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Abstract. With improvements in computing technology, more and more
applications in the Internet-of-Things, mobile devices, or automotive area
embed powerful ARM processors. These systems can be attacked by redi-
recting the control-flow to bypass critical pieces of code such as privilege
checks or signature verifications or to perform other fault attacks on ap-
plications or security mechanisms like secure boot. Control-flow hijacks
can be performed using classical software vulnerabilities, physical fault
attacks, or software-induced faults. To cope with this threat and to pro-
tect the control-flow, dedicated countermeasures are needed.
Control-flow integrity (CFI) aims to be a generic solution to counter-
act control-flow hijacks. However, software-based CFI typically either
protects against software or fault attacks, but not against both. While
hardware-assisted CFI can mitigate both, they require hardware changes,
which are unrealistic for existing architectures. Thus, a wide range of sys-
tems remains unprotected and vulnerable to control-flow attacks.

This work presents FIPAC, a software-based CFI scheme protecting the
execution at basic block granularity against software and fault attacks.
FIPAC exploits ARM pointer authentication of ARMv8.6-A to imple-
ment a cryptographically signed control-flow graph. We cryptographi-
cally link the correct sequence of executed basic blocks to enforce CFI
at this level. We use a custom LLVM-based toolchain to automatically
instrument programs. The evaluation on SPEC2017 with different se-
curity policies shows a geometric mean code overhead between 51-91 %
and a runtime overhead between 19-63 %. For embedded benchmarks, we
measured geometric mean runtime overheads between 49-168 %. While
these overheads are higher than for countermeasures against software
attacks, FIPAC outperforms related work protecting the control-flow
against faults. FIPAC is an efficient solution to protect software- and
fault-based CFI attacks on basic block level on modern ARM devices.

1 Introduction

ARM-based systems are ubiquitous as billions of devices featuring such a proces-
sor are shipped, including mobile devices, the Internet-of-Things, or electronic
control units. This growing trend continues, and ARM expects to embed up to
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a trillion cores over the next two decades |33]. However, those devices are at-
tacked using control-flow hijacks, posing a severe threat. These attacks hijack
the control-flow to further bypass safety- and security-critical checks, such as
privilege or password verifications, but they also bypass additional countermea-
sures implemented in software. Multiple attack methodologies covering different
attacker models have been developed, which can induce control-flow hijacks.

Classical control-flow hijacks are performed in software, exploiting a memory
vulnerability to modify code-pointers or return addresses. This strategy allows
an adversary to perform powerful Turing-complete attacks, such as ROP [48] or
JOP [11]. These techniques have successfully been used to attack many devices,
from embedded devices to secure enclaves [2123/29).

When considering faults, the attack surface of control-flow hijacks increases.
Faults can manipulate the control-flow at a much finer granularity. Direct branches
or calls are a target of fault-based control-flow attacks, allowing an attacker to
arbitrarily jump. Consequently, faults on the control-flow are used to bypass
security defenses. Recent work [62] describes a NaCl sandbox exploit, where
Rowhammer was used to manipulate the branch target of an indirect branch.
In [51], remote code execution was crafted by inducing bitflips via the network
on the program’s global offset table. There are several exploits where faults are
used to bypass secure boot [16}/18,[54] or escalate Linux privileges [53},/56].

To counteract control-flow attacks, control-flow integrity (CFI) aims to pro-
tect the control-flow in different threat models. CFI addressing a software at-
tacker [1426132,37] protect code-pointers enforcing coarse-grained CFI. They only
protect indirect control-flow transfers, i.e., indirect calls or returns, but they do
not offer protection against faults. Fine-grained countermeasures [2,/17,41] pro-
tect any control-flow transfer, i.e., direct and indirect calls/branches or jumps
and returns, to mitigate control-flow hijacks triggered by faults. Consequently,
this comprehensive protection yields larger overheads when realized in software.

Although fine-grained CFI schemes are strong countermeasures against fault
attacks, they do not consider software attackers in their threat model. While
there exist countermeasures protecting against both threats, they presume in-
trusive hardware changes [12,/58]. Those schemes require to implement a custom
processor, which is unrealistic for large-scale deployment, especially on closed
architectures. This leaves many applications exposed to software- or fault-based
control-flow attacks. Hence, there is a need for new countermeasures that protect
programs against both threats but without hardware changes.

Contribution

We present FIPAC, a software-based CFI scheme protecting the execution at ba-
sic block granularity of ARM devices against software and fault attacks. FIPAC’s
threat model considers an attacker hijacking the control-flow on basic block level,
independent of the attack methodology. We address this threat model and pro-
tect the control-flow by implementing a basic block level CFI scheme, using a
keyed state update resistant to memory bugs. FIPAC cryptographically links
the sequence of basic blocks at compile-time and verifies the executed sequence
at runtime. We exploit ARM pointer authentication of ARMv&.6-A for efficient
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linking and verification. We provide an LLVM-based toolchain to protect pro-
grams without user interaction. We validate the prototype using a simulator
supporting ARMv8.6-A. To evaluate the runtime performance of FIPAC, we em-
ulate the overheads of PA instructions and run SPEC2017 and other embedded
benchmarks on existing hardware. Moreover, we provide a security evaluation
and discuss different security policies. Summarized, our contributions are:

— We present an efficient basic block granular CFI protection scheme for ARM-
based systems protecting the control-flow against fault and software attacks.

— We present a prototype implementation exploiting the ARM pointer authen-
tication of the ARMv8.6-A.

— We provide a custom open—sourceﬂ LLVM-based toolchain to automatically
instrument and protect arbitrary programs.

— We perform a functional and performance evaluation based on SPEC2017
and other embedded benchmarks and discuss different security policies.

2 Background

This section introduces fault attacks control-flow attacks and discusses CFI.

