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Abstract. Computational geometry and topology are areas which have
much potential for the analysis of arbitrarily high-dimensional data sets.
In order to apply geometric or topological methods one must first gener-
ate a representative point cloud data set from the original data source,
or at least a metric or distance function, which defines a distance be-
tween the elements of a given data set. Consequently, the first question
is: How to get point cloud data sets? Or more precise: What is the opti-
mal way of generating such data sets? The solution to these questions is
not trivial. If a natural image is taken as an example, we are concerned
more with the content, with the shape of the relevant data represented
by this image than its mere matrix of pixels. Once a point cloud has been
generated from a data source, it can be used as input for the applica-
tion of graph theory and computational topology. In this paper we first
describe the case for natural point clouds, i.e. where the data already
are represented by points; we then provide some fundamentals of medi-
cal images, particularly dermoscopy, confocal laser scanning microscopy,
and total-body photography; we describe the use of graph theoretic con-
cepts for image analysis, give some medical background on skin cancer
and concentrate on the challenges when dealing with lesion images. We
discuss some relevant algorithms, including the watershed algorithm, re-
gion splitting (graph cuts), region merging (minimum spanning tree) and
finally describe some open problems and future challenges.
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1 Introduction and Motivation

Today we are challenged with complex, high-dimensional, heterogenous, and
weakly-structured biomedical data sets and unstructured information from var-
ious sources [1]. Within such data, relevant structural or temporal patterns
(“knowledge”) are often hidden, difficult to extract, and therefore not imme-
diately accessible to the biomedical expert. Consequently, a major challenge is
to interactively discover such patterns within large data sets. Computational
geometry and algebraic topology may be of great help here [2], however, to ap-
ply these methods we need point cloud data sets, or at least distances between
data entities. Point cloud data (PCD) sets can be seen as primitive manifold
representation for use in algebraic topology [3]. For a rough guide to topology
see [4].

A good example of a direct source for point clouds are 3D acquisition devices
such as laser scanners, a recent low-cost commercial product being the Kinect
device (see section 3). Medical images in nuclear medicine are also usually rep-
resented in 3D, where a point cloud is a set of points in the space, with each
node of the point cloud characterized by its position and intensity (see section
3 and 5). In dimensions higher than three, point clouds (feature vectors) can be
found in the representation of high-dimensional manifolds, where it is usual to
work directly with this type of data [5].

Some data sets are naturally available as point clouds, for example protein
structures or protein interaction networks, where techniques from graph theory
can be directly applied [6].

Despite the fact that naturally occurring point clouds do exist, a concerted
effort must focus on how to get representative point cloud data sets from raw
data. Before continuing, and for clarification purposes, some key terms are de-
fined in the next section. This is followed by discussing natural point clouds in
section 3 as well as the case of text documents in section 4, before examining
the case of medical images, and in particular dermatological images, in section
5. We first introduce some dermatological image sources, describe shortly some
problems facing the processing of such images, and present some related work,
as well as relevant algorithms. Finally, we discuss open problems and provide an
outline to future research routes in sections 6 and 7, respectively.

2 Glossary and Key Terms

Point clouds: are finite sets equipped with a family of proximity (or similarity
measure) functions simq : S

q+1 → [0, 1], which measure how “close” or “similar”
(q + 1)-tuples of elements of S are (a value of 0 means totally different objects,
while 1 corresponds to essentially equivalent items).

Space: a set of points ai ∈ S which satisfy some geometric postulate.
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Topology: the study of shapes and spaces, especially the study of properties
of geometric figures that are not changed by continuous deformations such as
stretching (but might be by cutting or merging) [7], [8].

Topological Space: A pair (X,T ) with X denoting a non-empty set and T a
collection of subsets of X such that ∅ ∈ T , X ∈ T and arbitrary unions and
finite intersections of elements of T are also ∈ T .

Algebraic Topology: the mathematical field which studies topological spaces by
means of algebraic invariants [9].

