
SERVAS! Secure Enclaves via RISC-V
Authenticryption Shield

Stefan Steinegger1(B), David Schrammel1, Samuel Weiser1, Pascal Nasahl1,
and Stefan Mangard1,2

1 Graz University of Technology, Graz, Austria
{stefan.steinegger,david.schrammel,samuel.weiser,

pascal.nasahl,stefan.mangard}@iaik.tugraz.at
2 Lamarr Security Research, Graz, Austria

Abstract. Isolation is a long-standing security challenge. Privilege rings
and virtual memory are increasingly augmented with capabilities, protec-
tion keys, and powerful enclaves. Moreover, we are facing an increased
need for physical protection, e.g., via transparent memory encryption,
resulting in a complex interplay of various security mechanisms. In this
work, we tackle the isolation challenge with a new extensible isolation
primitive called authenticryption shield that unifies various isolation poli-
cies. By using authenticated memory encryption, we streamline the secu-
rity reasoning towards cryptographic guarantees. We showcase the ver-
satility of our approach by designing and prototyping SERVAS – a novel
enclave architecture for RISC-V. SERVAS facilitates a new efficient and
secure enclave memory sharing mechanism. While the memory encryp-
tion constitutes the main overhead, invoking SERVAS enclave requires
only 3.5x of a simple syscall instead of 71x for Intel SGX.

1 Introduction

Today, software vulnerabilities are omnipresent and penetrate the whole software
stack, e.g., application software [52] and operating systems [12,27]. To reduce
their impact, different isolation mechanisms can separate privileges [19], isolate
individual processes [35], protect virtual machines [5,6], and segregate applica-
tions into smaller parts, also denoted as in-process isolation. Typical in-process
isolation mechanisms are segmentation [31] and capabilities [61], memory color-
ing (e.g., protection keys) [30,49,55], or enclaves. Enclaves give strong security
guarantees even in the event of a system compromise and found ample resonance
both in academia [11,15,18,39,53,57] and industry [9,24,43]. In addition, cloud
computing increasingly demands physical protection, for which modern CPUs
provide transparent memory encryption [6,43]. Having proper integrity protec-
tion can cause worst-case throughput penalties of over 400% for Intel SGX [28].

Unfortunately, due to the zoo of isolation mechanisms, reasoning about
their security becomes increasingly complex. For example, an application might
depend on protection keys in combination with the Memory Management Unit

c© Springer Nature Switzerland AG 2021
E. Bertino et al. (Eds.): ESORICS 2021, LNCS 12973, pp. 370–391, 2021.
https://doi.org/10.1007/978-3-030-88428-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88428-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-88428-4_19


SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 371

(MMU) and the memory mappings configured by the operating system [35].
Unifying these isolation mechanisms is desirable from a security standpoint, but
most cover only a subset of scenarios. For example, Intel SGX isolates unprivi-
leged user code, but its memory encryption is not utilizable for other purposes.

In this work, we first simplify the overall security reasoning by introduc-
ing a strong and generic isolation primitive. Second, we explore our primitive’s
synergies and features. Third, we use it to design a novel enclave architecture.

New Isolation Primitive. We unify various isolation policies with our novel
RISC-V Authenticryption Shield (RVAS). By using memory encryption, we map
isolation properties to the well-studied field of cryptography. More specifically,
encryption ensures that the CPU and the memory are in a particular state. Thus,
RVAS achieves memory isolation with cryptographic guarantees.

We design RVAS atop the RISC-V architecture. RVAS builds upon authenti-
cated memory encryption whose associated data input, which we call encryption
tweak, is exposed to software. This encryption tweak represents a security con-
text composed of software-defined and CPU-internal components. It serves to
achieve domain separation and can enforce a variety of different isolation mecha-
nisms simultaneously, e.g., privilege separation, virtual memory protection, seg-
mentation, and page coloring, etc. Traditionally, each of these mechanisms needs
to securely store trusted metadata (e.g., the address mapping or the page colors).
RVAS implicitly secures this metadata by feeding it into the encryption tweak. A
proper generalization of encryption tweaks is non-trivial.

SERVAS Enclaves are our novel enclave system atop RVAS. SERVAS protects
enclaves against software and physical attacks by means of RVAS encryption.
In contrast, Intel SGX uses memory encryption only against physical attacks,
while software attacks are prevented through a trusted metadata storage – the
so-called EPCM [31]. Our design makes the EPCM obsolete, which yields two
advantages: First, we remove trust from the address translation, i.e., the MMU
and the Translation Lookaside Buffer (TLB) configuration, and our security
argument boils down to encryption tweaks. Second, SGX enclaves can typically
only use 128 MB of encrypted physical memory [26]. RVAS encryption can be
applied to the whole DRAM and also to non-enclave code.

SERVAS introduces the novel concept of secure sharing of enclave mem-
ory, a key requirement for many application scenarios but impractical with cur-
rent enclave systems (e.g., requiring costly software-based encryption). SERVAS
enables secure zero-cost memory sharing by sharing encryption tweaks.

We prototype RVAS on an FPGA using an open-source encryption core. A
small stateless Security Monitor (SM) running in RISC-V machine mode ensures
a proper tweak configuration. Invoking SERVAS enclaves only takes 3.5x the time
of a syscall. Our evaluation indicates an overhead of 16.7% to 24.5% over the
used encryption core. An extended version of this paper is available [51], and we
plan to open-source our prototype1. In summary, our contributions are:
1 https://github.com/IAIK/servas.

https://github.com/IAIK/servas


372 S. Steinegger et al.

– A generic isolation primitive using authenticated memory encryption.
– A novel enclave architecture called SERVAS.
– A novel and fast and secure memory sharing mechanism between enclaves.
– An evaluation of the prototype implementation of SERVAS.

2 Challenges of Memory Isolation

Here, we give an overview of the most widely used isolation schemes and present
their challenges concerning security and functional limitations we want to over-
come. This paves the way for understanding the RVAS and SERVAS design.

Process Isolation requires privilege separation between the operating sys-
tem (OS) and processes and isolating processes from each other. Privilege sepa-
ration is achieved via privilege rings protecting CPU resources from unprivileged
access. The OS also needs to configure the virtual memory subsystem:
Challenge C1: “The privileged software must ensure that the virtual memory
mappings of all unprivileged processes (i) cannot access privileged memory, and
(ii) are not unintentionally aliasing with each other.”

Segmentation is a fine-grained in-process isolation mechanism using address
ranges. Segmentation forms the basis of hardware capabilities [61]. However,
these systems are not suitable for enforcing cross-application policies, e.g., pro-
tecting cryptographic keys from other applications or the OS.
Challenge C2: “Segmentation should allow flexible cross-application policies.”

Memory Coloring is another in-process isolation mechanism labeling each
memory block with a “color”. If the color is loaded, the memory becomes acces-
sible. Unfortunately, the number of colors is often quite limited [47] and not
suitable to enforce cross-application policies, e.g., for shared memory.
Challenge C3: “Memory coloring should provide significantly more colors and
also allow cross-application policies.”

