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Within the recently introduced auxiliary master equation approach it is possible to address steady state
properties of strongly correlated impurity models, small molecules, or clusters efficiently and with high accuracy.
It is particularly suited for dynamical mean field theory in the nonequilibrium as well as in the equilibrium
case. The method is based on the solution of an auxiliary open quantum system, which can be made quickly
equivalent to the original impurity problem. In its first implementation a Krylov space method was employed.
Here, we aim at extending the capabilities of the approach by adopting matrix product states for the solution of
the corresponding auxiliary quantum master equation. This allows for a drastic increase in accuracy and permits
us to access the Kondo regime for large values of the interaction. In particular, we investigate the nonequilibrium
steady state of a single-impurity Anderson model and focus on the spectral properties for temperatures T below
the Kondo temperature TK and for small bias voltages φ. For the two cases considered, with T ≈ TK/4 and
T ≈ TK/10, we find a clear splitting of the Kondo resonance into a two-peak structure for φ close above TK . In
the equilibrium case (φ = 0) and for T ≈ TK/4, the obtained spectral function essentially coincides with the one
from numerical renormalization group.

DOI: 10.1103/PhysRevB.92.125145 PACS number(s): 71.15.−m, 72.15.Qm, 73.21.La, 73.63.Kv

I. INTRODUCTION

The equilibrium properties of the single-impurity An-
derson model (SIAM) and the associated Kondo model
[1–3], originally devised in the process of investigating metal
hosts with dilute magnetic impurities [4–6], are nowadays well
understood [7,8]. Renormalization group (RG) methods pro-
vided the first perturbative analyses [9], and especially the de-
velopment of Wilson’s numerical RG (NRG) [10] allowed one
to properly capture the universal low-energy physics, governed
by an exponentially small energy scale, the Kondo temperature
TK [8]. The field of correlated impurity models has gained re-
newed interest due to novel experimental realizations in quan-
tum dots [11–15], single-molecule transistors [16–20], and
from a theoretical point of view, due to its importance for dy-
namical mean field theory (DMFT) [8,21–26]. The extension
of DMFT to the nonequilibrium case can be carried out within
the Keldysh formalism [27–29]. Nonequilibrium DMFT and
different applicable impurity solvers have been thoroughly
discussed in other work; see for instance Refs. [29–37].

In the present study we want to focus on the physics
of the impurity problem out of equilibrium itself, with an
implementation of the auxiliary master equation approach
(AMEA) [35,36] based on matrix product states (MPS).
Already in a first study, where Krylov space methods were
employed [36], AMEA has proven to feature a systematically
improvable accuracy and to yield a well-defined Kondo peak
in equilibrium together with a splitting in the nonequilibrium
case. However, the exponential scaling of Krylov space
methods with system size sets a “hard limit” to the achievable
accuracy, and thus to the lowest temperatures accessible. The
MPS extension presented here turns out to be crucial in
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order to achieve highly accurate results in the Kondo regime
down to low temperatures and up to large interactions. In the
equilibrium case, the accuracy of our results becomes even
comparable to NRG.

Specifically, we investigate the nonequilibrium steady state
dynamics of a SIAM, which is driven by the coupling to
two leads at different chemical potentials, caused by an
external bias voltage φ. Impurity models in such a setup
were considered already by many groups, numerically as
well as analytically [38–40]. To give a brief nonexhaustive
overview, different techniques employed are the noncrossing
approximation [41–43], real-time diagrammatic methods [44],
Keldysh perturbation theory [45], Keldysh effective field
theory [46,47], dual fermions [48,49], perturbative RG [50,51],
flow equations [52,53], functional RG [54,55], real-time
RG [56–59], time-dependent density matrix RG [60–63],
NRG [64–66], Monte Carlo methods [67–69], as well as cluster
approaches [70]. The properties of the correlated impurity have
been established in certain limits, for example for high temper-
atures T � TK or high biases φ � TK , where the Kondo effect
is strongly suppressed by decoherence and the problem reduces
to a weak-coupling one [43,53,57,71–73]. A splitting of the
Kondo peak in the spectral function was found at sufficiently
high bias voltages and low T , with a two-peak structure pinned
to the chemical potentials of the leads [41–45,51,53,64,68–70].
In the other limit φ � TK and T � TK , linear response
as well as Fermi liquid theory are applicable [49,58,74,75].
Nevertheless, the intermediate and low-energy nonequilibrium
regime, where both T and φ are of the order of and especially
below TK , remains challenging and the spectral properties
could not yet be completely resolved. Work in this direction
has for example been done in Refs. [64,68,69]. However, the
extension of NRG to the nonequilibrium case still leaves open
questions [76], and the Monte Carlo approaches, even though
numerically exact, are either limited to relatively high tempera-
tures and short times, or involve a demanding double analytical
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continuation [77,78]. With the work presented here, we want to
contribute to these findings and present well-resolved spectral
data for cases where both T � TK and φ � TK .

II. MODEL AND METHOD

The basic idea of AMEA is to map a general correlated
impurity model in or out of equilibrium, here referred to as the
physical impurity model (IMph), onto an appropriately chosen
auxiliary one (IMaux), which is small enough to be solvable
precisely by numerical techniques. The self-energy of IMaux

serves then as an approximation to the one of IMph. Specifi-
cally, IMaux is modeled by an open quantum system described
by a Lindblad equation, which consists of a finite number of
bath sites and additional Markovian environments. In the map-
ping procedure, the bath parameters of IMaux are optimized in
order to reproduce the dynamics of IMph as closely as possible.
By increasing the number of bath sites NB , more optimization
parameters are available and a convergence (typically expo-
nential) towards the exact solution of IMph is achieved. The
mapping is formulated in terms of the hybridization function of
IMaux, which is obtained through a single-particle calculation,
and the many-body problem is solved thereafter.