Topological Manifold: A topological space which is locally homeomorphic (has a
continuous function with an inverse function) to a real n-dimensional space (e.g.
Euclidean space) [10].

Distance: Given a non-empty set S, a function d : S × S → R such that for
all x, y, z ∈ S (i) d(x, y) ≥ 0, (ii) d(x, y) = 0 ⇐⇒ x = y, (iii) d(x, y) = d(y, x),
and (iv) d(x, z) ≤ d(x, y) + d(y, z).

Metric space: A pair (S, d) of a set and a distance on it. Every metric space
is automatically also a topological space.

Computational geometry: A field concerned with algorithms that can be de-
fined in terms of geometry (line segments, polyhedra, etc.) [11].

Supervised Learning: Method within Machine Learning that uses labeled train-
ing data to develop an accurate prediction algorithm. Let {(x1, y1), ..., (xn, yn)}
be n training samples with x1...xn being the predictor variables and y1...yn the
labels, we want a function g : X → Y such that a cost function (usually the
difference between predicted values g(x) and y) is minimized.

Unsupervised Learning: Method in machine learning which is used to group sim-
ilar objects together, e.g. points within geometric groups or objects of similar
properties (color, frequency). No labeled training data is used.

Optimization: is the selection of cluster a best element (with regard to some
criteria) from some set of available alternatives.

Classification: Identification to which set of categories (sub-populations) a new
observation belongs, on the basis of a training set of data containing observations
(or instances) whose category membership is known.

Clustering: Grouping a set of objects in such a way that objects in the same
group (cluster) are more similar to each other than to those in other groups
(clusters).
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Feature: A measurable property of an object (e.g. the age of a person).

Feature Vector: A collection of numerical features interpreted as the dimensional
components of a (Euclidean) vector.

Vector space model: Approach whose goal is to make objects comparable by
establishing a similarity measure between pairs of feature vectors (Euclidean
distance, cosine similarity etc.). The space spanned by all possible feature vec-
tors is called the feature space.

Voronoi region: Given a set of points in a metric space p1, ...pn, a Voronoi dia-
gram erects regions around a point pi such that all points q within its region are
closer to pi than to any other point pj [12].

Delaunay triangulation: Given a set of points in a plane P = p1, ...pn, a Delau-
nay triangulation separates the set into triangles with p′s ∈ P as their corners,
such that no circumcircle of any triangle contains any other point in its interior.

Minimum Spanning Tree: Given a graph G = (V,E, ω) with V being the set
of vertices, E being the set of edges and ω being the sets of edge weights, a
Minimum Spanning tree is the connected acyclic subgraph defined by the sub-
set E′ ⊆ E reaching all vertices v ∈ V with the minimal sum of edge weights
possible.

3 The Case for Natural Point Clouds

A prototypical example of natural point clouds are the data produced by 3D
acquisition devices (Figure 1, Left), such as laser scanners [13]. Methods for
the extraction of surfaces from such devices can roughly be divided into two
categories: those that segment a point cloud based on criteria such as proximity
of points and/or similarity of locally estimated surface normals, and those that
directly estimate surface parameters by clustering and locating maxima within a
parameter space; the latter is more robust, but can only be used for simple shapes
such as planes and cylinders that can be described by only a few parameters
[14]. A recent low-cost example is the Kinect (Figure 1, Center) device [15]. This
sensor is particularly interesting as such devices will continue to gain popularity
as their prices drop while at the same time becoming smaller and more powerful
and the open source community will promote its use [16]. Such sensors have
the potential to be used for diverse mapping applications; however, the random
error of depth measurement increases with increasing distance to the sensor, and
ranges from a few millimeters up to about four centimeters at the maximum
range of the Kinect device [17]. Some recent examples demonstrate the potential
of this sensor for various applications, where high precision is not an issue, e.g.
in rehabilitation exercises monitoring [18] or in health games [19].

