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Abstract—Safety is one of the most important topics regarding
Automated-Driving in the Automotive Domain. In the last years,
LiDAR, Radar and Vision Cameras became the most relevant
Environmental Perception Sensors for enabling safe and robust
Automated-Driving. All of these systems offers specific strengths
and weaknesses in specific situations such as bright sunlight
or heavy rain. Therefore, these systems requires specific Fail-
Operational concepts to allow robust and safe driving in urban
and rural environments.

In this publication, we are depicting Real-World evaluation of
Safety Concepts and Fail-Operational functionality of a Sensor
Fusion Platform that offers Radar, 3D Flash LiDAR and Vision
Cameras. We verified our platform in specific driving situations
such as driving from an urban parking environment into bright
sunlight with the dynamic adaption of the confidence range that
depicts reliable data.

Index Terms—Safety, Fail-Operational Concepts, Automotive,
Reliability

I. INTRODUCTION

Automated Driving is one of the most challenging tasks

in the Automotive Domain nowadays. The reason is the

transition from fail-safe to fail-operational behavior including

the absence of the driver as the last safety instance. Automated

Fig. 1. PRYSTINE’s concept view of a fail-operational urban surround
perception system [1].

Driving enforces the overall Automotive system to acquire

the human senses that are needed for driving a car such as

vision to enable a safe driving experience. The visual sense is

provided by specific environmental perception sensors such as

Light Detection and Ranging (LiDAR), Radio Detection and

Ranging (RADAR) or Vision Cameras. Based on these three

systems, a robust and fail-operational system can be provided

to enable a safe and robust Automated Driving such as the

FUSION system of the PRYSTINE project [1]. Safe and robust

driving is one of the key factors for a high acceptance and

trust of semi- and automated driving functionalities on public

roads [2]. Therefore, novel concepts needs to be developed and

considered because the traditional thinking of safety according

the ISO 26262 standard does not fulfill these high standards

yet. The ISO 26262 standard declares that a safety mechanism

is responsible for the transition of the overall system into a

safe state but in case of unexpected behavior the system is

able to forward this responsibility to the driver as last safety

instance [3]. In the past, there already happened accidents with

automated driving functionalities [4]. It is even questionable

if future autonomous vehicles will be ever able to prevent all

accidents at all. But they can be one of the key enablers for

reducing accidents that are mostly based on human failures

such as driving with high speed or long reaction times.

Therefore, the overall effort of advancing the current Advanced

Driving Assistance Systems (ADAS) is worth to continue and

this publication is contributing to the current scientific work

with a focus on the current Automotive Industry.

II. RELATED WORK

To test novel safety concepts in real-world environments

under realistic weather conditions it requires a working sensor

fusion platform that provides different sensors such as Radar,

3D Flash LiDAR and Vision cameras. For this publication,

we were able to advance an existing Sensor Fusion platform

that was already used for different Automotive scenarios

such as Parking Assistance systems and other Context-

Aware scenarios [5]–[8]. The overall safety of Automated

Driving systems inside vehicles is strongly connected to a



high acceptance of the drivers that will be transformed to

passengers inside these cars [2]. Nowadays, the current ISO

26262 standard [3] represents the de facto standard for safety

in the Automotive domain. This standard describes basic

methods for handling complexity and enabling a safe and

robust functionality such as redundant systems. Basically, a

Fault is able to trigger a Failure inside a Component and this

could be propagated to an Item that will switch to a Failure

mode. This scenario clearly shows the interlock between

single faults that can trigger a total failure of the whole

system. To prevent such failures, the Automotive Industry but

also other Industries are using redundancy on System Level

as well as have a strong focus on reliability [9].

Emmerich et al. introduced a Systems Engineering

Framework and Application to an Open Automated Driving

Platform [10]. In their research work, they have developed

an Automated Driving demonstrator that is based on

overall business needs with a top-down approach from the

requirements engineering to the implementation. Their focus

was on developing a framework and methodology with a

focus on cost reduction and technical flexibility [10].

Kokogias et al. introduced a novel platform-independent

system for cooperative Automated Driving. Their approach

clearly shows that collaborative automated driving is feasible

and that the system are able to communicate to each other

with a specific standard protocol. They emphasizes that

the biggest challenge was the ongoing testing and the

participation of individual teams. Their Real-World testing

was successful and highlights the feasibility of their approach

[11].