Memory Mapping Protection is needed to protect enclaves from the OS:
Challenge C4: “The memory mapping of enclaves must be protected against priv-
ileged software.” This is challenging because privileged software is in charge of
managing enclaves. E.g., manipulating the page tables could cause data pages
to become executable. Three security invariants need to hold here:

– Attribute Invariant IA: “Enclave pages must only be mapped with their
intended page table attributes.”

– Spatial Invariant IS: “A physical enclave page must only be mapped to its
corresponding virtual page.”

– Temporal Invariant IT : “At any time for every virtual enclave page, there
must be at most one valid physical page mapping.”

IT specifically addresses double mapping attacks, where the attacker could
silently replace the page to replay old data.



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 373

Protected Sharing is typically achieved via shared memory. However, the
hard isolation boundary of enclaves prohibits secure, shared memory by design:
Challenge C5: “Shared memory must allow for efficient and confidential inter-
action between different enclaves.”

Memory Encryption. The DRAM can be attacked via passive [8,29] and
active [36] physical attacks. Encrypted and authenticated DRAM is necessary to
protect data from physical attacks. Memory encryption should not be restricted
to specific code (e.g., enclaves) or specific parts of the DRAM.
Challenge C6: “The DRAM shall be hardened against active and passive physical
attacks.”

3 RISC-V Authenticryption Shield (RVAS)

RVAS presents a generic mechanism to cryptographically enforce the challenges
expressed in Sect. 2. At its core, it uses an authenticated Memory Encryption
Engine (MEE) for encrypting the DRAM and incorporates a security context
into its associated data. If encrypted data is accessed with the wrong security
context, the MEE triggers an authentication error. Since the MEE gives cryp-
tographic security guarantees for detecting authentication issues, the security
argumentation boils down to one question: Who controls the security context?

The composition of the security context arguably lies at the heart of RVAS.
For readability, we also call it “tweak” in the rest of the paper. The tweak con-
sists of both software- and CPU-defined components, allowing for fine-grained,
unforgeable isolation. In this section, we discuss the tweak composition, how
RVAS solves the challenges from Sect. 2, and the requirements for the MEE.

3.1 RVAS Tweak Design

Our tweak design comprises five components explained in the following, each of
which can be selectively enabled, depending on the specific use case.

Integrity Counter. The MEE maintains integrity counters for each memory
block, which it increments at each write operation. Integrating the counter into
the tweak ensures that the correct memory block is used at any time and thus,
prevents reverting the memory to a previous state (i.e., replay attacks).

Segmentation and Address Information holds metadata about the accessed
address and whether it matches software-defined segments that can be configured
at each privilege level. This allows to protect the page mapping, in particular
the address translation, and page ordering and prevents double mappings. The
address information can hold an absolute address or an offset relative to one
of the segments. Each segment has a base address and a size and belongs to
a privilege level. Depending on which segment(s) the address belongs to, the
segment bitmap, which is also included in the tweak, is set. This further acts as
a domain separation and influences which memory color is used.



374 S. Steinegger et al.

Privilege Level. Including the CPU privilege level (e.g., M-mode, S-mode,
U-mode) in the tweak ensures that memory is only accessible at a specific level.

Page Table Attributes such as read, write and execute permissions are
included in the tweak to prevent undetected altering of the page mapping.

Memory Color. This field is extremely versatile and can be configured by soft-
ware on each privilege level. By choosing appropriate colors, one can segregate
memory pages at runtime and facilitate sharing across security domains.

3.2 Solving the Challenges

Process Isolation with RVAS could significantly enhance the security of pro-
cesses, e.g., inside encrypted virtual machines [6]. Two components solve Chal-
lenge C1: First, we use the CPU privilege level in the tweak to achieve privilege
separation, i.e., without the need for inspecting page tables. Second, we use an
OS-chosen process identifier in the tweak’s memory color field to separate pro-
cesses. By using RISC-V’s Supervisor User Memory (SUM) bit to temporarily
force the privilege level to U-mode in the tweak, the OS can be granted tempo-
rary access to user memory (e.g., for syscall handling). Of course for an enclave
system one would disable this feature.

In-process Isolation. To solve the segmentation challenge C2 for cross-
privilege policies, we can supply information from all privilege levels to the
tweak’s Segment and Address Information field. A segment-relative address off-
set in the tweak makes these policies compatible between different applications
(i.e., different address spaces), as we will show for cross-enclave shared memory.

To solve the memory coloring challenge C3, we support a vast number of 280

colors (cf. 16 for Intel MPK [55]). Thus, RVAS makes trusted metadata storages
for memory colors (i.e., tagged memory) obsolete [64]. We will show how RVAS
achieves brute-force resistance when using colors as a shared secret.

Enclaves are the most complex isolation technique discussed in this paper and
involve the challenges C2 – C6. Current enclave systems like Intel SGX [43] use
trusted metadata stores, i.e., the Enclave Page Cache Map (EPCM), to ensure
the attribute- IA, the spatial- IS, and the temporal invariant IT . However,
the EPCM has a few drawbacks: (1) It increases the Trusted Computing Base
(TCB). (2) It takes up memory. (3) The enclave’s TLB entries must be flushed
during context switches [17,31]. (4) It permits only a single owner enclave for
each page, precluding flexible enclave memory sharing.

We leverage RVAS to solve challenge C4 and make the EPCM obsolete: First,
we guarantee IA by feeding the page table attributes into the tweak. Second, we
enforce IS and IT by using the segmentation and address information and the
memory color field in the tweak. Thus, that pages can only be mapped correctly
to their legitimate enclave. More details are given in Sect. 4.3.

To solve the protected sharing challenge C5, we combine the memory color
field (C3) with an enclave-defined segment (C2) for specifying the shared memory.



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 375

The memory color essentially comprises a shared secret established between two
or more enclaves that want to communicate. The relative addressing of segments
allows the enclave to choose the exact location of the shared memory. Only if
the memory color and the segment is set up correctly, the enclaves will have the
same encryption tweak and, thus, can access the shared memory.

Memory Encryption protects against active and passive physical attacks,
thus solving challenge C6. For RVAS, an MEE needs to fulfill three properties:
(1) confidentiality, authenticity, and integrity of the data, (2) replay protection,
(3) the used cryptographic primitive must be tweakable. Integrity is typically
ensured by storing authentication codes in a tree structure. The replay protection
from (2) is usually done via authenticated counters that are typically fed into the
encryption scheme as a tweak or nonce [17,23,54,59,60]. To fulfill (3), we require
a tweakable block cipher or authenticated encryption scheme with a sufficiently
large tweak size (i.e., associated data), such as [21,62]. E.g., SGX’s underlying
MEE would require changes to fulfill the third property.

4 SERVAS

SERVAS is an innovative enclave architecture and, thus, the most complex RVAS
use case we present. As shown in Fig. 1, SERVAS consists of the RISC-V Authen-
ticryption Shield (RVAS) and a software Security Monitor (SM). The SM is the
trusted intermediary that handles the enclave’s lifecycle, acting as a universal
entry and exit point and manages the RVAS encryption tweak via an Instruction
Set Architecture (ISA) extension.

SERVAS follows SGX’s design choices to keep a minimal TCB while simul-
taneously avoiding the drawbacks of large trusted metadata storages (i.e., the
EPCM). Instead, we feed the relevant security metadata into the RVAS tweak.
By carefully controlling the tweak, SERVAS maintains cryptographic segregation
of various security domains. SERVAS also enables dynamic enclave memory and
secure sharing of enclave memory, avoiding costly software-based encryption [7].