It seems reasonable to assume the presence of 3D-scanners within mobile
devices in the not-so-distant future, which in combination with faster, more
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powerful algorithms and advances in software engineering could potentially
transform each smartphone into a mobile medical laboratory and mobile well-
ness center [20]. Although applications in this area will likely not be an adequate
substitution for the work of trained professionals, it would help reduce data pre-
processing time and could make some hospital visits for purely diagnostic pur-
poses a thing of the past, consequently help to tame the worldwide exploding
health costs.

Medical images, e.g. in nuclear medicine, are usually also represented in 3D,
following the same principle (Figure 1), where a point cloud is a set of points
in R

3, whose vertices are characterized by their position and intensity. The den-
sity of the point cloud determines the resolution, and the reconstructed volume,
which in general could be of any resolution, size, shape, and topology, is repre-
sented by a set of non-overlapping tetrahedra defined by the points. The intensity
at any point within the volume is defined by linearly interpolating inside a tetra-
hedron from the values at the four nodes that define such a tetrahedron, see [21]
for more details and see [22] for some basic principles.

Some data sets are ”naturally” available as point clouds, which is convenient
as n-dimensional point clouds can easily be mapped into graph data structures by
defining some similarity functions to pairs of nodes (e.g. the Euclidean distance,
however a multitude of methods are available) and assigning that similarity
to edges between them. Examples of this include protein structures or protein
interaction networks (Figure 1, Right), where techniques from graph theory can
be applied [6].

Fig. 1. Left: A 3D scan of Bernd Malle taken in 1998 by a stationary device worth
around EUR 100,000. Center: 3D scan taken in 2013 by a Microsoft Kinect device
worth EUR 200 (Source: http://www.kscan3d.com/). Right: Protein-protein interac-
tion network (Source: http://www.pnas.org/).

4 The Case of Text Documents

Based on the vector space model, which is a standard tool in text mining [23],
a collection of text documents (aka corpus) can be mapped into a set of points
(vectors) in R

n. Each word can also be mapped into vectors, resulting in a very

http://www.kscan3d.com/
http://www.pnas.org/
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high dimensional vector space. These vectors are the so-called term vectors, with
each vector representing a single word. If there, for example, are n keywords
extracted from all the documents then each document is mapped to a point
(term vector) in R

n with coordinates corresponding to the weights. In this way
the whole corpus can be transformed into a point cloud set. Usually, instead
of the Euclidean metric, using a specialized similarity (proximity) measure is
more convenient. The cosine similarity measure is one example which is now a
standard tool in text mining, see for example [24]. Namely, the cosine of the angle
between two vectors (points in the cloud) reflects how “similar” the underlying
weighted combinations of keywords are. By following this approach, methods
from computational topology may be applied [25], which offers a lot of interesting
research perspectives.

5 The Case of Medical Images

5.1 Some Fundamentals of Digital Images

Dermoscopy. The dermoscopy, aka epiluminescence microscopy (ELM), is a
non-invasive diagnostic technique and tool used by dermatologists for the anal-
ysis of pigmented skin lesions (PSLs) and hair, that links clinical dermatology
and dermatopathology by enabling the visualization of morphological features
otherwise not visible to the naked eye [26]. Digital dermoscopy images can be
stored and later compared to images obtained during the patient’s next visit for
melanoma and non-melanoma skin cancer diagnosis. The use of digital dermo-
scopes permitted the documentation of any examinations in the medical record
[27] [28].

Skin and pathology appearance varies with light source, polarization, oil, pres-
sure, and sometimes temperature of the room, so it is important that the ex-
amination and documentation be performed in a standardized manner. To do
so, some of the most modern spectrometers use an adjustable light source which
adjusts according to the room light to try to mimic the “daylight” spectrum
from a standardized light source.

