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Abstract
Peer-to-peer networks are an attractive alternative to classi-
cal client-server architectures in several fields of application
such as voice-over-IP telephony and file sharing. Recently,
a new peer-to-peer solution called the InterPlanetary File
System (IPFS) has attracted attention, with its promise of
re-decentralising the Web. Being increasingly used as a stand-
alone application, IPFS has also emerged as the technical
backbone of various other decentralised solutions and was
even used to evade censorship. Decentralised applications
serving millions of users rely on IPFS as one of their crucial
building blocks. This popularity also makes IPFS attractive
for large-scale attacks. We have identified a conceptual issue
in one of IPFS’s core libraries and demonstrate its exploita-
tion by means of a successful end-to-end attack. We evaluated
this attack against the IPFS reference implementation on the
public IPFS network, which is used by the average user to
share and consume IPFS content. The results obtained from
mounting this attack on live IPFS nodes show that arbitrary
IPFS nodes can be eclipsed, i.e. isolated from the network,
with moderate effort and limited resources. Compared to sim-
ilar works, we show that our attack scales well even beyond
current network sizes and can disrupt the entire public IPFS
network with alarmingly low effort. The vulnerability set de-
scribed in this paper has been assigned CVE-2020-109371.
Responsible disclosure procedures have led to mitigations be-
ing deployed. The issues presented in this paper were publicly
disclosed together with Protocol Labs, the company coordi-
nating the IPFS development in October 2020.

1 Introduction

Modern computer networks typically rely on one of two funda-
mental architectural models. The client-server model, which
is the predominating model in the World Wide Web (WWW),
clearly distinguishes network nodes into content providers
(i.e. servers) and content consumers (i.e. clients). In fields of
1 https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-10937

application, where a strict separation of roles is undesirable,
computer networks based on the peer-to-peer (P2P) model
have gained ground. Entities participating in P2P networks
are equal to a large extent, enabling decentralised applications.
This, in turn, makes it possible to escape centralised control
and governance as illustrated by cryptocurrencies such as
Bitcoin [19], and systems like Ethereum2, for example.

Recently, a new P2P-based solution called the InterPlane-
tary File System (IPFS) has attracted attention. IPFS defines it-
self as a “peer-to-peer hypermedia protocol designed to make
the web faster, safer, and more open”3. Developed by Proto-
col Labs4, the ambitious goal of IPFS is to re-decentralise the
WWW in order to relieve it from the drawbacks of classical
client-server-based architectures. To achieve this goal, IPFS
replicates and distributes content among participants.

During the past few years, IPFS has increasingly gained
traction. Protocol Labs reported a 30x growth in network size
in 2019 and millions of users every week consuming IPFS
content through their HTTP to IPFS gateway [13]. The report
also mentions hundreds of thousands of users actively partici-
pating in the IPFS core network and hundreds of individual
developers contributing every month to the IPFS code base
on GitHub.

At the same time, IPFS has also established itself as the
technical foundation for various other decentralised applica-
tions. For instance, IPFS acts as one of the enabling tech-
nologies for Filecoin [11], a cryptocurrency developed by
Protocol Labs, pitched as a robust foundation for humanity’s
information5. Filecoin has had one of the largest ever ini-
tial coin offerings (ICOs) to date, raising over $205Mio [1].
Amongst others, IPFS also serves as the technical foundation
of DTube6, a decentralised video platform with millions of ac-
tive daily users. Moreover, the cryptocurrency Ethereum will
be using libp2p, a key component of IPFS as the networking
layer for the Ethereum 2.0 network [23]. The growing rele-
vance of IPFS is also underpinned by the fact that the Opera
web browser has added native IPFS support on Android [2]
2 https://ethereum.org/en/ 3 https://ipfs.io
4 https://protocol.ai 5 https://filecoin.io
6 https://d.tube
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recently. Finally, IPFS has also been used to evade censorship.
For instance, after being declared illegal in 2017, the Cata-
lan independence movement used IPFS [10]. This increased
popularity leads to the general question of the resilience of
ungoverned, open P2P systems against attacks inherent to this
model.

In contrast to client-server settings, which enable service
operators to exert full control and apply a layered approach
to system and security architectures, decentralised P2P net-
works require a different mental model: Simply considering a
P2P network as a connectivity layer and taking the security
services they provide for granted is an ill-fated strategy. The
works of Heilman et al. [7], Marcus et al. [14] and Henningsen
et al. [8] aiming at Bitcoin and Ethereum have demonstrated
this in the past. Since every participant contributes to the
infrastructure of a P2P system, their behaviour on the appli-
cation layer (and incentives to alter it) has a direct impact
on the lower layers of the stack. Systems like IPFS, which
foster the deployment of arbitrary applications on top of an ab-
stract network fabric, have even more potential to fall victim
to this issue. The IPFS stack therefore provides a feedback
loop between application-layer actions and P2P network layer
to account for this and enable tighter vertical integration, al-
though we discovered that it still fails to do so in practice.
Contribution and Scope: This paper presents an end-to-end
eclipse attack on IPFS, exploiting a conceptual issue in a core
component of IPFS that compromises the system’s overall se-
curity. The attack is based on an abstract model, which allows
for attack cost estimations beyond IPFS’s current deployment
parameters and enables qualitative comparisons with other,
related attacks. We evaluated our attack against the IPFS ref-
erence implementation, go-ipfs, version 0.4.23 (released in
January 2020) and the decentralised P2P network spanned by
those nodes. In particular, our contribution is twofold:

Attack model We introduce an abstract P2P system model,
which allows quantifying the cost of P2P-specific at-
tacks.

Attack We demonstrate how this model applies in practice
by introducing the first known end-to-end eclipse attack
on IPFS. This attack enables an attacker to single out
network nodes of their choice, partition, and disrupt the
IPFS network.

Implementation We describe successful mounting of
the proposed attack on live IPFS nodes.

Evaluation We elaborate on the threat potential of the
attack, concluding that even modestly powerful
attackers can carry out the attack to disrupt the
whole public IPFS network.

Countermeasures We have reported our findings to
Protocol Labs, discussed mitigations with them,
which resulted in fixes being rolled out. While
the specific attack presented here has since been

mitigated, the hardening process is still ongoing,
highlighting the sustainable impact of this work on
systems used in production. IPFS 0.5 released in
May 2020 already includes a major rewrite of a
previously vulnerable core component. The 0.6.1
version of IPFS introduced a substantial number of
changes that further contribute to attack resiliency
and inflate the cost of our attack by several orders
of magnitude. The 0.7 version released in Septem-
ber 2020 finally breaks compatibility with older,
vulnerable releases.

The issue we uncovered is a conceptual one and thus has an
impact beyond IPFS itself. Actually weaponising this weak-
ness requires specific attack vectors, three of which were
discovered to affect the public DHT-based IPFS network,
which will be referred to as IPFS DHT in this paper. This is
the network a user will interact with when using the official
desktop or command-line IPFS distributions downloadable
from ipfs.io. A detailed explanation on this terminology is
provided as part of Section 4.

At the time of discovering the vulnerability enabling our
attack (April 2020), go-ipfs 0.4.23 was the most current re-
lease. Due to the modularity of IPFS and the wide use of
(parts of) it in other projects, our attack’s impact beyond the
public DHT-based IPFS network needs to be evaluated on a
per-project basis, which is beyond the scope of this work7.
However, as mitigations have been rolled out, other projects
already benefited from the fixes resulting from this work.
Paper Outline This paper is structured as follows. Ethi-
cal aspects are laid out in Section 2. Relevant background
information is provided in Section 3 to support an in-depth
understanding of our attack and its consequences. Details on
the attack itself are introduced in Section 4. Subsequently,
figures obtained from applying our attack on live IPFS nodes
to evaluate the attack’s feasibility are presented in Section 5.
Finally, we discuss potential countermeasures in Section 6, in-
troduce related scientific work in Section 7, and conclude the
paper in Section 8. Appendixes discuss details on implementa-
tions flaws, which made our attack possible, and also provide
in-depth technical information on the attack procedure.

2 Ethical Considerations and Responsible Dis-
closure

Mounting attacks on existing solutions used in practice and
publishing details on these attacks raises ethical issues. This
especially applies to the work presented in this paper, as we
have mounted our attack also on the live network for evalua-
tion purposes.

As potential security impacts of the found vulnerabilities
were apparent right after its discovery in April 2020, we im-
7 For example, the main attack vectors exploited for attacking the IPFS DHT
is not present in Filecoin, according to Protocol Labs.

ipfs.io


mediately contacted Protocol Labs, initiating a responsible
disclosure process. In the scope of this process, the vulner-
ability that serves as basis for our attack has been assigned
CVE-2020-109378. Furthermore, we have closely aligned
follow-up activities with Protocol Labs to prevent negative
impacts on the IPFS live network while conducting further
research.
We have only attacked nodes operated by ourselves or (with
explicit permission) nodes controlled by Protocol Labs, such
that impact on regular operations and honest users was pre-
vented. This way, nobody was harmed or put in danger. More
precisely, negative impacts have been prevented by the fol-
lowing measures:

• In general, attacks have been run only on self-operated
IPFS nodes to avoid negative effects on third-party
nodes.

• By attacking a single self-operated node at a time, con-
nectivity to this node was impaired, rendering only this
specific node invisible to the rest of the network. This has
no practical side effects, due to the inherent redundancy
of the network.

• When evaluating our attack on bootstrap nodes run by
Protocol Labs (see Section 5), only one was being at-
tacked. However, four out of eight nodes in total are
used for bootstrapping as of IPFS 0.5. Hence, running
our attack on one node provided tangible results without
causing adverse effects.