The verification of Automated Driving functionalities is

one of the most important topics. Developing a real system

requires high effort as well as always has the possibility of

wrong or missing requirements. But there is also the need of

a quick verification of novel ideas and concepts. To handle

this situation as well as to enable shorter development cycles

simulations can be used such as the Scenario Simulation

Platform. Pilz et al. [12] developed a simulation-based

automated driving verification system. Their approach is

based on existing simulators but also extending them with

multiplayer game engines. Their system enables engineers

to test Automated Driving algorithms inside the virtual

environments and to control a vehicle [12].

In general, Sensor Fusion platforms in the context of

Automated Driving are necessary for evaluating different

scenarios but also there are many blind spots regarding

the different communication layers. Bijlsma et al. [13]

introduced a novel Multi-Sensor Fusion Platform to support

the verification of mixed-criticality algorithms in the context

of Automated Driving. Their iVSP platform represents a

layer-based fusion platform consisting different sensors and

can be divided in a Sensor, Communication, Actuation,

Information and Application Layer. The results clearly

show that their framework can be used for designing and

implementing safety-critical ADAS algorithms for prototype

purpose [13].

Fig. 2. Sensor Fusion Platform that was used for the further experiments of
the use cases.

Therefore, this publication’s contribution to existing research

is:

• Developing novel methods and concepts for Automotive

Perception sensors to handle safety issues such as sensor

failure or environmental caused data interferences.

• Implementing these novel concepts inside a Sensor Fu-

sion prototype platform that provides Vision Camera,

Radar and 3D Flash LiDAR.

• Testing the novel concepts in Real-World environments.

III. PROTOTYPE PLATFORM AND USE CASES

A. Sensor Fusion Platform

An existing environmental perception platform is extend-

ed in order to evaluate and demonstrate newly developed

methods and techniques to improve the functional safety of

road vehicles. The existing platform consists of multiple ToF

sensors, a vision camera and a radar sensor. Additionally, the

platform is capable to obtain simultaneous measurements from

the different sensors via a common trigger signal, generated

by a microcontroller. A processing unit is included in the plat-

form, which oversees processing the measurement data (data-

handling, pre-processing, fusion). A lithium battery allows to

utilize the platform in mobile mode. The platform is built

within an aluminum profile cage, which allows easy mounting

of the platform on mobile robots or vehicles. A picture of the

environmental perception platform can be seen in Figure 2.

B. Use Cases Overview

Functional Safety is one of the most important key fac-

tors for novel automated driving vehicles. Automated driving

forces engineers to perform a transition of fail-safe to fail-

operational behavior. The current prototype platform considers

this change of thinking and already has implemented fail-

operational behavior and is able to demonstrate these prop-

erties with four different Use Cases:



1) Context Dependent Field-of-View

The vehicle adapts the sensors FoV depending on its

current environment.

2) Field-of-View Adaption in Case of Sensor Failure

The platform detects a faulty sensor and re-configures

the remaining sensors in order to compensate the lost

sensor coverage.

3) Context-Aware Sensor Degradation

The platform detects a context states affecting the per-

formance of its perception sensors. A confidence range

is then assigned to the sensors data streams.

4) Resolution Reduction

The system can react to a high memory utilization with a

reduction of the sensors output resolution. This protects

the memory in long term application.

C. Context Dependent Field-of-View

The implemented use case shall show the following safety-

features: When the vehicle drives with high-speed on a high-

way, the sensor setups FoV shall be narrow and provide

high spatial-resolution. This enables the detection of vehi-

cles/objects at a higher range. When the vehicle is operated at a

low speed in an urban area, the perception system shall change

to a wide-angle and lower spatial resolution. A conceptual

overview of the Use Case can be seen in Figure 3.

In order to adapt the field-of-view the parameter-adaption

module has to be aware of the contextual information. In

the case of a context dependent field-of-view, the informa-

tion about the current context area (urban area, highway) is

assumed to be available from an external map/localization

module. Thus, the module takes as input an identifier, which

provides the module an identifier about the current context.