Fig. 1. SERVAS protects enclaves (E) from applications (App), the OS, and physical
attacks. Thunderbolts mark the attack surface. RVAS encrypts and authenticates pages
in the untrusted DRAM.



376 S. Steinegger et al.

4.1 Threat Model

SERVAS protects code and data inside enclaves against a powerful, privileged
software and physical attacker (cf. Intel SGX [17,43]). Non-enclave software
(i.e., the OS or user applications) is viewed as untrusted and can be attacker
controlled. The OS can launch rogue enclaves. Our Trusted Computing Base
(TCB) comprises software and hardware components: On the software side, we
trust the enclaves and a small Security Monitor (SM). The enclave developer is
responsible for avoiding vulnerabilities in the enclave code [13,40]. The SM is
an integral part of our CPU hardware, similar to Intel SGX’s microcode imple-
mentation [17]. It can be protected via a trusted on-chip ROM or a secure boot
mechanism [38].

On the hardware side, anything outside the System on Chip (SoC) (e.g., the
CPU and RVAS) is untrusted. In particular, the attacker can tamper with the
DRAM, mount bus probing, cold-boot [29], or fault attacks on the encrypted
DRAM [33], which are detected by RVAS’ authenticated encryption.

Denial-of-service attacks are outside of our threat model. It is up to the OS
and the applications to invoke an enclave. Whether performed in software or
hardware, side-channel attacks are an orthogonal challenge, for which plenty of
literature is available that could also be applied to SERVAS [15,16,20,54,58].

4.2 Enclave Life Cycle

SERVAS enclaves are built on top of RVAS and our Security Monitor (SM). The
SMprovides an API for managing all phases of an enclave’s life cycle, namely,
initialization, entering, interruption, exiting, attestation and sealing.

Enclaves are identified via their so-called Enclave Identifier (EncID), which
is computed via a cryptographic authentication code over the enclave binary (cf.
SGX’s MRENCLAVE [17]). Enclave binaries are encrypted with Ascon and
a per CPU key. Similarly to SecureBlue++ [14] this implicitly attestates the
enclave and allows for embedding secrets without the need for remote attestation
and provisioning. During loading, the SMcompares the cryptographic authenti-
cation code. If the enclave binary was corrupted, the SMwill yield a different
EncID and the SMwill refuse to execute the enclave.

User-mode applications can load and run enclaves within their own virtual
address space, for which the SMassigns a unique Runtime Identifier (RTID) to
each running enclave. For entering an enclave, the SMconfigures its tweak and
transfers control to its single developer-specified entry point. An interrupt causes
the SMto save the enclave’s register state on private enclave memory and wipe
the registers. Resuming from interruption and exiting an enclave is analogous.
To store enclave secrets, the SMprovides a sealing functionality based on a key-
derivation function involving the EncID and a per-CPU key. For more details
about the enclave life cycle, we refer to our extended paper version [51].



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 377

4.3 Enclave Memory Management

Security of the enclave memory hinges on the spatial (IS), temporal (IT ), and
attribute invariant (IA), as specified in Sect. 2, which need to hold over the
whole enclave’s lifecycle. To achieve these invariants, our trusted SMexclusively
controls parts of the RVAS tweak. In particular, the initialization of enclave
memory can only be done by the SM, for which it can override most parts of the
RVAS tweak as if the enclave itself initialized the memory. Similarly, the SMcan
invalidate an enclave page by writing it under a different tweak.

In the following, we show how to secure static and dynamic enclave page
mappings and achieve shared memory and swapping.

Static Page Mapping and Code Sharing. Our three invariants protect
static enclave pages, i.e., code and data sections, from OS compromise. IA is
ensured by adding page attributes to the tweak. To keep IS, we link between
virtual and physical enclave pages, as follows: An SM-controlled address segment
distinguishes enclave memory from the rest. Any enclave memory access includes
the segment-relative virtual address offset in the tweak. This field guarantees a
correct address translation and also accounts for position-independent enclaves.

To ensure IT for private enclave memory, we put the enclave’s unique Run-
time Identifier (RTID) into the tweak’s memory color field. This field binds each
enclave page to exactly one enclave instance. Developers can optionally dedu-
plicate enclave code to help reduce memory load and TLB pressure. In this
case, we use the Enclave Identifier (EncID) instead of the Runtime Identifier
(RTID) inside the tweak. To enforce IT , these code pages need to be read-only
and shared between enclave instances of the same binary only (i.e., the same
EncID).

Dynamic Page Mapping. SERVAS enclaves may use dynamic memory, which
has been allocated by the host user-mode application. In principle, our security
invariants are upheld in the same way as for static page mappings. However,
the invariant IT requires special care to prevent double mapping attacks since
dynamic mappings change during runtime: The enclave (runtime) keeps track
of all of its valid page mappings inside the enclave’s address range, e.g., in a
private bitmap similar to SGX [42]. Thus, when the enclave receives new mem-
ory from the host, it can verify the mapping. Therefore, the enclave effectively
acknowledges each dynamic memory page before it is initialized by the SMto
be used. If an enclave releases dynamic memory, it explicitly invokes the SM,
which invalidates the page content, e.g., by destroying its integrity. This prevents
use-after-free scenarios and upholds IT .

Data Sharing. SERVAS introduces a novel concept of data sharing between
enclaves. Shared data memory is writable and can be used for data exchange
at native speed (i.e., without copying or re-encryption [7]). This memory is
realized via a shared secret, supplied as memory color, that enclaves can directly



378 S. Steinegger et al.

manage. However, the SMcan assist in establishing the secret between enclaves,
e.g., as a trusted entity attesting the enclaves. Upholding our security invariants
for data sharing is critical and highlights the versatility of our RVAS design.
Enclaves can enforce the invariants by simply configuring the shared memory
and keeping the shared secret confidential. Data sharing also seamlessly scales
to multiple enclaves. A user-mode segment register points to the desired shared
virtual memory range to prevent double mapping attacks (e.g., aliasing shared-
with private pages) and upholding IT .

Swapping. In contrast to Intel SGX, SERVAS allows using the full DRAM for
enclaves, nevertheless, out-of-memory situations can occur. To ensure the SM’s
correct operation and maintain our security invariants, we exclude enclave shared
memory and SM-related pages from being swapped. In order to swap an enclave
page, the OS provides a temporary page to the SM. The SMre-encrypts the page-
to-swap to the temporary page. Next, the SMinvalidates the original physical
enclave page in order to uphold IT . The involved metadata (authentication
tag, nonce, virtual address, range information, page permissions) are saved on
a page only accessible to the SM. This metadata pins the page’s version and
prevents any roll-back attacks. Swap-in of enclave pages is analogous.

5 SERVAS Implementation Details

In this section, we detail our SERVAS implementation, shown in Fig. 2a. We
discuss our instruction set changes with the tweak construction and page types
and caching considerations and an encryption bypass option.

Fig. 2. Overview of RVAS and the tweak construction for the MEE.



