
Specfuscator: Evaluating Branch Removal as a
Spectre Mitigation

Martin Schwarzl1, Claudio Canella1, Daniel Gruss1, and Michael Schwarz2

1Graz University of Technology, Austria 2CISPA Helmholtz Center for
Information Security, Germany

Abstract. Attacks exploiting speculative execution, known as Spectre
attacks, have gained substantial attention in the scientific community
and in industry with a broad range of defense techniques proposed. In
particular, in-software defenses for commodity systems attempt to leave
the program structure as is, but defuse every potential Spectre gadget
by, e.g., stopping the speculation, or limiting value ranges. While these
mitigations disrupt the program flow on every conditional branch, they
still contain every single conditional branch instruction.

In this paper, we show that one dimension of Spectre mitigations has
been overlooked entirely. We explore a novel principled Spectre mitiga-
tion that sits at the other end of the scale: the absence of conditional and
indirect branches. Our mitigation is based on automatically linearizing
the program flow through a special compiler pass, eliminating all condi-
tional and indirect branches. We show that our Spectre mitigation has
very clear security guarantees. We explore the feasibility of this unortho-
dox approach and evaluate its performance in comparison to the more
conservative approaches presented so far. We observe that the perfor-
mance overhead can be low, e.g., 5 %, for certain use cases, being on-par
with state-of-the-art mitigations, but very high for other use cases, e.g.,
and overhead factor of 1000. Our results demonstrate the feasibility of
Spectre defenses that eliminate branches and indicate good performance-
security trade-offs for Spectre defenses can be achieved by sticking to
neither of the extremes.

1 Introduction

Speculative execution is a significant factor in the performance of modern pro-
cessors. Instead of waiting for a branch decision or branch target to be archi-
tecturally determined, the processor takes an educated guess based on behavior
observed in the past. From a pipeline perspective, this linearizes the execution of
instructions as the branch decision is omitted in the speculative execution flow
and only subsequently validated. Spectre attacks [31] induce incorrect specula-
tive execution flows into a victim context by manipulating the branch predictors.
During this speculative execution, the attacker can make the victim access se-
crets and encode them into the microarchitectural state. Using a side-channel
attack, e.g., Flush+Reload [54], the secrets can then be recovered.



2 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

Previous countermeasures [36,12,11] either attempt to thwart successful
covert-channel transmission during speculation [28,27,53], abort the speculative
execution before secrets can be accessed [22,1,3,41,23,13,39,50], or ensure that
secrets cannot be accessed during speculative execution [43,44,56]. Amit et al.
[4] tried to increase the performance of indirect branches by rewriting them into
two direct branches. However, from the perspective of branches in a program,
all these countermeasures remain in the same range of the scale, namely all con-
ditional and indirect branches remain in the program, in some cases even with
additional branches added. This raises an important scientific question:

Can the (substantial) reduction of branches, in particular the elimination
of all vulnerable branches, be a viable Spectre mitigations? Can such Spectre
mitigations maintain a reasonable overhead in certain use cases?

In this paper, we answer both questions in the affirmative. To answer these
scientific questions, we explore a novel Spectre mitigation at the other end of the
scale: the elimination of all conditional and indirect branches. While this may
sound impractical at first, it has been used for years to implement cryptographic
algorithms in constant time [7]. We demonstrate the feasibility of this approach
with our new mitigation, Specfuscator. Specfuscator is based on the movfusca-
tor [14] tool that automatically linearizes the program flow through a special
compiler pass. In contrast to M/o/Vfuscator , we do not replace all operations,
but just control-flow manipulating instructions, effectively eliminating all condi-
tional branches. To improve the performance of M/o/Vfuscator , we bring back
ALU operations, the cmp instruction and exploit the x86 addressing mode. In
comparison to the M/o/Vfuscator we increase the runtime up to a factor of 50
and decrease the binary size by 30 % and compile time up to 46 %. We show that
our Spectre mitigation is a principled approach with respect to security, follow-
ing the simple argument that if there are no conditional or indirect branches, no
branches can be mispredicted.

For our evaluation we analyzed Specfuscator in comparison with a set of other
compilers: the related M/o/Vfuscator and LCC, a patched clang with lfence

protections on all conditional branches, and an unpatched clang without any
Spectre mitigations. We evaluate the performance of our unorthodox approach
and discover that the overhead can be as low as 5 %, being on-par with state-of-
the-art mitigations, but also much higher, up to factor 1000, performing clearly
worse than state-of-the-art mitigations. Thus, for some use cases, the elimina-
tion of conditional and indirect branches is nearly as efficient as state-of-the-art
mitigations but with a stronger security argument. This indicates that the space
between the two extremes, all conditional and indirect branches and no con-
ditional and indirect branches, should receive more attention for the design of
future countermeasures.

Our key contributions are:

– We explore a previously unexplored mitigation space against Spectre: the
absence of conditional and indirect branches.

– We present a solution based on a linearized control-flow with very clear and
strong security guarantees.



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 3

– We evaluate our approach and observe that the performance overhead can
be lower than state-of-the-art mitigations in some use cases, but also signifi-
cantly higher in others.

– Our results shed light on a new direction for performance-security trade-offs
for Spectre defenses.

The remainder of this paper is organized as follows. In Section 2, we provide
background information. In Section 3, we discuss the landscape of existing Spec-
tre defenses and point out blank spots. In Section 4, we present Specfuscator,
our Spectre defense mechanism. In Section 5, we evaluate the performance and
security of Specfuscator. In Section 6, we discuss the context and implications
of our work. We conclude in Section 7.

2 Background

This section provides some background information about speculative execution
attacks and the internals of the M/o/Vfuscator .

2.1 Speculative Execution Attacks

Modern CPUs extensively use out-of-order execution and prediction mech-
anisms to increase performance. Speculative execution uses branch predic-
tions to advance the control flow speculatively. Branch prediction mechanisms
are implemented via different structures, such as the Branch History Buffer
(BHB) [8,31], the Branch Target Buffer (BTB) [33,16,31], the Pattern History
Table (PHT) [18,31], and the Return Stack Buffer (RSB) [18,34,32].

