
inputs generating highly different energy consumption, the
model has to average the output and produce high errors.

 Despite being similar, NC instructions can differ in energy
consumption. For example the energy needed for the tool change
system is dependent on the position in the tool magazine. This
information is not available in the data set and therefore it can
not be considered.

utlook

Besides of addressing the challenges discussed above, several
pportunities for future research can be divided into two
ategories:

hysical scope

aterials
In this study, only one material is used. Therefore, training and

rediction is based on the same raw stock. Research question arises
o create a model for multiple materials. A feature taken this into
ccount is e.g. the specific cutting force kc. It has to be investigated
o what extend it is possible to calculate accurate predictions if:

 A common model will be trained based on training data
containing different materials,

 Predictions will be made for materials, which were not in the
training data set.

NC machine tools
The data used in this research represents machining processes

n one specific CNC machine tool. Further studies should
nvestigate the possibility to integrate multiple CNC machine tools.

Computational scope

Algorithms
Similar studies often used artificial neural networks (ANN). It

should be examined if more accurate predictions are possible,
although results will not be easily explainable, because of the
hidden layers and the multiple connections between the neurons
of such a network.

Data processing
It poses a challenge that NC instructions can contain more than

one element responsible for energy consumption of the CNC
machine tool. The data could be processed in a way that those
elements will be separated and individual predictions for them will
be computed. Another possibility in this domain is, to integrate a
duration component to the NC instructions, as the run time was
neglected in this study.

Data acquisition
In this study the instructions used were extracted from the CNC

machine tool after the machining. As this contains additional
machine specific instructions, in a further study the input NC code
could be used.

Expansion

Energy aware design
Connecting this model with CAD-Systems would give the

design engineers feedback about energy-efficient design of their
parts.

Online optimization of parameters
In CNC machine tools the parameters like feed rate and spindle

speed are usually fixed according to experience values. This model
with its high prediction quality of the energy consumption time
series could enable the energy prediction during the machining
process and an online optimization of the cutting parameters in
respect to a constant load of the CNC machine tool.

The results obtained in this study with ML provide accurate
predictions of the power consumption for the whole machining
cycle. Those results prove that the developed energy model can be
used to predict the energy consumption and is a valid tool to help
reduce cost in machining and to give direct feedback to part
designers before machining as proposed in the introduction.
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