AMEA itself and a solution strategy for the correlated
IMaux based on exact diagonalization (ED) was presented in
detail in Refs. [35,36]. Here, we make use of MPS in order
to solve for the correlation functions, which enables us to
treat auxiliary systems with a larger number of bath sites. In
the following we briefly summarize the governing equations
in AMEA and point out modifications in the construction of
IMaux favorable for an MPS treatment. After that, the MPS
implementation is discussed.

A. Keldysh Green’s functions

In general, for nonequilibrium situations Green’s functions
are conveniently defined on the Keldysh contour [79–84].
Since we are particularly interested in the long-time limit,
where a steady state is reached, time translational invariance
applies and the Keldysh Green’s functions can be written in
the frequency domain

G(ω) =
(

GR(ω) GK (ω)
0 GA(ω)

)
, (1)

with GA = (GR)†, and we denote by an underscore · · · a 2 ×
2 object in Keldysh space. Only in an equilibrium situation
the Keldysh component is related to the retarded one via the
fluctuation dissipation theorem

GK (ω) = 2i[1 − 2pFD(ω,μ,T )]Im{GR(ω)}, (2)

where pFD(ω,μ,T ) represents the Fermi-Dirac distribution. In
contrast, in a general nonequilibrium situation a distribution
function is not known a priori and the Keldysh and the retarded
component have to be considered as independent functions.

It is convenient to introduce the steady state lesser and
greater Green’s functions

G<(t) = i 〈c†(t)c〉 , G>(t) = −i 〈c(t)c†〉 , (3)

for generic fermionic creation/annihilation operators c†/c,
which are related to GR and GK by

GR(ω) − GA(ω) = G>(ω) − G<(ω) = −2iπA(ω),

GK (ω) = G>(ω) + G<(ω), (4)

and A(ω) is the spectral function. Throughout this work we
consider solely steady state expectation values and denote
them in compact notation by 〈. . .〉; cf. Eq. (3).

B. Physical impurity model

In this work, we consider for IMph a single-impurity
Anderson model in a nonequilibrium setup, given by an im-
purity Hamiltonian Himp, two noninteracting fermionic leads
representing the electronic reservoir Hres, and an impurity-
reservoir coupling Hcoup:

Hph = Himp + Hres + Hcoup. (5)

The correlated impurity consists of a single level with energy
εd and on-site Hubbard interaction U ,

Himp = εd

∑
σ∈{↑,↓}

d†
σ dσ + U

(
d
†
↑d↑ − 1

2

)(
d
†
↓d↓ − 1

2

)
, (6)

where d†
σ /dσ are fermionic creation and annihilation operators

on the impurity site. The reservoir Hamiltonian can be written
in terms of the energy levels ελk and potentials ελ for the two
leads λ,

Hres =
∑

λ∈{L,R}

∑
kσ

(ελ + ελk)a†
λkσ aλkσ , (7)

and the impurity-reservoir coupling is given by

Hcoup = 1√
Nk

∑
λkσ

t ′λ(a†
λkσ dσ + H.c.), (8)

with a
†
λkσ /aλkσ representing creation and annihilation opera-

tors for lead electrons.
Throughout this work we consider the particle-hole sym-

metric case with εd = 0, t ′L = t ′R , εLk = εRk . An externally
applied bias voltage φ results in an antisymmetrical shift of
the chemical potentials μL/R = ±φ

2 . In Sec. III C we further
consider for the on-site energies the case εL/R = ±φ

2 , whereas
in the rest of the work the voltage does not shift the lead ener-
gies. This is irrelevant for φ much smaller than the bandwidth.

The Green’s function of IMph is given by the Dyson
equation

G−1
ph (ω) = g−1

0
(ω) − �ph(ω) − 	ph(ω). (9)

Here, g
0

denotes the noninteracting Keldysh Green’s function

of the decoupled impurity, i.e., gR
0 = (ω − εd )−1, and (g−1

0
)K

can be neglected. The hybridization function �ph is given by
the sum of contributions from the two leads

�ph(ω) =
∑

λ

t ′λ
2
g

λ
(ω), (10)

where g
λ
(ω) denote lead Green’s functions at the contact point

in the decoupled case. Except in the calculations presented in
Sec. III C, we consider throughout this work a flat band model
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with the retarded component of g
λ
(ω) given by

−Im
{
gR

λ (ω)
} = π

2D

(D − |ω|), (11)

where we choose the hybridization strength � = t ′λ
2
π/D as

unit of energy and take D = 10 �. The real part is determined
via the Kramers-Kronig relation. For the fit in the mapping
procedure (see Sec. II D) it is of advantage to deal with smooth
functions of ω, so that we introduce in Eq. (11) a smearing of
the cutoffs in the Heaviside function, determined by Fermi
functions pFD(ω,±D,0.5 �) with an artificial temperature
0.5 �. Since this modification is well outside the scale of the
impurity energies, it does not affect the low-energy physics.

The decoupled leads are in equilibrium, so that the Keldysh
component gK

λ (ω) of each lead is given by Eq. (2) with the
corresponding chemical potential μλ. The temperature T is
taken to be the same in both of the leads. Notice that the
Keldysh component is the only T -dependent quantity and
results for different T shown below differ only in the smearing
of the Fermi edge in gK

λ (ω). In particular, we are interested
in temperatures close to and below the Kondo temperature
TK . As for other methods, the low-temperature regime is most
challenging (cf. Sec. II D and Appendix B). For a Hubbard
interaction of U = 6 �, as considered throughout the work,
one finds for the flat band model TK ≈ 0.2 � [8,85–88].

The remaining unknown quantity in Eq. (9) is the self-
energy 	ph(ω), which cannot be determined exactly since IMph

is interacting and of infinite size. This is evaluated by means
of the mapping to IMaux.

