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On Exploiting Message Leakage in (few) NIST PQC
Candidates for Practical Message Recovery Attacks

Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, Anupam Chattopadhyay

Abstract—In this work, we propose generic and prac-
tical side-channel attacks for message recovery in post-
quantum lattice-based public key encryption (PKE)
and key encapsulation mechanisms (KEM). The tar-
geted schemes are based on the well known Learn-
ing With Errors (LWE) and Learning With Rounding
(LWR) problem and include three finalists and six semi-
finalist candidates of the ongoing NIST’s standardiza-
tion process for post-quantum cryptography. Notably,
we propose to exploit inherent ciphertext malleability
properties of LWE/LWR-based PKEs as a powerful
tool for side-channel assisted message recovery attacks.
The use of ciphertext malleability widens the scope
of previous attacks with the ability to target multiple
operations for message recovery. Moreover, our attacks
are adaptable to different implementation variants and
are also applicable to implementations protected with
concrete shuffling and masking side-channel counter-
measures. Our work mainly highlights the presence of
inherent algorithmic properties in LWE/LWR-based
schemes that can aid side-channel attacks for message
recovery, thereby stressing on the need for strong side-
channel countermeasures against message recovery for
LWE/LWR-based schemes.

I. Introduction
The impending threat of large scale quantum computers

to conventional RSA and ECC-based public-key crypto-
graphic schemes has prompted significant interest in the
cryptographic community towards developing alternate
public-key cryptographic schemes which are resistant to
attacks from quantum computers, better known as Post-
Quantum Cryptography (PQC) [1]. This, NIST in 2017
initiated a global standardization process for PQC-based
Public Key Encryption (PKE), Key Establishment Mecha-
nisms (KEM) and Digital Signature (DS) schemes. This
process is currently in its third and final round with seven
main candidates and eight alternate candidates [2]. NIST
and the PQC research community anticipate that a subset
of PQC candidates will be standardized around 2024 and
soon reach wide scale adoption.
While the initial rounds considered theoretical post-

quantum security and implementation performance on
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hardware and software platforms as key selection criteria,
NIST has made it clear that resistance against side-channel
and fault attacks will also be considered as a key criteria for
standardization. NIST states that it “encourages additional
research regarding side-channel analysis” of the finalist
candidates and that it “hopes to collect more information
about the costs of implementing these algorithms in a way
that provides resistance to such attacks” [2]. This is very
relevant for adoption of PQC in embedded devices, which
are typically deployed in scenarios where an attacker has
direct physical access to the device.

In this respect, we focus on Side-channel Analysis (SCA)
of lattice-based PKE/KEMs built upon hardness of the well
known Learning With Errors (LWE) and Learning With
Rounding (LWR) problem. They form the majority in the
standardization process with six (6) out of seventeen (17)
candidates in the semi-final round and three (3) out of the
nine (9) candidates in the final round. Several works have
demonstrated the efficacy of implementing LWE/LWR-
based schemes on constrained embedded devices such as
8-bit/32-bit microcontrollers and FPGAs [3] and thus SCA
of their embedded implementations gained considerable
traction with several works on practical attacks as well as
protected implementations [4], [5], [6].
While a majority of side-channel attacks have focussed

on recovery of the long term secret key used for decryption,
much lesser attention has been devoted to side-channel
security of the secret message, whose knowledge leads to
recovery of the session key. The known message recovery
attacks [7], [8], [9] on LWE/LWR-based schemes exploit
preventable implementation level vulnerabilities that leak
side-channel information about the message. These attacks
are very specific to the target implementation and thus
can be easily thwarted using appropriate implementation
level changes. We however observe that LWE/LWR-based
schemes inherently involve unique bitwise manipulation
of the message which could pave way for a wider class of
side-channel vulnerabilities leading to message recovery.
In this paper, we propose generic message recovery attacks

for LWE/LWR-based PKE/KEMs which exploit inherent
algorithmic properties to assist side-channel based message
recovery. The generic nature of our message recovery
attacks can be attributed to the utilization of ciphertext
malleability properties of LWE/LWR-based schemes as
an effective tool in a side-channel setting. Our message
recovery attacks operate in two phases i.e. pre-processing
and exploitation phase and the overall attack flow is
illustrated in Fig. 1.
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Figure 1: Attack flow for our message recovery attacks
targeting the IND-CCA secure decapsulation procedure

Contributions:
1) (a) We demonstrate a novel message recovery attack

targeting themessage decoding operation within the de-
cryption procedure of LWE/LWR-based PKE/KEMs,
exploiting incremental storage of the decrypted mes-
sage in memory (Sec. IV).
(b) We perform experimental validation of our message
recovery attack using the Electromagnetic Emanation
(EM) side-channel from optimized implementations
of PQC schemes from the pqm4 public library [10], a
testing and benchmarking framework for PQC schemes
on the ARM Cortex-M4 microcontroller (Sec. V).

2) (a) To the best of our knowledge, our work demon-
strates the first utilization of the inherent ciphertext
malleability property of LWE/LWR-based schemes as
a tool for side-channel analysis (Sec. VI).
(b) We exploit ciphertext malleability to propose
generic message recovery attacks targeting storage
of the decrypted message in memory, irrespective of
the bit width as compared to only bit-wise in our
original attack (Sec. VII).
(c) Our attacks are applicable to six LWE/LWR-based
PKE/KEMs from the NIST standardization process
- Kyber, Saber (main finalists), Frodo (alternative
finalist) and semi-finalist candidates such as NewHope,
Round5 and LAC.

3) We also exploit the ciphertext malleability property to
break well known side-channel countermeasures such
as (Sec. VIII):
(a) Shuffling countermeasure for the message encoding
operation proposed by Amiet et al. [8] in PQCrypto’20.
(b) Adaptation of the PQCrypto’20 countermeasure
to the message decoding operation.
(c) Masking countermeasures such as that of Oder et
al. [4] of CHES’18.

4) As a secondary contribution, we also propose improve-
ments to the chosen ciphertext based key recovery
attacks proposed by Xu et al. [10] which rely upon
complete message recovery. While the original attack
proposed on Kyber512 required 8 decrypted messages
for full key recovery, we improve the requirement to
6 queries and also propose non-trivial extensions of
the same attack to LWE/LWR-based schemes such as
NewHope (Supplementary material, Sec. V).

Our work mainly highlights the presence of inherent
algorithmic properties in LWE/LWR-based schemes that
can aid side-channel attacks for message recovery, which
can also lead to easy compromise of the long-term secret
key. It therefore reiterates the need for strong and concrete
evaluation of side-channel countermeasures against message
recovery in LWE/LWR-based schemes.

II. Lattice Preliminaries
A. Notation

We denote the ring of integers modulo a prime q as Zq.
We denote the the space of all byte arrays of length n bytes
as Bn. The ith byte of m ∈ Bn is denoted as m[i], while
the jth bit of m is denoted as mj and the kth bit of m[i]
as m[i]k. The polynomial ring Zq(x)/φ(x) is denoted as Rq
where φ(x) is its reduction polynomial. Polynomials in Rq
are shown in bold lower case letters and the ith coefficient
of a ∈ Rq is referred to as a[i]. Matrices/vectors in Zk×lq

are shown in bold upper case letters. Multiplication of
two polynomials a and b in Rq is denoted as c = a × b.
An element x ∈ Rq sampled from the distribution χ with
standard deviation σ is denoted as x← χσ(Rq). While U
refers to a uniform distribution, D refers to a Gaussian
distribution.