2.1 Fault Attacks

In a fault attack, the attacker influences the device’s operating conditions to
manipulate an inner system state. Established fault attacks require physical
access [5], but new methodologies, like Rowhammer [25], Plundervolt [39], or
VoltJockey [44], allow an attacker to induce faults remotely in software, increas-
ing the severity on commodity devices. Irrespective of the methodology, the fault
model defines if the fault targets data or the control-flow. When targeting data,
the induced fault is mainly used to break cryptographic primitives [7,9.[441[50].
Counteracting these attacks requires data redundancy schemes [6l24] capable of
detecting such faults. However, data protection schemes cannot prevent hijacks
of the control-flow of a program using a fault. In this threat model [40,/51(53}/62],
the adversary arbitrarily redirects the control-flow, e.g., to sensitive code blocks.

2.2 Control-Flow Attacks

In a control-flow attack, the adversary hijacks the program’s control-flow to redi-
rect it, by using software vulnerabilities or faults. In software-triggered control-
flow attacks, the adversary exploits a memory bug and overwrites code- or data
pointers, used for return addresses [48], jumps |11], or data-pointers [20].
Although faults can be used to attack the same control-flow (return addresses,
code- or data pointers), faults increase the attack surface. While in a software
attack the adversary is limited by the exploitability of the underlying memory
bug, faults allow to hijack the control-flow arbitrarily. Faults can corrupt [30] or
skip instructions [8], change the program counter [4053\/54], or modify addresses
used by indirect or direct calls in registers, memory, or the code segment |38
55]. These attacks target the control-flow within (intra) or over (inter) a basic

3 Available at https://github.com/Fipac/Fipac
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block, i.e., consecutive instructions without control-flow. While intra basic block
attacks allow the attacker to skip/manipulate individual instructions in a basic
block, inter basic block attacks enable the attacker to redirect the control-flow
to an arbitrary code position by corrupting addresses of branches/calls.

2.3 Control-Flow Integrity

To protect a program from intra/inter basic block control-flow attacks, enforcing
control-flow integrity has shown to be an effective defense [1]. Existing software-
based CFI schemes provide different enforcement granularities and either address
a software or fault attacker but not both. Although there are schemes addressing
both threats, they require hardware changes, which are not feasible for commod-
ity systems.

Software CFI Schemes. Software CFI (SCFI) [1] protects the program from
a software adversary performing control-flow hijacks. The coarse-grained CFI
policy only protects indirect calls or returns. CPI [14] and CCFI [37] protect
a broad range of forward- and backward-edges of the program by maintaining
the integrity of code-pointers. PARTS [32] protects code-pointers by signing
and verifying them using ARM pointer authentication before using them. If the
verification fails, i.e., the pointer authentication code (PAC) does not match the
expected PAC, the application stops. PACStack [31] protects return addresses
on the stack by utilizing PA to cryptographically link and verify them.

Fault CFI Schemes. Fault CFI schemes (FCFI) consider an attacker performing
fault attacks, thus, operating on a finer granularity. FCFI schemes capable of
detecting intra basic block control-flow hijacks, e.g., instruction skips, employ a
global CFI state, which is updated with the execution of each instruction. Main-
taining and checking a state at this granularity is expensive, so these schemes
require hardware changes [12,/49,58,/59]. As this is not possible for commod-
ity devices, software-based FCFI schemes provide a trade-off between security
and performance by protecting all control-flow transitions between basic blocks,
hence, providing inter basic block CFI. In CFCSS [41] and SWIFT [46], each
basic block is assigned a signature to update a global CFI state.

Pseudocode 1 CFI state update function.

1: function UPDATE(S, Sigsr)
2: r1 < SigBB
3: S« Son

Pseudocodeshows an XOR-based state update function, like in CFCSS [41],
where a global CFT state S is XORed with the basic block signature Siggp. At
certain program locations, checks are included, comparing the CFI state to the
expected value to detect control-flow deviations. This approach of CFCSS yields
a runtime overhead between 107-426 % [17]. ACFC [57] reduces the performance
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penalty down to 47 % by decreasing the checking precision and thereby reducing
the security guarantees. Other approaches [19,27] annotate the source code with
counter increment and verification macros to detect control-flow deviations.

3 Threat Model and Attack Scenario

This section presents the threat model, shows how it bypasses existing SCFI and
FCFI schemes, and then states the required properties for secure SCFI schemes.

3.1 Threat Model

FIPAC considers an attacker performing software and fault attacks. This at-
tacker aims to hijack direct or indirect control-flow transfers, i.e., the threat
model of FIPAC covers all transfers between basic blocks of the program, i.e.,
direct, indirect, and conditional branches, direct and indirect calls, and arbitrary
jumps. We consider attacks on the control-flow independently of the methodol-
ogy, i.e., we cover physical or software-induced fault attacks or software attacks.
We expect the CFI protection to detect control-flow deviations to avoid fur-
ther exploitation. The detection rather than its prevention aligns with threat
models of related FCFI schemes. The attacker has binary access and can read
all instructions and data. This threat model includes software attackers using
this information to exploit a memory bug to conduct a control-flow hijack, e.g.,
manipulating code-pointers. We assume ARM pointer authentication to be cryp-
tographically secure and that its keys are isolated from user applications.

We only consider control-flow hijacks on the CFG’s edges, so we exclude
attacks within a basic block, e.g., instruction skips. However, our assumed threat
model aligns with several real-world exploits [104062] hijacking the control-flow
at these edges. Nevertheless, as security-critical code can still require stronger
protection, we discuss the usage of FIPAC at instruction granularity in Section 7}
DOP or faults on the data or the computation are not in the scope, including data
used during a conditional branch or data used in cryptographic algorithms. To
protect them, it requires orthogonal defenses, e.g., data encoding or instruction
replication. For a full fault protection, a combination of both the protection of
data and processing and a control-flow protection like FIPAC is required.

3.2 Attack Scenario

Bypassing SCFI. Most software CFI schemes [1}[141/31}[32//52,/63] do not consider
a faults in their threat model. As the programs’ code section is immutable, SCFI
schemes only protect indirect control-flow transfers but not direct calls and other
branches. Hence, a targeted fault to the code segment of a program or directly
within the execution, e.g., a fault on the program counter or the immediate value
of a direct call, cannot be detected by SCFI.