C. Auxiliary impurity model

For IMaux we take an open quantum system of finite size,
embedded in Markovian environments and described by a
Lindblad equation for the system density operator ρ:

d

dt
ρ = Lρ. (12)

The Lindblad superoperator L = LH + LD consists of a
unitary part LH ρ = −i[Haux,ρ] and the dissipator LD as
described below [89].

Additionally to the original impurity site we consider NB

bath sites arranged in a linear geometry. For convenience we
choose NB even and the impurity site at the center, specified
by the index f . The Hamiltonian for IMaux is given by

Haux =
∑
ijσ

Eij c
†
iσ cjσ + Unf ↑nf ↓. (13)

Here nf σ = c
†
f σ cf σ with c

†
iσ /ciσ the fermionic cre-

ation/annihilation operators and the (NB + 1) × (NB + 1)
matrix E couples only nearest neighbor (n.n.) terms; i.e.,
it is tridiagonal in the chosen geometry. To end up with a
noninteracting bath we allow at most for Lindblad operators
that are linear in c

†
iσ /ciσ . The dissipator is then given by [89]

LDρ = 2
∑
ijσ

�
(1)
ij

(
cjσ ρc

†
iσ − 1

2
{ρ,c

†
iσ cjσ }

)

+ 2
∑
ijσ

�
(2)
ij

(
c
†
iσ ρcjσ − 1

2
{ρ,cjσ c

†
iσ }

)
. (14)

Both matrices of coupling constants �(1) and �(2) are symmet-
ric and positive definite [90].

A key aspect in AMEA is that the bath parameters in the
Lindblad equation are not determined within conventional
Born-Markov approximations [91–93] but are only used as
fit parameters to optimally reproduce �ph(ω) by �aux(ω); see
Sec. II D.

Once the parameters of IMaux are determined, the many-
body problem is solved (cf. Sec. II E) in order to obtain the
interacting Green’s function

G−1
aux(ω) = g−1

0
(ω) − �aux(ω) − 	aux(ω). (15)

At this point it is convenient to set 	ph(ω) = 	aux(ω) = 	(ω),
so that we obtain from Eq. (9) a very accurate result for
the Green’s function of IMph. In this way, the U = 0 limit
is recovered exactly.

D. Mapping procedure

In order to have a faithful representation of the dynamics of
IMph by IMaux, we need to fulfill �aux(ω) ≈ �ph(ω) as closely
as possible. For local quantities and correlation functions on
the impurity, the influence of the bath is completely determined
by the hybridization function only, independently of the
specific bath geometry. Therefore, the mapping becomes exact
in the limit �aux(ω) ≡ �ph(ω). To achieve �aux(ω) ≈ �ph(ω),
we minimize the mean-squared error between them as a
function of the bath parameters in the Lindblad equation, i.e.,
the matrices E, �(1), and �(2).

It is important to stress that a single-particle calculation
is sufficient to determine �aux(ω), for which the Green’s
functions read [35,36]

GR
0 (ω) = [ω − E + i(�(1) + �(2))]−1,

(16)
GK

0 (ω) = 2iGR
0 (ω)(�(2) − �(1))GA

0 (ω).

Here, the inversion and multiplications are carried out for
matrices in the site indices. The hybridization function is given
in terms of the elements with impurity index f :

�R
aux(ω) = 1/gR

0 (ω) − 1/GR
0ff (ω),

(17)
�K

aux(ω) = GK
0ff (ω) /

∣∣GR
0ff (ω)

∣∣2
.

A single evaluation of the hybridization function is at most
of O(N3

B) and thus not time consuming. However, for a
large number of bath parameters (�20) the multidimensional
optimization problem may become demanding and appropri-
ate methods are needed. In particular, a parallel tempering
approach has proven to be effective, which is discussed in
some more detail in Appendix A.

Beyond the requirement �aux(ω) ≈ �ph(ω), complete free-
dom exists in choosing a suitable auxiliary system. For the
many-body solution with MPS it is convenient to allow for
nearest neighbor terms in the Lindblad couplings only, i.e.,
to restrict not only E but also the matrices �(1) and �(2) to
a tridiagonal form. In this way one ends up with a geometry
where the impurity couples to a bath with n.n. terms only. As
discussed below, the bipartite entanglement entropy of IMaux

can be reduced when imposing further that �
(1)
i,j has nonzero

terms only for bath sites in one of the chains, e.g., for i,j > f ,
and �

(2)
i,j on the other side, i.e., for i,j < f . For the latter

125145-3



ANTONIUS DORDA et al. PHYSICAL REVIEW B 92, 125145 (2015)

restriction we found that it affects the quality of the fit only
in a minor way but significantly improves the applicability of
MPS.

It is important to note that the relevant energy scale for
the mapping procedure is not � but the bandwidth 2D. For a
certain IMaux, one can adjust to different � values by simply
rescaling all terms in E with index f , i.e., the hoppings
to the impurity site, without changing other properties of
�aux(ω) [90]. On the other hand, one can rescale the whole
hybridization function by multiplying the matrices E, �(1),
and �(2) by the desired factor. Therefore, the complexity of
the mapping procedure is dominated by the smallest ω scale
compared to the largest one. For the flat band model, this
essentially means that one has to regard T and φ in units
of D. With increasing number of bath sites NB we observe
that sharper features can be resolved. Therefore, a maximal
considered value of NB converts to a lower bound for the ratio
of temperature T to bandwidth 2D which can be reproduced
by �aux(ω). More details on the mapping procedure are given
in Appendix B and Ref. [94].