Mispredicted branches are reverted on the architectural level, but not on the
microarchitectural level [31]. Hence, code that should not have been executed
architecturally still leaves microarchitectural traces, e.g., in various caches. By
leveraging traditional side-channel attacks, these microarchitectural traces can
be brought into the architectural domain, potentially recovering data that was
not supposed to be accessed, i.e., secrets.

Kocher et al. [31] first discussed transient-execution attacks [12] using specu-
lative execution and demonstrated that conditional branches and indirect jumps
can be exploited to leak data. Subsequent work has then shown that the idea
can be extended to function returns [34,32] and store-to-load forwarding [21].
Canella et al. [12] then systematically analyzed the field and demonstrated that
the necessary mistraining can be done in the same and a different address space
due to some predictors being shared across hyperthreads. Additionally, they also
showed that many of the proposed countermeasures are ineffective and do not
target the root cause of the problem. While the cache has been predominantly
exploited for the transmission of the secret data [31,12,34,32], other channels
have also been shown to be effective, i.e., execution port contention [9].

To mitigate all these attacks, various proposals have been made by industry
and academia. Canella et al. [11] analyzed the differences between countermea-
sures proposed by academia and by industry, highlighting that academia pro-



4 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

BB1

BB2 BB3

BB4

BB1
BB2
BB3
BB4

Usual Control-Flow Linearized Control-Flow

Fig. 1: Branch instructions typically split up the control flow. Constant-time
cryptographic algorithms avoid branches (left) and instead linearize the control
flow (right), e.g., square-and-always-multiply [15], turning the security-critical
branches and basic blocks into one large basic block. M/o/Vfuscator follows
the same idea of linearizing the control-flow and uses one main execution loop,
turning the program into one large basic block.

poses more radical countermeasures compared to industry. In general, the pro-
posed mitigations either require significant changes to the hardware [28,53,27],
require a developer to annotate secrets [44,40,20], introduce data dependen-
cies [39,13], or reduce the accuracy of timers [35,42,49,51].

2.2 M/o/Vfuscator

Turing completeness is a part of computability theory that describes a set of
rules or instructions that can be simulated on a single-taped Turing machine.
Dolan [48] showed that the x86 mov instruction is Turing-complete. Based on this
observation, Domas [14] invented the single-instruction compiler M/o/Vfuscator .
The M/o/Vfuscator patches the Little C compiler (LCC) to use an emitter that
only emits mov instructions. M/o/Vfuscator is an x86 32-bit compiler and also
only supports 32-bit arithmetic operations.

The compiled program runs in a virtual machine, which basically runs like a
Turing machine. The entire program is branch-free and thus executed as a single
basic block, leading to a linearized control flow graph. Figure 1 illustrates the
linearized control flow graph. Thus, the program is always executed from start to
end in a loop. To ensure the correctness of the program, a flag specifies whether
an instruction should compute on the target location or a dummy discard loca-
tion. All instructions that are not relevant for a specific iteration are discarded
using this discard location. Hence, although the instruction is executed, it has
no impact on the current behavior of the program. This technique is the same
that is used to ensure constant-time implementations of, e.g., cryptographic al-
gorithms [15].

Note that this is similar to constant-time cryptographic algorithms, e.g.,
square-and-always-multiply [15], the program executes both branches and, thus,
always runs the algorithm from start to end in a loop.

Arithmetic operations, i.e., additions, multiplications, divisions, bitwise-
operations, are implemented using two-dimensional lookup tables. To save mem-



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 5

ory. 32-bit operations are split into two 16-bit operations, and, thus, only 16-bit
lookup tables are required. By exploiting the addressing modes of x86-mov, the
first mov looks up the row for the first operand, the second mov looks up the cor-
responding column for the second operand, and the value is reported as result.

M/o/Vfuscator handles internal jumps to specific parts of the code using
a target register. M/o/Vfuscator installs two signal handlers for SIGSEGV and
SIGILL to enable branching [14]. At the end of the program, an illegal instruc-
tion is emitted to trigger the SIGILL handler and jump back to the start of the
program. To perform external library calls, i.e., calling libc functions such as
printf, segmentation faults are used [14]. To adhere to the x86 calling conven-
tion, the function’s arguments are pushed onto the stack.

As the name indicates, M/o/Vfuscator can also be used as an obfuscation
technique. However, as Kirsch et al. [29] demonstrated, it is possible to deobfus-
cate this technique with taint analysis.

3 Blank Spots in the Spectre Defense Landscape

Most Spectre countermeasures attempt to break different phases of Spectre at-
tacks [12,11]. These phases are described in previous work as preparation, mis-
speculation, access, encoding, leakage, and decoding.

Preparation. Preventing the preparation phase can often be seen as equivalent
to disabling performance optimizations in the CPU. By disabling either microar-
chitectural states or speculation at all, an attacker is unable to prepare a Spectre
attack. While disabling speculation has been suggested as a mitigation [31], mod-
ern CPUs do not support disabling speculative execution. Moreover, it can be
expected that disabling speculative execution results in a considerable slowdown.
Similarly, disabling the cache also has an unacceptable performance overhead as
every memory access has to be served from memory. Additionally, other mi-
croarchitectural elements could be used as side channel in the absence of the
cache [12,9,45].

Misspeculation and Preventing Access. Most focus so far was on the main cause
of Spectre attacks, the misspeculation phase, or the transient access of secrets fol-
lowing the misspeculation. Intel, AMD, and ARM [3,24,5] prevent Spectre-BTB
and Spectre-RSB by restricting how an attacker can influence the predictors.
For Spectre-PHT, serializing instructions are recommended to stop speculation
at security-critical branches [24]. However, this means that branches have to be
identified and separately patched.