B. Learning With Errors/Rounding Problem (LWE/LWR)
The security of several lattice-based PKE/KEMs is

governed by the well-known Learning With Errors (LWE)
problem [11]. A standard LWE instance is denoted as a
tuple (A,T) ∈ (Zk×`q × Zk×nq ) where A ← U(Zk×`q ) is a
public constant and T = A×S+E where S ∈ Dσ(Z`×nq ) is
the secret and E ∈ Dσ(Zk×nq ) is the error. Learning With
Rounding (LWR) is a slight variant of the LWE problem
where the error component E is implicitly generated by
rounding the elements of the product (A× S) to a lower
modulus p [12].

Frodo (NIST finalist candidate) is based on the standard
LWE problem while most other schemes are based on
structured variants of the LWE/LWR problem known as the
Ring-LWE/Ring-LWR (RLWE/RLWR) [13] and Module-
LWE/Module-LWR (MLWE/MLWR) problem [14]. These
variants involve computation over polynomials in poly-
nomial rings such as Rq = Zq[x]/(xn + 1) or Rq =
Zq[x]/(xn − x− 1). Schemes such as NewHope, LAC and
Round5 are based on the RLWE/RLWR problem which
involve computation over polynomials in Rq, while schemes
such as Kyber and Saber are based on the MLWE/MLWR
problem which involve computation over small matrices
and vectors of polynomials in polynomial rings Rkq for
k > 1 referred to as modules. Concrete details of the
aforementioned schemes can be found in their respective
specification documents available in [15].

C. A Generic Framework for LWE/LWR based PKE/KEMs
Most LWE/LWR-based PKE/KEMs are built upon a

generalized paradigm for public key encryption schemes
proposed by Lyubashevskey, Peikert and Regev [13] in 2010,
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Algorithm 1: LPR Encryption Scheme [13]
1 Procedure PKE.KeyGen()
2 a ∈ Rq
3 s, e← χσ(Rq) ∈ Rq
4 t = a × s + e ∈ Rq
5 return pk = (a, t), sk = (s)
6
1 Procedure PKE.Encrypt(pk,m ∈ B32, r ∈ B32)
2 s′, e′, e′′ ← χσ(Rq)
3 u = a × s′ + e′
4 v′ = t× s′ + e′′
5 x = Encode(m)
6 v = v′ + x
7 return ct = (u,v)
8
1 Procedure PKE.Decrypt(ct, sk)
2 x′ = (v− u× s) ∈ Rq
3 m′ = Decode(x′)
4 return m′

now well-known as the LPR Encryption scheme. We provide
a high level description of the LPR encryption scheme
based on the RLWE problem in Alg. 1, while the same can
be adapted to both the standard and module variants of
the LWE/LWR problem. We define the procedure Encode
which encodes a byte array in Bn into a corresponding
polynomial in the ring Rq and the corresponding inverse
procedure Decode which maps a polynomial in Rq to a
byte array in Bn.
1) Security in the Chosen-Ciphertext Model: The LPR

PKE is provably secure in the Indistinguishability under
Adaptive Chosen-Plaintext Attack (IND-CPA) security
model. However, an adversary with access to the decrypted
message for chosen ciphertexts can recover the long term
secret key. Thus, most LWE/LWR-based schemes employ
the Fujisaki-Okamoto (FO) transform [16] to achieve
security in the Indistinguishability under Adaptive Chosen-
Ciphertext Attack (IND-CCA) model. The FO transform
forms a wrapper around the encryption and decryption
procedures using several instantiations of one-way hash
functions resulting in IND-CCA secure encapsulation
(KEM.Encaps) and decapsulation (KEM.Decaps) procedures
respectively, as shown in Alg.2. The FO transform per-
forms a re-encryption of the decrypted message (line
4 in KEM.Decaps). The resulting ciphertext ct′ is then
compared with with the received ciphertext ct (line 5). For
an invalid ciphertext, this comparison step will always fail
and thus an adversary does not get any information about
the decrypted message for maliciously chosen ciphertexts,
thereby defeating chosen ciphertext attacks.

D. Tools for Feature Selection in Side-Channel Analysis
1) Test Vector Leakage Assessment (TVLA) [17]: TVLA

is a popular conformance-based evaluation methodology
widely used by both academia and the industry to perform
side-channel evaluation of cryptographic implementations.
It involves computation of the well known univariate
Welch’s t-test over two sets of side-channel measurements
to identify differentiating features in them. The TVLA
formulation over two sets of measurements Tr and Tf is

Algorithm 2: IND-CCA secure LWE/LWR-based
KEM

1 Procedure KEM.Encaps(pk)
2 ρ← U(B32)
3 m = H(ρ)
4 r = G(m, pk)
5 ct = PKE.Encrypt(pk,m, r)
6 K = H(r, ct)
7 return (ct, K)
8
1 Procedure KEM.Decaps(sk, pk, ct)
2 m′ = PKE.Decrypt(sk, ct)
3 r′ = PRF(m′, pk)
4 ct′ = PKE.Encrypt(pk,m′, r′)
5 if ct′ = ct then
6 return K = KDF(r′‖ct′)
7 end
8 else
9 return K = KDF(z‖ct′) // z ∈ B32 is a random secret

10 end

given by:

TVLA = µr − µf√
σ2
r

mr
+ σ2

f

mf

, (1)

where µr, σr and mr (resp. µf , σf and mf ) are univariate
mean, standard deviation and cardinality of the trace set
Tr (resp. Tf ). The null hypothesis (two means are equal) is
rejected with a confidence of 99.9999% when the absolute
value of the t-test score is greater than 4.5 [17]. A rejected
hypothesis implies that the two sets are noticeably different
and hence could leak some side-channel information.
2) Normalized Inter-Class Variance (NICV) [18]: While

TVLA can be used to differentiate between two classes,
NICV is a more generic metric which can simultaneously
differentiate between two or more classes. Let the variable
X have n possible classes and let C(X) denote the class of
a given value of X. If the observed leakage of X is denoted
as T , then NICV can be calculated as follows:

NICV = σ2(µ(T |C(X))
σ2(T ) , (2)

where µ(x) and σ(x) refer to the univariate mean and stan-
dard deviation of x. It is a univariate ANOVA (ANalysis Of
VAriance) F-test, as a ratio between the variance of means
of leakage conditioned upon the class and the total leakage
variance. There is no definitive threshold for NICV. Thus,
higher the value of NICV at a given point, more significant
is the difference in leakage between each class. In this work,
we utilize TVLA and NICV as tools for feature selection
from side-channel traces.

III. Prior Works and Motivation
LWE/LWR-based PKE/KEMs have been targeted by

side-channel attacks for two reasons: (1) Key Recovery (2)
Message Recovery. However, most of works on SCA of these
schemes have focussed on key recovery attacks targeting
the long term secret key, while message recovery attacks
leading to session key recovery are much less studied.