E. Many-body solution

1. Superfermion representation

As introduced in Refs. [95,96] and made use of in
Refs. [35,36], the Lindblad equation (12) can be recast into
a standard operator problem when considering an augmented
fermion Fock space with twice as many sites. We use the
notation of Ref. [95], to which we refer for further details, in
combination with a particle-hole transformation in the “tilde”
space [97]. The so-called left vacuum reads

|I 〉 =
∑
{niσ }

(−i)N({niσ }) |{niσ }〉 ⊗ |˜{n̄iσ }〉 . (18)

The summation runs over all possible many-body basis states
|{niσ }〉 of the original system and |˜{n̄iσ }〉 specifies those in the
tilde system with inverted occupation numbers. N ({niσ }) =∑

iσ niσ is the total number of particles in state |{niσ }〉.
The left vacuum maps the density operator ρ(t) onto the

state vector |ρ(t)〉 = ρ(t) |I 〉. Thermodynamic expectation
values are determined in this framework by expressions of
the form 〈O(t)〉 = 〈I | O |ρ(t)〉. When evaluating (Lρ) |I 〉 for
the Lindblad equation (12), one finds

d

dt
|ρ(t)〉 = L |ρ(t)〉 , (19)

where the superoperator L is replaced by an ordinary non-
Hermitian operator L. In vector notation

c†σ = (
c
†
0σ , . . . ,c

†
NBσ ,c̃

†
0σ , . . . ,c̃

†
NBσ

)
, (20)

with c
†
iσ /ciσ and c̃

†
iσ /c̃iσ fermionic operators in the original

and in the tilde system, respectively, the Lindblad operator L

is given by

iL =
∑

σ

c†σ

(
E + i� 2�(2)

−2�(1) E − i�

)
cσ − 2 Tr(E + i�)

+U

(
nf ↑nf ↓ − ñf ↑ñf ↓ +

∑
σ

ñf σ + 1

)
, (21)

FIG. 1. (Color online) The upper part of the figure shows a
schematic drawing of the auxiliary system in the superfermion
representation, for NB bath sites and with the impurity located at
the central site f = NB/2. The upper chain corresponds to original
sites and the lower chain to the additionally introduced “tilde” sites;
see Sec. II E 1. In the chosen fit restriction, see Sec. II D, the coupling
terms of the Lindblad operator L, Eq. (21), represent a ladder
geometry with cross links. �(1) causes a directional hopping from
the upper to the lower chain and for �(2) it is vice versa. Moreover,
�

(2)
i,j is nonzero only for i,j < f and �

(1)
i,j only for i,j > f . In the

lower part, in gray scale, we schematically depict the tensor network
for TEBD (Sec. II E 2), where L is decomposed in nearest neighbor
terms Li,i+1 which are applied in an alternating manner.

where � = �(2) − �(1) and � = �(1) + �(2). Clearly, L con-
serves the total particle number per spin

∑
i (niσ + ñiσ ). The

steady state |ρ∞〉 = limt→∞ |ρ(t)〉 as well as |I 〉 are situated in
the half-filled, spin-symmetric sector. Steady state expectation
values and correlation functions are calculated by [36,98]

〈A(t)B〉 = 〈I | AeLtB |ρ∞〉 , for t � 0. (22)

For tridiagonal matrices E, �(1), and �(2), see Sec. II D,
the coupling terms in Eq. (21) represent a ladder system as
depicted in Fig. 1. Sites on the original and the tilde system
with the same index (i = j ) or i = j ± 1 are coupled with rates
�

(1)
i,j and �

(2)
i,j by a directional hopping. The restriction of �

(2)
i,j

to the left side i,j < f and for �
(1)
i,j to the right side i,j > f

leads to the situation that a circular current flows through the
system. In this geometry one finds the tendency that sites on
the left are filled in the original system and empty in the tilde
system, whereas for the right side it is vice versa. This limits
the possible hopping processes inside the chains and is in favor
of a small bipartite entanglement entropy [99].

2. Matrix product states

A large amount of literature exists on MPS in general and
for Lindblad-type problems in particular [99–115]. Here we
briefly state the governing equations for the well-known MPS
methods made use of in this work.

We combine sites with the same index i in the original and
in the tilde system to one “MPS site,” with a local Hilbert
space dimension d = 16 (see also Fig. 1). For the resulting
one-dimensional chain of sites it is straight-forward to write
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down a MPS representation [100]:

|ρ〉 =
∑
{si }

c{si } |{si}〉 =
NB∏
i=0

⎛
⎝ d∑

si=1

Asi

i

⎞
⎠ |{si}〉 . (23)

Here, |ρ〉 is a generic many-body state with coefficients
c{si } and Asi

i represents MPS matrices for site i with local
quantum numbers si [116]. The mapping Eq. (23) is exact
for matrices which are exponentially large in NB . However,
even for much smaller matrix dimensions χ � dNB/2 a very
accurate representation of |ρ〉 is possible in many cases.
For the auxiliary systems considered in this work, see also
Sec. III A, χ ≈ 1000 is sufficient when making use of Abelian
symmetries of the Lindblad operator Eq. (21). Concerning the
positivity of ρ, one should note that the form of Eq. (23) does
not ensure it per construction [114,115]. However, we did not
encounter unphysical results even for very small values of χ .

In order to calculate observables, a MPS representation
of |I 〉 is needed. One finds that Eq. (18) can be recast into
a state with χ = 1, i.e., a product state, in which |I 〉 is
maximally entangled between original and tilde sites for the
same index i. This is analogous to a purification of the identity
operator [103,104,108].

When rewriting the Lindblad operator Eq. (21) with tridiag-
onal matrices E, �(1), and �(2) in the form of a matrix product
operator, one has couplings of n.n. sites only. This enables us to
use very efficient time evolution techniques as for example the
time evolving block decimation (TEBD) [101]. Here, a Trotter
decomposition is used to split the full time evolution exp(L�t)
into small parts exp(Li,i+1�t) for neighboring sites, and terms
with even and odd i are applied in an alternating manner; see
also Fig. 1. In this work we use splitting methods accurate
to second order in �t [117–120]. We found that reducing
the time step to �t = 0.01 �−1 for the steady state and to
�t = 0.05 �−1 for the Green’s functions is usually sufficient.