Protocol Labs actively supported our research, e.g. by mon-
itoring bootstrap nodes under attack and providing direct mon-
itoring of these nodes under attack. As this process was mon-
itored live by Protocol Labs, it could instantly be stopped
should anything go wrong causing (at worst) minutes of de-
graded service quality. Overall, the team at Protocol Labs
acted professionally, actively supported us in evaluating our
attack against core IPFS infrastructure, and invited further
research based on our discoveries. Public disclosure of the
found vulnerability has been coordinated with Protocol Labs
for October 2020 which included publishing an eprint version
of this paper’s original submission on arXiv.org and a blog
post on the official IPFS blog. At this point in time, a hard-
ened version of IPFS had been available for several months,
which includes mitigations and substantially raises the bar for
exploiting the vulnerability described in this work.

3 Preliminaries

This section provides the necessary background information
to ensure a comprehensive understanding of the attack de-
scribed in this paper. Section 3.1 thus provides a technical
8 https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-10937

overview on IPFS. In-depth technical details are introduced
in Section 3.2, which focuses on the library libp2p imple-
menting key functionality of IPFS and representing the core
target of our attack. Finally, Section 3.3 provides background
information on known attack vectors for P2P networks, which
have inspired our attack.

3.1 IPFS
From a technical perspective, IPFS is a distributed, content-
addressed file system, in which data is not identified by name
or path, but by its hash. IPFS stores all data in a decentralised
way overlaying the whole network with a Merkle directed
acyclic graph (DAG) [17] to create a navigable structure. All
content stored in the network and every node participating in
the network are assigned a unique identifier from the same flat
identifier (ID) space. Content IDs are derived directly from
the respective data by computing the data’s cryptographic
hash value. Peers, i.e. nodes participating in the network,
generate an asymmetric cryptographic key pair. The public
key serves as unique ID for the peer. The private key is used
by the peer to sign outgoing data in order to provide receiving
nodes evidence on its identity. In summary, IPFS builds on
the concepts of the Self-certifying File System introduced
by Mazières [16] and uses public-key cryptography for the
self-certification of objects.

In the absence any central authorities, secure and reliable
content and peer discovery is a key challenge. IPFS imple-
ments this functionality based on a Kademlia distributed
hash table (DHT) [3]. Accordingly, each node maintains its
own routing table containing information about neighbouring
nodes. This information is structured as binary tree contain-
ing mappings of node ID to network (IP) addresses. To find
a certain node or specific data, the node traverses its own
tree for the required ID. If it is able to discover the required
ID, the node can access the associated information using the
assigned network address. Otherwise, the node asks peers
that are closest to the sought-after information. As IPFS uses
Kademlia, the closest nodes can be found by means of its
exclusive OR (XOR) distance. This last step, i.e. finding the
closest nodes, can be repeated until the required node or in-
formation is found. This approach is proven to be efficient,
taking only O(log2(network-size)) many requests to locate
any content or node. This efficiency comes at the price of
limiting the amount of routing information that can be locally
stored. To compensate for this, IPFS features a data structure
called the swarm, which essentially keeps connections be-
yond the DHT. This is used for the main content-distribution
functionality of IPFS: First, the swarm is asked for data. If
someone in the swarm is able to provide it, discovering data
is a constant-time operation, if not, the DHT is used9.

IPFS has been designed to be fully open and decentralised,

9 https://github.com/ipfs/go-bitswap/blob/master/docs/how-b
itswap-works.md
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and is thus not guarded by a central authority. As a result,
anyone can join the network and identify themselves using a
generated asymmetric cryptographic key pair. This obvious
strength of IPFS is also one of its Achilles heels, facilitating
the attack proposed in this paper, as presented in Section 3.3.

3.2 libp2p
The library libp2p10 is a stand-alone project that was orig-
inally an integrated part of IPFS, but has since been exter-
nalised. It encompasses a DHT, transport abstractions and
other components required to build decentralised applica-
tions. In essence, libp2p serves as basis for various solutions
that require a P2P network. Moreover, it supports connect-
ing through network address translators (NATs) and to some
extent also supports browser-based environments using Web-
Sockets [6]. IPFS is one of many solutions that heavily rely
on libp2p and its P2P functionality.

The attack described in this paper employs a set of vulner-
abilities in libp2p. Accordingly, this is attack on libp2p rather
than on IPFS. However, we also exploit the way IPFS inter-
acts with libp2p to increase attack efficiency. Moreover, IPFS
is the largest public libp2p-based network, which also serves
as infrastructure layer for other decentralised services. Since
we mounted our attack on the IPFS reference implementation,
we refer to IPFS throughout this paper, although the attack
actually targets libp2p.
DHT As mentioned above, libp2p’s DHT is based on Kadem-
lia [15]. As of April 2020, libp2p mainly used connection-
oriented transport protocols like TCP. Consequently, nodes
are only kept in the local routing table as long as an active net-
work link to this node exists. The DHT’s binary tree structure
allows for a configurable number of nodes to occupy each
leaf of this tree. Leaves are referred to as k-buckets or simply
buckets. The bucket-size parameter is called k and is set to 20
in IPFS.

Tree branches can be merged and split on-demand in case
buckets are not fully occupied or become overfull. However,
the total number of nodes that can be kept in a local routing
table is limited according to Eq. (1). Currently, libp2p uses
SHA2-256 as cryptographic hash function to derive node and
content identifiers for DHT routing, which yields a 256-bit ID
space. Note that Kademlia proposes a least-recently seen evic-
tion strategy, should a bucket become overfull. When using
connection-oriented transport protocols, this is implemented
implicitly using transport-layer keep-alive messages. Thus,
newly connecting peers will only replace others, in case those
others become unresponsive.

RT size = bits(ID space)× k (1)

Another key feature provided by the DHT’s peer discovery
functionality, is bootstrapping: In order to initially join the

10 https://libp2p.io

network, the IP address of at least one node already partici-
pating in the network needs to be known. Once connected to
one such pre-known node, a newly joining peer queries this
bootstrap node’s routing table for their own ID. This prompts
a response containing the IDs and IP addresses of other nodes
known to the bootstrap node, which are closest to the newly
joining peer. As of version 0.4.23, IPFS comes pre-configured
with eight bootstrap nodes run by Protocol Labs.

Swarm IPFS raises the requirement to store connection
information that exceeds the DHT’s limited capacity. For this,
IPFS nodes make use of the so-called swarm. First and fore-
most, the swarm is the set of all currently active connections
and thus a superset of the connections stored in the DHT.
IPFS also uses the swarm to speed-up content discovery by
initially querying the whole swarm for content, prior to query-
ing the DHT11. On its own, the swarm is unbounded, which
could lead to resource exhaustion. To prevent this, a compo-
nent called the connection manager or ConnMgr is in place,
as described below.
ConnMgr The connection manager is provided by libp2p.
Its main job is to keep only a sensible number of open connec-
tions. This ensures that (a) resource exhaustion is prevented
and (b) content discovery and the overall P2P network flow
can operate efficiently.

Currently, libp2p features a single implementation of the
connection manager. This implementation traverses the set of
active connections (i.e. the swarm) once a minute. In the event
that more than a configurable threshold of connections are
open (referred to as the highWater mark), one connection at
a time is trimmed, until the second configured threshold (the
lowWater mark) of open connections is reached12. Recently-
established connections (within a configurable grace period)
are exempt from pruning. Starting with the libp2p version
that ships with IPFS 0.4.23, these connections do not count
towards the total number of active connections. This is crucial,
since it prevents a cheap attack where an attacker could con-
nect highWater many connections within the grace period to
have the ConnMgr unconditionally trim all older connections.

The main challenge with this approach is determining
which connections to trim. An abstract scoring system is
in place for this purpose, which is available to all compo-
nents interacting with libp2p. Any interacting component is
allowed to add a freely-definable tag to any active connection
and award points under this tag. The general idea behind this
approach is to keep highly useful connections open. For in-
stance, connections in the DHT are awarded points according
to Eq. 2. This effectively means that closer (according to their
XOR distance) nodes are awarded higher scores and are less
likely to be disconnected.

score = 5+ commonXORPrefixLen(remote ID,own ID) (2)

11 https://github.com/ipfs/go-bitswap/blob/master/docs/how-b
itswap-works.md#discovery 12 Whether these connections are incom-
ing or outgoing is irrelevant
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Other sources of points include a relaying subsystem part of
libp2p, which is used to help nodes behind firewalls connect
to the network: In short, any node can advertise themselves
as relay and offer multiplexing other nodes’ connections over
an already established link between target node and relay.
Points can also be awarded by the so-called Bitswap subsys-
tem, which is a core component implementing the content-
distribution strategy employed by IPFS [4].

While the applied scoring system is essential for the con-
nection manager’s functionality, it causes a potential vulner-
ability: If ways can be found to artificially inflate the score
of connections to a node, this node will less likely be discon-
nected, even if it behaves maliciously. The attack proposed in
this paper employs this vulnerability. As we have discovered,
Bitswap awards points even when receiving unsolicited data
blocks. This can easily result in more points than awarded
from some of the lower DHT buckets (those containing the
nodes that are farthest-away). Given that the swarm is a su-
perset of the DHT, this can lead to DHT connections being
trimmed in favour of non-DHT actively advertising data. The
relaying subsystem is another source of cheap points, as it
awards one point for each relayed connection, regardless of
its use to the node. In combination with IPFS’s inherent sus-
ceptibility to Sybil attacks (see Section 3.3), a node can be
manipulated into eclipsing itself from the honest network. As
we will show, it is possible to execute such a strategy at an
extremely low cost. It is important to note that this is a con-
ceptual flaw with the only variable being the actual resources
required to mount an attack.