A. Key Recovery Attacks
Key recovery attacks on LWE/LWR-based PKE/KEMs

can be broadly split into the following two classes.
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1) Direct Key Recovery: These attacks work by directly
targeting the polynomial/matrix-vector multiplication that
manipulates the long term secret key in the decryption
procedure. Several attacks have targeted different imple-
mentation variants such as the schoolbook multiplier [19],
Number Theoretic Transform (NTT) [20] and the product-
scanning based multiplier [21].
2) Message Recovery leading to Key Recovery: The

second class of key-recovery attacks work by obtaining
side-channel information about the decrypted message
for chosen-ciphertexts, which leads to key recovery in
LWE/LWR-based PKE/KEMs. D’Anvers et al. [22] re-
ported the first such attack on two post-quantum KEMs
LAC and RAMSTAKE, by utilizing timing side-channel
information from the decryption procedure. It was used to
extract binary information about the decrypted message
for chosen-ciphertexts which led to full key recovery.
Subsequently, Ravi et al. [5] used the EM side-channel and
generalized the attack to constant-time implementation
of several LWE/LWR-based KEMs. Both these attacks
extracted binary information about the decrypted message,
leading to key recovery in a few thousand queries.
More recently, Xu et al. [23] showed that an attacker

with complete knowledge of the decrypted message for
chosen ciphertexts can perform full key recovery only
using 8 decryption queries for Kyber (Kyber512) and the
same attack can be extended to other LWE/LWR-based
schemes as well. This work highlights the need to protect
the message in LWE/LWR-based schemes since any SCA
vulnerability that leaks the complete message easily leads to
recovery of the long term secret in a handful of decryption
queries. This motivates us to analyze the presence of SCA
leakage of the message in LWE/LWR-based PKE/KEMs.

B. Message Recovery Attacks
However, side-channel attacks targeting complete mes-

sage recovery is much less studied and the message encoding
operation within the encryption procedure is the only
operation that has been analyzed in the context of message
recovery. In this respect, Amiet et al. [8] in PQCrypto 2020
proposed the first single trace template style attack on
NewHope KEM targeting the message encoding function.
Their attack exploits leakage from a sensitive determiner
variable which leaks information about single bits of
the message. We refer to it as the Determiner-Leakage
vulnerability throughout this work. Subsequently, Sim et
al. [7] generalized the attack to target several LWE/LWR-
based PKE/KEMs. In a very recently posted paper, Ngo
et al. [9] exploited Determiner-Leakage to perform single
trace message recovery on a masked implementation of
Saber2. In the following, we briefly analyze the source of
Determiner-Leakage at the micro-architectural level.

2The pre-print of our work [24] was posted prior to the posting
of [9] by Ngo et al. . In fact, the authors also appropriately cite the
pre-print of our work.

C. Analyzing Determiner-Leakage Vulnerability:
Referring to the encryption procedure PKE.Encrypt in

Alg.1, the function Encode maps a message m with n bits
into a corresponding polynomial x ∈ Rq. Each message
bit mi for i ∈ [0, n − 1] is encoded into a corresponding
coefficient x[i] such that x[i] = C ·mi where C is the center
of the operating integer ring Zq.
Schemes such as NewHope and Kyber compute x[i] =

mask & C where & is a bitwise-and operation and the
mask takes two values mask = 0xFFFF if mi = 1 and
mask = 0x0000 otherwise. Though an efficient technique
to encode, side-channel leakage (referred to as determiner
leakage in [7]) from the bitwise-and operation easily leaks
the value of mask (0x0000 or 0xFFFF) which reveals mi.
This vulnerability has already been exploited for attacks
on embedded ECC implementations [25], thus this leaky
operation could have been avoided with a little more care.
However, schemes such as Saber and Frodo avoid the use
of the leaky mask and compute the product x[i] = C ·mi

using a simple arithmetic shift operation since C is a power
of 2. In these schemes, leakage mainly arises due to storage
of the encoded coefficients x[i] (C or 0) of the message
polynomial in memory. It is well known that the storage
operation leaks the Hamming Weight (HW) of the stored
value [26] (i.e) storage ofX leaks HW(X). Thus, an attacker
who can distinguish between HW(C) and HW(0) = 0 can
recover mi and subsequently the complete message.

D. Looking Beyond Determiner-Leakage Vulnerability
We observe that the Determiner-Leakage vulnerability

lies at the implementation level and can thus be easily
circumvented using implemenation level changes. Analysis
of the implementation of schemes such as Round5 and
LAC shows that a mere alternate implementation choice
for the Encode function seems to unintentionally eliminate
the vulnerability. Instead of implementing Encode as a
standalone function, it is combined with the subsequent
polynomial addition operation (line 6) in an interleaved
manner. The coefficient of the encoded message polynomial
x[i] = kd · mi is computed and immediately added to
the ciphertext coefficient v[i] and then stored to memory.
This eliminates direct storage of x[i] thereby eliminating
Determiner-Leakage. Alternatively, vectorized computation
of multiple coefficients can be used as a fix to protect
against the reported message recovery attacks targeting
the Determiner-Leakage vulnerability. Thus, Determiner-
Leakage can be avoided using fixes at the implementation
level.
In this work, we however show that LWE/LWR-based

schemes have inherent algorithmic properties which can
be exploited in a side-channel setting to perform message
recovery in a generic manner, adaptable to different imple-
mentation variants. Our attacks target a more fundamental
operation (i.e.) storage of the decrypted message in memory.
This operation cannot be easily avoided as the computed
message is typically too long to be retained in registers (i.e)
256 bits or more and hence has to be moved to memory.
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Figure 2: Illustration of our message recovery attacks
targeting the IND-CCA secure decapsulation procedure
(KEM.Decaps() in Alg.2) of LWE/LWR-based PKE/KEMs

This is especially true for embedded RISC based devices
which typically contain very few working registers. We also
propose novel attack techniques to break well known side-
channel countermeasures such as shuffling and masking. Fig.
2 illustrates the targeted operations to perform message
recovery attack within the IND-CCA secure decapsulation
procedure.

IV. Side-Channel Analysis of the Message
Decoding Operation

We observe that the secret message in LWE/LWR-based
PKE/KEMs is manipulated in a very unique manner
compared to conventional PKE/KEMs based on RSA and
ECC. The decryption procedure computes the message
polynomial x′ ∈ Rq from the ciphertext ct (line 2 in
PKE.Decrypt of Alg.1). Subsequently, a decoding procedure
denoted as Decode (line 3) is used to iteratively map each
coefficient x′[i] for i ∈ [0, n − 1] into a corresponding
message bit m′i, thereby computing the message one bit at a
time. This type of bitwise manipulation at the algorithmic
level is not observed in RSA/ECC-based schemes where the
message is typically computed as a whole. In the following,
we show that this behaviour gives rise to an exploitable
side-channel vulnerability within the message decoding
function, leading to full message recovery.