To obtain the desired steady state correlation functions of
IMaux, for example G<, we proceed as follows:

(1) Calculate the steady state |ρ∞〉 by time evolution with
TEBD. Successively smaller time steps �t are used in order to
eliminate the Trotter error. Static observables and L |ρ∞〉 = 0
may serve as convergence criteria [121].

(2) Apply cf σ to |ρ∞〉 and time-evolve the excited state

to get G<
σ (tn) = i 〈I | c†f σ eLtncf σ |ρ∞〉 at discrete points in the

time domain.
(3) Employ linear prediction on the data G<(tn) and

thereafter a Fourier transformation to obtain G<(ω) in the
frequency domain [98,102,104,122].

III. RESULTS

Before focusing on the nonequilibrium physics of the
single-impurity Anderson model, we briefly discuss the bipar-
tite entanglement entropy of the auxiliary impurity model, and
a benchmark for the equilibrium case. After that the spectral
properties as a function of bias voltage are presented for two
different temperatures, one clearly below and one above the
Kondo temperature TK . Furthermore, the bias dependence of
observables such as the current and the double occupancy is
discussed. In the last part of this paper a different density of

states in the leads is considered, which allows to better resolve
the physics at low temperatures and low bias voltages.

A. Entanglement scaling

Matrix product states are an efficient representation of
many-body states with a low bipartite entanglement entropy
S. The required matrix dimension χ at a certain bond (i,i + 1)
scales exponentially with the entropy at this bond, Si,i+1. From
Hermitian systems it is known that ground states of gapped,
one-dimensional systems obey an area law and are thus well
suited for MPS. Also an evolution in imaginary time converges
well, but the real time evolution of excited states may become
problematic due to a buildup of entanglement [100]. For
the auxiliary impurity model investigated here, the behavior
appears to be opposite. In general, the steady state |ρ∞〉 of
IMaux does not fulfill an area law and instead an increase of
maxi Si,i+1 with increasing system size NB is observed [111].
Despite this, the time evolution of excited states is unproblem-
atic, likely because of the damping involved, and the long-time
limit can easily be reached.

We observe that the optimized parameters in IMaux strongly
depend on the number of bath sites and on the external, physical
parameters (φ, T , ...). Therefore, it is difficult to infer a reliable
quantitative entanglement scaling with NB . Qualitatively we
find that maxi Si,i+1 increases moderately with NB and slower
than linear. The magnitude of the entanglement is considerably
reduced by the restricted setup for IMaux described in Sec. II D,
which has the tendency towards a filled and an empty bath
chain in the steady state. In this setup, Si,i+1 takes on the largest
value at the central bonds which connect to the impurity site
and falls off quickly with distance from the center.

Independent of the actual scaling, the increase of bipartite
entanglement with NB has the consequence that one is limited
to certain system sizes. In this work we consider up to NB =
16 with χ = 1000, which is feasible in a reasonable amount
of time. Most likely, one would need higher values of χ in
order to treat even larger systems precisely. We checked the
reliability of the results presented below by increasing the
matrix dimension to χ = 1500 in several cases, for different

FIG. 2. (Color online) Temporal evolution of the bipartite entan-
glement entropy S in a typical IMaux with NB = 12, representing the
case φ = 1 �. The system is in the steady state for t < 0 and cf σ is
applied to |ρ∞〉 at t = 0. We show S(t) where it is largest, namely
for the innermost bonds at the impurity, as well as for the next ones
to the outside.
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FIG. 3. (Color online) Spectral function in equilibrium: plotted
for different number of bath sites NB and compared with reference
data from NRG [86]. Results are for U = 6 � and flat band leads,
Eq. (11), with D = 10 � and T = 0.05 �.

values of φ and T . Furthermore, the time evolution for the
Green’s functions was validated by reducing the time step to
�t = 0.01 �−1. Overall, we found in the worst cases relative
differences in A(ω) up to O(10−3). These errors are small
enough for our purposes, so that we focus in the following on
the accuracy of the mapping procedure, i.e., versus NB .

To analyze the temporal evolution of S, a typical time-
dependent case is shown in Fig. 2. Here, t < 0 indicates
the steady state regime and at t = 0 an annihilation operator
is applied to |ρ∞〉 in order to calculate the lesser Green’s
function. To estimate the relevant time scale, Im{G<(t)} (not
plotted) drops from 0.5 at t = 0 to 10−2 at t = 3 �−1. As
one can see, Si,i+1 changes at first rapidly but saturates then
and oscillates in time around a constant value. Thus, it is
unproblematic to resolve G<(t) even on very large time scales.
This was furthermore checked for small NB with an exact
diagonalization solution as reference [123]. When inspecting
the short-time behavior of Si,i+1, an asymmetry is evident.
This results from the application of an operator to the original
system alone, without changing the tilde system.

B. Spectral and transport properties

Before focusing on the nonequilibrium physics, we briefly
present results for the equilibrium situation φ = 0 in Fig. 3.
Here, a quasiexact solution is provided by means of NRG [86].
For T = 0.05 � ≈ TK/4 the system is well inside the Kondo
regime and the peak height of A(0)π� ≈ 0.9 almost ful-
fills the T = 0 Friedel sum rule [A(0)π� = 1 for T →
0] [85,124,125]. Results obtained with AMEA are shown for
different system sizes, with particular focus on the low-energy
physics. Noticeable differences are apparent for NB = 8, but,
upon increasing the number of bath sites quick convergence
is observed and excellent agreement with the NRG data is
found. This shows that AMEA, especially with MPS, is a very
accurate impurity solver also in the equilibrium case for T > 0.

Regarding the accuracy of the calculations, we can state
that NB = 12 is essentially sufficient to provide reliable
spectral data in equilibrium for T = 0.05 �. However, for
the nonequilibrium situations considered in the following one
has to take into account that the accuracy of the mapping
procedure is to some degree dependent on φ. This is analyzed
in detail in Appendix B and here we solely want to note
that the low bias φ � 1

3 � as well as the higher bias regime
φ � 2 � converge more rapidly than the intermediate values,
for T = 0.05 �. For the larger values of T used below the
calculations are even easier, as one can achieve a very good
mapping �aux(ω) ≈ �ph(ω) already for less than NB = 12.