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 379

5.1 Instruction Set Extension

RVAS adds minimal changes to the RISC-V Instruction Set Architecture (ISA):
We add Control and Status Registers (CSRs) to set RVAS’ tweak in software.
Moreover, we add an authentication exception that is raised whenever decryption
fails with an integrity check error during a read, write, or fetch operation.

We add the segmentation registers MRange, SRange, and URange for the
machine-, supervisor-, and user-mode, respectively, as seen in Fig. 2b. Each seg-
ment is defined by a base and a size in the virtual address space. The SMuses
MRange to declare an enclave’s memory. SRange and URange can be used for dif-
ferent purposes (e.g., shared memory). To include software-controllable Session
Identifiers (SIDs) for page coloring, we add xSID0 and xSID1 CSRs.

Tweak Override. We provide additional tweak override registers that allow
the SMto cryptographically initialize a page without trusting the OS-supplied
page mapping. These registers can override any tweak parameters used by RVAS,
except for the RVAS-managed integrity counters. Thus, any memory accesses by
lesser-privileged modes must adhere to the same tweak used for initialization.

5.2 Tweak

RVAS incorporates CPU state information into the MEE via the tweak, including
integrity counters, page mapping, and privilege information, range checks, and
SIDs (cf. Fig. 2b). SERVAS uses a tweak size of 192 bits, as follows:

Counter. Similar to SGX’s 56-bit counters, we reserve 58 tweak bits for integrity
counters to protect against replay attacks, which are not exposed to software.

xRange. We use a bitmap with three bits to encode whether the accessed
address is within URange, SRange, or MRange, respectively. If an address matches
xRange segments, their tweak bits are set. The bits act as a domain separation
and influence the SID and voffset selection. The most unprivileged matching
xRange (e.g., URange) then determines the voffset calculation and the choice
of the xSID registers.

voffset is the virtual address offset computed from the trusted base address
of the effective matching xRange register at cache line granularity. Intel SGX
protects the page mapping by linking the virtual- and physical address in the
EPCM. For SERVAS enclaves, the page mapping is protected with the voffset,
which is relative to the base of a segment. Additionally, the segment is uniquely
identified with a SID. Combined, this ensures that the virtual mapping is correct,
i.e., as initialized by the SM. For 48-bit virtual addresses [56] and 64 B cache
lines [17], this results in 42 bit.



380 S. Steinegger et al.

PRV encodes the current privilege level of the CPU in two bits and ensures the
memory can only be accessed at a specific level.

Page Table Entry (PTE). We include seven page table attribute bits from
the page table entry (PTE) in the tweak to ensure they represent their initialized
configuration. These attributes cover the user mode (U), global mapping (G),
read, write and execute privileges (RWX), and software-defined reserved tweak
select (TS) for selecting the effective SID register.

Session Identifier (SID). We allocate 80 bit for SIDs useable for defining
memory colors and ensure a certain execution context. The active xRange deter-
mines whether MSID, SSID, or USID is used. TS determines whether one or both
xSID0 and xSID1 registers are used. When using, both the effective SID is trun-
cated to 80 bit.

5.3 Page Types

SERVAS defines five page types via a specific tweak combination (cf. Table 1):

PT NORMAL marks untrusted memory outside of all xRange segments. It
adheres to the PTE and can optionally be encrypted (cf. our encryption bypass).

PT ENCLAVE denotes private enclave pages within the MRange, having any
suitable combination of PTE page permissions. The TS bits specify the use of
the MSID0 register, holding the unique SM-defined RTID identifier.

PT SHCODE shares non-writable pages between different instances of the
same enclave to reduce memory and TLB pressure. This type adheres to the
MRange and uses the MSID1 CSR, which holds the unique EncID of the enclave.

PT SHDATA shares non-executable data between enclaves and resides in the
enclave-configured URange. The virtual address offset is calculated relative to
URange and ensures cross-enclave accessibility. The TS bits select the USID0 and
USID1 CSRs, into which enclaves load an 80-bit shared secret before accessing
the shared memory. The SMhelps in establishing the shared secret.

PT MONITOR stores dynamic metadata for each enclave and thread (cf.
SECS and TCS [17]) and is only accessible by the SMin M-mode. Note, that
enclave code is not protected via PT MONITOR but instead via Physical Mem-
ory Protection (PMP).



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 381

5.4 Security Monitor (SM)

The SMruns in machine mode (which is loosely comparable to CPU microcode
used for Intel SGX logic) and protects itself using the RISC-V PMP. Our proto-
type has a tiny code size of 1253 Lines of Code (LoC), of which 381 LoC are used
by the Ascon implementation (which is used for computing, e.g., the EncID and
the sealing key). Therefore, it is small enough to be stored in on-chip SRAM,
without the need for encryption.

In principle, the SMcan run completely stateless and only requires a small
(approx. 1KiB) stack. Enclave management data is stored in dynamically allo-
cated PT MONITOR pages. The SMmaintains a 64 bit monotonic counter to
allocate a unique RTID per enclave. One could also sample the RTID from the
RISC-V hardware performance counters, e.g., the elapsed CPU cycles mcycle.

5.5 Caching

In our so-called inline variant, we cache the RVAS tweaks in the data and instruc-
tion caches. This caching allows the match of the currently active tweak with the
cache line and ensures that the entire tweak can be reconstructed for any write-
back operations. We store bSERV AS = 134 tweak bits in each of the Ncache

cache lines, covering the xRange-, PTE-, PRV-, SID-, and voffset bits. Since
the MEE manages the integrity counters, they need no caching. This totals
SData, SInstr = bSERV AS ·Ncache additional cache bits.

Cache Optimization. For real-world scenarios, tweaks can be deduplicated
into a separate Tweak Cache (TC) [34] to shrink the caching overhead in the
main caches. The TC is linked with the main caches via a tweak index of btweakidx

bits. We propose a set-associative TC whose set index is derived from the tweak
via a pseudorandom non-linear function, e.g., a lightweight cryptographic prim-
itive [50,58]. This allows for efficient identification of already inserted tweaks,
and only one additional cycle for the tweak comparison may be required. If a
TC entry is removed, all associated cache lines need to be flushed.

Table 1. Tweak decision table: • denotes arbitrary values.

MRange SRange URange PRV PTE TS SID Label

0 0 0 • • • • PT NORMAL

1 0 0 U • 01 MSID0 PT ENCLAVE

1 0 0 U !W 10 MSID1 PT SHCODE

0 0 1 U !X 11 USID0+1 PT SHDATA

• • • M rw • 0 PT MONITOR



382 S. Steinegger et al.

Fig. 3. Tweak cache compared to the inline variant (512bit cache lines) for different
TC configurations (Ntweak, bvoffsetL). Lower is better.