Furthermore, it could be that memory barrier instructions are not fully seri-
alizing [2]. To entirely protect an application, speculation barriers are required
for each branch that could be followed by cache fetches. Adding memory barriers
for each conditional branch can lead to runtime overheads of up to 440 % [39].
Additional to that performance overhead, Schwarz et al. [45] have shown that
speculation barriers for each branch do not suffice as other channels can be used



6 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

to leak data, such as the AVX unit or the TLB, as these barriers do not prevent
interaction with these microarchitectural elements.

Oleksenko et al. [39] introduced data dependencies to branch conditions and
the following instructions to force a stall if the branch cannot be decided yet.
Similarly, Carruth [13] proposed to use branchless code to check loads, ensuring
that the load is executed along a valid control-flow path. One pre-requisite for
this approach is that the hardware supports branchless and unpredicted condi-
tional updates of register values.

Schwarz et al. [44] and Fustos et al. [20] propose to annotate secrets and prop-
agate these annotations to the CPU to ensure that secrets are inaccessible during
transient execution. Speculative taint tracking (STT) [56] uses light-weight taint
tracking to taint not yet committed data and delay instructions that use it. Sim-
ilarly, NDA [52] prevents the execution of potentially leaking instructions if they
depend on a not yet retired operation.

All of these mitigations keep the number of branches identical but ensure
that no leakage occurs by breaking the link between the misspeculation phase
and the subsequent access or encoding phases.

Other solutions attempt to add branches that are potentially less easy to
exploit [4]. Google proposed retpoline [50], a code sequence replacing indirect
branches with return instructions, to prevent Spectre-BTB. While retpoline also
adds more jumps to the program, these are direct jumps and, thus, likely un-
exploitable. Hence, the total number of branches increases, although potentially
fewer are exploitable. Branco [10] proposed a probabilistic alternative to ret-
poline, called randpoline, which is compatible with Intel Control-flow Enforce-
ment Technology (CET). This alternative introduces a large number of indirect
branches and randomly chooses one of them, reducing the chance that an at-
tacker can mistrain the actually executed branch.

Encoding, Leakage, and Decoding. In these phases, the secret was already ac-
cessed transiently. Preventing exploitation in these phases would require ensur-
ing that no covert channel exists between the transient and the architectural
domain. However, the way modern CPUs work, it is unrealistic to assume that
covert channels can be entirely prevented. While proposals exist to limit the
resolution of timers [51] or to build microarchitectural shadow structures [27,53]
to squash the results on mispredictions and leave no microarchitectural traces
in the cache. However, these mitigations are typically incomplete [12].

Classification. While these defenses have different security properties, depending
on the phase they target, they have in common that specific branches are either
transformed into other branches, or that the flow from mispredicted branch to
leakage is interrupted. We classify the existing Spectre defenses, as illustrated
in Figure 2. From this figure, it becomes apparent that most solutions sit in
the same range of keeping the number of branches identical, and some defenses
increase the number of branches.

Existing software-based countermeasures try to surgically modify conditional
branches or subsequent data access to prevent the exploitation of misspeculation.



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 7

More BranchesFewer Branches Baseline

Specfuscator

SpectreGuard
SLH

ConTExT

SafeSpec
STT

InvisiSpec

JumpSwitches

retpoline randpoline

U
nexplored

Fig. 2: Previous Spectre defenses were either not changing the number of condi-
tional branches, but possibly adding more (direct) branches to a program. The
space of eliminating branches is largely unexplored.

However, as an alternative to preventing speculative execution of conditional
branches entirely [31], another possibility is to eliminate conditional branches.
In this work, we analyze this largely unexplored mitigation technique of removing
conditional branches, thus also eliminating the root cause of Spectre attacks.

4 Specfuscator

In this section, we introduce the design of Specfuscator in the first part. Then we
discuss the security guarantees of Specfuscator and outline the implementation.

4.1 Design of Specfuscator

Specfuscator is based on the work by Dolan [48] showing that the x86 mov in-
struction is Turing complete. Hence, it is always possible to transform a regular
application into an application that consists only of mov instructions, and thus
no conditional branches. This approach has been implemented by Domas [14]
as M/o/Vfuscator with the goal of obfuscating applications and making them
difficult to reverse engineer.

The main idea is always to execute both code paths of every conditional
branch, similar to the constant-time square-and-always-multiply algorithm for
RSA [15]. Per conditional branch, a flag decides whether the calculated results
are kept and committed to the program state, or discarded by specifying a
dummy location as the target. Such an approach is also considered secure for
implementing side-channel resilient cryptographic algorithms [15,38,55]. The ad-
vantage of this approach is that it can be fully automated in the compiler.

M/o/Vfuscator leverages the code generation of the LCC compiler but re-
places the emitter for single instructions by a special emitter, generating the
corresponding assembly code. M/o/Vfuscator labels all branches and uses a
software-emulated target register to decide which of the branches is currently



8 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

executed. If the execution flag is set, all operations are performed as specified in
the program code. Conversely, if the flag is not set, the results of the operations
are discarded, similar as square-and-always-multiply [15].

Branching is emulated using branch-free comparison using subtraction and
logical operations. Depending on the result of the comparison, the corresponding
flags (zero flag, signed flag, carry flag, and overflow flag) are set, and the target
location is selected. A flag specific to this approach is the execution flag that
can be changed by compare instructions. After disabling the execution flag, the
results of the subsequent instructions are stored to a scratch location. If the
instruction pointer (EIP) reaches the target basic block, the execution is enabled
again, and the results are again made architectural.

Similar to the square-and-always-multiply loop [15], the code is always exe-
cuted in its entirety in a loop. Hence, the execution speed suffers while secret-
dependent operations, secret-dependent branches, and secret-leaking misspecu-
lation are eliminated. This design leads to a linearization of the program flow.
Therefore, the CPU does not need to predict the outcome of branch instruc-
tions. If there are no branches in the program, there can be no mispredictions
and resulting pipeline stalls [26].