After this benchmark, we now study the steady state
nonequilibrium spectral properties for two different temper-
atures, one below and one above the Kondo temperature. In
Fig. 4 results are presented for T = 0.05 � and in Fig. 5
for T = 0.5 �. In the first case, it is apparent that small
bias voltages φ < � cause a decrease and smearing of the
Kondo peak, whereas larger voltages result in a splitting; see
also Refs. [41–45,64,68–70]. It is known that with increasing
current, resonant spin-flip scattering is prevented due to de-
coherence. Despite this, distinct excitations are clearly visible
even at rather high bias voltages and located approximately
at the positions of the chemical potentials μL/R = ±φ

2 . This
can be attributed to intralead processes, which however are
strongly suppressed. In Fig. 4 we present furthermore the

Im

FIG. 4. (Color online) Bias-dependent spectral function (left) and retarded self-energy (right) for T = 0.05 �. Solid lines correspond to
calculations with NB = 16 and dash-dotted lines to NB = 14, but in many cases they cannot be distinguished. Bias voltage φ is given in units
of �. Results are for U = 6 � and flat band leads, Eq. (11), with D = 10 �.
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Im

FIG. 5. (Color online) Bias-dependent spectral function (left) and retarded self-energy (right) for T = 0.5 �. Calculations are performed
with NB = 10 and other parameters are the same as in Fig. 4.

retarded self-energy, which enables us to better locate at which
φ value splitting sets in. An upper bound can be estimated by
the value φ = 0.5 �, where −Im{	R(ω)} exhibits two minima.
In Sec. III C we resolve the physics at low bias in some more
detail.

In Fig. 5 the same system is considered for T = 0.5 �.
As expected, the features are much broader and the Kondo
peak for φ = 0 is strongly suppressed [126]. Despite this, one
can still note splitting and weak excitations at μL/R = ±φ

2 at
rather high voltages φ � 3 �. In −Im{	R(ω)}, only the result
for φ = 2 � exhibits two slight minima. One can thus infer
that the temperature dominates the decoherence processes on
the impurity in this case and excitations at μL/R are further
suppressed and strongly smeared out.

For both temperatures T = 0.05 � and T = 0.5 �, we
present two observables of interest, the double occupancy
and the current, in Fig. 6. The latter is obtained from
the standard Meir-Wingreen expression [83,127,128]. In the
current it is obvious that the temperature strongly influences
the low bias regime, as is expected from linear response
considerations. Especially the differential conductance enables
us to resolve the low bias physics and we find a typical

Kondo behavior [57,58]. At higher voltages φ � 2 �, however,
one observes for T = 0.05 � a slight increase of ∂j/∂φ due
to charge fluctuations. At even higher voltages (φ � 3�)
both temperatures result in a similar linear current-voltage
characteristic since the two spectral functions nearly merge
into each other. The double occupancy 〈nf ↑nf ↓〉 exhibits
an interesting behavior for T = 0.05 � < TK . In this case,
〈nf ↑nf ↓〉 and thus the charge fluctuation as well exhibit a
minimum (at φ ≈ 2 �). It originates from two competing
mechanisms evolving with increasing φ: On the one hand,
the enlarged transport window, approximately given by the
interval (−φ

2 ,
φ

2 ), increases 〈nf ↑nf ↓〉, and on the other hand,
the suppression of resonant spin-flip scattering has the opposite
effect. Apparently, the latter dominates initially at low bias. We
observe a similar behavior in the temperature dependence of
the double occupancy 〈nf ↑nf ↓〉

T
in the equilibrium case. We

find a minimum in 〈nf ↑nf ↓〉
T

at T ≈ 0.5 �. Therefore, the
impurity is at this value in the local moment regime. When
applying a bias voltage in the case of T = 0.5 �, the double
occupancy increases monotonically with φ, as can be seen in
Fig. 6. One can therefore conclude that the Kondo effect and
its suppression with increasing φ has a significant effect on

FIG. 6. (Color online) Double occupancy (left) and transport properties (right) as a function of bias voltage φ. Current j is depicted with
solid lines and the differential conductance ∂j/∂φ with dash-dotted lines. The latter is calculated with three-point Lagrange polynomials, based
on the data for j as marked in the plot. Results are shown for T = 0.5 � with NB = 10, and for T = 0.05 � with NB = 14. Other parameters
are as in Fig. 4. The linear response and equilibrium values for 〈nf ↑nf ↓〉 are from NRG [86].
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Im

FIG. 7. (Color online) Bias-dependent spectral function (left) and retarded self-energy (right) for U = 6 �, T = 0.02 �, and a Lorentzian
density of states in the leads; see Eq. (24). Solid lines correspond to calculations with NB = 16 whereas dash-dotted lines to ones with NB = 14.
The bias voltage φ is in units of �. The inset on the left is for NB = 16 and φ = 0.

the double occupancy. However, the particular position of the
minimum is not related to TK but essentially only determined
by the energy scale �, as discussed in Refs. [129,130]. The
reliability of our results is corroborated by the close agreement
for φ = 0 with the equilibrium values obtained by NRG
(marked by circles in Fig. 6).

C. Low bias spectrum

In order to better resolve the low-energy spectral properties
of the Anderson impurity model, we now consider briefly the
case of a Lorentzian density of states in the leads. In particular
we replace Eq. (11) with

gR
λ (ω) = (ω − ελ + iγ )−1, (24)

where εL/R = ±φ

2 . This can be produced by a bath consisting
of one site with on-site energy ελ which further connects to a
wide band given by γ . We take � = −Im{�R(0)} again as unit
of energy and choose γ = 5/π � together with 2t ′λ

2
/γ = �.