3.3 Known Attack Strategies

IPFS is a fully open and decentralised solution with no central
coordinating or regulating authorities. These properties make
IPFS vulnerable to two different attack strategies, which are
not specific for IPFS, but apply to any P2P network with
comparable properties. The two attack strategies that make
use of these vulnerabilities have become known as Sybil and
eclipse attack.

In the Sybil attack [5], a single attacker presents itself to the
network as many seemingly independent nodes by generating
multiple identities. This can subvert any network operation
that works under the assumption of interacting with distinct,
non-colluding entities, such as the distributed routing protocol
itself. Due to its decentralised nature and openness, IPFS is
conceptually vulnerable to Sybil attacks.

The second prominent strategy to compromise P2P systems
is the eclipse attack [22]. In essence, the attacker manipulates
the local routing information of a node, such that any request
from or to the victim passes through nodes controlled by the
attacker. For a structured P2P network, this requires gener-
ating identifiers of a specific distance to the chosen victim’s
identifier. Since node identifiers in IPFS are hashed prior to

computing this distance, large numbers of IDs need to be
generated and tested to obtain IDs with suitable distances.
While this may seem infeasible, we show that a brute-force
approach to this problem actually scales well, enabling global
attacks even for large network sizes13 (see below). Once this
is done, as many nodes as required to eclipse a victim using
these IDs can be operated by applying a Sybil attack.

Any open and fully decentralised P2P network is vulnerable
to Sybil and eclipse attacks on a conceptual level. Fortunately,
a variety of countermeasures to these generic attack strategies
exist in practice, although as of version 0.4.23 (April 2020),
IPFS did not include any.

3.4 Abstract P2P Attack Model
The concepts discussed so far can be used to derive a generic
model for eclipse and Sybil attacks. Prünster et al. [20] laid out
theoretical background on this matter. The experience gained
from the end-to-end attack on IPFS and surveying related
work allowed us to put their theories to the test, and to expand
their work. This has resulted in a generic model, which can be
used to gauge the cost of attacking P2P systems. For the sake
of clarity, this paper focuses on ways to exploit this model
in the context of Kademlia-like designs. The model consists
of an attacker running Sybil nodes, which interface with a
target in order to eclipse it. Aside from communicating with
a target over the Internet, no other interactions are allowed,
although this may include attacker-controlled entities other
than Sybil nodes. This specifically rules out relying on bugs
present in the operating system or any other components not
related to the P2P network node implementation under attack.
Any flaws in the P2P system’s protocols, however, may be
exploited as these are considered part of the attack target. In
short, the node under attack is assumed to be configured and
operated as intended. We have identified the following model
parameters:

n network size (= number of nodes)

s100 number of Sybil identities, which need to be generated
to obtain enough identifiers, to fill a freely-selectable
network node’s routing table in order to eclipse it. Brute-
force generation of identifiers (which follows a uniform
distribution) is the only way to generate these identifiers.
s100 hence refers to the number of identifiers, which need
to be generated to reach this goal with 100% probability,
including a considerable safety margin.

e number of Sybil nodes, which need to be run to actually fill
these routing table spots

cs100 cost of Sybil identifier generation

ce cost of operating Sybil nodes required during an actual
attack on a single target

13 This scales, since only the network size is relevant, not the ID space.



ca additional attack costs

ci total cost of attacking an individual node

ct total cost of attacking the whole system

The first parameters, s100 and e mainly depend on system
architecture and routing table organisation. Neither take run-
ning or up-front costs into account, but serve as foundation
required to estimate the actual attack costs. In the case of
Kademlia-like designs, the results obtained by Prünster et al.
[20] allow for estimating these parameters based on network
size (n) and bucket size (k), as shown in Eq. 3, and Eq. 4.

s100 ≈ 2× k×n (3)
e ≈ dk× log2(n)e (4)

The cost parameters, cs100 and ce, on the other hand, depend
to a great extent on implementation details and attack strat-
egy. Small networks, for example, may allow for all required
identifiers to be generated on-the-fly, which will result in cs100

incurring for every attack run. In general, however, cs100 can
be considered up-front costs, since a pool of pre-generated
identifiers can be reused for an arbitrary number of attack runs.
On the other hand, ce always corresponds to running costs,
since attack nodes need to be operated for as long as it takes
to successfully eclipse a target. Without any further actions to
speed up this process, ce is dependent on a network’s churn
rate14. As such, it can take days or even weeks to eclipse a
single node, which is why attacks on Bitcoin and Ethereum
utilised denial-of-service (DoS) attacks or relied on victims
restarting [7, 14]. These additional actions also incur costs,
which is reflected by parameter ca.

Section 4, and 5 put this model into context by illustrating
how we mounted and evaluated an end-to-end eclipse attack
on IPFS. As we will show, this model is flexible enough to
accommodate for different attack strategies and provides ways
to map network parameters to attack costs.

4 Eclipsing IPFS Nodes

If one node after another can be eclipsed from the rest of the
network and the amount of resources required to keep nodes
from reconnecting are low, even an average-powered attacker
can disrupt P2P networks that are as a whole many orders of
magnitude more powerful than the attacker. This work demon-
strates precisely this kind of attack against the live IPFS DHT.
We show how we can advance from attacking single nodes to
partitioning the network with negligible running costs. Our
implemented end-to-end attack is able to automatically poi-
son any node’s routing table on the main IPFS network within
minutes, regardless of the network’s churn rate and to fully
eclipse an average node in less than an hour with ≈ 75%
14 The churn rate is defined as the participant turnover in the network, i.e.
how fast participants join and leave the network.

probability (see Section 5). The only input required to start
the attack is a target node’s identifier, all other parameters
can be queried remotely. Moreover, IPFS uses a configurable,
but otherwise static set of nodes for bootstrapping. Poisoning
the bootstrap node’s routing tables (with potentially bogus
information) is therefore enough to keep any node that car-
ries out the bootstrap routine from ever interfacing with other
legitimate nodes15. At this point, partitioning the IPFS DHT
becomes possible.

4.1 Naïve Attack Strategy
The IPFS reference implementation, by default, combines
Bitswap (which does not reach beyond immediate swarm
connections) and DHT-based content routing to distribute data
and locate other nodes. The DHT component itself knows two
modes of operation: client mode, and full mode (also referred
to as server mode). Only those nodes presenting themselves as
operating the full DHT, and advertising themselves as directly
reachable on the IP network layer will be added to other
nodes’ local routing tables. The set of all nodes meeting these
requirements are critical for the public IPFS DHT. Disrupting
these nodes will also affect client-mode nodes, given that
‘In IPFS, the DHT is used as the fundamental component
of the content routing system’ [21]. A collapsing DHT will
have client-mode nodes rely purely on their immediate swarm
connections for content discovery (see Section 3.1). As an
immediate effect, the long tail of available data will no longer
be available. Maintaining a disrupted state, however, will have
severe effects: Eclipsing all DHT server-mode peers means
that all IP-layer information about honest nodes (which is
ultimately used to connect to nodes) will vanish from the DHT.
Therefore, it is sufficient to take out server-mode nodes to
also affect all clients. Henningsen et al. [9] found on average
44474 concurrently online server nodes for the live IPFS
DHT in early 2020. Of these 44474 nodes on average only
6.55% (about 3000 nodes) responded to connection attempts,
meaning the remainder of nodes are likely operated by private
individuals behind a NAT.

In accordance with the attack model introduced in Sec-
tion 3.4, a naïve attack strategy would require pre-generating
s100 = 2×20×3000 identifiers and subsequently operating
e = 20×dlog2(3000)e many Sybil nodes, which would con-
tinuously ping an attack target until they became resident
in the lowest dlog2(3000)e buckets of victim’s routing ta-
ble to replace all honest nodes in order to eclipse it. Our
experiments showed that it is possible to operate this many
(reduced-functionality) nodes for less than 0.01e/h includ-
ing VAT based on a cloud offer16. The time it would take to
reach this goal without further actions, however, is impossi-
ble to quantify, as it is effectively churn-dependent. Such a
wait-and-see approach to attacking is therefore unattractive in

15 unless measures beyond the default behaviour have been explicitly set up
16 https://www.hetzner.com/cloud
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Figure 1: Abstract end-to-end flow of eclipsing an IPFS node

general. ID pre-generation for this network size, on the other
hand, incurs such negligible cost, that it’s impossible to even
quantify.

Instead of following this wait-and-see approach and only
taking the theoretical characteristics of Kademlia into account,
we have chosen a different attack strategy, which is based on
exploiting a variety of weaknesses, resulting in the follow-
ing attack workflow, which also results in quantifiable attack
costs.

4.2 Fully Automated, End-to-End Eclipse At-
tacks on IPFS

In contrast to the naïve attack strategy, which depends purely
on network size and churn, we actively exploit the ConnMgr’s
behaviour described in Section 3.2. Nodes in the DHT are
awarded ConnMgr points in accordance with Eq. 2 (such that
closer nodes are scored higher) we do not limit identifier gen-
eration to s100, but try to pre-generate as many identifiers as
possible to fill far more buckets in an attack target’s DHT for
additional points. We found a sweet spot at pre-generating
≈ 146bn identifiers to fill the lowest 33+ buckets of any node,

requiring 29TB of disk space17. In addition, we also exploit
the fact that unsolicited advertisement of content results in
points awarded by the Bitswap subsystem. Doing so does
not incur any measurable cost. Moreover, the relaying sub-
system is a source of virtually unlimited points, since each
relayed connections is awarded one point. Therefore, fake
nodes, which provide no functionality can be operated solely
to relay their connection in order to inflate the score of other
nodes. As we have observed, a single link can support as
many as 1000 relayed connections.