While the mov-based approach is already secure against Spectre attacks, it
introduces a considerable performance overhead. Arithmetic operations are im-
plemented via extensive use of two-dimensional arithmetic lookup tables. For
instance, a 32-bit addition requires 50 x86 mov instructions, which use 16-bit
lookup tables. To increase the performance of Specfuscator, we do not solely rely
on the mov instruction. As we only aim to prevent Spectre attacks, we do not
implement arithmetic operations using movs. Instead, we rely on the native x86
arithmetic instructions, as they cannot be exploited using Spectre. In addition,
we exploit the x86 addressing modes to operate directly in memory instead of
moving both operands into registers. This optimization saves one additional mov
instruction per memory operation.

Another instruction that is safe with respect to Specter is the cmp instruction.
Thus, Specfuscator directly uses the cmp instruction instead of a subtraction for
comparing two values. The required flag, e.g., the execution flag, is then set via
arithmetic and logic instructions. Figure 3 illustrates how Specfuscator emits
branch-free code using mov instructions.

The only jump instruction in Specfuscator is the jump from the end of the
program to the top of the execution loop. In M/o/Vfuscator , this was solved us-
ing an illegal instruction and a corresponding exception handler. However, this
causes a considerable performance overhead and might even lead to misspecu-
lation in the interrupt handler [46]. Hence, as a Spectre attack cannot exploit a
direct, unconditional jump, the illegal instruction can be replaced via a direct
jump to the top of the execution loop.

4.2 Security of Specfuscator

Specfuscator is a defense against Spectre attacks that exploit control-flow mis-
prediction, i.e., Spectre-PHT [31], Spectre-BTB [31], and Spectre-RSB [32,34],



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 9

EIP==Target MOV

ALU OP.

MOV

CMP

Set Target

Execution off

MOV

MOV

MOV

MOV

Execution on

MOV

JMP TOP

Target →

Executed

Discarded

Fig. 3: Branching is handled via a target value for each basic block. If the target
is reached, the execution flag is toggled, and the results modify the program’s
state. Conversely, until the target does not match, the results are written to
scratch locations.

as classified by Canella et al. [12]. Straightline Spectre [6] is a special case of
Spectre-BTB and Spectre-RSB, where the CPU speculatively skips a branch and
continue with the instruction directly after the branch. Another Spectre variant,
Spectre-STL [21], is a separate mechanism that relies on incorrect speculations
for store-to-load forwarding, i.e., it is a data-flow misprediction.

The idea of Specfuscator is that none of the control-flow mispredicting Spec-
tre variants (Spectre-PHT [31], Spectre-BTB [31], and Spectre-RSB [32,34], in-
cluding Straightline Spectre [6]), work if the corresponding control-flow modify-
ing instructions are not used at all. Specfuscator strictly avoids these instructions
and only permits direct, unconditional control flow changes. As the only emitted
branch is the unconditional branch at the end of the program, adding a memory
fence after this jump prevents Straightline Spectre. Due to the unconditional na-
ture of the branch, this memory fence is never executed architecturally, and has
therefore no performance impact. Hence, programs compiled with Specfuscator,
by design, cannot be susceptible to the above Spectre variants as the correspond-
ing instructions are not present in the binary. This is a very clear and strong
security guarantee that most other defenses cannot provide [31,12].

Specfuscator is a software-only solution and does not require hardware mod-
ifications like other proposed Spectre defense mechanisms [44,28,27]. Thus, it
can even work in environments where other mitigations cannot be applied, e.g.,
because lfence instructions are not serializing [2], or patches are unavailable for
other reasons.

4.3 Implementation of Specfuscator

Specfuscator is a modification to the LCC C compiler [19]. The reason we chose
LCC and not gcc or clang is that we base the implementation of Specfuscator
on the open-source M/o/Vfuscator , as this compiler already generates a branch-
free binary based on the technique from Dolan [48]. M/o/Vfuscator itself is a



10 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

patch to the current version (September 2020) of LCC. However, we require sev-
eral custom changes, as outlined in Section 4.1. In contrast to M/o/Vfuscator ,
Specfuscator can use a broader range of native instructions without sacrificing
security. By relying on arithmetic and logic operations, as well as complex ad-
dressing modes, the amount of mov instructions is reduced heavily, i.e., for the
addition, we now have 3 instructions instead of 50 mov instruction. For exam-
ple, in a tiny AES program, the number of instructions is reduced from 222 935
to 127 631, i.e., a reduction of about 43 %, when compiling with Specfuscator
instead of M/o/Vfuscator .

As all of our changes are in the code emitter of the compiler, this could also
be ported to a different compiler, such as clang. As Specfuscator is based on
M/o/Vfuscator , we can already adopt the control-flow-linearization code from
M/o/Vfuscator but also emit arithmetic and logic operations. Divisions and
modulo operations require additional handling, as they can cause floating-point
exceptions in case of a division by zero. We handle those special cases using
conditional mov (cmov) instructions to ensure that we do not introduce condi-
tional branches. The conditional mov instructions, e.g., cmov, are not affected by
Spectre, as they are never predicted [25].

For comparisons, we cannot merely emit the x86 instructions instead of the
mov-based constructs, as M/o/Vfuscator uses its own internal representation of
CPU flags to select whether the computation results of a branch are stored or
discarded. Hence, to ensure correct branching with e.g., , the cmp instruction,
we need to update the internal flags in a branch-free way. We achieve this by
transferring the CPU flags to an unused general-purpose register via the stack
and using binary masks to extract the required bits.

In total, we changed (added, removed, or replaced) 437 lines of code of
M/o/Vfuscator , which is about 10 % of the M/o/Vfuscator codebase.