The exact TC parameterization depends on the expected workload (i.e., the
number of tweaks required in parallel). As another optimization, the bvoffset can
be split between main caches (bvoffsetL) and the TC (bvoffsetH), resulting in a
number of tweak zones per enclave. Moreover, we must consider two constraints:
(1) more ways in the TC require additional parallel comparator logic, and (2)
the overall cached tweak bits must be less than for the inline variant. To handle
(1) there should be no more ways in the TC as in the main cache. Addressing
(2) depends on the size of tweak zones, the size of the main caches, and the TC’s
size. The number of entries Ntweak in the TC determines the width of the index
btweakidx. We also include a valid bit bvalid:

SDataOpt, SInstrOpt = (bvoffsetL + btweakidx) ·Ncache (1)
Stweakcache = (bvalid + bSERV AS − bvoffsetL) ·Ntweak (2)

We evaluate the storage overhead as a function of Ncache with 512 bit cache
lines for different Ntweak and bvoffsetL in Fig. 3. We observe that each Ntweak has
the same break-even point for all bvoffsetL. After that, smaller bvoffsetL reduce
the overhead more. With larger caches bvoffsetL, becomes the dominating factor
and clusters them into groups. This effect is less pronounced for btweakidx due to
its smaller size. However, as an example, a TC with Ntweak = 128 entries could
reduce the storage overhead from 137 216 bit to 42 368 bit by about 69% for the
CVA6 CPU with its 64 kB main cache and 1 GB tweak zones (bvoffsetL = 20).

5.6 Encryption Bypass Optimization

Our prototype encrypts the whole system’s physical memory. To improve per-
formance, one could also apply RVAS encryption only to pages (e.g., enclaves)
that require this protection. This can be achieved by using the xRange registers
to decide if a request has to go through the MEE or access the memory directly.

A limitation of the encryption bypass is that the inherent overhead of the
integrity protection trees introduced by the MEE persists. Making the trees
sparse could address this problem, but no such open-source memory encryption
schemes have been proposed to the best of our knowledge.



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 383

6 Security Analysis

This section analyzes how RVAS’s tweak (cf. Sect. 2) cryptographically enforces
the challenges of memory isolation C1-C6. Attacks aim at breaking the attribute-
(IA), spatial- (IS), or temporal invariant (IT ).

6.1 Attacks on Physical Memory

An OS or physical attacker can access the physical memory via software or
by mounting bus probing or cold-boot attacks [29]. However, RVAS’s encryp-
tion prevents data access. Performing roll-back attacks or move encrypted data
around to violate the invariant IT is mitigated by RVAS’ integrity counters.

6.2 Attacks on Virtual Memory

Memory Isolation. Enclaves run in the virtual memory of a host application.
Hence a rogue enclave, host, or OS could try to access enclave data. SERVAS
supplies unforgeable (e.g., MRange, MSID) or enclave-private data to the memory
color field of RVAS. Without a correct tweak, RVAS fails and traps to the SM.

Page Mapping Attacks. The OS has full control over the page table entries
(PTEs) (challenge C4, cf. Sect. 2), allowing for a range of attacks:

Downgrade or Remapping Attacks. The OS can map an unprotected page
or another enclave’s page to an address in the enclave’s MRange to leak data or
divert the control flow and violate IA, IT or IS. However, the combination
of SM-controlled MRange registers, PTE bits, and the session identifier (e.g., the
Runtime Identifier (RTID) or the Enclave Identifier (EncID)) ensure that any
rogue pages in the MRange fail RVAS’ integrity check.

Swapping Attacks. The OS can create a copy of an enclave page via the
swapping mechanism to attempt to violate the temporal invariant IT . SERVAS
mitigates this attack by invalidating the original page before the swapped-out
copy is given to the OS. A similar attack attempts a roll-back by swapping-out
a page twice and providing the older copy during swap-in. This is prevented by
the latest authentication tag of the swapped out copy on a PT MONITOR page.

Shared Data Page Attacks. Enclave shared memory faces two attacks from
the OS: (1) Replace an enclave page with a shared memory page to trick the
enclave into leaking its secrets. (2) The OS and malicious enclave cooperate to
brute-force the 80 bit key. To prevent (1), the enclave must explicitly set the
URange CSR and the key before shared memory is active. Scenario (2) is an
online attack on shared memory only. It can be made practically infeasible by
(A) terminating the attacker enclave, as loading the enclave acts as dynamic rate-
limiting, or (B) performing explicit rate-limiting in the SMexception handler.



384 S. Steinegger et al.

Shared Code Page Attack. To deduplicate non-writable pages between dif-
ferent instances of the same enclave, the Enclave Identifier (EncID) is used as
the memory color. An attacker can run an offline attack to create an enclave
with a colliding EncID, which refers to finding a second pre-image to a crypto-
graphic authentication code. Using a 128 bit EncID could completely eliminate
this attack. However, SERVAS only supports an 80 bit SID. To achieve practi-
cal security, the EncID could be truncated using a key derivation function that
involves a secret CPU key.

7 Evaluation

Our prototype is based on the CVA6 [63] platform, a 64-bit RISC-V CPU. For
SERVAS, we extended this platform with the RVAS ISA extensions, the storage
of tweaks in its write-through cache tag, and an MEE for RVAS. We increased
the default cache line size from 16 B to 64 B, a common choice for many CPUs.
We use MEMSEC [59], an open-source framework supporting various encryption
schemes for the MEE. To fulfill our requirements (cf. Sect. 3), we configured
MEMSEC to use ASCON-128 and extend it to process the tweak as Ascon’s
associated data. We use ASCON-128 for RVAS as it is the only cipher that is
supported by the MEMSEC framework in TEC-Tree mode. MEMSEC is placed
between the cache and the memory controller to encrypt all data transparently.

7.1 Performance Overhead

We ran a set of macrobenchmarks on a Linux 5.10 kernel on the CVA6 CPU to
evaluate the performance. We use BEEBS [46] and CoreMark [22] as benchmarks.
We excluded the crc32, ludcmp, st, matmult-float, and rijndael benchmarks
from BEEBS, since they caused lockups on the unmodified CPU. We use the
geometric mean to aggregate all BEEBS benchmarks into a single metric in
Fig. 4. Detailed results are given in Appendix A. For the fast-running CoreMark,
we plot the mean over 1 000 runs (with 10 internal iterations), while for the
slower BEEBS, we average over 25 runs (with 4 internal iterations). We cannot
run more heavyweight benchmarks due to the prototype’s resource constraints
(256 MB accessible DRAM and 50 MHz CPU frequency).

Fig. 4. Left: Benchmarking the CVA6 core using no memory encryption, MEMSEC,
or RVAS. Right: Memory read-write latency.



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 385

Table 2. Micro-benchmarking results for SERVAS.

Cycles median Relative to getpid

Syscall getpid 10 403 1.0x

SERVAS SM Call “null” 9 030 0.9x

SERVAS Enter 18 865 1.8x

SERVAS Exit 17 391 1.7x

SERVAS Create 280 052 26.9x

Context Switch Sem. 238 781 23.0x

Figure 4 depicts our performance results normalized to an unprotected base-
line, i.e., CVA6 without any memory encryption. The overhead stems primarily
from MEMSEC in TEC-tree mode. RVAS adds two calls to Ascon’s permuta-
tion function to process the tweak in the MEE. RVAS’ overhead is 16.7% for
CoreMark, 20.0% for LMbench [44] and 24.5% for BEEBS compared to MEM-
SEC. Figure 4 shows the results of the read-write latency test of LMbench. This
benchmark measures the latency for differently sized data chunks and visual-
izes the impact of CVA6’s 32 kB L1 data cache and the latency of the external
DDR3 memory. MEMSEC increases the average latency for a memory access
from 850 ns to 3300 ns. The two additional rounds in RVAS only increase the
latency by another 290 ns on average. These results are encouraging, given that
we instantiated our RVAS prototype with the general-purpose MEMSEC encryp-
tion framework. We discuss possible optimizations in Sect. 7.3.