We have mounted a fully automated, end-to-end attack on
IPFS based on these findings. In accordance with Fig. 1, the
attack consists of four phases: ID generation, setup phase,
attack phase, and a low-cost phase, which can be maintained,
once a victim has been eclipsed.

The actual attack is carried out by a stripped-down libp2p-
based node (to further reduce costs) that performs a Sybil
attack, which is then used to eclipse the target. This node
requires a set of pre-generated IDs (from the ID generation
step), that fit the victim’s DHT. The main attack loop then
consists of the following steps:

1. Establish as many connections to the target as possible,
each with one of the pre-generated identifiers, covering
the lowest 33+ buckets of the victim.

2. Establish additional connections with randomly gener-
ated identifiers to reach a total of highWater many ac-
tive connections. This ensures periodic trimming of con-
nections.

3. Messages are sent over each connection to inflate its
score, thus tricking the target’s ConnMgr into consider-
ing these connections to be more important than those
to honest nodes.

4. When the target’s ConnMgr trims connections to reach
lowWater many active connections, only legitimate con-
nections established within the grace period will survive.
All others will be pruned, leaving mostly those connec-
tions established by our malicious libp2p node, since we
previously tricked the target’s ConnMgr into consider-
ing our connections to be more important than those to
honest nodes.

Since we are able to exploit the ConnMgr to our advantage,
our connections will gradually fill up the target’s routing table
(this takes 2 minutes at most) as well as the swarm since hon-
est ones are pruned. When queried for content or other nodes,
our attacker nodes will filter out any information on other
(legitimate) nodes from responses to hinder the victim from

17 This covers network sizes far beyond any realistic bounds, awards sub-
stantial amounts of points without putting any strain on victim nodes during
an attack and scales well during identifier generation. Generating more iden-
tifiers, on the other hand, scales exponentially with the number of additional
buckets to cover and is therefore not economic.



learning about other nodes. We rely on continuously prob-
ing the target’s routing table to receive feedback about the
attack’s progress (which is possible due to the deterministic
behaviour of Kademlia). Once successful, only four connec-
tions suffice to keep a regular IPFS node eclipsed. This is a
hardcoded value—a node with less connections will contact
the bootstrap nodes.

In summary, our attack exploits a variety of flaws in
libp2p/IPFS, specifically in the uncoordinated coexistence
of the ConnMgr, Bitswap and relaying DHT subsystems. This
results in nodes actively trimming connections to honest peers
after mere minutes, due to the ease of tricking the ConnMgr.
As part of engaging in a responsible disclosure process with
Protocol Labs, this has been acknowledged as a conceptual
problem without an easy solution. More exhaustive informa-
tion on issues and implementation flaws can be found in Ap-
pendix A, while technical details on remotely probing nodes,
identifier generation, ConnMgr exploitation are provided in
Appendix B.

5 Evaluation

In order to gauge the impact of our attack, two key scenarios
were evaluated. Attack runs were carried out against unmodi-
fied IPFS nodes operated within the live IPFS network. While
our main attack target was go-ipfs 0.4.23, version 0.5.0 was
also evaluated to asses the impact of countermeasures in-
cluded in this release (see Section 6). In both cases, the state
of an attack target’s swarm was queried locally at the target
node, while routing table information was obtained remotely
(see Appendix B.2) as part of the main attack loop. First,
the impact on an average node with default parameters was
measured. Subsequently, nodes with the same configuration
as the live IPFS bootstrap nodes18 were attacked. The evalua-
tion results for both scenarios are provided in Fig. 2. In both
cases, the DHT is fully poisoned within minutes (Sections 5.1
and 5.2 provide in-depth discussions of attack performance
for each scenario). Apart from attack performance evaluation,
we also provide an estimate regarding the cost of completely
disrupting the whole live IPFS DHT for version 0.4.23. Every
attack run was carried out 100 times against newly-spawned
IPFS nodes with random IDs we operated ourselves, with
permission and support from Protocol Labs when attacking
nodes operated by them.

5.1 Default Settings

The goal of this evaluation against an unmodified go-ipfs
v0.4.23 node with default ConnMgr parameters (lowWater =
600, highWater = 900, 20s grace period) is to see whether we
can eclipse average nodes in the IPFS network. This setting

18 These parameters were kindly provided to us by Protocol Labs to help
evaluating our attack’s impact.

(a) Default settings (lowWater=600, highWater=900, grace period=20s)

(b) Bootstrap settings (lowWater=1000, highWater=2000, grace period=60s).
Two runs failed due to attack nodes crashing, causing outliers. Note that only
the routing table is relevant for an attack bootstrap nodes.

Figure 2: Visualisation of the number nodes in an attack tar-
get’s swarm and routing table for 100 runs (overlaid). Regular
operation is followed by a surge of malicious nodes after
starting the attack.

used an attack duration of 50 minutes. Given that the pre-
generated IDs amount to more than the default 600 lowWater
many peers, poisoning a targets routing table and eclipsing
the swarm is virtually equivalent. As a result, few relayed
connections are sufficient to eclipse a target.

Fig. 2a visualises the number of attackers and other nodes
in the swarm and the target’s routing table for all 100 runs.
First, the plot clearly shows that all 100 victims were well
connected and that during the first 5 minutes the lowWater
mark was never undershoot. Starting the attack after 5 min-



Figure 3: Probability of eclipsing a node with default settings
(lowWater=600, highWater=900, grace period=20s)

utes, the number of attackers in the swarm and the routing
table increase almost instantly, while the number of other
nodes drops rapidly. After less than ten minutes, the routing
tables of all attacked nodes are fully occupied by malicious
nodes, while after less than 17 minutes, the probability of fully
eclipsing a node is already > 50% as shown in Fig. 3. Even
less time is required in cases where an attacker’s goal is not
to fully eclipse a node but to prevent a node from discovering
any content with high probability. As also shown in Fig. 3,
diminishing a target’s swarm to less than ten connections is
virtually guaranteed in less than half an hour.
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Figure 4: Visualisation of a victim’s routing table over the first
15 minutes for IPFS 0.4.23, illustrating a sustainable effect

To better illustrate the impact of our attack on a target’s
routing table, Fig. 4 visualises table buckets for a single tar-
get. This reveals that initially only about 9 buckets are full
or partially filled, before the attack is started. The second
time slot on the x-axis shows the state directly after the start
of the attack. All empty spaces in all buckets until bucket
33 are filled up by the attackers. The third time slot shows
that after the connection manager tries to reduce the number
of connections, the number of other peers decreases drasti-
cally, meaning the node has been tricked to harm itself. After
the next connection cleanup phase, the routing table is fully
poisoned.

5.2 Bootstrap Settings
This setting uses an unmodified go-ipfs v0.4.23 node con-
figured to the same settings as the official bootstrap nodes
(lowWater = 1000, highWater = 2000, 60s grace period).
The goal of this evaluation is to see whether we can eclipse
the official bootstrap nodes. The attack duration was set to 50
minutes.
For bootstrap-node-like configurations, the number of peers
using a pre-generated ID for routing table poisoning is not
sufficient to have the ConnMgr prune all honest peers from an
attack target’s routing table. As a result, the number of relayed
connections can easily explode when seeking to fully eclipse
such a node, which can result in inadvertently overburdening
an attack target. In order to keep this period of high strain
as short as possible, we disable spawning relayed connec-
tions as soon as a target’s DHT is fully poisoned. As shown
in Fig. 2b this does not result in a successful eclipse attack
against an IPFS node run with bootstrap node configuration.
However, the swarm state is irrelevant for actual bootstrap
nodes, as swarm connections are not used for bootstrapping.
In addition, new swarm connections to the bootstrap nodes
are established as nodes are constantly joining the network
Therefore, attacking the swarm of bootstrap nodes is futile.
Nevertheless, even poisoning “only” the bootstrap nodes’ rout-
ing tables results in all newly (re)connecting peers to learn
only about malicious nodes, completely disrupting the live
IPFS network over time. Since this strategy is highly churn-
dependent, estimating the time required to reach the whole
network is beyond the scope of this work.

5.3 Attack Costs
Since our attack is rooted in pre-generating large quantities of
identifiers, which require terabytes of storage space and a fair
amount of computing power, this task drives costs. In order to
quantify the actual costs of running large-scale attacks against
IPFS, attention must also be paid to key network metrics
provided by Henningsen et al. [9]. Most prominently, only
about 3000 nodes were recorded to responded to connection
attempts, which means that the vast remainder of IPFS nodes



is likely operated by private individuals behind a NAT. As
a consequence, it is sufficient to attack these 3000 nodes to
prevent the network from responding to any queries for honest
nodes connecting to the network. In addition, permanently
occupying the bootstrap nodes’ routing tables will prevent any
(re)connecting node from ever connecting to the live IPFS
network. Combining these two strategies will thus have a
devastating effect.