Bypassing FCFI. The threat models of software-based FCFI schemes do not
consider classical software attackers. Contrary to SCFI [1], where memory is
considered to be vulnerable, typical FCFI schemes do not include this in their
threat model. An attacker exploiting a memory bug can tamper the CFT state,
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(a) Valid control-flow.  (b) Detectable attack. (c) Successful attack.

Fig. 1: Attacker scenario to bypass FCFI.

which is maintained in software. As the state update function is known, an
attacker-controlled CFI state can be crafted. Even a nalve combination of SCFI
and FCFI, secure in their threat model, can be bypassed (Section with a
combined fault and software attack. To highlight the conceptional weaknesses of
FCFT schemes, we demonstrate an attack bypassing FCFI with its state update
function, shown in Pseudocode [1| and similarly used in many software-based
FCFI schemes [41]. They compute their CFI states in software and load them
into a register at some point. The goal is to exploit this instruction sequence of
the state update to manipulate the CFI state to an attacker-defined value, i.e.,
bypassing CFI.

Fig. [1] shows the attacker scenario for a control-flow hijack. Without an at-
tacker, Fig. [Ta]shows a valid control-flow transfer, where A calls B. When entering
B, the state update function updates the global state S to the beginning state
Sp by XORing Sigp to S. After returning from B, a CFI check verifies that .S
equals the pre-computed state Sg. In Fig. we consider an attacker redirecting
the control-flow of the call from B to C. At the beginning of C, the state update
XORs the current state S with the signature C. As this state S = S¢ devi-
ates from the pre-computed state Sg, the control-flow hijack can be detected in
the final check. Fig. [Ic| shows a successful attack on the control-flow, bypassing
FCFI. The attacker controls register r1, e.g., it is used to store user input, or
it is modified due to a memory bug or fault. The adversary again redirects the
control-flow from B to C but omits the signature load to 7. Since ry is controlled
by the attacker, who knows all states and signatures, the final state of C can be
forged to match the end state of B. Eventually, the final CFI check in A cannot
detect the control-flow hijack. Note, the control-flow redirect in Fig. [T or
can either be performed with a software attack or by inducing faults.

3.3 CFI against Software and Fault Attacks

To protect the system against software and fault attacks and to enable large-
scale usage, CFI schemes need to fulfill the following requirements:

1. The defense needs to enforce the CFI at a fine granularity, i.e., at least on
basic block level, to protect from a fault attacker.

2. The proper selection of the CFI state update function is essential, as it di-
rectly influences the security of the CFI scheme. Choosing a weak state up-
date function, e.g., an XOR, allows an attacker to bypass the protection.
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Furthermore, the state update function must be accumulating, meaning that
the next CFI state depends on the value of the previous CFI state.
3. The protection should not require hardware changes and can be implemented
in software to make the protection deployable for a wide range of devices.
4. To support legacy codebases and to enable easy deployment, the protection
must be applied automatically, i.e., during compilation, and must not require
source code changes.

Previous fine-grained CF1 protection with keyed update functions require expen-
sive hardware changes and are not suitable for commodity devices. In [12,[58],
the program is encrypted at compile-time, and the instructions are decrypted
at runtime using control-flow dependent information. However, both schemes
require intrusive hardware changes in the processor and are therefore inapplica-
ble for large-scale deployment. Hence, there is a need for efficient CFI schemes
considering software and fault attacks, which do not require hardware changes.

4 FIPAC

This section presents FIPAC, an efficient software-based CFI solution for ARM-
based devices, fulfilling the abovementioned requirements. We first show the
state-based CFI concept based on the work of Wilken and Shen [60}61] and then
discuss how indirect calls are protected. Finally, we discuss the selection of the
state update function and the check placement in the program.

4.1 Signature-Based Control-Flow Integrity

FIPAC is a state-based CFI protection scheme, where every basic block in the
program corresponds to a well-defined CFI state. This state is maintained glob-
ally through the program execution. The CFI state is checked to match the
expected state at certain program locations, indicating that no control-flow er-
ror occurred. To consider the history of the execution-flow, the next CFI state
is linked with the previous one, allowing FIPAC to enforce the CFG.

Programs do not have a linear control-flow but contain control-flow transfers,
such as conditional branches, loops, or calls. Depending on which program path
is executed, the CFI state for a certain basic block differs since it has more than
one predecessor. When the control-flow merges, i.e., for conditional branches,
two different paths of CFI states merge and would turn into a state collision. To
avoid that, we adopt generalized path signature analysis from Wilken and Shen
and insert justifying signatures for correction. Fig. [2|shows a conditional branch,
where the control-flow merges in basic block E and a loop, which control-flow
merges in A. At the end of D, there is a state patch with D, ensuring the CFI
state at the beginning of E is the same, whether coming from C or D. Furthermore,
E jumps back to A, forming a loop. Thus, a patch E, is inserted at the end of
E, correcting the CFI state to Say.,,,. At the end in basic block F, a check
compares the actual state with the expected value Fc.
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Fig. 2: Justifying signature
for control-flow merges. Fig. 3: CFI state patch for direct calls.

Direct Calls. In Fig. [3| function A directly calls B. To support calling B from
multiple call sites, the beginning state of B always needs to be the same. Thus,
we apply a justifying signature at the call site before the direct call, transforming
the call site’s CFI state to the beginning state of function B. When returning,
the CFI state continues with the end state of the called function, here Sg

end*

Indirect Calls. Indirect calls require special handling of signatures, not covered
by the work of Wilken and Shen. Determining the exact function that is being
called during the indirect call is not always possible at compile-time. The best
that FIPAC can do is to determine a possibly over-approximated set of potential
call targets and enforce that the indirect call can only call one of them. Fig. [
shows the patching for indirect calls and the interaction with direct calls.