We evaluate SERVAS using the microbenchmarks shown in Table 2. We
repeat each test 10 000 times to reduce scheduling- and cache-related differences.
We compare the number of cycles for eenter/eexit with a simple “getpid” sys-
tem call to get the switching overhead. The “null SM call” is the equivalent of
a getpid system call that forms the baseline overhead for SM calls, but instead
of calling into the OS, we invoke the SM. Calling an enclave function only takes
3.5x the time of a simple system call. This call includes the time for enter-
ing (18 865 cycles), executing a function with a fixed return value, and exiting
(17 391 cycles) the enclave. Process-based context switching, using a semaphore
and shared memory for synchronization, takes 23.0x of a simple system call. For
comparison, entering and exiting an Intel SGX enclave takes 71x the time of a
system call [37], thus being significantly slower than invoking a SERVAS enclave.

7.2 Hardware Overhead

We synthesize our modified CVA6 for a Xilinx Kintex-7 series FPGA. The hard-
ware overhead of RVAS consists of the MEE, the ISA extension, and the aug-
mented cache. The design’s lookup tables (LUTs) increase by 20.27% and the
flip-flops by 19.13%. 61.84 s% of the additional LUTs result from the MEE,
37.26% from the extended cache, and the rest from the ISA extension. Each



386 S. Steinegger et al.

cache line is tagged with 125 bit for the memory encryption tweak. The over-
head in the cache is 25% for 512-bit cache lines. However, this overhead could
be reduced by using the optimizations in Sect. 5.5.

7.3 Prototype Limitations

Our RVAS prototype is not optimized for performance. Due to a lack of openly
available high-performance MEEs with authentication, we used the MEM-
SEC [59] framework. Its storage overhead is analyzed in [59]. The MEE sig-
nificantly impacts the overall performance (cf. Fig. 4). According to ARM, full
memory encryption has a runtime overhead of 7.5% to 25% and a storage over-
head of 7.8% to 26.7% [48]. Intel SGX memory encryption is good for medium
workloads but might cause worst-case throughput penalties of 400% [28]. Given
recent advances in RISC-V, we expect open-source, high-performance MEEs in
the future. The bypass optimization Sect. 5.6 could also improve the system
performance.

8 Related Work

Intel SGX [17,43] is a set of x86 instructions to interact with enclaves. Unlike
SGX, SERVAS dynamically reuses the whole physical memory instead of being
limited to the statically allocated 128 MB Processor Reserved Memory. Further-
more, SERVAS does not require a trusted metadata storage (i.e., SGX’s Enclave
Page Cache Map) but instead feeds this metadata directly into the encryption.

CrypTag [45] feeds the upper pointer bits into an authenticated encryption
engine to achieve memory safety. In contrast, RVAS supports various policies
and incorporates information on the CPU state as specified by an SM(cf. Sect. 3)
and adds the necessary logic to enforce these policies. The cache area overhead
of CrypTag is up to 20%, which is comparable with RVAS.

VAULT [53] makes Intel SGX’s EPC available to the full system memory to
reduce paging overhead. Unlike SERVAS, VAULT does not overcome SGX’s
limitation regarding efficient shared memory.

SMARTS [60] implements a Memory Protection Unit as a framework that par-
tially encrypts the memory and partitions the physical DRAM into three regions.
In contrast, SERVAS is not bound to a static boot-time memory configuration.

AMD Secure Encrypted Virtualization (SEV) [5,6] describe CPU exten-
sions to run virtual machines in untrusted environments. Unlike RVAS, SEV’s
memory encryption does neither provide integrity protection nor authentication.

Intel MKTME [32] transparently encrypts memory pages based on one of 64
different encryption keys indicated by the PTE. It does not provide crypto-
graphic authentication and relies on a trusted hypervisor.



SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 387

Other Systems. Sanctum [18], Keystone [39], and CURE [11] are other recent
enclave and TEE designs tackling unique challenges. However, in contrast to
SERVAS, these designs do not explicitly protect the external memory from phys-
ical attacks using memory encryption.

9 Future Work

We see usage scenarios of RVAS beyond traditional enclaves to provide, for
example, fine-grained intra-enclave isolation and system-level enclaves. SERVAS
could be used to supersede other protection mechanisms such as memory pro-
tection keys [31], pointer authentication [41], pointer tagging [10], and memory
coloring [45]. SERVAS specifies configuration registers on each privilege level.
These registers can allow for additional protection in the kernel by creating
kernel-level enclaves. Our current prototype implementation uses ASCON as it
is a lightweight cryptographic primitive already available in MEMSEC. How-
ever, realizing RVAS with other encryption primitives, such as AES, would be
possible but requires additional analysis, which we leave open for future work.

Remote Attestation is a method to ensure the authenticity of the enclave [25]
before provisioning secrets to it. Similar to SecureBlue++ [14], SERVAS loads
already encrypted enclaves. Thus, they can embed their secrets directly in the
code without the need for a remote attestation service. Based on these secrets,
one can easily establish a remote attestation protocol.

10 Conclusion

This paper presented an innovative isolation primitive called authenticryption
shield that unifies traditional and advanced isolation policies and offers potential
for future security applications. This primitive is built on top of an authenticated
memory encryption scheme, thus giving cryptographic isolation guarantees. We
demonstrated our design and prototype for RISC-V called SERVAS, which allows
for native and secure sharing between enclaves. We show how a small Security
Monitor with only 1253 LoC can manage all enclaves throughout their life-cycle
with our ISA extension. We prototyped and thoroughly assessed SERVAS’s per-
formance on the CVA6 RISC-V hardware and showed that entering or exiting
takes only about 3.5x of a getpid syscall.

Acknowledgments. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 681402) and by the Austrian Research Promotion
Agency (FFG) via the competence center Know-Center (grant number 844595), which
is funded in the context of COMET - Competence Centers for Excellent Technologies
by BMVIT, BMWFW, and Styria. Furthermore, this work has been supported by the
Austrian Research Promotion Agency (FFG) via the project ESPRESSO, which is
funded by the province of Styria and the Business Promotion Agencies of Styria and
Carinthia.



388 S. Steinegger et al.

A Detailed Evaluation Results

See Fig. 5.

Fig. 5. RVAS performance on the BEEBS benchmark suite compared to MEMSEC,
both normalized to an unprotected implementation.