In accordance with this setting, deployment- and routing-
table-organisation-based attack model parameters matching
our attack strategy can be set as follows:

n = 3000 (= number of all reachable DHT nodes)

s100 = 2×20×3000 (in accordance with Eq. 3)

e = 20×dlog2(3000)e (in accordance with Eq. 4)

Up-Front Costs The only up-front cost for our attack is re-
lated to pre-generating 146bn identifiers, which occupy 29TB
of disk space (see Section 4.2). A quick search on a Euro-
pean price comparison service reveals a per-terabyte price
of less than e20 including VAT19 for external hard drives.
This results in an up-front storage cost of less than e600, to
store 29TB of identifiers20. In order to actually generate this
many identifiers, any commodity personal computer can be
used, adding an estimated e1000 for a machine dedicated to
generating identifiers, featuring an AMD Ryzen 3700X octa-
core CPU21. This results in an estimated up-front cost of less
than e2000 including a large margin for electricity costs that
easily covers the time it takes to generate the required amount
of identifiers as outlined in Section B.1. Mapping this number
to the attack model reveals that this ID pre-generation is not
dependent on any other parameters. As such, these costs are
considered part of ca (additional attack costs), while cs100 can
be neglected.
Running Costs The evaluation setup used to eclipse a single
node relied on virtual machines with 4 cores and 16GB RAM,
which cost e0.031 per hour and instance22 including VAT.
These costs already include ce, which corresponds to the cost
of running nodes to fill all routing table spots for a particular
network size. However, as we also inflate the scores of these
nodes and run additional nodes to occupy more DHT spots
for additional ConnMgr points, these running costs cover ce,
while also contributing to ca. Mapping this to the 3000 reach-
able IPFS nodes discovered by Henningsen et al. [9] results in
running costs of 3000×0.031e= 93e/h to attack all reach-
able nodes simultaneously. This does not allow conclusions
to be drawn regarding the overall number of active IPFS users,
since it does not respect the network’s churn rate. However,
this has no bearing on the cost of eclipsing all available nodes
19 https://geizhals.eu/?cat=hdx&xf=5588_HDD 20 Buy-
ing physical disks is significantly cheaper than cur-
rent rates for cloud storage for the scope of our attack.
21 https://geizhals.eu/?cat=sysdiv&xf=10863_8%7
E6764_AMD%7E6770_Ryzen+3000 22 https://www.hetzner.com/cloud

(as this number would not change, only individual attack tar-
gets would come and go). Due to libp2p’s routing table not
keeping disconnected peers, a fully eclipsed node is known
to be undiscoverable by the rest of the network. Once this
is achieved, the cost of keeping a node eclipsed drops sig-
nificantly, since it is sufficient to maintain as little as four
connections to keep the node from re-connecting to bootstrap
nodes. This scenario is no longer restricted by CPU or RAM
utilisation and has therefore negligible bearing on attack costs.
However, any churn requires continuous runs of the full attack
against newly joining nodes, which inflates costs. As of IPFS
0.4.23, global attacks can therefore be made more economic
by targeting only bootstrap nodes. In general, however, this
attack scenario scales linearly with network size/churn rate,
enabling highly efficient, global attacks. Recalling that it takes
less than an hour to eclipse an average node with 75% proba-
bility (see Fig. 3) makes it possible to estimate the absolute
cost for reaching this 75% target both for individual nodes
and globally, in accordance with Eq.5, and Eq. 6, respectively.

ci = 2000e+0.031e/h×1h ≈ 2000e (5)
ct = 2000e+3000×0.031e/h×1h ≈ 2100e (6)

While this will impact operations and fully eclipse a signif-
icant portion of all DHT nodes, it will not fully disrupt and
halt the network, since the chance of success is 75%. Con-
sidering the low up-front cost, however, the actual cost of
isolating individual nodes is negligible, even if it takes many
more hours to fully eclipse them. This observation enables a
different kind of attack strategy to actually grind the complete
DHT-based IPFS network to a halt.
Fully Disrupting the Network Considering the virtually
perfect success rate for poisoning a node’s DHT after running
the attack merely for a few minutes (as shown in Fig. 2b) and
also the low number of bootstrap nodes, eclipsing bootstrap
nodes presents an attractive global attack strategy. After all,
if all bootstrap nodes’ routing tables are fully poisoned, any
regular node carrying out the bootstrapping routine (after be-
ing eclipsed themselves, or after a restart) will only receive
information about attacker-controlled nodes. In accordance
with Section 4.1, collapsing the DHT in this way will lead to
eventually disconnecting all nodes from each other, fully dis-
rupting the network. Keeping bootstrap nodes eclipsed does
require running the full attack, since newly joining nodes
will continuously establish connections. The cost for global
attacks can therefore be estimated as follows: At a cost of
0.031e/h for a cloud instance targeting a single node, attack-
ing the eight bootstrap nodes used as of IPFS 0.4.23 results
in running costs of 8×0.031e/h = 0.248e/h. Mapping these
numbers to the attack model allows for calculating the total
attack cost according to Eq. 7.

ct = 2000e︸ ︷︷ ︸
ID generation

+(8×0.031e/h = 0.248e/h)︸ ︷︷ ︸
keeping bootstrap nodes eclipsed

(7)

https://geizhals.eu/?cat=hdx&xf=5588_HDD
https://www.hetzner.com/cloud


As can be seen, running costs are negligible, and up-front
costs are also low, considering the impact of such an attack.
Apparently, this formula does not rely on any network pa-
rameters, which would mean that the cost of disrupting the
whole IPFS network would remain constant regardless of
network size. If this attack was to be mounted on a network
featuring significantly more DHT server nodes, however, the
score of attacker nodes would need to be inflated more ag-
gressively, as more honest nodes would occupy more DHT
buckets to begin with. As the number of buckets occupied
by honest nodes scales logarithmically with network size, so
does the required ConnMgr score, which needs to be exceeded
by attacker-controlled nodes. Recalling Section 4.2, our at-
tack exploits the relaying subsystem to do so by spawning
large numbers of relayed connection, each of which awards
one point to an attacker-controlled node. The resource con-
sumption of this attack part thus also scales logarithmically
with network size and as a result will become the dominating
factor as the number of honest nodes grows. In effect, the cost
of fully disrupting the DHT-based IPFS network through at-
tacking bootstrap nodes scales logarithmically with network
size, as more powerful instances will be required.

Admittedly, the model introduced in Section 3.4 may ap-
pear to be at odds with the chosen attack strategy. This, how-
ever, is attributed to the fact that easily exploitable flaws
severely reduce the impact of network-related parameters.
As discussed in the following section, various countermea-
sures, which have since been rolled-out, significantly impact
attack costs, which puts any potential strategies taking these
measures into account more in line with the attack model.
Moreover, this abstract model will be shown to enable quali-
tative comparisons with related attacks on other systems in
Section 7.

6 Countermeasures

Our attack only works because it is easily possible to mount
Sybil attacks, which were first introduced by Douceur in
2002 [5]. The easiest way to prevent our attack would thus
be to prevent Sybil attacks. This, however, is hardly feasible
in practice given the open, decentralised-by-design nature of
IPFS, and its key promise to let anyone participate in the net-
work without central governance. As Douceur put it: “With
no logically central, trusted authority [. . .] it is always pos-
sible [. . .] to present more than one identity [. . .]” [5]. This
is further supported by a 2006 survey by Levine et al. [12]
and by a more recent study by Mohaisen and Kim [18]. Nev-
ertheless, attackers can still be hindered from weaponising
the operation of large numbers of malicious network nodes
to a great extent. The generation of a large identifier set can-
not practically be mitigated in decentralised systems when
considering large-scale attacks. After all, it took us four days
to generate enough identifiers to target networks consisting
of billions of nodes (see Appendix B). While Proof-of-Work

(PoW)-based ID generation as proposed by Baumgart and
Mies [3] would inflate up-front costs, Prünster et al. [20] have
reached the conclusion that this is ultimately futile even for
modern systems employing self-certifying identifiers and au-
thenticated end-to-end encryption. Even a moderately funded
attacker could simply invest in enough computing power to
counter any realistic PoW factor.

Presenting our attack to Protocol Labs as part of the respon-
sible disclosure process has intensified an already ongoing
effort of hardening IPFS/libp2p, resolving the issue of uncon-
ditional removal of DHT nodes (see Section A) in the libp2p
version that ships with go-ipfs v0.5, as released on April 28,
2020. Apart from that, many other fixes were released, with
go-ipfs 0.6 (published in June) effectively preventing casual
attackers from carrying out the attack presented in this paper.

Protocol Labs allowed us to attack bootstrap nodes running
go-ipfs 0.5 right after its release, as well as performing attack
runs on 0.6. In accordance with the timeline of releases, ma-
jor changes affecting our attack are highlighted for go-ipfs
0.5, followed by a discussion on 0.6 improvements as well as
other fixes related the discovered vulnerabilities.
IPFS 0.5 Mitigations Amongst many other changes, the
libp2p version shipping with go-ipfs 0.5 in April 2020 in-
troduced a DHT eviction strategy including periodic routing
table refreshing and testing peer liveliness based on three
parameters: (1) Time of last successful outbound query, (2)
last time a peer was considered useful (see below), and (3)
eviction grace period, which depends on bucket size and re-
fresh period; typically in the order of 45 minutes. The first
parameter is used during periodic routing table refreshes. A
ping is issued when a peer has not been successfully queried
within the grace period. Failure to respond results in eviction.
Consequently, stale peers are periodically removed from the
DHT even if the buckets they reside in still feature vacant
spots. A peer is considered useful, if it either responded first
to a query or if responding took less than twice the time of
the fastest responding peer. Whenever this condition is met,
the last useful time is recorded. In case a bucket is full, while
another peer shall be added to this bucket, peers whose last
useful time lies beyond the grace period are evicted. In such
cases, however, responding to a query with an empty result
is also considered useful by the DHT implementation ( even
though it is not actually useful in reality). This prevents nodes
from penalising honest peers that simply could not provide the
data required to respond to a query, which helps new nodes
join the network. At the same time, however, becoming useful
can be relatively cheap, since no information is required to
still become useful. In addition, only routing table peers are
evaluated for usefulness, due to the usefulness definition be-
ing limited to DHT operations. Thus, even a theoretic swarm
node providing all the content ever queried would not join the
routing table easier than any other node.