To provide the CFI for indirect calls, FIPAC determines an intermediate CFI
state St for every set of indirectly called functions. This can also lead to merg-
ing sets if the same function is called indirectly from different call sites. When
performing an indirect call, the call site A, in (1), first patches its state S4 to an
intermediate state Sy,,,,,, the same for all possible call targets of this indirect
call. In (2), the indirect call is performed. At the beginning of the indirectly called
function B, we transform the state, in (3), from the intermediate state Sj,, ., to
the beginning state of Sp,, .. Furthermore, in (4), we set up the patch value
used for the function return. We jump over the direct call entry in (5) and con-
tinue the execution of B until the return patch in (6). This patch transforms the
end state Sp,,, of B to the common intermediate return state Sy, , followed by
a return. The caller A uses the pre-call signature S 4, which was saved, for a state
update in (7), to transform the intermediate return state to a unique state for A.
Note, the call site could simply continue with the execution using the state Sr_, ,.
However, this would introduce undetectable control-flow vulnerabilities between
different indirect call sites of the same function. Therefore, the patch with S4
is necessary to avoid different call sites continuing with the same signature and
ensure that the function was actually called. The call site continues with the
execution using the state S4,,,, = S1.,,, ® Sa, different for every call site.

Since any function must be callable with direct or indirect calls, the handling
of indirect and direct calls interacts. On the right of Fig.[d] we show how C calls
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Fig. 4: CFI state patch for indirect calls.

B directly. In (D, a justifying signature is applied to transform C’s CFI state to
the beginning state Sg,,,,, of B. The direct call does not jump to the beginning
of B. Instead, it jumps to a dedicated entry point setting up the return patch
ret pateh, 10 be zero (@)7 and continues with the execution of B. At the end of

the function in @, the return patch retpgicn is applied. Since the patch value
is zero, this statement does not affect the state, which remains Sg_, ,. After the
return, the call site then continues with the execution using the state Sp

end "

4.2 State Updates with Pointer Authentication

As discussed in Section the state must not be computable by the attacker
and must depend on all previous CFI states. FIPAC uses a chained crypto-
graphic message authentication code (MAC) for the state update function to
solve this problem. Thereby, we bind the security of FIPAC to a secret cryp-
tographic key, which is unknown to the attacker and isolated by the OS. To
efficiently implement such a cryptographic function, we exploit ARM pointer au-
thentication (PA), introduced in ARMv8.3-A and updated in ARMv8.6-A [34].
It is designed to cryptographically sign pointers with a pointer authentication
code (PAC) and verify their integrity before using it [45]. The PAC is computed
as the MAC over the pointer and a modifier using QARMA [3|. Although point-
ers are 64-bit values, the size of the virtual address space limits the actual size
of the pointer values. In AArch64 Linux, the virtual address space is typically
configured for 39 or 48-bit [36], leaving the upper bits unused. ARM PA uses
them to store the PAC value in the unused upper bit, thus having no storage
overhead.

To use pointer authentication, ARMv8.6-A was extended for computing and
verifying a PAC. The instructions PACI* and PACD* use the destination register
as input, the source register as a modifier, and XOR the PAC in the upper bits
of the destination register. The PAC can be verified by using the AUTI* and
AUTD* instructions. On a successful verification, the PAC is removed from the
address, and the pointer can be used. If the verification fails, AUT* instructions
trap (this is different from ARMv8.3-A, which only sets an error bit).

This work uses the PA mechanism of ARMv8.6-A to implement the state
update function rather than sign pointers. This extension fulfills the require-
ments needed for the state update. It uses a keyed mechanism and brings in the
accumulating functionality required to link subsequent states.
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4.3 Placement of Checks

Although the CFT check placement is essential for the security of the CFI scheme,
there is no general solution for the correct placement. However, at minimum,
there needs to be one check at the end of the program. For programs that do not
return, i.e., server programs, at least one CFI check in the main event loop is
needed. This strategy, however, has the longest detection latency and the worst
detection probability. To reduce the detection latency and improve the detection
probability of CFT errors, more CFI checks are required. However, the granularity
is a trade-off between overheads and security. The more checks inserted, the
more overhead but also better detection probability and lower latency. At worst,
a check is placed at the end of every basic block, yielding the best security but
worst runtime and code performance. In between, there exist arbitrary policies
with different trade-offs. For example, a generic policy places a CFI check at the
end of each function. Even fully custom strategies of placing checks are possible.
With the help of dynamic runtime profiling, a compiler can place the checks
more efficiently. e.g., a policy can place a check after every 100*" basic block.

5 Implementation

FIPAC computes a rolling CFI state throughout the program’s execution im-
plemented in software on top of ARMv8.6-A without hardware changes. FIPAC
exploits the PA instruction set extension to implement the cryptographic state
update function. The PACI* and PACD* instructions cryptographically compute
a MAC over a pointer and a modifier register and store the result in the upper
bits of the pointer. In ARMv8.6-A, these instructions do not simply replace the
upper bits of the pointer with the computed MAC but instead XOR them to the
existing upper bits. Pseudocode [2| shows the simplified behavior of the PACIA
instruction ignoring that the configuration bit 55 is excluded from the PAC.

Key Management. By utilizing PACIA, FIPAC uses the APIAKey, which is man-
aged in the kernel (EL1) and not accessible from user mode (ELO) [45]. To provide
CFI protection with FIPAC for the kernel, the key management can be delegated
to a higher privilege level, e.g., EL2. As PA instructions do not differentiate priv-
ilege levels, these instructions can be used in ELO and EL1. To prevent cross-EL
attacks [4], FIPAC protected user and kernel tasks can either use different keys
for each privilege level (e.g., APIAKey for ELO and APIBKey for EL1), or the key
manager in EL2 could swap the keys on mode transitions. As the key needs to
be known at compile-time, the prototype implementation of FIPAC statically
configures the APTAKey in a kernel module in EL1. We discuss the dynamic con-
figuration of the PA keys in Section [7}

Interrupts. FIPAC supports interrupts and OS interactions without any change.
When an interrupt diverts the control-flow to the kernel, it saves all registers of
the user application, including the current CFI state. The CFI state is restored
after resuming from the interrupt, allowing the program to continue.
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Pseudocode 2 Simplified behavior of PACIA in the 15-bit configuration.