A. SCA Vulnerability of Message Decoding Operation:
We use Kyber based on the MLWE problem, which is one

finalist of the NIST PQC competition, as a representative
scheme for illustration, while our analysis applies in the
same manner to schemes such as Saber, NewHope, Round5
and LAC unless otherwise specified. Refer to Fig. 3 for the
C code snippet of the message decoding function Decode
used in Kyber KEM [27] (m ∈ B32). Please note that the
same implementation is used in the NIST submission as well
as within several indepdendently developed PQC libraries
such as pqm4 [10] and LibOQS [28].
1) Vulnerability Analysis: The Decode function takes

as input x ∈ Rq (n = 256 coefficients) and outputs the
message m ∈ B32. The message bytes are first initialized to
zero (line 9 in Fig. 3). Every coefficient x[k] for k ∈ [0, 256]
with k = (8 ∗ i+ j) is iteratively decoded to bit t (line x)

1 void Decode ( unsigned char *m, poly *x)
2 {
3 uint16_t t;
4 int i, j;
5 poly_csubq (x);
6 for (i = 0; i < 32; i++)
7 {
8 /* init byte m[i] to zero */
9 m[i] = 0;

10 for (j = 0; j < 8; j++)
11 {
12 k = 8*i+j;
13 t = (x-> coeffs [k] � 1) + Q/2;
14 /* Calculate Message Bit */
15 t = (t/Q) & 1;
16 /* Bit Update in Memory */
17 m[i] |= t � j;
18 }
19 }
20 }

Figure 3: C code snippet of message decoding operation in
Kyber KEM

which is then updated in m[i]j (i.e) bit j of byte m[i] in
memory (line 17). Thus, every byte m[i] for i ∈ [0, 31] is
incrementally updated in memory one bit at a time in 8
iterations of the for loop running over variable j.

1 /* t = (x-> coeffs [n]<<1)+Q/2; in r6 */
2 LDRSH.W r6 , [r4 , #2]
3 LSLS r6 , r6 , #1
4 ADD.W r6 , r6 , #1664 ; 0x680
5 /* t = (t/Q) & 1; in r6 */
6 SMULL ip , r7 , r1 , r6
7 ADD r7 , r6
8 ASRS r6 , r6 , #31
9 RSB r6 , r6 , r7 , asr #11

10 AND.W r6 , r6 , #1
11 /* m[i] |= t << j; in r3 */
12 ORR.W r3 , r3 , r6 , lsl #1
13 /* Store updated m[i] in memory */
14 STRB r3, [r2, #0]

Figure 4: Assembly code snippet of a single iteration of
the message decoding function in Kyber KEM

We analyze the compiled assembly code to better un-
derstand the effect of bitwise manipulation at the micro-
architectural level on our target platform (i.e) 32-bit ARM
Cortex-M4. We compiled our implementations using the
arm-none-eabi-gcc compiler with the highest compiler
optimization level -O3. Refer to Fig. 4 for the compiled
assembly code for the body of the innermost loop running
over variable j in the C code of Fig. 3. We denote the
intermediate value of message byte m[i] at the end of the
jth iteration as m[i, j] with j ∈ [0, 7]. We consider the
update of bit m[i]j to the intermediate byte m[i, j − 1] in
memory for illustration. Register r3 contains the current
value (i.e) m[i, j − 1] and the decoded bit t is computed in
register r6 (line 10). Then, r6 is left shifted by j positions
(in our case, j = 1) and subsequently bitwise-or’red with
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r3 to compute the updated message byte m[i, j] (line 12).
The result in r3 is then stored to memory using the STRB
instruction (line 14). The same set of operations is repeated
8 times for every message byte m[i] with i ∈ [0, 31].
2) Attack Methodology: Since the power/EM side-

channel leaks the Hamming weight (HW) of the stored
value, side-channel information from the STRB instruction
of every iteration leaks (roughly) the HW of the correspond-
ing intermediate value m[i, j]. Recovery of HW(m[i, j]) for
all j ∈ [0, 7] can be used to trivially recover m[i] in the
following manner. Since m[i] starts with a value of zero,
HW of the first store m[i, 0] is nothing but the first bit
m[i]0. Subsequently, the other bits m[i]j for j ∈ [1, 7] can
be retrieved using the following rule:

m[i]j =
{

0, if HW(m[i, j]) = HW(m[i, j − 1])
1, if HW(m[i, j]) = HW(m[i, j − 1]) + 1

(3)

The same procedure can be applied to the other message
bytes for full message recovery. Thus, we observe that
bitwise computation of the decrypted message leads to an
incremental update of message in memory and we refer
to this as the Incremental-Storage vulnerability throughout
the paper. Thus, an attacker with a perfect HW classifier
can recover the full message in a single trace. The same
vulnerability/behaviour also exists in the compiled code at
all optimization levels (-O0 to -03) of Kyber KEM and we
also observe a very similar behaviour in implementations of
four other schemes - NewHope, Round5, Saber and LAC
whose analysis is provided in Sec. II of the supplementary
material.

V. Single Trace Message Recovery Attack
We now demonstrate efficient attack techniques to

perform practical single trace message recovery attacks tar-
geting the Incremental-Storage vulnerability in LWE/LWR-
based PKE/KEMs.

A. Adversary Model
Given a ciphertext ct, the attacker’s main motive is to

recover the hidden message m. The ciphertext corresponds
to a valid PKE/KEM instance between the target device
(DUT) and another legitimate device. With the recovered
message and the corresponding ciphertext, an attacker
can recover the corresponding shared secret/session key
as shown in Alg.2. We assume the following attacker
capabilities:
• Physical access to DUT performing decapsulation for
power/EM measurement.

• Ability to request the DUT to decrypt arbitrary
number of chosen ciphertexts.

• No knowledge of secret key of the DUT or any innate
knowledge of the underlying implementation such as
the source or compiled executable.

While recent works have shown that remote power
measurement on embedded devices is possible [29],our
experiments assume physical access and uses the setup
described in the following.

(a) (b)

Figure 5: Experimental Setup for SCA (a) SCA Setup (b)
Zoomed-in view of EM-probe over the DUT

B. Experimental Setup
The DUT is the STM32F407VG microcontroller housed

on the STM32F4DISCOVERY evaluation board. The im-
plementations of the targeted schemes are taken from
the public pqm4 library [10], a benchmarking and testing
framework for PQC schemes on the 32-bit ARM Cortex-
M4 microcontroller, which is a NIST recommended opti-
mization target for embedded software implementations.
All our target implementations are clocked at 24 MHz.
We use the EM side-channel for our experiments and side-
channel measurements/traces were observed using a Langer
RF-U 5-2 near-field probe placed on top of the chip and
are then collected using a Lecroy 610Zi oscilloscope at a
sampling rate of 1.25 GSam/sec, amplified 30dB with a
pre-amplifier. Refer Fig. 5 for our EM-based SCA setup
used for our experiments. We omit results of measurements
at 100MSam/sec, which also reported successful attacks.
Attack success at these low sampling rate makes our work
compatible with low-cost platforms like Chipwhisperer.

For efficient attacks, measured traces are desired to
have a high Signal to Noise Ratio (SNR). Some com-
mon techniques to boost SNR involve employing high
precision EM probes, hardware analog filters, averaging of
repeated measurements, advanced digital filtering, trace
re-synchronization to remove jitter, averaging etc. The
choice of noise reduction technique is completely platform
dependent. For all our experiments, we emulate SNR
boosting by averaging of side-channel information from
repeated experiments.