The Keldysh component is given by Eq. (2) with μL/R = ±φ

2 ,
as before.

A Lorentzian density of states is particularly suited for
AMEA, since the retarded part �R

aux(ω) alone can be fitted
exactly with a single bath site. This simplification does not
apply to the Keldysh component with its Fermi edges. Still,
one can expect that the mapping procedure is more accurate
than for a flat density of states and indeed we find that we are
able to reproduce �ph(ω) by �aux(ω) more precisely for the
same NB . As a result, we can reach lower T with the same
system sizes. For details on the achievable accuracy we refer
to Appendix B.

In particular we investigate the case T = 0.02 � and
U = 6 � and focus on bias voltages close to TK . In addition
to the lower temperature especially the smaller effective
hybridization strength at the position of the Hubbard bands
leads to an increased separation of Kondo and Hubbard
features in the spectral function, and thus, to an improved
resolution. This can be seen in the peaked structure of the
inset in Fig. 7. The smaller temperature allows us to analyze the
behavior for lower bias voltages down to φ = 0.1 � [131]. Also
for this setup we find a similar dependence of the spectrum as

a function of voltage to that before, only at a decreased energy
scale. The self-energy in Fig. 7 indicates that a splitting is
first perceptible at a bias of φ ≈ 0.2–0.3 �. From our data we
can thus conclude that for bias voltages just above the Kondo
temperature, a clear splitting of the Kondo resonance into a
simple two-peak structure occurs.

IV. CONCLUSIONS

In this work we presented an improved formulation of
AMEA, introduced in Refs. [35,36], obtained by employing
matrix product states for the solution of the auxiliary master
equation in the interacting case. This allowed us to treat
larger auxiliary systems with more optimization parameters for
the mapping procedure, as compared to the ED-based solver
in Ref. [36]. This is crucial, since the accuracy in AMEA
increases exponentially with the number of optimization
parameters. As a result, we obtained well-converged spectral
data and static observables, whose accuracy for the equilibrium
case was comparable to NRG down to low temperatures and
for large interactions. More specifically, in the calculations
presented here, we were able to investigate the steady state
properties of the single-impurity Anderson model as a function
of bias voltage φ and at temperatures T well below the
Kondo temperature TK . In the spectral function we obtained
a prominent Kondo peak for φ = 0 and T ≈ TK/4, which
compared very well to an equilibrium NRG calculation, and
a broadening and subsequent splitting of the peak when
considering φ > 0. Also for the case of a Lorentzian density of
states in the leads, which enabled us to lower the temperature
to T ≈ TK/10, we found no evidence of a different behavior
than a simple splitting of the Kondo peak. In order to locate the
value of φ at which the peak starts to split, it was advantageous
to inspect the retarded self-energy. From this we concluded that
two excitations become visible for bias voltages just above the
Kondo temperature, at φ ≈ 1–2 TK .

For the many-body solution with MPS it was of advantage
to adjust the geometry of the auxiliary system and possible
modifications were discussed. As in other studies of Lindblad
problems with MPS, we found an increase of the bipartite
entanglement entropy S with system size NB [111]. However,
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the increase was moderate and slower than linear, which
made it possible to treat auxiliary open systems up to
NB ≈ 16 reliably and within a rather short computation time
(a couple of days). The value NB = 16 is by no means a
“hard limit” and much larger systems are expected to be
feasible, especially when including additionally non-Abelian
symmetries [106,107].

In general, the present MPS extension of AMEA constitutes
a versatile and very accurate impurity solver for both equilib-
rium and nonequilibrium steady state situations. Compared to
the ED-based solver presented in Ref. [36], the computation
time is longer but the achievable accuracy is much higher.
Therefore, the MPS impurity solver is especially suited for
situations in which a high spectral resolution is needed and a
detailed investigation of the underlying physics is desired.
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APPENDIX A: MULTIDIMENSIONAL OPTIMIZATION

In order to achieve �aux(ω) ≈ �ph(ω), we optimize the bath
parameters E, �(1), and �(2). For this a suitable parametrization
is chosen, which yields a unique set of matrices E, �(1), and
�(2) for every parameter vector x. The mean-squared error is
quantified by a cost function

C(x)2 =
∑

α∈{R,K}

∫ ωc

−ωc

Im
{
�α

ph(ω) − �α
aux(ω; x)

}2
W (ω)dω,

(A1)
with a certain cutoff ωc and weighting W (ω), which we take
to be constant in the present paper.

A variety of strategies exists to find the optimal parameter
set xopt which minimizes a cost function as stated above.
In previous work, Ref. [36], we employed a gradient-based
method with a large number of random starting points. Such a
deterministic minimization works well for rather small prob-
lems, but becomes inefficient in the higher-dimensional case
dim(x) � 20. It is then of great advantage to employ methods
which are able to overcome local minima. Appropriate Monte
Carlo (MC) sampling based methods are for instance simulated
annealing, multicanonical simulations, or parallel tempering
(PT) [132–137]. Especially a feedback-optimized version of
the latter has proven to be useful for our purposes. For details
we refer to Refs. [135,136] and in the following we outline
only briefly the implementation as used in this work.