Although images produced by polarised light dermoscopes are slightly differ-
ent from those produced by a traditional skin contact glass dermoscope, they
have certain advantages, such as vascular patterns not being potentially missed
through compression of the skin by a glass contact plate. Dermoscopy only eval-
uates the down level of papillary dermis, leaving pathologies in the reticular
dermis unseen. Amelanotic melanoma is missed with this method and high pig-
mented lesions can also hide structures relevant for the diagnosis. A negative
surface exam is no guarantee that there is no pathology. In case of doubt a
biopsy and experienced clinical judgment is required [29].

Confocal Laser Scanning Microscopy. Reflectance confocal microscopy
(RCM) allows non-invasive imaging of the epidermis and superficial dermis. Like
dermoscopy, RCM acquires images in the horizontal plane (en face), allowing
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assessment of the tissue pathology and underlying dermoscopic structures of
interest at a cellular-level resolution [30].

The confocal image uses a low-power laser and special optics to magnify living
cells at approximately 1,000 times zoom. Confocal images are created by the
natural refractive difference within and between cells. Melanin is highly refractive
and results in brighter images. The confocal microscope captures the images in
three dimensions within the top layers of the skin. Imaging each lesion takes
between 5 and 10 minutes. A tissue ring is attached with medical adhesive to
hold the skin stable and the laser tracks through the lesion in three dimensions to
create vertical and horizontal maps of the cell fields. There is no pain or scarring
in this non-invasive procedure [29].

The application of a wide array of new synthetic and naturally occurring
fluorochromes in confocal microscopy has made it possible to identify cells and
sub-microscopic cellular components with a high degree of specificity amid non-
fluorescing material. In fact the confocal microscope is often capable of revealing
the presence of a single molecule. Confocal microscopy offers several advantages
over conventional widefield optical microscopy, including the ability to control
depth of field, elimination or reduction of background information away from
the focal plane (which leads to image degradation), and the capability to collect
serial optical sections from thick specimens, making possible multi-dimensional
views of living cells and tissues that include image information in the x, y, and
z dimensions as a function of time and presented in multiple colours (using two
or more fluorophores). The temporal data can be collected either from time-
lapse experiments conducted over extended periods or through real time image
acquisition in smaller frames for shorter periods of time. A concise overview on
biological image analysis can be found here [31].

Total-Body Photography. Total body photography (TBP) is a diagnostic
technique where a series of high resolution digital photographs are taken from
head to toe of the patients skin for active skin cancer surveillance [32]. A photo-
graphic baseline of the body is important when attempting to detect new lesions
or changes in existing lesions in patients with many nevi and create a pigment
lesion mapping of the entire body. Changes in moles can be in the form of size,
shape and colour change and it can also be useful for other conditions as psoriasis
or eczema.

The main advantages of total body photography are that it reduces unneces-
sary biopsies, and melanomas are often caught at a much earlier stage. A recent
approach is Gigapixel Photography (GP), which was used to capture high-res
panoramas of landscapes; recent developments in GP hardware have led to the
production of consumer devices (see e.g. www.GigaPan.com). GP has a one bil-
lion pixel resolution capacity, which is 1000 times higher than TBP, and therefore
has a lot of potential for dermatology use [33].
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5.2 Point Cloud Data Sets

To sum up at this point, let us define in accordance with [34]:

– Multivariate dataset is a data set that has many dependent variables and
they might be correlated to each other to varying degrees. Usually this type
of dataset is associated with discrete data models.

– Multidimensional dataset is a data set that has many independent vari-
ables clearly identified, and one or more dependent variables associated to
them. Usually this type of dataset is associated with continuous data models.

In other words, every data item (or object) in a computer is represented (and
therefore stored) as a set of features. Instead of the term features we may use the
term dimensions, because an object with n features can also be represented as
a multidimensional point in an n-dimensional space. Dimensionality reduction
is the process of mapping an n-dimensional point, into a lower k-dimensional
space, which basically is the main challenge in visualization .