C. Leakage Detection
We first validate the presence of side-channel leakage

due to the Incremental-Storage vulnerability. We adopt the
TVLA metric to perform leakage detection and focus on
detecting leakage from the first byte m[0]. We construct
two sets of ciphertexts, denoted as CT0 and CT1. Both
sets contain ciphertexts of random messages except that
their first message byte is fixed to 0 (m[0] = 0) and 1
(m[0] = 1) respectively. If m[0] = 0, then HW(m[0, j]) =
0 ∀ j ∈ [0, 7], else HW(m[0, j]) = 1 ∀ j ∈ [0, 7] if m[0] = 1.
This persistent 1 bit difference in the Hamming weight of
all eight intermediate updates (i.e) HW(m[0, j])∀j ∈ [0, 7]
should be detectable through the EM side-channel.
We collect two sets of ` = 500 EM side-channel traces

corresponding to decapsulation of ciphertexts in sets CT0
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(a) (b)

Figure 6: TVLA results for Kyber targeting message byte
m[0] (a) m[0] = 0 and m[0] = 1 (b) m[0] = 0 and m[0] = 2

(a) (b)

Figure 7: TVLA results for NewHope for message byte
m[0] (a) m[0] = 0 and m[0] = 1 (b) m[0] = 0 and m[0] = 2

and CT1 denoted as T0 and T1 respectively. We normalize
each trace and compute the Welch’s t-test to identify the
differentiating features between the trace sets. Refer to
Fig. 6(a) for the t-test plot for Kyber which shows eight
distinct peaks (greater than the pass-fail threshold ±4.5)
that correspond to the storage of m[0, j] for j ∈ [0, 7].
We repeated the same experiments between m[0] = 0 and
m[0] = 2 and observed 7 distinct peaks since HW(m[0, 0]) =
0 for both sets (Fig. 6(b)). For validation, we also repeat
the same experiments on NewHope which also showed
the same behaviour (Refer to Fig. 7(a) and Fig. 7(b)),
thus confirming our hypothesis of side-channel leakage due
to the Incremental-Storage vulnerability. We also refer the
reader to Sec. I of supplementary material which similarly
demonstrates leakage in Kyber using a low-cost setup with
low sampling rate of 100 MSam/sec. This leakage detection
test also helps us precisely identify the narrow time window
Wj of every intermediate byte update m[i, j] for j ∈ [0, 7]
as shown in Fig. 6 and Fig. 7.

D. Two Phase Message Recovery Attack
Our message recovery attack works in two phases - (1)

Pre-Processing phase and (2) Exploitation phase. The
attack technique must not be confused with popular
profiled attacks which needs complete access to a clone
device used for profiling. In our attack, the pre-processing
is done over public information without any knowledge of
secret information. Thus, the attacker can directly perform
the pre-processing on DUT without a need of clone device.
The attack technique also applies in a generic manner to all

(a) (b)

Figure 8: NICV plot for iterations (a) j = 0 and (b) j = 1
for Kyber. The corresponding time windows W0 and W1
have been highlighted in bold.

schemes that exhibit Incremental-Storage of the decrypted
message.

1) Pre-Processing Phase: It involves building side-
channel templates for different values of the decrypted
message. It is only a one-time process for a given target
device since the same templates can be used for multiple
attacks. Moroever, the chosen ciphertexts used for profiling
can correspond to different public-private key pairs (pk, sk)
used by the target device since templates are only built for
the message.

We individually profile each message byte and profiling
byte m[i] requires to build HW templates independently for
all of its eight intermediate updates (i.e) update of m[i, j]
for j ∈ [0, 7]. The first update m[i, 0] only has two possible
HWs (0 and 1). The number of possible HWs increases by
one with every iteration, with 9 possible HWs (0 to 8) in
the last iteration j = 7. Thus, (j+ 2) HWs (i.e) (0 to j+ 1)
are possible for the update of m[i, j]. We focus on building
templates for the update of m[i, j] in memory.
For each class k ∈ [0, j + 1], we construct a valid

ciphertext set CTk(i,j) containing ` ciphertexts of random
messages which satisfy the condition: HW(m[i, j]) = k. The
corresponding side-channel traces are denoted as T k(i,j). We
use the NICV metric to select those features in T k(i,j) for
k ∈ [0, j+1] that distinguishes the corresponding HW class.
We compute NICV over T k(i,j) for k ∈ [0, j + 1] and select
those features within the corresponding window Wj whose
NICV value is above a certain threshold Th(i,j) as our set
of Points of Interest (PoI) denoted as P(i,j). The threshold
Th(i,j) for each m[i, j] is a parameter of the experimental
setup and is empirically determined. Please refer to Fig.
8(a)-(b) for the NICV plot for iterations j = 0 and j = 1
of byte m[0] in Kyber where we can identify clear NICV
peaks within their respective time windows W0 and W1.
When profiling iteration j, we also observe NICV peaks in
time windows of other iterations (Wk 6= Wj) but they can
be ignored.

We now use the selected features P(i,j) to build a reduced
trace set RT k(i,j) from T k(i,j) and the mean of each reduced
trace set RT k(i,j) denoted as rtk(i,j) serves as the reduced
template for HW(m[i, j]) = k. Building similar templates
for all k ∈ [0, j+ 1] completes the profiling of the update of
m[i, j]. Similarly, the other iterations j ∈ [0, 7] of m[i] can
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Figure 9: TVLA results for Kyber showing simultaneous
leakage from multiple message bytes (i.e.) m[j] for j ∈
{0, 2, . . . , r− 1} (r denotes total number of message bytes)

be profiled in the same manner resulting in a full template
set for message byte m[i]. For practical measurements, we
collected 500 traces each for every 256 possible values of the
message byte m[0] to build templates for the message byte
m[0] that amounts to about 128k traces. Thus, building
similar templates for all message bytes (r = 32 bytes)
would require 4.096m traces.

However, we observe that all message bytes are processed
independently and we can utilize the same trace set (128k
traces) to simultaneously build templates for multiple
message bytes. For instance, we can profile bytes at even
indices (i.e.) m[j] for j ∈ {0, 2, . . . , r − 1} using a single
trace set and the remaining bytes with another trace set in
the following manner. We create ciphertexts with message
bytes at even indices (i.e) m[j] for j ∈ {0, 2, . . . , r − 1}
fixed to the value k with k ∈ [0, 256] while the other bytes
are random. Refer to Fig.9 for the t-test plot between two
sets of ciphertexts whose message bytes at even indices
have a value of 0 and 1 respectively, while the other bytes
are random.
The t-test clearly shows simultaneous leakage from

multiple message bytes and thus a single trace set with
128k traces can be used to build templates for all these
message bytes. The same can be done for the other half
of message bytes (odd indices). Thus, all message bytes
can be profiled only using (128× 2) = 256k traces. Note
that the exact number of traces required for profiling is an
empirical parameter of the experimental setup. We merely
establish that multiple message bytes can be processed
simultaneously, thereby reducing the number of traces
required in the pre-processing phase.
2) Exploitation Phase: The attacker now matches the

obtained HW templates with the trace tr obtained from
decapsulation of target ciphertext ct to perform message
recovery. A given byte m[i] can be recovered using the HWs
of all of its intermediate updates (i.e) HW(m[i, j]) ∀ j ∈
[0, 7].
To recover HW(m[i, j]), we build a reduced trace tr′(i,j)

corresponding to the PoI set P(i,j). We then compute the
sum-of-squared difference Γk between tr′ and each reduced
template rtk(i,j) for k ∈ [0, j + 1] as follows:

Γk = (tr′ − rtk(i,j))T · (tr′ − rtk(i,j))

Algorithm 3: SCA-Assisted Message Recovery
Attack

1 Procedure Pre-Processing ()
2 for i = 0 to r − 1 do
3 for j = 0 to 8 do

/* Trace Acquisition */
4 for k = 0 to j + 1 do
5 T(i,j) ⇐= Decaps(CT(i,j));
6 end

/* NICV-based Feature Selection */
7 P(i,j) = NICV-Select(T 0

(i,j), T
1

(i,j), . . . , T
(j+1)