As a consequence of these changes, the connection trim-
ming of the ConnMgr has no immediate effect on the routing



table, since even disconnected peers are remembered and
are reconnected to if necessary. Thus, lowWater, highWater
marks, and grace period also have no effect on the routing ta-
ble. Given that the typical eviction grace period is close to an
hour, the cost of poisoning a target’s routing table is increased
by several orders of magnitude compared to the mere minutes
required to fully take over an IPFS 0.4.23 node’s routing table.
In fact, even after twelve hours, an IPFS 0.5 node in bootstrap
configuration still features honest peers in its routing table
(see Fig. 5a).

Shortly after releasing go-ipfs 0.5 on April 28, 2020, Proto-
col Labs let us evaluate our attack against one of the produc-
tion IPFS bootstrap nodes over three hours in the live IPFS
network in order to gauge the impact of the newly deployed
countermeasures. Since this concrete attack run targeted a
production system, the evaluation period was chosen in such
a way that results could be obtained to make an initial judge-
ment regarding the deployed countermeasures’ utility without
causing any real disruption to the network. The results are
presented in Fig. 5b. Compared to attacking nodes specifi-
cally for evaluation purposes (not used by others for actual
bootstrapping), an increased resilience can be observed. This
was to be expected, since the increased query frequency to
bootstrap nodes awards a larger set of honest peers a useful
state. As a consequence, these peers are kept in the routing
table. After only one hour, however, the initial number of
200+ honest peers in the bootstrap node’s routing table could
be more than halved and then remained below 100, clearly
demonstrating the impact our attack still has on IPFS 0.5. Pro-
tocol Labs’s estimate regarding attack difficulty for go-ipfs
0.5, is that fully poisoning a bootstrap node’s routing table is
still possible within several days.
IPFS 0.6 and 0.7 Measures The most crucial measure to
boost attack costs by orders of magnitude was included in
go-ipfs 0.6 released in June 2020. In effect, IP-addresses are
now considered with respect to adding nodes to the local
routing table, making it impossible to mount large-scale
Sybil attacks from a single host. Instead, at most three nodes
associated with a single host (IPv4, IPv623) can become
resident in a node’s routing table. Therefore, this measure
by itself already inflates the cost of attacking a single node
by over two orders of magnitude compared to IPFS 0.5.
Mapping this against the estimate of several days to fully
eclipse a bootstrap node clearly puts this out of reach for
casual attackers. Compared to theoretic proposals of limiting
the numbers of identifiers that can be advertised to a P2P
network per IP address, multiple nodes can still join the
network from the same host. In fact, this aligns with the
distinction between client and server-mode DHT that aims
at mapping to nodes operated behind NATs. In addition,
IPFS 0.7 deprecated the previously used transport security
mechanism, which breaks compatibility to pre-0.6 releases.

23 Even presenting multiple IPv6 addresses from a single large IPV6 subnet
has no effect.
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(a) Attack performance on a IPFS 0.5 node run with bootstrap node configu-
ration over twelve hours. This node baehaved like a regular node and was not
used for actually bootstrapping. Thus, it more closely resembles a regular
node, not a bootstrap node with respect to network interactions.
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(b) Attack performance on a live IPFS 0.5 bootstrap node over three hours.
The attacks was launched 15 minutes after starting to collect metrics.

Figure 5: Visualisation of routing tables for go-ipfs 0.5.
Higher attack resiliency can be observed for the bootstrap
node due to interacting with more nodes. By comparison, the
attack on a regular nodes becomes increasingly successful
during the course of the first five hours. Honest peers are
visualised in green, malicious peers in red and empty spots in
otherwise filled buckets are shown in black.



As a result, older instances are required to update to a release
containing fixes, if operators want to continue to participate
in the network.
Additional Deployed Changes Aside from these key
changes, additional countermeasures were rolled out since
IPFS 0.4.23. These include a fixed score for nodes acting
as relays to prevent relay-based inflation of ConnMgr
scores. While many third-party projects rely on different
parts of libp2p’s functionality, the relaying subsystem is
expected to be used in virtually all P2P-related projects
that require connecting users behind NATs. Therefore, this
change is expected to impact many libp2p-based applications.
Moreover, nodes in the lowest two DHT buckets are exempt
from pruning, while higher buckets are now assigned a fixed
score of five points. While this may seem counter-intuitive, it
prevents attackers capable of generating a huge body of valid
identifiers from gaining an advantage for small network sizes
by ConnMgr points awarded from the DHT subsystem. In
effect, nodes are scored more equally due to these changes.
Moreover, libp2p now verifies reachability of advertised IP
addresses, and only adds those nodes who actually respond
to connection requests. This already goes a long way towards
solving the issue of unconditional trust and makes it harder to
become resident in routing tables. In addition, configuration
of direct peering agreements was also elevated to a core
feature of the IPFS reference implementation.
Revisiting Attack Cost Putting the impact of these
countermeasures into context is easily possible, when
inserting updated cost factors into the abstract attack model
introduced in Section 3.4 and comparing them to our attack’s
cost estimates obtained for IPFS 0.4.23 (see Section 5).
While up-front costs remain unchanged, running costs have
increased dramatically due to a discrete cloud instance being
required for every three attacker nodes aimed at poisoning
a node’s routing table. As these instances will only run a
small number of nodes, cheaper, low-power offers can be
used, priced at 0.005e/h, for example24. In addition, the
relaying subsystem cannot be exploited any more to gain
more ConnMgr points than an honest connection by relaying
large numbers of nodes, which is why higher-performing
cloud instances would not provide any advantage. In effect,
our attack cannot be sped up and is dependent on churn
only. Moreover, attacker-controlled nodes occupying higher
buckets than regular nodes (which is based on network
size) makes little sense. In fact, the naïve attack strategy
from Section 4.1 becomes attractive again, which results in
estimated costs for poisoning an individual node’s routing
table according to Eq. 8:

ce = 20︸︷︷︸
k

×dlog2(3000︸︷︷︸
total DHT nodes

)e/ 3︸︷︷︸
nodes per cloud instance

×0.005e/h≈ 0.4e/h (8)

In order to estimate the absolute cost of such an attack, it
24 We rely on the same service provider for this estimate, whose pricing of
discrete instances is a better fit that buying IP addresses.

is important to take into account how the deployed counter-
measures affect the required duration of such an attack to be
successful. Monitoring regular IPFS nodes revealed that the
lowest two buckets of their routing tables still contained a com-
bined number of twenty nodes even after a week. The majority
of these honest nodes were evicted from the DHT within the
first 24 hours, with little changes being observed afterwards.
Since all routing information in these lowest two buckets is
protected from being pruned by the ConnMgr, this observation
provides insights with respect to how the deployed counter-
measure improved attack resiliency: An attack needs to be
run for weeks (at a cost of ci = 0.4×24×7 = 67.20e/week)
rather than minutes in order to fully poison a single node’s
routing table. As such, individual and global attacks become
infeasible for casual attackers.

7 Related Work

As our work presents an attack on a peer-to-peer system in pro-
duction use, this section focuses on work related to analysing
and attacking similar live systems. For theoretical models and
surveys on this matter, we refer to the works of Levine et al.
[12] and Mohaisen and Kim [18] (see Section 6).

Although IPFS was launched in 2013 and has continuously
gained traction, scientific literature on IPFS is still scarce.
Apart from the original whitepaper [4] and protocol specifi-
cations of varying maturity25, little in-depth documentation
on IPFS is currently maintained. Metrics on the overall IPFS
network are also not available. However, a 2020 paper [9]
crawled the live IPFS network, the results of which were used
to estimate the cost of our attack in Section 5. This work also
stressed that no countermeasures against Sybil attacks were
in place as of version 0.4.23, contrary to the original IPFS
whitepaper. The authors also observed that the way IPFS im-
plements content discovery (first querying all connected peers
and only then falling back to querying the DHT in case none
of the contacted peers would serve the requested content)
provides some resilience against eclipse attacks aimed at the
DHT. Our work demonstrates, however, that this defence was
extremely limited in scope, leaving the possibility to fully
eclipse a node in less than one hour with ≈ 75% probability.