5 Evaluation

In this section, we first verify the security of Specfuscator by compiling and
executing Spectre-PHT, Spectre-BTB, and Spectre-RSB gadgets. Furthermore,
we evaluate the performance of Specfuscator and compare it to the original
M/o/Vfuscator , LCC, and a modified clang version, which emits lfences for
each conditional branch, and a basic clang compiler without Spectre mitiga-
tions activated. We compare each compiler on a set of benchmark programs and
compare the averaged runtime performance, binary size, and compile time. The
results of this evaluation are given in Table 1 and Table 2. Our test system was
equipped with Ubuntu 20.04 (5.4.0-42-lowlatency) running on an Intel i5-8250U
CPU.

5.1 Security Evaluation

We demonstrate that it is impossible to successfully use an existing Spectre
proof-of-concept attack on Specfuscator compiled code. To verify that the mis-
speculation is indeed prevented, we separately validate all other Spectre attack



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 11

50 100 150 200 250 300 350 400 450 500

0

5

10

Time [CPU cycles]

A
m
o
u
n
t
[%

]

Cache hit

Cache miss

Fig. 4: Flush+Reload within a Specfuscator-compiled program works successfully
as intended.

steps. We add additional functionality to the compiled binaries to obtain ac-
curate time measurements with rdtsc and enable flushing of a virtual address
using the clflush instruction. This allows us to accurately verify the cache
encoding of the Spectre attack with a Flush+Reload side-channel.

We verify that the cache covert channel in a compiled binary works exactly
as in a regular Spectre attack by creating a histogram of cached and uncached
data. Figure 4 shows that it is still possible to distinguish between cached and
uncached data in a program compiled with Specfuscator. Therefore, cache-based
side-channel attacks are still possible in Specfuscator-compiled programs.

To validate whether Spectre is still possible, we use the 15 sample Spectre
gadgets from Kocher [30]. First, we evaluate that these gadgets indeed sucess-
fully show Spectre attacks. We compile them using the unmodified LCC and
execute each gadget 100 000 times. For all gadgets, we successfully leak data
using Spectre.

For the security evaluation, we compile all sample gadgets using Specfusca-
tor. We again execute each gadget 100 000 times on our test device, and check
whether the secret is leaked. As we do not observe any leakage on our test device
using any of the gadgets, we practically confirm that our mitigation that should
work in theory due to the absence of misspeculation, also works in practice.

In addition, we port a Spectre-BTB and Spectre-RSB proof-of-concept to 32-
bit and evaluate it on our unmitigated clang. Again, as expected, these proof-
of-concepts work on an unmitigated clang. When the programs are compiled
with Specfuscator, no indirect jumps, calls, or return instructions are emitted.
To experimentally show that Specfuscator indeed stops the leakage for these
attacks, we again compile them using our defense. We execute the proof-of-
concept implementations 100 000 times and do not observe any leakage for either
Spectre-BTB or Spectre-RSB.



12 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

5.2 Performance Evaluation

For the evaluation, we extend LLVM 10.0.1 with a new compiler pass that runs
just before the final code is emitted. In this pass, we analyze every conditional
branch using the analyzeBranch function and insert an lfence instruction if
this instruction is not already present. To mitigate speculation on both sides of
a conditional branch, we also emit an lfence instruction in its fall-through basic
block if this code path is not already fenced. This compiler pass required changing
or adding 125 lines of code across 4 files. In addition to enabling our fencing pass,
we enable the retpoline mitigation for clang by adding the -mretpoline flag.
As a result, speculative execution is stopped for all conditional branches and
jumps, as e.g., , suggested by Intel [24].

For our evaluation, we compare different programs, including cryptographic
implementations and real-world applications [14]. We compile each program as
a 32-bit binary since our Specfuscator proof-of-concept only supports 32-bit.
However, while we showcase our compiler for this architecture, our approach is
generic and is equally applicable to other architectures as well.

We compile the same benchmark program in 5 different configurations. Each
test case is compiled with clang without any Spectre mitigations, clang with
lfences and retpoline active, the LCC, the unmodified M/o/Vfuscator , and
Specfuscator. To get stable benchmarking results, we fixed the CPU frequency
to 3.4 GHz and ran our test program on an isolated core.

Run time

We use the runtime of the clang-compiled programs without mitigations as
a baseline to compute the runtime overhead. To measure the runtime of the
programs, we use the perf command-line tool. We run each test case 1000 times.
For the individual test cases, we observe standard deviations between 0.1 % and,
for some cases, 3 %. The maximum value of 3 % was observed in the case of clang.
The reason for this higher standard deviation might be speculative execution.

As shown in Table 1, the runtime overhead factor strongly depends on the
different tasks being executed. We gained a runtime speedup in comparison to
M/o/Vfuscator by a runtime factor of up to 50. For our benchmark programs,
we observe that the LCC has a runtime overhead between 3 % and an overhead
factor of 26 over clang. The overhead of M/o/Vfuscator is substantially higher,
and the overhead of Specfuscator is in between. We observe the highest perfor-
mance penalties in terms of runtime for a tiny program that calculates the square
root of 2. Also, the modified clang reaches a maximum runtime overhead factor
of 20.89. The performance of M/o/Vfuscator and Specfuscator deteriorates, par-
ticularly on programs where small amounts of code are executed a large number
of times, as the whole program has to be completely executed for each iteration.

We leave it as future work to further optimize Specfuscator optimizing the
way how branches are performed. Partial control flow linearization could be inte-
grated as compiler optimization with a similar approach proposed by Moll et al.