(i,j) );
/* Build Reduced HW templates */

8 for k = 0 to j do
9 RT k(i,j) = T k(i,j)(P(i,j));

10 rtk(i,j) = Mean(RT k(i,j));
11 end
12 end
13 end

1 Procedure Attack (rt∗(i,j), P(i,j) for i ∈ [0, r − 1] and j ∈ [0, 7])
2 for i = 0 to r − 1 do
3 for j = 0 to 8 do

/* Build Reduced trace */
4 tr′ = tr(P(i,j));

/* LSQ-Test with Reduced HW templates */
5 for k = 0 to j + 1 do
6 Γ[k] = LSQ-Test(tr′, rtk(i,j));
7 end

/* Class Assignment based on LSQ-test */
8 k∗ = argmin(Γ);
9 HW(m(i,j)) = k∗;

10 end
/* Recover m[i] using HW progression */

11 m[i] = Recover(HW(m(i,0)),HW(m(i,1)), . . . ,HW(m(i,7)));
12 end

We then assign HW(m[i, j]) = k based on the smallest
value of Γk (i.e) reduced template with the least distance
from the reduced attack trace. We can similarly recover
HW(m[i, j]) ∀ j ∈ [0, 7] leading to recovery of m[i] and
similarly the full message.
Confidence in HW Classification: The SNR available in the
side-channel measurements heavily impacts the success rate
of Hamming weight classification. We devise a techique to
label a given HW classification of HW(m[i, j]) as confident
or doubtful in the following manner. We sort the classes
in increasing order of Γk for k ∈ [0, j + 1] and let the
corresponding ordered set of HW classes be denoted as
W = {HWk} with k ∈ [0, j + 1]. We label the classification
as confident only if ΓHW2 ≥ (C(i,j) · ΓHW1) else the
classification is labelled doubtful. The value of C(i,j) for
each iteration is a parameter of the experimental setup
and is empirically determined. Thus, all the updates whose
Hamming weight class is labelled as doubtful will need to
be brute-forced for message recovery.

We summarize our pre-processing and attack methodol-
ogy in the form of an algorithm in Alg.3 where the func-
tion NICV-Select() refers to NICV-based feature selection.
LSQ-Test() refers to the least sum-of-squared difference
computation and Recover() refers to retrieval of byte m[i]
from HW(m[i, j]) ∀ j ∈ [0, 7], according to Eqn.3.
3) Experimental Results: We perform experimental

validation of our attack on Kyber which serves as an
exemplar for Module-LWE/LWR based schemes such as
Saber. We additionally validate our attacks on NewHope
which serves as an exemplar for Ring-LWE/LWR based
schemes such as Round5 and LAC. Fig. 10(a)-(b) shows the
evolution of success rate against SNR for message recovery
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(a) (b)

Figure 10: Success rate and Brute Force Complexity for
full message recovery against SNR for Kyber

(a) (b)

Figure 11: Success rate and Brute Force Complexity for
full message recovery against SNR for NewHope

of a single message byte for Kyber (other bytes can be
recovered independently in the same manner). Without
SNR enhancement, the success rate stands at 81.25% with
a brute-force complexity of 267, however the success rate
quickly ramps to 98.24% with just 5 averaged traces and
settles to about 99.5% with a brute-force complexity of 26.
As stated earlier, there are a range of techniques which
can be adopted to boost SNR. We emulate SNR boosting
by averaging repeated measurements. Similarly, we also
validate our attack on NewHope (Refer to Fig. 11(a)-(b))
and without SNR enhancement, the success rate stands
at 91.25% with a 224 brute-force however the success rate
quickly goes to 100% with increase in SNR. An attacker
with an optimized attack setup with high SNR can perform
full message recovery in a single trace. Thus, a side-channel
based HW classifier can be efficiently used to target the
Incremental-Storage of decrypted message to perform full
message recovery in LWE/LWR-based schemes.

E. Eliminating the Incremental-Storage Vulnerability
As shown in Sec. V, bitwise manipulation of the

decrypted message manifests as an Incremental-Storage
vulnerability at the implementation level leading to efficient
message recovery. We attempt to propose an implementa-
tion fix to eliminate the Incremental-Storage vulnerability.
From the C code snippet of the message decoding operation
(Fig. 3), we observe that the message bit is directly updated
within m[i] in memory, resulting in a store in each iteration
(line 17). Instead, the message byte m[i] can simply be
accumulated in a temporary variable temp over eight
iterations (i.e) temp | = t� j in line 17. Subsequently, the

temp variable can be pushed to m[i] after the innermost
for loop over variable j (i.e) once every eight iterations.
In the modified implementation, we observed that the

message bits are now aggregated in registers, thereby
eliminating the intermediate stores and only the fully
updated message byte is stored in memory. We remark that
this was not done by the compiler even upon compilation
with the highest optimization level (O3). Though such
Bytewise-Storage of the decrypted message seems to defeat
our single trace attack, we show that inherent algorithmic
properties of LWE/LWR-based PKEs can be exploited to
still perform full message recovery.

VI. Ciphertext Malleability in LWE/LWR-based
PKE/KEMs

In this section, we explain the ciphertext malleability
property of LWE/LWR-based PKEs which can serve as a
crucial tool for a side-channel attacker for message recovery.
Given a ciphertext ct for an unknown message m, we
can construct modified ciphertexts (ct′), that decrypt to
deterministic variants m′ of the original message m. There
are two ways to manipulate unknown messages of target
ciphertexts - (1) Targeted flip of message bits and (2) Cyclic
message rotation.
1) Targeted Flip of Message Bits: Referring to the

encryption procedure PKE.Encrypt in Alg.1, the encoded
message polynomial x is simply added to a pseudoran-
dom LWE instance v′, which is subsequently output as
the ciphertext component v (line 6). Thus, the message
polynomial is only additively hidden within the ciphertext
v (i.e) v[i] = x[i] + v′[i] for i ∈ [0, n − 1]. Moreover,
x[i] can only take two values (i.e) x[i] = C (center of
the integer ring Zq) if the corresponding bit mi = 1,
else x[i] = 0 otherwise. We also observe that the de-
cryption procedure PKE.Decrypt extracts a noisy version
of the message polynomial by simply subtracting the
pseudorandom LWE instance v′ from v (line 2). Thus in
essence, there is no mixing/interaction between the different
coefficients x[i] of the the encoded message polynomial x.
This type of scalar behaviour in handling the message
within LWE/LWR-based PKE/KEMs is very different
compared to classical RSA and ECC-based schemes and
enables to target individual bits of the message.

Thus, a given bit mi can be flipped (1→ 0 or 0→ 1) by
simply subtracting C from the corresponding ciphertext
coefficient v[i]. This property applies in a generic manner
to all LWE/LWR-based PKEs. While schemes such as
Kyber, Saber, Round5 and LAC encode a given bit into a
single coefficient, NewHope and Frodo adopt redundancy
in the encoding/decoding operation. We refer the reader
to Sec. IV of supplementary material for adaptation of the
targeted bit flip property to NewHope and Frodo.