Similar to our work on IPFS, Heilman et al. [7] demon-
strated a successful eclipse attack against Bitcoin [19]. On the
surface, this attack was based on flaws similar to the issues we
discovered in IPFS. Most prominently, peers that were still
running and maintaining connections to an attack target could
be replaced by fresh malicious peers. Among the counter-
measures deployed to the Bitcoin reference implementation,
an adapted eviction strategy—keeping live peers instead of
having them easily replaced—showed the most impact in the
context of defending eclipse attacks. Actually carrying out an
eclipse attack against even a single Bitcoin node without such
countermeasures is considerably more expensive than our
25 https://github.com/ipfs/specs
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Table 1: Cost comparison of different attacks on IPFS (with/without countermeasures) and Ethereum (Henningsen et al. [8])

ci ct Runtime26 Real-world cost Params
ci ct

Ours (IPFS 0.4.23) 2000e+0.031e/h 2000e+n×0.031e/h <1h 2000e 2100e n = 3000

Ours (IPFS 0.4.23;
n/a 2000e+b×0.031e/h ∞ n/a

2000e
b = 8Bootstrap attack) +0.248e/h

Naïve (IPFS 0.7) 0.4e/h n× ci weeks 67.20e/week eee n = 3000

Ethereum 2×0.05e/h p×25000×2×0.05e/h ≈5d / ∞ ≈12e ??? n = 25000, p =?

attack against IPFS prior to version 0.6, due to the fact that
widely-distributed IP addresses are required. This was mainly
due to the different organisation of Bitcoin’s routing tables
compared to the libp2p DHT and not primarily for reasons of
hardening against attacks. Since the paper by Heilman et al.
does not provide tangible cost estimates to use for an abstract
attack model, a qualitative economic comparison with our
work is considered out of scope.
An attack that uses similar principles as ours has been shown
to be successful against the Ethereum cryptocurrency [14]27.
However, there are several important differences to our work.
Most prominently, our attack is more powerful, as it works in
near-realtime by tricking a node into actively disconnecting
itself from the rest of the network. In contrast to the attack on
Ethereum, our attack thus requires no other forms of DoS or
high churn rates attacks to succeed. This is crucial, as system
downtime could be easily detected, while our attack simply
requires additional connections to be established (many of
which can be multiplexed, thus not showing up on network
monitors). The generic issue of how IPFS implements connec-
tion management is distinctly different from Ethereum and
also independent of the DHT-related attack vector that shows
similarities to the attack on Ethereum. As such, our attack is
not limited to the DHT subsystem that shares much of the con-
ceptual functionality of Ethereum’s P2P network (although it
exploits the fact how the IPFS DHT subsystem awards Conn-
Mgr points). Moreover, our way of gaming IPFS’s ConnMgr
makes it possible to deliberately have nodes outside an at-
tackers control induce churn with low effort. This in itself
is an attack not discussed in related works targeting systems
used in practice28. Our attack against IPFS v0.4.23 also takes
only minutes to fully poison any node’s routing table and less
than an hour to fully eclipse a node with high probability,
without requiring additional DoS attacks. In addition, coun-
termeasures such as non-public mapping from node ID to
bucket are simply not applicable to IPFS since these would
render one of its core features defunct. In short, the attacks

26 Global attacks need to be run continuously, while the runtime for at-
tacking single nodes indicates how long it takes to reach an eclipsed state.
27 This attack was performed prior to Ethereum’s planned switch to libp2p.
28 Evaluating the impact of such churn attacks is out of this work’s scope.

against cryptocurrencies require the target to reboot, take sev-
eral days to execute, are orders of magnitude more expensive,
and suggested countermeasures are not applicable to IPFS.
One reason for these differences is the fact that attacks on
cryptocurrencies typically aim at single nodes while our mo-
tivation was to mount cheap global-scale attacks.
The same applies to the follow-up attack on Ethereum by Hen-
ningsen et al. [8]. This attack’s scenario and execution reflects
the naïve attack strategy introduced in Section 4.1, making it
churn-dependent. As Ethereum is also Kademlia-based, the
same attack formulas apply. In accordance with Henningsen
et al., the number of relevant Ethereum nodes is small enough
to also result in negligible cost for pre-generating identifiers
(based on an assumed total of 25000 relevant nodes). In addi-
tion, flaws of Ethereum’s peer-discovery process are exploited
to drastically cut running costs. In effect, eclipsing a single
node amounts to operating two hosts in distinct /26 IPv4
subnets. Based on our cost model (and mapping the more
powerful machines used by Henningsen et al. to cloud offers),
this would result in running costs of ci = 2×0.05 = 0.1e/h.
The authors came to the conclusion that this attack needs
to be run for about five days when not forcing the victim to
reboot, which results in overall costs of ≈12e. Even when
considering the fact that multiple targets could be attacked by
the same cloud instance (a parallelisation factor that decreases
global costs), expanding this attack to the estimated 25000
relevant nodes scales linearly, in accordance with Eq. 9.

ct = p︸︷︷︸
parallelisation factor <1

×25000︸ ︷︷ ︸
number of nodes

×2×0.05e/h︸ ︷︷ ︸
cost of running two instances

(9)

Not knowing about the exact amount of resources required
to attack a single node in terms of main memory and CPU
power, precisely estimating the parallelisation factor is diffi-
cult. However, linearly scaling with network size and taking
days to show results, this attack on Ethereum is clearly less
economic on a global scale than our approach aimed at boot-
strap nodes—especially when considering that such attacks
need to be run continuously. Still, actually evaluating such a
strategy against the whole Ethereum network is beyond the
scope of this work. Moreover, none of this is of any signifi-



cant practical relevance due to Ethereum’s switch to libp2p.
As such, our findings and the deployed countermeasures also
benefit Ethereum and can serve as basis for further, in-depths
analysis and hardening efforts. As a starting point, Table 1
provides a cost comparison of all discussed attack strategies
and their targets (note that the attack on IPFS 0.7 and variants
of the Ethereum attack are highly churn and network-size
dependent).

8 Conclusions

In this paper, we described, and demonstrated a successful
end-to-end eclipse attack on IPFS. Exploiting vulnerabilities
of the libp2p library, one aspect of our attack is to success-
fully poison routing information locally stored by nodes of
IPFS’s underlying P2P network. In addition, we have shown
that our attack enables us to eclipse arbitrary IPFS nodes and,
consequently, to disrupt the entire public DHT-based IPFS net-
work. Applying our attack on live IPFS nodes demonstrated
the effectiveness and feasibility of the attack. The conducted
evaluations have demonstrated the alarming fact that attacks
on a global scale can already be mounted with low effort,
meaning that this attack is feasible even for attackers with
limited resources.

The impact of our proposed attack is substantial mainly
for two reasons. First, our attack exploits a conceptual flaw
in the connection management of IPFS for which there is no
easy solution. Secondly, our work has lead to a successful,
ongoing hardening process. The entire ecosystem beyond
decentralised exchange of data (but also other IPFS-based
services) benefits from upstream releases incorporating fixes.
Two major version of the IPFS reference implementation were
released since reporting our findings to Protocol Labs, both
of which contain fixes, resulting in a huge increase of attack
costs. As a consequence, casual attackers will not be able to
replicate our attack against updated nodes.

The main reason why our attach was so successful with
such low costs can be attributed to a lack of integration: On the
one hand, IPFS in general (and libp2p in particular) recognises
the fact that a P2P system’s infrastructure is upheld by its users
and therefore provides a feedback loop to have application-
layer behaviour impact the P2P network layer. In the case
of IPFS, this feedback loop is realised as the ConnMgr’s
scoring system. On the other hand, different subsystems still
award points oblivious to each other. This made it possible to
game the ConnMgr without much effort. The fully open and
extensible nature of IPFS will always introduce issues of this
kind, as third-party subsystems have the potential to interfere
with each other’s scoring methods. At the same time, our
attack harnessed points from the P2P network layer as well as
from the application layer, also highlighting a lack of vertical
integration. This lesson should, at the very least, be carefully
observed by developers of P2P systems, as it highlights how a
layered mental model towards security does not apply well to

this environment. Moreover, our attack model can be applied
to other systems for gauging attack costs and comparing attack
strategies. Following this course makes it possible to identify
cost-driving factors and to distinguish between the impact of
the operational environment (number of nodes, churn, . . .),
system properties (such as routing table design, and the choice
of using fixed bootstrap nodes), and implementation flaws. As
demonstrated by the fixes introduced with IPFS 0.7, minor
design changes deployed to the same environment can have a
huge impact.
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A Implementation Flaws

Apart from the conceptual issue of lacking integration be-
tween the ConnMgr and other subsystem,we have identified
the concrete flaws, which contribute significantly to the per-
formance of our attack. Exploiting these issues is therefore
key for low-budget, high-impact attacks. This appendix pro-
vides more in-depth details on these matters.
Allowing Only Inbound Connections: While libp2p differ-
entiates between inbound and outbound links, this has no
bearing on the ConnMgr’s trimming routine, making it possi-
ble to trim all outgoing connections.
Unconditional Removal of DHT Nodes: Since the Conn-
Mgr does not interpret scores and tags, and DHT connections
do not receive special treatment, it is possible to push all le-
gitimate connections out of the DHT and replace them with
malicious ones. This goes against the original Kademlia de-
sign, which favours older connections. Note that from the
DHT’s point of view, this characteristic is still upheld, but the
ConnMgr manually disconnects already known connections
that would prevent new ones from entering the DHT.
Stateless Connectivity Monitoring: The DHT is instructed
to re-execute a bootstrap manoeuvre to connect to pre-
configured bootstrap nodes, whenever less than four open
connections remain. However, no further action is taken even
if this situation becomes stationary. This effectively enables
an attacker to keep a node eclipsed with as little as four open
connections, once an eclipsed state is initially reached. This
monitoring loop to check connectivity is executed once a
minute.
Static Bootstrap Nodes: IPFS relies on a static set of boot-
strap nodes. Although this set can be configured, a node does
not keep track of peers to which it was once connected to.
As a result of this, a restarting node will always bootstrap
against the same set of nodes, regardless of connectivity prior
to restarting. As a consequence, compromising the default set
of bootstrap nodes will affect all nodes as soon as they restart
(and not only newly joining nodes).
Unconditional Trust: Although rigorous data integrity
checks are a core feature of the main IPFS functionality, the
same can not be said with respect to information concerning
the network’s node. This meta issue affects many subsystems.
In short, almost all claims made by a peer about its charac-
teristics and capabilities are taken at face value, even when
simple checks could expose cheating. As for the DHT, this
makes it easily possible to fill a node’s DHT with bogus IPs.
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B Technical Attack Details

This appendix provides in-depth details on how we imple-
mented the key steps of our attack. More specifically, this
covers the one-time ID generation phase, the setup, and at-
tack phase depicted in Fig. 1 and includes details on remotely
probing an attack target’s state.