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 13

Table 1: Average runtime overhead factor of our benchmarks for the different
compilers compared to our baseline (clang). The baseline is given in milliseconds
on the right for the unmodified clang

Test
program

M/o
/V

fus
cat

or

Specf
usca

tor
Clang

(fe
nces

)

LCC
Clang

(basel
ine)

aes 424.17 221.53 1.31 1.17 1.13 ms
arcfour 36.86 5.18 1.01 1.14 0.81 ms
base64 27.12 8.95 1.19 1.15 0.80 ms
blowfish 129.41 40.79 1.26 1.14 1.10 ms
des 1046.20 520.47 1.15 1.04 0.93 ms
md2 85.57 62.73 1.07 1.20 0.82 ms
md5 18.30 4.71 1.03 1.13 0.80 ms
rot-13 2.20 1.46 1.02 1.24 0.76 ms
arithmetic 1.25 1.05 1.05 1.03 0.96 ms
crc32 7.80 3.45 1.24 1.17 0.88 ms
hello 1.10 1.11 1.00 1.04 0.89 ms
maze 310.03 88.98 1.10 1.13 0.97 ms
mersenne 4.12 1.31 1.02 1.13 0.80 ms
sqm 1.33 1.25 1.02 1.15 0.80 ms
nqueens 319.84 234.46 1.99 4.99 1.89 ms
prime 980.27 161.59 1.93 0.96 1.65 ms
s2 46085.82 981.20 20.89 26.64 0.71 ms
sudoku 656.91 149.69 2.15 1.17 1.13 ms

[37]. The partial control flow linearization improved the performance of the over-
all program by a factor of 146 %[37]. Furthermore, we leave it as future work to
extend Specfuscator to 64-bit architecture or integrating a similar approach to
LLVM. As LLVM has significantly better optimizations than LCC, as can be
seen in the benchmarks, porting Specfuscator to LLVM will also improve its
performance.

In addition to the runtime, we evaluate the binary size and compile time of
the different compilers. For this purpose, we compile each program 1000 times
for our 5 compilers and measure the compilation time using the perf command-
line tool. Table 2 illustrates the averaged overhead factor in terms of binary size
and compilation time.

Compile-time

Table 2 lists the compile-time and the binary size of our benchmark programs.
In comparison to M/o/Vfuscator , we reduce the compile time by up to 46 %.
The compile-time of M/o/Vfuscator and Specfuscator depends on a part in how



14 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

Table 2: Average compile time in ms and binary size in kB overhead factor for
M/o/Vfuscator , Specfuscator, and clang with active mitigations compared to
clang without active mitigations (rightmost column).

Test
program

M/o
/V

fus
cat

or

Specf
usca

tor

Clang

(fe
nces

)
LCC Clang

(basel
ine)

time size time size time size time size time size

hello 2.23 388.28 1.86 279.18 1.07 1.01 0.71 0.89 38.36 ms 13.62 kB
maze 3.93 394.09 2.12 274.96 1.05 1.01 0.63 0.86 46.80 ms 13.82 kB
mersenne 3.00 396.28 1.83 279.84 1.02 1.01 0.70 0.89 41.90 ms 13.63 kB
nqueens 2.39 386.75 2.05 278.22 1.17 1.01 0.75 0.88 40.19 ms 13.64 kB
prime 2.39 389.97 1.81 279.47 1.06 1.01 0.62 0.89 39.02 ms 13.64 kB
s2 2.87 395.22 1.89 279.72 1.00 1.01 0.78 0.89 39.34 ms 13.62 kB
sudoku 3.47 398.10 2.05 280.39 1.10 1.01 0.68 0.91 37.76 ms 14.00 kB
aes 4.80 218.69 2.95 151.15 1.20 1.00 0.53 1.01 101.89 ms 33.21 kB

many instructions are needed to generate the assembler. Thus, with the use of
fewer instructions per operation, the compile-time is halved in most cases for
Specfuscator in comparison to the original M/o/Vfuscator . As the results of
Table 2 show, the compile-time is about two times higher than with the clang

compiler. For small programs, the compile-time appears to be relatively constant
for the M/o/Vfuscator and also Specfuscator. While this is not problematic
for smaller binaries, compiling large software projects such as browsers or web
servers would take substantial amounts of time with Specfuscator. We note that
our approach of eliminating all conditional branches is extreme. Still, it shows
that solutions that eliminate conditional branches are not infeasible, and less
extreme solutions in this direction could maintain higher performance levels.

Binary size

Stripping the binary reduces the binary size by 50 %, as it removes debugging in-
formation. Hence, for a fair comparison, we strip all the binaries to only compare
the actual code footprint. Compared to M/o/Vfuscator , Specfuscator reduces the
binary size by roughly 30 % This reduction was achieved by removing most of
the two-dimensional lookup tables used for arithmetic operations. The binary
size could additionally be reduced by decreasing the size of the virtual stack,
which is currently constant at 1.68 MB. As can be seen from Table 2, the binary
size is about 280 times larger for Specfuscator than for binaries compiled with
clang and for M/o/Vfuscator even 398 times. Again, this overhead is due to our
extreme solution, but it shows that solutions eliminating conditional branches
are not infeasible. Surprisingly, the programs compiled with LCC are smaller
than the programs compiled with the unmodified clang.



Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 15

6 Discussion

The goal of our paper is to clearly demonstrate the feasibility of branch reduc-
tion up to complete elimination as a Spectre mitigation. While we demonstrated
the feasibility, we also identified the limitations of our extreme approach. Due
to these limitations, we do not consider Specfuscator a real-world solution, but
an important contribution as an explorational study that yields interesting in-
sights. Eliminating all branches to reduce the susceptibility to Spectre has not
been explored so far. Our solution inherits the performance overheads of the
underlying compiler (LCC and its modification M/o/Vfuscator) that falls far
behind the state of the art performance-wise. The fact that it can still achieve
on-par performance for specific programs protected with state-of-the-art mitiga-
tions with a state-of-the-art compiler shows that the elimination or reduction of
branches is a strategy to defeat Spectre that must be examined in more detail.
In particular, we see potential synergies with the compiler community that ex-
plored the question of branch elimination in the past for performance reasons.
For instance, Moll et al. [37] developed a technique to partially linearize the
program flow by removing branches, improving performance by 146 %. Explor-
ing related techniques, even if they incur a subtle performance overhead, may
yield more efficient Spectre mitigations in future compilers. Software-based so-
lutions are especially important as there is a lot of hardware without in-silicon
fixes, and existing software-workarounds are often expensive. While Intel recom-
mends keeping the number of branches as low as possible to achieve the highest
possible runtime performance [26], actually reducing branches is a complex task.
Although branch elimination can boost the program’s performance, it might also
be exploited, as it has been demonstrated in the JavaScript engine V8 [47,17].
Another direction of research is to investigate the susceptibility to control-flow
hijacking attacks. Future work should evaluate whether branch-less binaries, like
those compiled with Specfuscator, or branch-reduced binaries, could realistically
mitigate such attacks and, thus, provide control-flow integrity.