1: function pACIA(Xd, Xm)

2 PACI63:0] - ComputePAC(Xd[47:0], Xm, K)
3: Xd[63:48] < Xd[63:48] & PAC[63:48]

4 Xd[AT:0] « Xd[47:0]

mov x2, #const
adr X2, #4 mov x2, #patch eor X2, x28, x2
pacia x28, x2 eor x28, x28, x2 autiza x2
Listing 1.1: State Listing 1.2: CFI Listing 1.3: CFI
update with PACIA. state patch. check with AUTIZA.

5.1 CFI Primitives

We first discuss the CFI primitives and then show how they protect different
control-flow instructions.

CFI State and Updates. Instead of signing a pointer with PACIA, we use it to
compute the CFI state. The upper bits of a PACIA computation (the size depends
on the virtual memory configuration, but we use a 15-bit configuration), the PAC
bits, denote our CFI state. To accumulate the CFI state, the PACIA instruction
is always executed on the same “pointer”, in our case, the CFI state stored in
Xd. The PACIA, Xd, Xn instruction computes a PAC of register Xd with Xn as
a modifier and XORs it to the upper bits of Xd. For each basic block, a unique
identifier, i.e., the program counter (PC), is used as the modifier Xm for this
instruction. By subsequently XORing the new CFI state to the previous one, we
create a dependency link between succeeding basic blocks. We store the global
CFT state in the exclusively reserved general-purpose register x28.

Listing shows the CFI state update, placed at the beginning of each
basic block. ADR, x2, #4 first loads a unique constant for the basic block to a
temporary register x2, in this case, the program counter. We use this constant
to compute a new PAC, which gets XORed to the previous CFI state in x28.

State Patches. To inject a justifying signature needed for control-flow merges,
we use the instruction sequence from Listing[I.2] We load an immediate constant
to a temporary register in x2, which gets XORed to the CFI state in x28, thus
correcting it to a target state. The computation of this immediate constant
happens during the post-processing stage, as discussed in Section [5.3

State Checks. A check compares the current CFI state with the expected state
at this program location and executes an error handler on a mismatch. Such
instruction sequences typically involve conditional branches, which slows down
the program execution, as they impact the instruction pipeline. We also exploit
the PA instructions for efficiently performing the necessary CFI checks. Similar
to generating a PAC, ARM also provides AUTI* and AUTD* instructions to verify
the integrity of PACs. In ARMv8.6-A, these instructions even trap on an invalid
PAC verification. Since we use PACIA to compute a PAC, it is tempting to directly
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use AUTIZA for verification. However, the CFI state in x28 is not a valid PAC
value in the classical sense. Instead, it is an accumulated XOR-sum of many
valid PAC values combined do not form a valid PAC anymore. Thus, we cannot
directly use the AUTIZA instruction to verify the CFI state.

At every location in the program, we know the expected CFI state at compile-
time. Thus, we can compute a differential constant, which is XORed the CFI
state, transforming it to a valid PAC. By applying this constant to the CFI state,
we receive a valid PAC that can be verified with AUTIZA. This constant is deter-
mined in the post-processing tool and explained in Section In Listing |1.3
we show the corresponding assembly sequence. We first insert an instruction se-
quence that patches the current CFI state to a valid PAC value using a constant
for this program location. Then, we use the AUTIZA instruction to verify the
integrity of this PAC value. On a control-flow deviation, applying the constant
to the incorrect CFT state in x28 generates an invalid PAC, which the AUTIZA
instruction detects. If the check fails, AUTIZA traps and stops the program.

CFT checks can be placed arbitrarily within the program. FIPAC supports
three strategies: one check at the end of a program, a check at the end of every
function, or a check at the end of every basic block. The check strategy directly
impacts performance and security, which is discussed in Section [6]

5.2 Protection of Control-Flow Instructions

We now discuss how the CFI primitives are used to protect different control-
flow instructions. At the beginning of each basic block, we insert a PA-based
CFI state update sequence. This instruction sequence uniquely updates the CFI
state for the current basic block based on the previous state value.

Protection of Direct Branches, Jumps, and Conditional Branches. These control-
flow instructions create control-flow merges, where state collisions occur. At
control-flow merges, our compiler instruments those instructions and inserts the
state patches for justifying signatures. Note, the final patch values are determined
during the post-processing, as discussed in the next section. To identify the
locations of patches, we compute the inverted maximum spanning tree over the
edges of the CFG, defining the patch locations.

Direct Calls. Direct calls are instrumented with state patches at call site, trans-
forming the state to the beginning state of the called function. When returning
from a directly called function, the caller’s CFI state continues with the callee’s
end state. Note, functions are instrumented to only have single return nodes.

Indirect Calls and Returns. At the call site, indirect calls are instrumented to
stack the current CFI state and patch the state for the intermediate state for
this set of indirect calls. When returning, the pre-call state saved on the stack
is retrieved and XORed to the CFT state to provide a link over the indirect call.

Indirect calls require more complicated instrumentation besides the call site.
As discussed in Section the function header of an indirectly called function
needs to set up the patch value used during the function’s return. However,
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1 mov x1 , #I_PATCH ; Indirect call entry point

2 eor x28 , x28 , xl ; Patch to beginning state of function
3 mov x1 , #RET_PATCH ; Load return patch

4 b #38

5 mov x1 , #O0 ; Direct Call entry point

6 ; sets up zero patch

T eor x28 , x28 , x1 ; Apply return patch

8 ret

Listing 1.4: Function entry points for indirect and direct calls.

a function generally does not know how it was called and must support being
called directly and indirectly. We solve this problem by adding a second function
entry point, one for direct calls and the second one for indirect calls.

We add a custom function entry for indirect calls in the compiler, shown in
Listing This entry patches the intermediate state of the indirect call to the
beginning state of the called function (Line 1-3). We then load the CFI update
patch (Line 4), used during the function’s return, and jump, in Line 5, over the
direct call entry point. When the function is called directly, it jumps to the direct
call function entry in Line 6, setting up a zero-patch for the return. During the
function return, Line 8 uses the previously set up return patch. For direct calls,
where the return patch is zero, this statement has no effect, but for indirect calls,
it patches the end state to the intermediate return state. The compiler is unaware
that the inserted instructions have control-flow and implement a second function
entry. Thus, direct calls also use the second entry point, which is exclusively for
indirect calls. We correct this during the post-processing, where all direct calls
get rewritten to the second entry.