References

1. USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA, USA,
10–12 July 2019 (2019)

2. 28th USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, 14–16 August 2019 (2019)

3. 29th USENIX Security Symposium, USENIX Security 2020, 12–14 August 2020
(2020)

4. ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014,
Minneapolis, MN, USA, 14–18 June 2014 (2014)

5. Advanced Micro Devices Inc.: AMD secure encrypted virtualization (SEV) (2020).
https://developer.amd.com/sev/

6. Advanced Micro Devices Inc.: AMD SEV-SNP: strengthening VM isolation
with integrity protection and more (2020). https://www.amd.com/system/files/
TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-
more.pdf

7. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: HASP 2013, vol. 13, p. 7 (2013)

8. Andzakovic, D.: Extracting BitLocker keys from a TPM (2019). https://
pulsesecurity.co.nz/articles/TPM-sniffing

9. Arm Limited: ARM security technology, building a secure system using TrustZone
technology (2009). http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C trustzone security whitepaper.pdf. Ref.
no. PRD29-GENC-009492C

https://developer.amd.com/sev/
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://pulsesecurity.co.nz/articles/TPM-sniffing
https://pulsesecurity.co.nz/articles/TPM-sniffing
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf


SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 389

10. Arm Limited: Armv8.5-a memory tagging extension (2020). https://developer.arm.
com/-/media/Arm%20Developer%20Community/PDF/Arm Memory Tagging
Extension Whitepaper.pdf

11. Bahmani, R.: CURE: a security architecture with customizable and resilient
enclaves. CoRR abs/2010.15866 (2020)

12. Beer, I.: An iOS zero-click radio proximity exploit odyssey (2020). https://
googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html

13. Biondo, A., Conti, M., Davi, L., Frassetto, T., Sadeghi, A.: The guard’s dilemma:
efficient code-reuse attacks against Intel SGX. In: USENIX Security 2018, pp.
1213–1227 (2018)

14. Boivie, R.: SecureBlue++: CPU support for secure execution (2020). https://
dominoweb.draco.res.ibm.com/reports/rc25287.pdf

15. Bourgeat, T., Lebedev, I.A., Wright, A., Zhang, S., Arvind, Devadas, S.: MI6:
secure enclaves in a speculative out-of-order processor. In: MICRO 2019, pp. 42–
56 (2019). https://doi.org/10.1145/3352460.3358310

16. Busi, M., et al.: Provably secure isolation for interruptible enclaved execution on
small microprocessors. In: CSF 2020, pp. 262–276 (2020). https://doi.org/10.1109/
CSF49147.2020.00026

17. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptol. ePrint Arch. 2016,
86 (2016)

18. Costan, V., Lebedev, I.A., Devadas, S.: Sanctum: minimal hardware extensions for
strong software isolation. In: USENIX Security 2016, pp. 857–874 (2016)

19. Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., Adve, V.S.: Nested kernel:
an operating system architecture for intra-kernel privilege separation. In: ASPLOS
2015, pp. 191–206 (2015). https://doi.org/10.1145/2694344.2694386

20. Dessouky, G., Frassetto, T., Sadeghi, A.: HybCache: hybrid side-channel-resilient
caches for trusted execution environments. In: USENIX Security 2020 [3], pp. 451–
468 (2020)

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to the CAESAR Competition (2016). https://ascon.iaik.tugraz.at/files/asconv12.
pdf

22. EEMBC: Coremark (2020). https://www.eembc.org/coremark/
23. Elbaz, R., Champagne, D., Lee, R.B., Torres, L., Sassatelli, G., Guillemin, P.:

TEC-Tree: a low-cost, parallelizable tree for efficient defense against memory replay
attacks. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
289–302. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-
2 20

24. Five, H.: MultiZone security for RISC-V (2020). https://hex-five.com/multizone-
security-sdk/

25. Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: DATE 2014, pp. 1–6 (2014). https://doi.org/10.7873/
DATE.2014.257

26. Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of
trusted computing in cloud infrastructures with Intel SGX. In: CLOSER 2017,
pp. 668–675 (2017). https://doi.org/10.5220/0006373706680675

27. Goodin, D.: Attackers exploit 0-day vulnerability that gives full control
of Android phones (2019). https://arstechnica.com/information-technology/
2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-
phones/

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-zero-click-radio-proximity.html
https://dominoweb.draco.res.ibm.com/reports/rc25287.pdf
https://dominoweb.draco.res.ibm.com/reports/rc25287.pdf
https://doi.org/10.1145/3352460.3358310
https://doi.org/10.1109/CSF49147.2020.00026
https://doi.org/10.1109/CSF49147.2020.00026
https://doi.org/10.1145/2694344.2694386
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://ascon.iaik.tugraz.at/files/asconv12.pdf
https://www.eembc.org/coremark/
https://doi.org/10.1007/978-3-540-74735-2_20
https://doi.org/10.1007/978-3-540-74735-2_20
https://hex-five.com/multizone-security-sdk/
https://hex-five.com/multizone-security-sdk/
https://doi.org/10.7873/DATE.2014.257
https://doi.org/10.7873/DATE.2014.257
https://doi.org/10.5220/0006373706680675
https://arstechnica.com/information-technology/2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-phones/
https://arstechnica.com/information-technology/2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-phones/
https://arstechnica.com/information-technology/2019/10/attackers-exploit-0day-vulnerability-that-gives-full-control-of-android-phones/


390 S. Steinegger et al.

28. Göttel, C.: Security, performance and energy trade-offs of hardware-assisted mem-
ory protection mechanisms. In: SRDS 2018, pp. 133–142 (2018). https://doi.org/
10.1109/SRDS.2018.00024

29. Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys.
In: USENIX Security 2008, pp. 45–60 (2008)

30. Hedayati, M., et al.: Hodor: intra-process isolation for high-throughput data plane
libraries. In: USENIX ATC 2019 [1], pp. 489–504 (2019)

31. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual,
vol. 3 (3A, 3B & 3C): System Programming Guide (325384) (2016)

32. Intel Corporation: Intel Architecture Memory Encryption Technologies Specifica-
tion. Ref: # 336907-002US. Rev: 1.2 (2019)

33. Jang, Y., Lee, J., Lee, S., Kim, T.: SGX-bomb: locking down the processor via
rowhammer attack. In: SysTEX 2017, pp. 5:1–5:6 (2017). https://doi.org/10.1145/
3152701.3152709

34. Joannou, A., et al.: Efficient tagged memory. In: ICCD 2017, pp. 641–648 (2017).
https://doi.org/10.1109/ICCD.2017.112

35. Jomaa, N., Nowak, D., Grimaud, G., Hym, S.: Formal proof of dynamic memory
isolation based on MMU. In: TASE 2016, pp. 73–80 (2016). https://doi.org/10.
1109/TASE.2016.28

36. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ISCA 2014 [2], pp. 361–372. https://doi.
org/10.1109/ISCA.2014.6853210

37. Koning, K., Chen, X., Bos, H., Giuffrida, C., Athanasopoulos, E.: No need to hide:
protecting safe regions on commodity hardware. In: EUROSYS 2017, pp. 437–452
(2017). https://doi.org/10.1145/3064176.3064217

38. Kossifidis, N.: Secure boot notes (2020). https://lists.riscv.org/g/tech-tee/
message/288. E-mail #288 from the tech-teelists.riscv.org group from 2 June 2020

39. Lee, D., Kohlbrenner, D., Shinde, S., Asanovic, K., Song, D.: Keystone: an open
framework for architecting trusted execution environments. In: EUROSYS 2020,
pp. 38:1–38:16 (2020). https://doi.org/10.1145/3342195.3387532

40. Lee, J., et al.: Hacking in darkness: return-oriented programming against secure
enclaves. In: USENIX Security 2017, pp. 523–539 (2017)

41. Liljestrand, H., Nyman, T., Wang, K., Perez, C.C., Ekberg, J., Asokan, N.: PAC
it up: towards pointer integrity using ARM pointer authentication. In: USENIX
Security 2019 [2], pp. 177–194 (2019)