7 Conclusion

Speculative execution attacks, known as Spectre attacks, have gained substantial
attention both in the scientific community and in industry with a broad range of
defense techniques proposed. In particular, in-software defenses for commodity
systems attempt to leave the program structure as is, but defuse every potential
Spectre gadget, e.g., by stopping the speculation, or limiting value ranges. While
these mitigations disrupt the program flow on every conditional branch, they still
contain every single conditional branch instruction. In this work, we explore a
new possibility of mitigating Spectre attacks by using a branch-free compiler.
Our mitigation is based on automatically linearizing the program flow through
a special compiler pass, eliminating all conditional and indirect branches. We
showed the security guarantees of this approach and evaluated the feasibility
by evaluating its performance in terms of its runtime. In addition, we discussed



16 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

the compile-time and the binary size of this approach. Furthermore, we verified
that existing Spectre-PHT, Spectre-BTB, and Spectre-RSB proof-of-concepts
compiled with Specfuscator do not leak secret data anymore. We observe that
the performance overhead can be very low, e.g., 5 %, for specific use cases, being
on-par with state-of-the-art mitigations. However, we also observed very high
overheads of factor 1000 for other use cases. Our results indicate that the best
performance-security trade-off for Spectre defenses can be achieved by sticking
to neither of the extremes.

Acknowledgments

This project has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program
(grant agreement No 681402). Funding was provided by generous gifts from
Cloudflare, from Intel, and from ARM. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

References

1. Vulnerability of Speculative Processors to Cache Timing Side-Channel Mech-
anism (2018), https://developer.arm.com/support/arm-security-updates/

speculative-processor-vulnerability

2. x86/cpu/AMD: Make LFENCE a serializing instruction (2018), https:

//git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/

?id=e4d0e84e490790798691aaa0f2e598637f1867ec

3. Advanced Micro Devices Inc.: Software Techniques for Managing Speculation on
AMD Processors (2018), revison 7.10.18

4. Amit, N., Jacobs, F., Wei, M.: Jumpswitches: restoring the performance of indirect
branches in the era of spectre. In: USENIX ATC (2019)

5. ARM: Cache Speculation Side-channels (2018), version 2.4

6. ARM: Straight-line Speculation (2020), version 1.0

7. Bernstein, D.J.: Cache-Timing Attacks on AES (2005), http://cr.yp.to/

antiforgery/cachetiming-20050414.pdf

8. Bhattacharya, S., Maurice, C.m.t.n., Bhasin, S., Mukhopadhyay, D.: Template At-
tack on Blinded Scalar Multiplication with Asynchronous perf-ioctl Calls. Cryp-
tology ePrint Archive, Report 2017/968 (2017)

9. Bhattacharyya, A., Sandulescu, A., Neugschwandt ner, M., Sorniotti, A., Fal-
safi, B., Payer, M., Kurmus, A.: SMoTherSpectre: exploiting speculative execution
through port contention. In: CCS (2019)

10. Branco, R., Hu, K., Sun, K., Kawakami, H.: Efficient mitigation of side-channel
based attacks against speculative execution processing architectures (2019), uS
Patent App. 16/023,564

11. Canella, C., Pudukotai Dinakarrao, S.M., Gruss, D., Khasawneh, K.N.: Evolution
of Defenses against Transient-Execution Attacks. In: GLSVLSI (2020)

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4d0e84e490790798691aaa0f2e598637f1867ec
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4d0e84e490790798691aaa0f2e598637f1867ec
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e4d0e84e490790798691aaa0f2e598637f1867ec
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf


Specfuscator: Evaluating Branch Removal as a Spectre Mitigation 17

12. Canella, C., Van Bulck, J., Schwarz, M., Lipp, M., von Berg, B., Ortner, P.,
Piessens, F., Evtyushkin, D., Gruss, D.: A Systematic Evaluation of Transient Ex-
ecution Attacks and Defenses. In: USENIX Security Symposium (2019), extended
classification tree and PoCs at https://transient.fail/.

13. Carruth, C.: RFC: Speculative Load Hardening (a Spectre variant #1 mitigation)
(2018)

14. Christopher Domas: M/o/Vfuscator (2015), https://github.com/xoreaxeaxeax/
movfuscator

15. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: CHES (1999)

16. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump over aslr: Attacking
branch predictors to bypass aslr. In: MICRO (2016)

17. Fetiveau: Circumventing Chrome’s hardening of typer bugs (2019),
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-

hardening-of-typer-bugs/

18. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs: An optimization
guide for assembly programmers and compiler makers (2016)

19. Fraser, C.W., Hanson, D.R.: A retargetable C compiler: design and implementation
(1995)

20. Fustos, J., Farshchi, F., Yun, H.: SpectreGuard: An Efficient Data-centric Defense
Mechanism against Spectre Attacks. In: DAC (2019)

21. Horn, J.: speculative execution, variant 4: speculative store bypass (2018)
22. Intel: Intel Analysis of Speculative Execution Side Channels (2018), revision 4.0
23. Intel: Retpoline: A Branch Target Injection Mitigation (2018), revision 003
24. Intel: Speculative Execution Side Channel Mitigations (2018), revision 3.0
25. Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual (2019)
26. Intel: Avoiding the Cost of Branch Misprediction (2020), https://software.

intel.com/content/www/us/en/develop/articles/avoiding-the-cost-of-

branch-misprediction.html

27. Khasawneh, K.N., Koruyeh, E.M., Song, C., Evtyushkin, D., Ponomarev, D., Abu-
Ghazaleh, N.: SafeSpec: Banishing the Spectre of a Meltdown with Leakage-Free
Speculation. In: DAC (2019)