In PT, also called replica exchange, one regards C(x) as an
artificial energy, defines a set of artificial inverse temperatures

βm, and samples for each temperature from the Boltzmann
distribution pm(x) = 1/Zmexp[−C(x)βm]. A replica xm

1 is
assigned to each βm and updated through a Markov chain with
the Metropolis-Hastings algorithm [138]. These MC sweeps
generate a sequence of xm

l , l = 1,2, . . . , which are distributed
according to pm(x). In addition, a swapping of replicas xm

l

and xm+1
l for neighboring inverse temperatures βm and βm+1 is

proposed after a certain number of sweeps. Again, a Metropolis
probability is used for the swaps,

q
m,m+1
l = min

(
1, exp

[
�Cm

l (βm − βm+1)
])

, (A2)

with �Cm
l = [C(xm

l ) − C(xm+1
l )]. The set of βm in PT has

the purpose that the low temperatures enable an efficient
sampling of regions where C(x) is small and the exchange
with higher temperatures avoids trapping in local minima. To
allow for an expedient exchange of replicas, the set of βm

needs to be adjusted. For our purposes we chose a feedback
strategy which shifts the values βm in order to achieve that
the swapping probability Eq. (A2) becomes constant with
respect to m. This strategy may not be the best possible
choice in general, cf. Ref. [137], but enables a fast feedback
and quickly adjusts to large changes in the values C(xm

l ).
In addition, we modified q

m,m+1
l → max(qm,m+1

l ,qth) with a
certain threshold probability (qth ≈ 0.1), to avoid that during
a PT run a separation into several temperature sets occurs,
which do not exchange replicas efficiently. This may violate
balance conditions for thermodynamic observables but does
not affect the applicability to minimization problems. For the
other PT parameters we proceeded in the following way: In
a single sweep each coordinate of xm

l was updated once and
10 sweeps were performed before attempting a swap. Around
20–30 inverse temperatures βm were used.

In general, one cannot expect to find the optimal solu-
tion in a nontrivial high-dimensional problem, but with the
PT algorithm as outlined above we obtain an xmin which
minimizes the cost function locally and may furthermore
fulfill C(xmin) ≈ C(xopt) to good approximation. For the largest

Im
Im

FIG. 8. (Color online) Hybridization function �aux(ω) as ob-
tained from minimizing the cost function Eq. (A1) with ωc = 15 �

and W (ω) = 1, for the flat band model Eqs. (10), (11) with φ = 2 �

and T = 0.05 �. Results on the left are for NB = 12 and on the right
for NB = 14.
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FIG. 9. (Color online) Convergence of �aux(ω) with increasing NB . Results with T = 0.5 � and T = 0.05 � are for the flat band case
Eqs. (10), (11), and the ones with T = 0.02 � are for the Lorentzian density of states Eq. (24). For the cost function C, Eq. (A1), we chose
W (ω) = 1 as well as ωc = 15 � for the flat band model and ωc = 5 � for the Lorentzian case. The normalization C0 refers to the value of C for
�aux(ω) ≡ 0.

systems considered in this work, NB � 14, a good starting
point was found to be important. For the case of tridiagonal
E, �(1), and �(2), a convenient choice is to make use of xmin

from the next smaller system with NB − 2.

APPENDIX B: CONVERGENCE AS A FUNCTION OF NB

Figure 8 depicts two typical results of the optimization
described in Appendix A, for NB = 12 and NB = 14. It is
apparent that rapid convergence is achieved when increasing
NB . For low temperatures T we find that the biggest error in
�aux(ω) occurs in the retarded component at the positions of
the chemical potentials μL/R = ±φ

2 ; see NB = 12. This is a
consequence of optimizing �R

aux(ω) and �K
aux(ω) simultane-

ously. For higher temperatures, for instance T = 0.5 �, this
effect is much less pronounced.

A brief analysis of the convergence behavior of the mapping
procedure with increasing NB is given in Fig. 9. We present
values of the cost function C, Eq. (A1), for different temper-
atures and bias voltages. In general one finds an exponential
convergence C ∝ exp(−rNB) to good approximation and the
higher the temperature, the higher the rate of convergence r .
By averaging over results for different φ we estimate a scaling
of r ∝ T

1
4 . One can deduce from the order of magnitude

of C that the calculations presented for A(ω) at T = 0.02 �

(Fig. 7) are not converged to the same accuracy as the ones at
T = 0.05 � (Fig. 4) or T = 0.5 � (Fig. 5), and larger systems
with NB � 20 would be needed. However, the accuracy is
comparable to the NB = 12 results for T = 0.05 �, which
already yielded qualitative correct behavior and quite accurate
spectral data; see also Figs. 3 and 10. The influence of φ

is nonmonotonic and strongly dependent on the particular
density of states in the leads. For the situations considered
in this work we find the tendency that larger φ result in larger
values of C. For a more detailed analysis of the scaling with
temperature and the mapping procedure in general we refer to
Ref. [94].

For the flat band case with T = 0.05 � we present a more
thorough investigation by comparing the spectral function in
the interacting case U = 6 � for different numbers of bath sites
in Fig. 10. As can be anticipated from the cost function C in
Fig. 9, the cases φ = 1/3 � and φ = 2 � are well converged for
NB = 16, which manifests itself also in A(ω). The case φ = �

exhibits larger values of C and one can note more significant
changes in A(ω). Interestingly, rather high values of C are
obtained for φ = 4 �, but nevertheless, the spectral function
converges nicely. As discussed above for Fig. 8, the largest
errors in �aux(ω) correspond to short-scaled oscillations in
�R

aux(ω). These errors are likely to be averaged out once the
spectral function exhibits rather broad features. This is exactly

FIG. 10. (Color online) Convergence of the spectral function as depicted in Fig. 3 with increasing NB , i.e., for the flat band model with
U = 6 � and T = 0.05 �.
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the case for higher bias voltages where the Kondo effect is
strongly suppressed. On the whole, when inspecting Fig. 10
and also Fig. 3, one can note a slightly nonsmooth convergence
with NB , especially close to the Kondo regime for low φ. This
can be accounted for by abrupt changes of spectral weight in
�R

aux(ω) around ω = 0, when changing NB . One possibility to

suppress this effect is to adjust the weighting function W (ω)
in Eq. (A1) accordingly. However, this is most probably only
of importance when aiming to achieve even higher accuracies
in A(ω) and with the choice W (ω) = 1, one can regard the
calculations presented in this work as unbiased and accurate
over the whole ω domain.
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