42. McKeen, F., et al.: Intel Software Guard Extensions (Intel SGX) support for
dynamic memory management inside an enclave. In: HASP 2016, pp. 1–9 (2016)

43. McKeen, F., et al.: Innovative instructions and software model for isolated execu-
tion. In: HASP 2013, p. 10 (2013). https://doi.org/10.1145/2487726.2488368

44. McVoy, L.W., Staelin, C.: lmbench: portable tools for performance analysis. In:
USENIX ATC 1996, pp. 279–294 (1996)

45. Nasahl, P., Schilling, R., Werner, M., Hoogerbrugge, J., Medwed, M., Mangard, S.:
CrypTag: thwarting physical and logical memory vulnerabilities using cryptograph-
ically colored memory. In: ASIA CCS 2021: ACM Asia Conference on Computer
and Communications Security, Virtual Event, Hong Kong, 7–11 June 2021, pp.
200–212 (2021). https://doi.org/10.1145/3433210.3453684

46. Pallister, J., Hollis, S.J., Bennett, J.: BEEBS: open benchmarks for energy mea-
surements on embedded platforms. CoRR abs/1308.5174 (2013)

47. Park, S., Lee, S., Xu, W., Moon, H., Kim, T.: libmpk: Software abstraction for
intel memory protection keys (Intel MPK). In: USENIX ATC 2019 [1], pp. 241–
254 (2019)

https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.1109/SRDS.2018.00024
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1145/3152701.3152709
https://doi.org/10.1109/ICCD.2017.112
https://doi.org/10.1109/TASE.2016.28
https://doi.org/10.1109/TASE.2016.28
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1145/3064176.3064217
https://lists.riscv.org/g/tech-tee/message/288
https://lists.riscv.org/g/tech-tee/message/288
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/2487726.2488368
https://doi.org/10.1145/3433210.3453684


SERVAS! Secure Enclaves via RISC-V Authenticryption Shield 391

48. Roberto-Maria, A.: Memory protection for the ARM architecture (2020). https://
rwc.iacr.org/2020/slides/Avanzi.pdf. Presented at Real World Crypto 2020

49. Schrammel, D., et al.: Donky: domain keys - efficient in-process isolation for RISC-
V and x86. In: USENIX Security 2020 [3], pp. 1677–1694 (2020)

50. Seznec, A., Bodin, F.: Skewed-associative caches. In: Bode, A., Reeve, M., Wolf,
G. (eds.) PARLE 1993. LNCS, vol. 694, pp. 305–316. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-56891-3 24

51. Steinegger, S., Schrammel, D., Weiser, S., Nasahl, P., Mangard, S.: SERVAS! secure
enclaves via RISC-V authenticryption shield. CoRR abs/1802.09085 (2021)

52. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: S&P
2013, pp. 48–62 (2013). https://doi.org/10.1109/SP.2013.13

53. Taassori, M., Shafiee, A., Balasubramonian, R.: VAULT: reducing paging overheads
in SGX with efficient integrity verification structures. In: ASPLOS 2018, pp. 665–
678 (2018). https://doi.org/10.1145/3173162.3177155

54. Unterluggauer, T., Werner, M., Mangard, S.: MEAS: memory encryption and
authentication secure against side-channel attacks. J. Cryptogr. Eng. 9(2), 137–158
(2018). https://doi.org/10.1007/s13389-018-0180-2

55. Vahldiek-Oberwagner, A., Elnikety, E., Duarte, N.O., Sammler, M., Druschel, P.,
Garg, D.: ERIM: secure, efficient in-process isolation with protection keys (MPK).
In: USENIX Security 2019 [2], pp. 1221–1238 (2019)

56. Waterman, A., Asanović, K.: The RISC-V instruction set manual, volume II: priv-
ileged architecture, document version 20190608-priv-msu-ratified (2019). https://
riscv.org/specifications/privileged-isa/

57. Weiser, S., Werner, M., Brasser, F., Malenko, M., Mangard, S., Sadeghi, A.:
TIMBER-V: tag-isolated memory bringing fine-grained enclaves to RISC-V. In:
NDSS 2019 (2019)

58. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard, S.:
ScatterCache: thwarting cache attacks via cache set randomization. In: USENIX
Security 2019 [2], pp. 675–692 (2019)

59. Werner, M., Unterluggauer, T., Schilling, R., Schaffenrath, D., Mangard, S.: Trans-
parent memory encryption and authentication. In: FPL 2017, pp. 1–6 (2017).
https://doi.org/10.23919/FPL.2017.8056797

60. Wong, M.M., Haj-Yahya, J., Chattopadhyay, A.: SMARTS: secure memory assur-
ance of RISC-V trusted SoC. In: HASP 2018, pp. 6:1–6:8 (2018). https://doi.org/
10.1145/3214292.3214298

61. Woodruff, J., et al.: The CHERI capability model: revisiting RISC in an age of
risk. In: ISCA 2014 [4], pp. 457–468 (2014). https://doi.org/10.1109/ISCA.2014.
6853201

62. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm v1.1.
Submission to the CAESAR Competition (2016). https://competitions.cr.yp.to/
round3/aegisv11.pdf

63. Zaruba, F., Benini, L.: The cost of application-class processing: energy and per-
formance analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI
technology. IEEE Trans. Very Large Scale Integr. Syst. 27, 2629–2640 (2019).
https://doi.org/10.1109/TVLSI.2019.2926114

64. Zeldovich, N., Kannan, H., Dalton, M., Kozyrakis, C.: Hardware enforcement of
application security policies using tagged memory. In: OSDI 2008, pp. 225–240
(2008)

https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://rwc.iacr.org/2020/slides/Avanzi.pdf
https://doi.org/10.1007/3-540-56891-3_24
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1145/3173162.3177155
https://doi.org/10.1007/s13389-018-0180-2
https://riscv.org/specifications/privileged-isa/
https://riscv.org/specifications/privileged-isa/
https://doi.org/10.23919/FPL.2017.8056797
https://doi.org/10.1145/3214292.3214298
https://doi.org/10.1145/3214292.3214298
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1109/ISCA.2014.6853201
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://doi.org/10.1109/TVLSI.2019.2926114

	SERVAS! Secure Enclaves via RISC-V Authenticryption Shield
	1 Introduction
	2 Challenges of Memory Isolation
	3 RISC-V Authenticryption Shield (RVAS)
	3.1 RVAS Tweak Design
	3.2 Solving the Challenges

	4 SERVAS
	4.1 Threat Model
	4.2 Enclave Life Cycle
	4.3 Enclave Memory Management

	5 SERVAS Implementation Details
	5.1 Instruction Set Extension
	5.2 Tweak
	5.3 Page Types
	5.4 Security Monitor (SM)
	5.5 Caching
	5.6 Encryption Bypass Optimization

	6 Security Analysis
	6.1 Attacks on Physical Memory
	6.2 Attacks on Virtual Memory

	7 Evaluation
	7.1 Performance Overhead
	7.2 Hardware Overhead
	7.3 Prototype Limitations

	8 Related Work
	9 Future Work
	10 Conclusion
	A Detailed Evaluation Results
	References