28. Kiriansky, V., Lebedev, I., Amarasinghe, S., Devadas, S., Emer, J.: DAWG: A
Defense Against Cache Timing Attacks in Speculative Execution Processors. In:
MICRO (2018)

29. Kirsch, J., Jonischkeit, C., Kittel, T., Zarras, A., Eckert, C.: Com-
bating control flow linearization. In: 32nd International Conference on
ICT Systems Security and Privacy Protection (IFIP SEC) (May 2017),
https://www.sec.in.tum.de/i20/publications/combating-control-flow-

linearization/@@download/file/CFL.pdf

30. Kocher, P.: Spectre Mitigations in Microsoft’s C/C++ Compiler (2018)
31. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,

Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre Attacks:
Exploiting Speculative Execution. In: S&P (2019)

32. Koruyeh, E.M., Khasawneh, K., Song, C., Abu-Ghazaleh, N.: Spectre Returns!
Speculation Attacks using the Return Stack Buffer. In: WOOT (2018)

33. Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring Fine-grained
Control Flow Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium (2017)

34. Maisuradze, G., Rossow, C.: ret2spec: Speculative Execution Using Return Stack
Buffers. In: CCS (2018)

https://github.com/xoreaxeaxeax/movfuscator
https://github.com/xoreaxeaxeax/movfuscator
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://doar-e.github.io/blog/2019/05/09/circumventing-chromes-hardening-of-typer-bugs/
https://software.intel.com/content/www/us/en/develop/articles/avoiding-the-cost-of-branch-misprediction.html
https://software.intel.com/content/www/us/en/develop/articles/avoiding-the-cost-of-branch-misprediction.html
https://software.intel.com/content/www/us/en/develop/articles/avoiding-the-cost-of-branch-misprediction.html
https://www.sec.in.tum.de/i20/publications/combating-control-flow-linearization/@@download/file/CFL.pdf
https://www.sec.in.tum.de/i20/publications/combating-control-flow-linearization/@@download/file/CFL.pdf


18 M. Schwarzl, C. Canella, D. Gruss, M. Schwarz

35. Microsoft: Mitigating speculative execution side-channel attacks in Microsoft Edge
and Internet Explorer (2018)

36. Miller, M.: Mitigating speculative execution side channel hardware vulnerabilities
(2018)

37. Moll, S., Hack, S.: Partial control-flow linearization. In: Proceedings of the 39th
Conference on Programming Language Design and Implementation. pp. 543–556.
ACM (2018)

38. Molnar, D., Piotrowski, M., Schultz, D., Wagner, D.: The program counter security
model: Automatic detection and removal of control-flow side channel attacks. In:
International Conference on Information Security and Cryptology (2005)

39. Oleksenko, O., Trach, B., Reiher, T., Silberstein, M., Fetzer, C.: You Shall
Not Bypass: Employing data dependencies to prevent Bounds Check Bypass.
arXiv:1805.08506 (2018)

40. Palit, T., Monrose, F., Polychronakis, M.: Mitigating data leakage by protecting
memory-resident sensitive data. In: ACSAC (2019)

41. Pardoe, A.: Spectre mitigations in MSVC (2018)
42. Pizlo, F.: What Spectre and Meltdown mean for WebKit (2018)
43. Reis, C., Moshchuk, A., Oskov, N.: Site Isolation: Process Separation for Web Sites

within the Browser. In: USENIX Security Symposium (2019)
44. Schwarz, M., Lipp, M., Canella, C., Schilling, R., Kargl, F., Gruss, D.: ConTExT:

A Generic Approach for Mitigating Spectre. In: NDSS (2020)
45. Schwarz, M., Schwarzl, M., Lipp, M., Gruss, D.: NetSpectre: Read Arbitrary Mem-

ory over Network. In: ESORICS (2019)
46. Schwarzl, M., Schwarz, M., Schuster, T., Gruss, D.: It’s not Prefetch: Speculative

Dereferencing of Registers. (in submission) (2020)
47. Sense Post: v8 - Documentation (2020), https://sensepost.com/blog/2020/

intro-to-chromes-v8-from-an-exploit-development-angle/

48. Stephen Dolan: mov is Turing-complete (2013), https://drwho.virtadpt.net/

files/mov.pdf

49. The Chromium Projects: Actions required to mitigate Speculative Side-Channel
Attack techniques (2018)

50. Turner, P.: Retpoline: a software construct for preventing branch-target-injection
(2018), https://support.google.com/faqs/answer/7625886

51. Wagner, L.: Mitigations landing for new class of timing attack (2018)
52. Weisse, O., Neal, I., Loughlin, K., Wenisch, T.F., Kasikci, B.: Nda: Preventing

speculative execution attacks at their source. In: MICRO (2019)
53. Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C.W., Torrellas, J.: Invi-

siSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In: MICRO
(2018)

54. Yarom, Y., Falkner, K.: Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In: USENIX Security Symposium (2014)

55. Yu, J., Hsiung, L., El Hajj, M., Fletcher, C.W.: Data Oblivious ISA Extensions for
Side Channel-Resistant and High Performance Computing. In: NDSS (2019)

56. Yu, J., Yan, M., Khyzha, A., Morrison, A., Torrellas, J., Fletcher, C.W.: Speculative
taint tracking (stt) a comprehensive protection for speculatively accessed data. In:
MICRO (2019)

https://sensepost.com/blog/2020/intro-to-chromes-v8-from-an-exploit-development-angle/
https://sensepost.com/blog/2020/intro-to-chromes-v8-from-an-exploit-development-angle/
https://drwho.virtadpt.net/files/mov.pdf
https://drwho.virtadpt.net/files/mov.pdf
https://support.google.com/faqs/answer/7625886

	Specfuscator: Evaluating Branch Removal as a Spectre Mitigation