Since all the message bits are handled independently, we
can simultaneously flip any number of bits of the message
m by subtracting C from the corresponding coefficients
of v. We can thus build ciphertexts ct′ which decrypts
to a modified message m′ whose targeted bits are flipped
compared to the original message m. We denote m′i =
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Flip(m, i) whose ith bit has been flipped compared to m and
the corresponding ciphertext is denoted as ct′i = Flip(ct, i).
This is very similar to the malleability property of Cipher
block chaining (CBC) mode of operation for block ciphers
that allows to selectively flip single bits of the decrypted
plaintext [30]. We refer to this as the Bit-Flip property of
LWE/LWR-based PKE/KEMs throughout this paper.
2) Cyclic Message Rotation: We refer the reader to Sec.

III of the supplementary material for a detailed explanation
of the cyclic message rotation property. We do not utilize
this property to aid our message recovery attacks, but
speculate its usage for future attacks.

VII. Generic Message Recovery Attacks for
LWE/LWR-based PKE/KEMs

In this section, we demonstrate efficient exploitation of
ciphertext malleability as a effective tool to perform generic
message recovery attacks which can be adapted to different
implementation variants of the LWE/LWR-based schemes
for message recovery.

A. Exploiting Ciphertext Malleability for Message Recovery
Referring to the Bytewise-Storage type of implementation

of the decoding procedure (Sec.V-E), we saw that the
improved design eliminates incremental stores, thereby
offering protection against the single trace attack. However,
we observe that the decoding procedure still stores all
message bytes m[i] for i ∈ [0, r − 1] in memory. Their
side-channel leakage can be used to deduce their corre-
sponding Hamming weights using the HW classifier (i.e.)
HW(m[i]) for i ∈ [0,m − 1]. We now use the Bit-Flip
property to construct ct′ = Flip(ct, 0)) which decrypts to
m′ = Flip(m, 0)) (i.e) flip bit m0. We then query the target
device to decrypt ct′ and recover HW(m′[0]). Flipping m0
will create a perturbation in HW(m[0]) and bit m0 can be
recovered as follows:

m0 =
{

0, if HW(m′[0]) = HW(m[0]) + 1
1, if HW(m′[0]) = HW(m[0])− 1

(4)

In a similar manner, we can construct ciphertexts to
separately flip other bits of m[0] and fully recovery m[0]
one bit at a time. Since all message bytes are stored
iteratively, it is possible to simultanouesly flip one bit
in each byte m[i] for i ∈ [0, r − 1] and recover these r
bits in a single decapsulation query/trace. Thus, complete
message recovery is possible only using 8 adapted ciphertext
queries and 1 original ciphertext query. While our attack
on the Incremental− Storage implementation only required
a single trace (provided enough SNR), our attack on the
Bytewise-Storage requires 9 traces for full message recovery.
It is straightforward to see that the aforementioned

attack methodology exploiting malleability can be used
to target storage of the decrypted message in memory of
any width (i.e) bytewise (8-bits), half-wordwise (16-bits)
or wordwise (32-bits). In the presence of a side-channel
HW classifier, full message recovery can be performed in
(w + 1) traces where w is the storage width. This makes
our attack applicable not only to the message decoding

(a) (b)

Figure 12: TVLA results for Kyber KEM (Kyber512) to
distinguish HW(m[0→ 3]) between HW classes (a) HW =
1 and HW = 2 and (b) HW = 1 and HW = 3

operation, but to any other operation that involves storage
of the decrypted message in memory.
1) Targeting Other Operations: We analyze the IND-

CCA secure decapsulation procedure to identify other oper-
ations that manipulate the decrypted message (procedure
KEM.Decaps in Alg.2). We observe that the decrypted
message is appended to the public key and passed to
a Pseudo Random Function (PRF), immediately after
decryption (line 3). The PRF is implemented in several
schemes using the well known Keccak permutation and
we identified an internal operation in the KeccakAbsorb
function that copied the decrypted message from one
memory location to another, 32-bits at a time.
We used the same t-test based leakage detection ap-

proach to confirm leakage from HW storage of the de-
crypted words and for illustration, we focus on leakage
from the first word denoted as m[0→ 3]. Fig. 12(a) shows
the t-test plot computed between two sets of ` = 500 traces
each for HW(m[0→ 3]) = 1 and HW(m[0→ 3]) = 2. The
plot shows a single peak well beyond the t-test threshold.
Similarly, the t-test plot between HW(m[0→ 3]) = 1 and
HW(m[0→ 3]) = 3 in Fig. 12(b) shows a higher peak at the
same time instance due to a larger difference in Hamming
weight, concretely proving presence of HW leakage, which
can be exploited in a similar manner.
In a nutshell, ciphertext malleability can be exploited

to target any leakage related to storing of the message
(bit-wise or otherwise). The earlier attacks of [7], [8],
[9] targeting bitwise storage of the message can thus be
considered as specific instances of our generic message
recovery attacks.

VIII. Attacking Protected Implementations
Shuffling and masking are two well known countermea-

sures used to protect against side-channel analysis [31], [32].
In this section, we show that ciphertext malleability can
yet again be used as an effective tool to break implementa-
tions of LWE/LWR-based PKE/KEMs protected with the
aforementioned countermeasures.
Attack Assumption: We make an additional assumption
along with the attacker capabilities stated in the adversary
model in Sec. V-A. The pre-processing phase requires
to build HW templates using decapsulation queries for
known messages. However, both shuffling and masking
countermeasures randomly modify the processed message,
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thereby disabling the attacker from building HW templates.
Hence, for attacks on protected implementation, we assume
the presence of a clone device, in which the attacker can
turn off or deactivate the countermeasure to build the
required HW templates. This is a common assumption
used often in profiled attacks [33].

A. Attacking the Shuffling Countermeasure
Shuffling the order of processing of message bits was

proposed as a concrete countermeasure by Amiet et al. [8]
in PQCrypto’20 as well as Sim et al. [7], to protect against
single trace attacks targeting Determiner-Leakage in the
message encoding operation [7], [8], which we denote as
the Shuffled-Determiner-Leakage in this work.
1) Attacking PQCrypto’20 Countermeasure for Message

Encoding: We target the message encoding operation of the
re-encryption procedure in IND-CCA secure decapsulation
(line 4 in KEM.Decaps of Alg.2). Shuffling does not remove
the source of Determiner-Leakage but simply randomizes
the order of the message bits. Thus, a side-channel attacker
can recover all the individual bits mi for i ∈ [0, n − 1]
but without the correct ordering. Since shuffling does
not modify the Hamming weight of m, we compute the
Hamming weight of m (i.e) HW(m).

We use the Bit-Flip property to construct ct′ = Flip(ct, i)
which decrypts to m′ = Flip(m, i) (i.e) flip bit mi. We query
the target device to decapsulate ct′ and similarly recover
the modified Hamming weight HW(m′). The flipped bit mi

can then be recovered as follows:

mi =
{

0, if HW(m′) = HW(m) + 1
1, if HW(m′) = HW(m)− 1

(5)

In the same way, other bits of the message can be flipped
to recover the full message one bit at a time. Assuming use
of a single trace side-channel HW classifier, full message
recovery can be done in (n+1) traces (n adapted ciphertexts
queries and 1 target ciphertext query).
2) Attacking PQCrypto’20 Countermeasure for Message

Decoding: We now propose attacks to break shuffling
countermeasure for the message decoding operation. We
consider two variants - (1) Shuffled-Incremental-Storage and
(2) Shuffled-Bytewise-Storage.

a) Attacking Shuffled-Incremental-Storage: To recall, our
attack targeting Incremental-Storage works by recovering
HW of the intermediate byte updates HW(m[i, j]) ∀j ∈
[0, 7], i ∈ [0, r − 1]. Shuffling their order does not remove
the source of leakage, thus their Hamming weights can be
recovered using the HW classifier.
We hypothesize that a single bit flip will create an

observable bias in the average Hamming weight of the
intermediate byte updates observed across several execu-
tions. For the valid ciphertext ct, the average Hamming
weight of the shuffled intermediate byte updates is denoted
as hwavg. Let HWavg(m) be the set of hwavg for ` such
replicated executions. We repeat the same for the adapted
ciphertext ct′ = Flip(ct, i) which decrypts to m′ = Flip(m, i)
(i.e) flip bit mi. We similarly obtain the set HWavg(m′).