5.3 Toolchain

Our prototype toolchain uses a combination of both approaches, shown in Fig.
We use a custom compiler (2) based on the LLVM compiler framework [28|, to
insert all necessary state update and patch instructions using two backend passes
during the compilation of a program (1). We extend the AArch64 backend and
reserve the general-purpose register x28, which is exclusively used to store the
CFI state, disable tail calls, and ensure that functions have only a single return
point. The compiler emits an instrumented ELF binary (3), but the concrete
state patches and check values are set to zero. In a second step, we use a post-
processing tool (PP) (4), which has access to the compiled and linked binary to
compute all expected states and insert the patch updates.

The toolchain supports instrumented or non-instrumented libraries, but only
instrumented libraries have CFI. Instrumented libraries must be linked statically,
such that the PP tool can replace the patch and check values in the binary. The
toolchain also supports inline assembly and external assembler files. However,
the programmer’s responsibility is to insert the necessary state update and patch
sequences into the assembly code. If the assembly code is not instrumented, the
code is still fully functional but does not have CFI protection. The toolchain
currently supports the instrumentation of programs written in C. However, ex-
tending the support to other languages supported by LLVM, e.g., C++ or Rust,
only requires more engineering work but no changes to the design of FIPAC.
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Fig.5: Custom toolchain to build protected binaries.

Post-Processing Tool. The post-processing tool performs the call rewriting, the
CFI state computation, the insertion of the patch values, and the computation of
the CFI check values. It has access to the PA key and consumes the instrumented
binary with zeroed patches and checks. The tool rewrites all direct calls to use
the second function entry point (the first one is used for indirect calls). Next,
it computes the CFI state for every location in the program. Every function is
assigned a random start signature, which is propagated through all PAC-based
state updates of the function. At a control-flow merge, the state values of both
branches are known such that the tool can compute the justifying signature as the
XOR-difference between both states and replaces the patch values #patch. The
post-processing tool knows the CFI state at every location in the program; thus,
it can also compute the XOR-differences to form a valid PAC. For AUTIZA-based
check sequences, it replaces #const with the corresponding XOR-difference.

6 Evaluation

This section discusses the security guarantees of FIPAC and analyzes its over-
heads for different checking policies.

6.1 Security Evaluation

FIPAC considers a software and a fault attacker aiming to hijack control-flow
transfers between basic blocks. To protect these control-flow transfers, FIPAC
performs a state update of the global CFI state S at the beginning of every basic
block allowing FIPAC to detect inter basic block manipulations.

Software Attacker Protection. A software attacker is able to hijack the control-
flow by modifying indirect calls or returns by exploiting a memory bug. FIPAC
mitigates these hijacks, i.e., ROP or JOP, by ensuring that the executed control-
flow follows the statically derived CFG. When entering a basic block, FIPAC
derives a new state considering the execution history and a unique basic block
identifier. On a control-flow hijack, the attacker redirects the control-flow to a
basic block that is not in the set of valid targets. Hence, the state update derives
a faulty state, which is detectable by the following check. If the attacker omits
the update, e.g., by redirecting the control-flow to the middle of the basic block,
the check before the return instruction detects the wrong state, mitigating ROP
attacks. Suppose the attacker omits the state update, e.g., by redirecting the
control-flow to the middle of the basic block. In that case, the check before the
return detects the wrong state, mitigating ROP attacks.
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Fig. 6: Control-flow hijack from B Fig.7: A coarse-grained check
to C. Due to a state collision, the policy. After n updates, a col-
control-flow hijack is not detected. lision rectifies the faulty state.

Compared to other CFI schemes, which only consider a fault attacker, FIPAC
uses a keyed state update to prevent a software or combined attacker from forging
a CFI state. Equation [I] depicts the state update function ignoring the excluded
bit 55 for simplification purposes. This function consists of the secret key K4,
the current state S, and a unique identifier Sigpp for the basic block. The secret
key K 4, inaccessible by the adversary, is initialized at boot time and ensures that
the attacker cannot forge a specific state.

S = Update(S, SigpB, KA) =S5Se MACk, (SigBB)PACs,;ze (1)

Fault Attacker Protection. While mitigating software-triggered control-flow at-
tacks only requires protecting a subset of control-flow transfers, i.e., returns and
indirect calls, thwarting a fault attacker necessitates the protection of all control-
flow transfers. Hence, in addition to SCFI schemes, FIPAC also updates the CFI
state for direct calls and branches, detecting any faults on addresses stored in
the memory, registers, or during the execution.

Detection of a Control-Flow Violation. FIPAC does not prevent a control-flow
hijack; instead, it detects an attack after the control-flow violated the CFG at
the next check. This is the best that software-based CFI can do, as they cannot
verify branches or calls ahead of executing them. If an attacker skips the check
at the end of the basic block/function, the hijack is not detected in the first
place. However, depending on the checking policy, a new check occurs at the end
of the next basic block or function. Since the CFI state is invalid at this point,
it requires the attacker to skip all subsequent checks such that the control-flow
attack is not detectable. Control-flow attacks, which redirect the execution to
the program’s end, are not detectable, as there is no check anymore.