D. Field-of-View Adaption in Case of Sensor Failure

The FoV fo the remaining sensors is adapted in order to

compensate the failure of a single sensor as seen in Figure

4. However, in order to provide the same frame-rate, the

resolution of the remaining sensors is reduced. One possible

Fig. 3. Concept overview of the Context Dependent Field-of-View use case.

cause of sensor failure is high mechanical stress to the sensor.

E.g., when the vehicle drives through a pothole or hits an

object.

In order to change the FoV in order of a sensor failure,

the parameter-adaption module has to be aware of the sensor

failure. If a sensor failure is given, the parameter adaption

module changes the perception sensors parameters in order

to change their FoV. The sensor failure is detected using

diagnosis functionality of the receive module. If no sensor data

is received for a certain amount of time (time threshold), the

corresponding sensor is marked as impaired for the parameter

adaption module.

E. Context-Aware Sensor Degradation

Degradation of single sensors in case of certain environmen-

tal conditions. E.g., bright sunlight. The confidence ranges of

each sensor shall be adapted.

For the context aware sensor degradation, the health state of

each perception sensor has to be determined. This is done by

utilizing data from the other perception sensors (vision camer-

a) as well as special context sensors (e.g., light/temperature).

A separate module is in charge of detecting the degradation

using that input data and forwarding the degradation state to

the Confidence- Range module. The confidence range module

is then in charge of setting the confidence range for the

corresponding sensor accordingly. Use cases can then utilize

the confidence range as well as additional input in order to

increase the robustness of their fusion modules.

F. Resolution Reduction

Reduce resolution of the sensor in order to reduce the

utilization of the memory cells. This is done after the safety

monitoring system detected high memory utilization in order

to reduce the wear of single memory cells.

In order to adapt the resolution of a sensor, the parameter-

adaption module has to be aware of the memory utilization.

Thus, a separate module has to determine the current measure-

ment utilization and make it available to the parameter- adap-

tion module. In case of a high memory utilization (thresholds,

decision function), the parameter adaption module is then used

to change the sensors resolution.

G. Implementation

In order to provide the novel safety concepts, the existing

platform had to be extended in hardware and software. This

Fig. 4. Concept overview of the Field-of-View Adaption in Case of Sensor
Failure.



Fig. 5. Hardware Architecture of the used Prototyping Platform that has been used for the Use Cases.

section shows the hardware and software changes in more

detail.

The existing platform was extended with a third ToF camera

(3D flash lidar). Additionally, the whole setup was re-arranged

and built in a more robust way. This enables the mounting of

the platform on moving platforms. Figure 5 shows an overview

of the final hardware setup. With that setup it is possible

to perform the safety critical measurements. The hardware

platform can be split into a Perception Processing Module and

a Perception Sensing Module. While the processing module

contains the heavy battery as well as the Intel NUC processing

unit, the sensing module only contains the sensors and their

supplementary hardware. Thus, the sensing module is less

bulky and allows direct mounting on external platforms.

The software architecture is based on the Robot Operating

System (ROS) framework. For this work, the Kinetic Kame

distribution release was used. All processing modules are im-

plemented as (C++ or python) ROS nodes, which subscribe to

Fig. 6. Research vehicle that has mounted the Sensors Fusion Platform in
the front.

input topics and publish output topics. The initial configuration

of the ROS nodes is set via ROS parameters, defined in

configuration files. Dynamic changes of node parameters can

be performed via ROS services, where a request is sent to the

node containing new parameter values. The node then answers

with a response, indicating whether the parameter change was

successful.

The architecture is split into several sub-systems: the base

perception system and multiple use cases. The base perception

system is in charge of the low-level data processing, sensor

configuration, spatio-temporal alignment and pre-processing

of the raw sensor data. The output of the base perception

system are well-structured data streams of different abstraction

levels. These data streams can then be used by the use-case

subsystems in order to perform application specific processing.