B.1 ID Generation
Our attack requires efficient generation of vast amounts of
valid identifiers to position nodes at specific distances to
any node. Thus, a one-time ID pre-generation routine is run.
libp2p supports RSA and EC keys. By generating only EC-
based identifiers, both generation times and the amount of
storage required to manage a large set of IDs is reduced com-
pared to RSA. To maximise throughput, we increment an
integer and interpret it as a private key29. This approach gen-
erates 8-10k keys per second per CPU core based on an Intel®
Xeon® E5-2699 v4 CPU @ 2.20GHz. Overall throughput is
mainly limited by IO speed.

Our storage format is simple and efficiently searchable:
Each generated key is stored to a file named after the first 14
bits of the DHT identifier corresponding to the key, along with
this identifier. This set of pre-generated identifiers amounts to
29TB of data and encompasses ≈ 146Bn individual IDs. Still,
it is possible to efficiently query this database, as the number
of entries per file remains manageable. A dedicated service in
charge of producing keys and identifiers corresponding to any
node’s lowest 33+ DHT buckets, based on the target node’s
ID as input. Answering a query takes less than five minutes30.

B.2 Probing
In order to carry out our attack, ways to continuously probe
an attack target’s state are required. Additionally, some static
parameters are needed during the attack’s setup phase.

Setup Phase Naturally, an attack target’s IP address is re-
quired to connect to it. This information is obtained by op-
erating a regular IPFS node that is connected to the IPFS
network, This node is used to query the target’s IP address,
which is then fed into the actual attack carried out on a distinct
machine.

Moreover, the bucket size of the target’s routing table is
required in order to advertise a precisely distributed set of
identifiers for routing table poisoning. Querying the target for
any identifier will trigger a response containing bucketSize
many peers, thus providing this information.

While lowWater and highWater marks are theoretically
required to perform our attacks, choosing too high values has

29 Since identifiers are hashed prior to calculating distances, lack of ran-
domness in the raw key material is not an issue. 30 This could be further
sped-up thorugh parallelisation.

no impact on attack success rates, but only consumes more re-
sources than necessary. Given that even critical infrastructure
like bootstrap nodes use values of 1000 and 2000, respectively,
this does not cause any real issues with respect to attack per-
formance. However, simply starting with those values and
and observing the impact of connection trimming allows for
detecting values set too high, which enables reducing each
value accordingly.

The interval for the ConnMgr’s connection trimming rou-
tine is hardcoded to 1 minute. However, detecting disconnect
waves when maintaining hundreds of open connections is
trivial, as our attack operates a little over highWater many
connections to ensure that disconnect waves are triggered.
The grace period used to protect newly established connec-
tions is irrelevant for our attack and is thus not probed.

Our attack targets the latest IPFS version (0.4.23) released
as of April 27, 2020. Earlier versions are even easier to eclipse.
However, our attack performs a strict superset of the actions
required to eclipse earlier versions and thus requires no knowl-
edge of the attack target’s IPFS version, except for increased
efficiency. Still, the IPFS protocol defines a message to re-
motely query a node’s version.

Continuous Probing Our attack requires knowledge about
the target’s routing table. In essence, we need to know which
buckets are occupied by honest nodes, in order to outperform
these nodes from the ConnMgr’s point fo view. As mentioned
before, the target will respond with bucketSize many closest
peers to any query for other peers. We can thus simply tra-
verse the set of pre-generated identifiers used for poisoning
the target’s routing table and query for one identifier in each
bucket. This way, it is possible to construct a contiguous view
of the target’s routing table and know precisely which nodes
occupy which buckets. Given that our pre-generated ID set
consists of ≈146Bn nodes, this easily covers all realistically
possible routing table configurations that can ever be encoun-
tered. These queries are performed once during each attack
loop.

B.3 Gaming the ConnMgr
This section describes the main attack loop and the actions
performed to trick a victim’s ConnMgr. The overall goal is
to raise the score of the connections made by an attacker
above the highest score of any legitimate node connected to
the victim. Based on observation of live IPFS nodes, the score
of connections to honest peers will usually range from 0 to
around 20. In order to reach this goal, our attack strategy re-
lies on three sources of points to game the ConnMgr:
DHT: Each node that occupies a DHT spot is awarded points
according to Eq 2. The amount of identifiers we pre-generate
is several orders of magnitude larger than the number of nodes
participating in the live IPFS DHT. Because of this, simply
connecting using these IDs is enough to be assigned a spot



in the target’s DHT, as most buckets for those identifiers will
be empty. We can therefore maintain more than 400 connec-
tions31 that will be awarded enough points to become resident
in the target’s swarm. This, however, is significantly less than
the required default lowWater value of 600.
Bitswap: As mentioned in Section 3.2, Bitswap awards points
for unsolicited content advertisement (which is understand-
able from a content-distribution perspective). We exploit this
by continuously advertising an empty block of data. This is
cheap for an attacker, since sending such a message every
few seconds suffices, with no need to process responses and
results in 10-16 points. Other ways of inflating a connection’s
score based on Bitswap include re-sending blocks a target
previously requested.
Relaying: A virtually unlimited source of ConnMgr points
is the relaying subsystem that is used to help nodes located
behind NATs or firewalls reach the network. For one, simply
advertising relaying capabilities to the target already awards
a fixed amount of two points. More importantly, however, ac-
tively relaying connections from and to the target awards one
point for each relayed connection. Given that libp2p supports
multiplexing many virtual connections over a single (TCP)
link, the number of available ports is not a limiting factor
for this strategy. Initial experiments have shown that > 1000
connections can be multiplexed over a single link.
This last method of obtaining points can be especially devas-
tating, since finding a countermeasure is challenging. While
pathological cases like those from our initial experiments
could be detected using heuristics, the general strategy of
considering a link supporting many relayed connections im-
portant is understandable, especially in real-world settings
that include firewalls and NATs. The required resources for
creating a relayed connection are minimal: The only thing
that is really required is a (randomly generated) key pair to
obtain a valid self-certifying node identifier. This is then used
during the initial handshake when establishing an end-to-end-
encrypted connection. While this comprises computationally
somewhat expensive asymmetric cryptographic operations,
these have to be performed only once during connection es-
tablishment. Overhead for the node acting as relay is also
moderate. Given that our attack strategy is based on perform-
ing a Sybil attack from a single host no actual links between
relay and relayed nodes are required, since these nodes are,
in fact, virtual.

When combining this way of inflating connection scores
with the continuous probing of a target’s routing table, a
highly efficient attack behaviour can be implemented.

In order to occupy all spots in the target’s routing table and,
subsequently, eclipse the whole swarm, any nodes previously
connected need to be outperformed. However, fully poisoning
the routing table is prioritised, since the DHT is used for peer
discovery and content routing beyond content distribution. In
31 The remainder of these connections are initially outperformed by honest
ones.

order to accomplish this, estimate the highest score of any
honest node connected to the target as follows:

1. Based on the routing table information, we calculate the
highest score over all legitimate peers that reside in the
target’s routing table according to Eq. 2.

2. We consider a safety margin of 10 points, meaning that
we assume that each honest peer has an additional 10
points awarded from other subsystems, such as Bitswap.
We apply this margin regardless of whether an honest
peer is resident in the target’s routing table or simply
part of the swarm.

3. These two numbers are then added to arrive at the target
score that needs to be beaten by at least lowWater many
of our malicious nodes in order to have the target’s Con-
nMgr trim all connections to honest nodes (except for
those within the grace period).

4. In order to reach this score, we traverse the set of our ma-
licious nodes and start relaying connections to randomly
generated virtual nodes as required. We prioritise those
of our nodes that are based on pre-generated identifiers,
referred to as DHT nodes to fill the target’s routing table.
If this is not sufficient (which is the case for higher-
than-usual lowWater marks), we also boost the score
of the random nodes that are run to reach highWater
many connections to trigger the ConnMgr’s disconnect
routine.

Careful observation might suggest that precise probing of
the target’s lowWater mark is required, since a too high es-
timate would cause those of our nodes that should occupy
the lower buckets to be disconnected by the ConnMgr. While
this is technically correct, our nodes reconnect to the target
within milliseconds. This leaves only an extremely short win-
dow of opportunity for honest nodes to slip into the target’s
routing table. This is due to the fact that routing table spots
that become vacant during a disconnect wave are not auto-
matically filled by remaining connections. Instead, the DHT
component of libp2p only reacts to a well-defined set of mes-
sages to insert peers into a node’s routing table. One such
message is a ping. We exploit this behaviour and re-establish
any severed connection as soon as the ConnMgr executes its
connection trimming routine and ping the target from all still
connected nodes at the same time. As elaborated in Section 5,
we have evaluated this strategy to be effective, as fully occu-
pying any node’s routing table takes mere minutes. Moreover,
completely eclipsing nodes with≈ 75% probability takes less
than an hour. In effect, this results in overall low costs, even
when seeking to disrupt the complete public DHT-based IPFS
network.
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