CFI State Collision Probability. Due to the truncated MAC, state collisions are
possible with a probability of Pcou=spxctsrzr, Which can lead to a bypass. Fig. |§|
illustrates a control-flow hijack, redirecting the call from B to C. When returning
to the caller A, the state mismatch sc,,,,#5s,,,, should be detected by the check
of FIPAC. However, with probability Pg., a state collision So, .. =Sp
occurs, and the control-flow attack remains undetected.

exit cait =SColl
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Checking Policy. To reliably detect state collisions, the sufficient placement of
checks, i.e., the checking policy, is crucial for the security of FIPAC. However,
properly placing CFI checks is a challenging problem with no general solution.
Fig. [7] shows the problem of a too coarse-grained checking policy. Left, a valid
control-flow from basic block BB4 to BBy is shown. Right, the attacker man-
ages to redirect the control-flow to BBpgy;: and therefore alter all subsequent
states to S*. However, with a probability of Pg,, a state collision occurs af-
ter each state update. In this example, after n updates, a collision occurs, and
S* becomes Sp. Thus, the state S is valid again, and the control-flow hijack
cannot be detected in further CFI checks. To give a quantitative measure on
the security of the check placement, we analyze the probability of undetectable
state collisions between subsequent checks. MPcoy N:l—(l—W)N denotes
the minimum probability that a state collision occurs in one of N state updates.
After 50,000 state updates, the state collision probability reaches 78 %, and after
250,000 updates almost 100 % for a 15-bit PAC.

Selecting the checking policy is a trade-off between security and performance.
Although a precise policy, i.e., a check at each basic block, maximizes the de-
tection probability of a control-flow hijack, the performance overhead also in-
creases. While a loose checking policy, e.g., a check at the program’s end, might
be sufficient for small programs, programs with a high number of executed ba-
sic blocks might be vulnerable. Between these two policies, arbitrary checking
strategies can be selected; for example, a check at the end of each function. A
more advanced check strategy can incorporate additional information, e.g., run-
time profiling. This allows the compiler to better decide where checks are needed
to enforce a lower bound of the minimum detection probability of CFI errors.

A check at the end of a function is a good trade-off between runtime overhead
and security. For example, SPEC2017 consists of 28391 functions. 12583 of these
functions, or 44 %, contain only a single basic block with a check at the end.
Thus, calling such a function is equivalent to performing a CFI state check
at the call site. For example, calling this function within a loop containing no
explicit checks implicitly performs a state validation at each loop iteration.

We analyzed the number of basic blocks per function for SPEC2017. The
number of functions with a small number of basic blocks is much larger than
functions comprising a large number of basic blocks. Almost 75 % of all functions
consist of less than 13 basic blocks, which is in favor of our checking policy, since
smaller functions perform a CFI check earlier than large ones. Thus, the detection
probability of a state mismatch is higher. To summarize, we expect that a CFI
check at the end of each function is a good trade-off for a static policy.

6.2 Security Comparison

Tab. 8] compares CFI schemes addressing software [1,/14}31}|32}|37}52|63] or
fault [19,[27) 41,146l 57] adversaries with FIPAC. Software CFI schemes, like
PARTS [32] or CPI [14], enforce CFI at a coarse granularity by protecting a
wide range of forward- and backward edges on function level. Although these
approaches mitigate software attacks (¥) exploiting a memory vulnerability,
they fail to protect against a fault attacker (¥). FCFI schemes enforce CFI at a
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finer granularity to protect the control-flow from fault attacks, i.e., on basic block
or instruction level. In contrast to a software attacker exploiting memory bugs,
a precise fault can tamper with direct and indirect control-flow transfers. While
software-based FCFI schemes protect all control-flow transfers from faults (¥),
they fail to protect against software adversaries (). As the state update of
these schemes are counters or predictable IDs, an adversary can use a memory
bug to modify the state and prevent the detection of a control-flow hijack.

To protect against control-flow attacks from a fault and software attacker, it
is tempting to naively combine existing schemes such as PARTS with FCFI, e.g.,
CFCSS. While these schemes are secure in their own threat model, a combined
fault and software attack (@) can bypass them. First, the adversary gains control
over a register used for the FCFI state update. Then, it redirects the control-flow
to a wrong function, e.g., with a fault. Finally, the tampered register is used for
the state update, thus, can forge a valid CFI state.

To protect against fault and software attacks and to support a large-scale de-
ployment, FIPAC fulfills the key requirements stated in Section|3.3] First, FIPAC
comprehensively enforces CFI for transfers between basic blocks. Hence, our
scheme operates on a much finer granularity than typical software CFI schemes.
Second, FIPAC uses, in comparison to fault CFI schemes, a keyed state update
function to mitigate attacks targeting to manipulate the global CFI state. FIPAC
is implemented in software and is applied automatically during compilation.

6.3 Functional Evaluation

To evaluate the functional correctness of FIPAC, we compiled SPEC2017 [13] and
Embench [42] with our LLVM-based toolchain. We executed these instrumented
binaries on the QEMU 6.0 [43], which we modified to support PAC of ARMv8.6-
A. In QEMU, we started the 5.4.58 Linux kernel and initialized the PA keys
during the boot procedure before starting the benchmarks.

6.4 Performance Evaluation

To the best of our knowledge, there is currently no publicly available device
supporting ARMv8.6-A. To conduct our performance evaluation on hardware,
we use the Raspberry Pi 4 Model B [15]. Since the ARM Cortex-A72 CPU is
based on ARMv8-A without PAC, we emulate the runtime overhead of the PA

Fig.8: Protection guarantees and Fig.9: Runtime overhead for
vulnerabilities for SCFI and FCFI SPECspeed 2017.
schemes compared to FIPAC.
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instructions in software by replacing them with their PA-analogue, i.e., four
consecutive XORs. PARTS evaluated this sequence to model the timing of
native PA instructions, which is also used in related work .

SPEC 2017. To measure the performance overhead of FIPAC, we compiled all C-
based benchmarks with OpenMP support disabled of SPECspeed 2017 Integer.
We enabled three different checking policies, from coarse-grained to fine-grained
checks, to compare the performance penalty introduced by them. More con-
cretely, we configured FIPAC to insert a CFI check at the end of the program,
at the end of every function, or at each basic block. Verifying the CFI state at
the end of every basic block has the largest geometric mean penalty in code size
of 90.6 % as it requires 3 additional instructions per basic block. Interestingly,
placing a CFI check at the end of every function only has a geometric mean
overhead of 52.5 %, slightly higher than a single check at the program end with
a geometric mean penalty of 50.6 %. Due to this small increase in code size but
its stronger security guarantees, this policy is a good trade-off. Fig. [0 shows the
runtime overhead of FIPAC compared to the baseline without protection. The
coarse-grained checking policy with a single check at the program end intro-
duces the smallest geometric mean runtime overhead of 18.8 %. The fine-grained
checking policy with CFI checks at the end of every basic block has the largest
geometric mean runtime penalty of 62.9 %. Interestingly, the intermediate policy
with a check at the end of each function introduces a geometric mean runtime
overhead of 22.1 %. This is only a small increase compared to a single check
at the end, but it provides much better security. These runtime overheads are
outperforming related work with overheads between 107-426 % [17].