An additional use case sub-system, called PRYSTINE, was

added to the software architecture of the environmental per-

ception platform on use-case level. The part of the architecture,

subject to the developments of this report is highlighted with

color, while the remaining part of the architecture is grayed

out. The PRYSTINE subsystem is in charge of detecting the

contextual state (sensor degradation), the sensor health (FoV

adaption in case of failure), the memory utilization (resolution

reduction) and the environmental context (FoV adaption for

urban/highway). These outputs are then forwarded to the

parameter-adaption module of the sensors or the confidence

range adaption module. The parameter adaption module uti-

lizes service requests to the Receive/Pre-Processing modules

of the base-perception-system in order to adapt the sensor

configuration during runtime. The confidence range adaption

module on the other hand permanently outputs a confidence

range stream assigned to the data streams of the perception

sensors (via same timestamp).



IV. RESULTS

This section provides visualization of the acquired measure-

ment data for the different use cases. The data was recorded

using the platform, mounted on the research vehicle as seen

in Figure 6.

A. Context Dependent Field-of-View

Figure 7 shows the recorded measurement data for the first

use case. As seen in the left image (regular operation), the

range sensor is used in wide-angle mode, but with a low

confidence range. This setting is desirable for example in urban

scenarios when the vehicle is driving at low speed but many

dynamic objects (pedestrians, street signs, parked vehicles).

The right image shows the (long range operation) which is

active after a FoV change. In that case the range of the sensor

is increased, but the FoV is decreased. This setting is desirable

in highway scenarios, when the vehicle is driving at high speed

in a structured like a highway.

B. Field-of-View Adaption in Case of Sensor Failure

The second use case shows the adaption of the sensor setups

FoV in case of a sensor failure. For this use case, all three

range sensors are utilized. Figure 8 shows the regular operation

of the three sensors (point clouds visualized in different colors)

and the corresponding RGB image of the vision camera. The

walking pedestrian is clearly visible in the setup.

The middle point-cloud data shows the visualized range data

in case of a sensor failure (mid sensor) and the corresponding

RGB image. As seen in the figure, the pedestrian is now not

visible in the pointcloud any more and cannot be detected.

Thus, the FoV of the range sensors is adapted as seen in the

third point-cloud data. As seen in the figure, the two remaining

sensor extend their coverage area, but have to lower their

resolution. The pedestrian is now visible again, but at reduced

detail level.

C. Context-Aware Sensor Degradation

The third use case is the degradation of range sensors. As

seen in Figure 9, the confidence range of the sensor is marked

with the green confidence area, while the non-confident area

is marked red. The range data outside of the confidence range

is not considered for the sensor fusion.

Fig. 7. Results of the Context Dependent Field-of-View use case.

Fig. 8. Results of the Field-of-View Adaption in Case of Sensor Failure use
case.

D. Resolution Reduction

The fourth use case considers the memory utilization in

order to decide on whether to reduce the resolution of a sensor

in order to reduce the wear of the memory cells. For the

demonstration of this use case, one range sensor was utilized.

Figure 10 shows the point cloud output of the perception

sensor for the full resolution. The lower point cloud output

shows the sensor with reduced resolution. The number of

points is significantly reduced in order to protect the memory;

however the fine-grained detection abilities are also reduced,

but is sufficient to detect the presence of obstacles.

Fig. 9. Results of the Context-Aware Sensor Degradation use case.



Fig. 10. Results of the Resolution Reduction use case.

V. CONCLUSION

The platform was successfully utilized to evaluate multiple

safety concepts in a real-world test-drive. The three ToF cam-

eras of the platform were utilized to emulate solid-state LiDAR

sensors, common sensors mounted on automated vehicles.

Even though the ToF cameras have a significantly shorter

range compared to solid-state LiDAR sensors, the structure

of the provided data is very similar and thus, the findings

based on the ToF cameras can be directly transferred to

LiDAR sensors. The vulnerability of the ToF sensors to direct

sunlight was utilized to demonstrate the sensor degradation in

different ambient light conditions. Due to the limited range

of the ToF sensor, the use cases were recorded in scenes

with close objects. When transferring the results to a long-

range LiDAR setup, the distance values can be upscaled to

the range of the LiDAR sensor. The system provided good

results in recognizing the context states and switching between

the different modes. The adaption of the ToF sensors takes a

few milliseconds but can be fully performed during runtime

without the need to perform a sensor restart. The evaluation

of the data obtained during the test drive showed the necessity

and the potential of safety methods in order to provide robust

perception data in any scenario.
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