If mi = 1, then mean(HWavg(m)) should be higher than
that of mean(HWavg(m′)) since m′i = 0. We use the t-test
score (denoted as D) to distinguish the mean of two sets
and recover mi as follows:

mi =
{

0, if D > +4.5
1, if D < −4.5

(6)

Assuming the presence of a single trace HW classi-
fier, we performed attack simulations over Kyber and
NewHope (n = 256). We empirically observed that about
` = 1500 queries are required to recover a single message
bit with a 100% success rate. This amounts to a total
of 1500 × 256 + (1500) = 385.5k traces for full message
recovery targeting Shuffled-Incremental-Storage. While shuf-
fling significantly increases the attacker’s effort for message
recovery (compared to single trace for unprotected variant),
it still does not offer concrete protection.

b) Attacking Shuffled-Bytewise-Storage: Even if the order
of storage of the message bytes is randomized, their
Hamming weights can still be recovered using the HW
classifier. Subsequently, summing them up provides us the
hamming weight of the complete message m. Thus, our
attack methodology to break Shuffled-Determiner-Leakage
(Sec.VIII-A1) can be directly used to also break Shuffled-
Bytewise-Storage. Using the single-trace HW classifier, full
message (n bits) can be recovered in (n+ 1) side-channel
traces. The same methodology can be used to target any
operation which stores the decrypted message in memory
(bytewise, wordwise or otherwise).

B. Attacking the Masking Countermeasure
We can also exploit ciphertext malleability to attack

masked implementations of LWE/LWR-based PKE/KEMs.
There have been several masking schemes proposed for
LWE/LWR-based PKE/KEMs [4], [34] and all schemes
process the decrypted message m in two or more boolean
shares (depending on masking order) (i.e) m = m1⊕m2
where ⊕ is the bitwise-xor operation.

While masking is effective against DPA style attacks
that work over multiple traces, they do not protect against
single trace attacks since both shares can be attacked
individually to recover the masked variable. Thus, the
masking countermeasure is not effective against the single
trace attacks targeting the Determiner-Leakage vulnerabil-
ity [8], [7], [9] as well as our proposed single trace attacks
targeting Incremental-Storage of the decrypted message
(Sec. V). However, all the aforementioned attacks can be
thwarted by performing Bytewise-Storage of the message
shares (Masked-Bytewise-Storage) which removes leakage
due to individual message bits in each share. However, we
show that ciphertext malleability can yet again be exploited
to perform message recovery even when performing Masked-
Bytewise-Storage.
1) Attacking Masked-Bytewise-Storage: We illustrate re-

covery of the first message byte m[0]. Since both the
shares of byte m[0] are stored separately, we can use the
HW classifier to recover Hamming weight of both shares
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Table I: Trace requirement for full message recovery
for different implementation variants of the storage of
decrypted message in memory. The numbers are reported
for message of length 256 bits and assuming a perfect single
trace side-channel HW classifier

Vulnerability No. of
Traces

No Protection

Determiner-Leakage [7], [8], [9] 1
Incremental-Storage [This work] 1

Bytewise-Storage [This work] 9
Wordwise-Storage [This work] 33

Shuffling Countermeasure

Shuffled-Determiner-Leakage [This work] 257
Shuffled-Incremental-Storage [This work] 385, 500

Shuffled-Bytewise-Storage [This work] 257

Masking Countermeasure

Masked-Determiner-Leakage [This work] 1
Masked-Incremental-Storage [This work] 1

Masked-Bytewise-Storage [This work] 1100

(i.e.) HW(m1[0]) and HW(m2[0]), which we denote as the
ordered pair (v1, v2). We observe that the set of possible
values of (v1, v2) for a given m[0] = k uniquely identifies
HW(k) (property of bitwise-xor operation). Thus, ordered
pairs (v1, v2) recovered from several decapsulations of ct
can be used to uniquely determine HW(m[0]). While a
1st order attack only observes one of the random shares
(m1[0]/m2[0]), observing both shares can be used to extract
information about the original value, in this case HW(m[0]).
We repeat the same for the adapted ciphertext ct′ =

Flip(ct, 0) (flip m0) to determine the modified Hamming
weight HW(m′[0]). Perturbation in the Hamming weight
can be used to recover the flipped bit m0 shown as in
Eqn.5. We performed attack simulations assuming a single
trace HW classifier on both NewHope and Kyber and we
approximately require 4.3 queries to recover a single bit m0
and thus full message recovery takes approximately 1100
traces. Our attack can be trivially extended to 1) target
any operation that stores the decrypted message with any
storage width and 2) higher masking order albeit with
appropriate change in trace complexity.
Thus, we have presented novel attack methodologies

exploiting ciphertext malleability properties inherent in
LWE/LWR-based schemes to break implementations pro-
tected with concrete shuffling and masking countermea-
sures. We summarize the trace requirement of our attacks
over different variants of storage of the decrypted message
in memory in Tab. I.

IX. Countermeasures
Our proposed attacks for message recovery clearly mo-

tivate the need for strong side-channel countermeasures
to protect the sensitive decrypted message in LWE/LWR-
based schemes. Based on the range of attacks presented
earlier, we discuss few mitigation techniques here.
• Random Jitter: Introducing jitter adds horizontal noise
and disturbs alignment of PoI across measurements.
Thus, it increases the attack effort. However, a stronger

adversary can adopt re-alignment techniques [35] to
boost the SNR.

• Combined Masking and Shuffling: While individual
shuffling and masking countermeasures were shown
to be vulnerable, a combination of masking and
shuffling would increase the trace requirement for the
attack. However, a concrete analysis requires further
investigation and out of scope of this work.

• Key Refreshment Rate: An ephemeral key setting will
limit the attacker to only one trace. Combining this
with jitter, shuffling and masking can make single trace
attacks infeasible. Even in case the key is used for
multiple runs, the refresh rate must be upper bounded
by no. of runs in Tab.I.

X. Conclusion
This work demonstrates generic side-channel as-

sisted message recovery attacks over LWE/LWR-based
PKE/KEMs targeting storage of the decrypted message in
memory, a fundamental and unavoidable operation in any
embedded implementation. Notably, we exploit the inher-
ent ciphertext malleability property of LWE/LWR-based
schemes to propose novel attack techniques, adaptable to
different implementation variants, including implementa-
tions protected with concrete side-channel countermeasures
such as masking and shuffling. We propose the use of
combined masking and shuffling as a concrete protection
against message recovery attacks. Our proposed attacks
therefore reiterate the need for concrete evaluation of
side-channel countermeasures against message recovery in
LWE/LWR-based PKE/KEMs.
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