Embench. To evaluate FIPAC on embedded workloads, we use Embench. The
geometric mean code overheads are between 55-95 %, and the runtime overheads
are between 49-168 % (Fig. , depending on the checking policy. This increased
overhead is due to Embench’s small codebase with a larger number of control-
flow transfers compared to application-grade benchmarks like SPEC.

7 Discussion

This section discusses the hardware requirements of FIPAC, how it can be im-
plemented on other architectures, and future improvements.
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FIPAC Hardware Requirements. FIPAC requires pointer authentication from
ARMvS8.6-A. Although it is not yet widely available in existing processors, ARM
has already announced the successor ARMv9-A [35]. Hence, we expect new de-
signs, e.g., Apple’s new processors, to feature ARMv8.6-A or even ARMv9-A.

FIPAC on ARMvS8.3-A. FIPAC can also be implemented on ARMvS8.3-A with
the following adaptions. ARMv8.3-A PA instructions only compute a new PAC
without accumulation, which must be done manually using an additional eor
instruction per state update. This increases the overhead of an update to 3
instructions and requires one more register. autiza in ARMv8.3-A cannot be
used as a check as it does not trap. However, ARMv8.3-A features blraa, a
branch with link operation with pointer authentication, which traps if the jump-
target contains an invalid PAC. This instruction can be misused to perform a CFI
check. First, we transform the known CFI state to a valid PAC with the address
of the next instruction. When executing this branch, it first verifies the target
address and, if valid, jumps to the next instruction. If the PAC, and therefore
also the CFI state, is invalid, the verification traps. Both solutions increase code
size and runtime overheads compared to the prototype of FIPAC.

Similar to ARMv8.6-A, there is currently no open hardware available for
ARMv8.3-A yet. Although Apple offers cores, such as the M1 and Al4 [22],
they restrict the usage of this feature. iOS applications are not allowed to load
kernel modules; thus, FIPAC cannot configure the PA keys. FIPAC may run on
the Apple M1 core with PA of ARMv8.3-A. However, we currently do not have
access to such a device, and it requires future research to clarify if PA key access
is possible in the EL1 kernel mode or if Apple restricts it.

FIPAC on Other Architectures. The design of FIPAC is generic and could also
be implemented on other architectures. It is tempting to implement FIPAC on
x86 with the AES-NI [47], supporting partial encryption with one instruction.
However, we see limitations with this approach. First, AES-NI operates on a
128-bit state, also requiring to embed 128-bit patches. Second, one AES-NI oper-
ation only computes one round, just providing scrambling and no cryptographic
strength. Third, it requires the encryption keys to be held in general-purpose
registers. Thus, there is no key isolation between the user and the kernel. Hence,
we do not envision FIPAC to be implemented with AES-NI.

Dynamic Key Handling. FIPAC uses a static PA key configured by the OS.
However, ARM pointer authentication supports up to five keys for different
domains. By using different keys, FIPAC could isolate the control-flow of the
kernel and user programs. For better isolation between applications, FIPAC
could embed the PA key in the binary, allowing applications to use different
keys. Existing key exchange algorithms are then used to protect the embedded
PA key. The OS has access to a private key for the key exchange, can read the PA
key, and configure the system before starting the binary. To dynamically change
the PA key, the post-processing can be integrated into the OS. Before starting
the application, the OS chooses a random key and performs the post-processing
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step, i.e., the computation of the CFI states, patches, and check values. Thus,
every invocation of the application is different in terms of FIPAC related patch
and check values, which also hardens the attack surface.

Instruction Granular Protection. FIPAC does not protect the linear instruction
sequence within a basic block as it only performs state updates at the beginning
of a basic block. If a more fine granular protection is required, i.e., intra basic
block security, FIPAC supports the placement of state updates within security-
critical basic blocks. For such pieces of code, the state update from Listing|1.1]is
placed after every instruction to emulate instruction-granular CFI. Instruction
granular CFI increases the overhead and adds two additional instructions per
instruction to protect. Automatically identifying such critical pieces of code is
a challenging task and not in the scope of this work. Instead, it requires the
developer to manually place a check, e.g., via inline assembly.

Compatibilty. FIPAC uses the instruction address for the signature computation.
When ASLR is enabled, it leads to randomized signatures not being compatible
with the static computation. This problem can be solved by using static numbers
to compute the signatures or by integrating dynamic key handling in the OS.

FIPAC is a software-based CFI protection scheme, and therefore, comes
with certain degrees of flexibility compared to hardware-centric approaches. As
FIPAC supports arbitrary checking policies on the same system, critical appli-
cations, e.g., running within a TEE or an enclave, can have a stronger checking
policy than a non-critical application. FIPAC is backward compatible and sup-
ports non-instrumented applications.

8 Conclusion

We presented FIPAC, a fine-granular software-based CFI protection scheme for
upcoming ARM-based hardware. FIPAC offers fine granular control-flow protec-
tion on basic block level for both fault and software attacks. The design exploits
a cryptographically secure state update function, which cannot be recomputed
without knowing a secret key. FIPAC utilizes ARM pointer authentication of
ARMvS8.6-A, to efficiently implement the keyed CFI state update and checking
mechanism. We provide a toolchain to automatically instrument and protect ap-
plications. The evaluation of FIPAC with the SPEC2017 benchmark with differ-
ent security policies shows a geometric mean runtime overhead between 19-63 %
and is slightly larger for small embedded benchmarks. FIPAC is a software-based
CFT protection, requires no hardware changes, and outperforms related work.
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