The number of dimensions can sometimes be small, e.g. simple 1D data such
as temperature measured at different times, to 3D applications such as medical
imaging, where data is captured within a volume. Standard techniques like con-
touring in 2D, and isosurfacing and volume rendering in 3D, have emerged over
the years to handle these types of data. There is no dimension reduction issue
in these applications, since the data and display dimensions essentially match.

One fundamental problem in analysing images via graph theoretical methods
is when first translating them into a point cloud. While pixels in images naturally
have some coordinates in 2D, their colour value as well as relation to pixels
around them is not encoded within those coordinates. Thus, some transformation
of the 2D image into a higher-dimensional space has to occur as a first step.
This, however, entails many problems such as inadvertently modelling artefacts
or ‘inventing’ information that is not contained in the image. The following gives
an example of a simple 2D to 3D transform of a melanoma image (Figure 2).

5.3 Two Examples of Creating Point Clouds

The functional behaviour of a genome can be studied by determining which genes
are induced and which genes are repressed in a cell during a defined snapshot.
The behaviour can change in different development phases of the cell (from a
stem cell to a specialized cell), in response to a changing environment (triggering
of the gene expression by factor proteins with hormonal function) or in response
to a drug treatment. The microarray technology makes it possible to explore
gene expression patterns of entire genomes (a recent work from cancer research
can be found in [35]. Technically, a microarray is usually a small glass slide
(approximately 2.0 cm × 2.0 cm) covered with a great number (20,000 or more)
of precisely placed spots. Each spot contains a different single stranded DNA
sequence fragment: the gene probe. A microarray experiment is done as follows:
From reference and test tissue samples, mRNA is isolated and converted into
cDNA. The cDNAs are labelled green (reference) and red (test). The cDNA
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Fig. 2. Simple 2D-3D transform using the mesh function built into MATLAB

samples are mixed together and incubated with the probe on the microarray.
The location and intensities of the fluorescent dyes are recorded with a scanner.
Using the ratios of the dyes, a red spot indicates induced gene activity within
the test probe; a green spot shows repressed gene activity in the test probe and
a yellow spot indicates that there is no change in the gene activity level in the
two probes. The amount of data resulting from microarray experiments is very
big and too complex to be interpreted manually by a human observer. Machine
learning algorithms extract from a vast amount of data the information that is
needed to make the data interpretable. The gene expression pattern of the gene
yn along P experiments is described by a vector:

yn = (xn1, xn2, . . . , xnk, . . . , xnP )

where xnk is the expression value of the gene during the experiment number k.
The genes can be geometrically interpreted as a point cloud in a P -dimensional
space (Figure 3).

In the diagnosis of CLSM views of skin lesions, architectural structures at
different scales play a crucial role. The images of benign common nevi show
pronounced architectural structures, such as arrangements of nevi cells around
basal structures and tumour cell nests (Figure 4).

The images of malign melanoma show melanoma cells and connective tissue
with few or no architectural structures. Features based on the wavelet transform
have been shown to be particularly suitable for the automatic analysis of CLSM
images because they enable an exploration of images at different scales. The
multi resolution analysis takes scale information into consideration and succes-
sively decomposes the original image into approximations (smooth parts) and
details. That means, through the wavelet transformation, the two-dimensional
image array is split up into several frequency bands (containing various num-
bers of wavelet coefficients), which represent information at different scales. At
each scale the original image is approximated with more or fewer details. The
frequency bands, representing information at a large scale, are labelled with
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Fig. 3. Every gene is represented by a point in a P -dimensional space, which is built
by the P experiments (for example: P different kinds of tissue). The position of the
point is determined by the expression values on each axis of the coordinate system.

Fig. 4. Nevi cell arrangement and tumour cell nests
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low indices and the frequency bands representing successively decreasing scales
are labelled with higher indices. Then the architectural structure information in
the CLSM images is accumulated along the energy bands (from course to fine).
Therefore the wavelet transformation allows the analysis of a given texture by
its frequency components. In wavelet texture analysis, the features are mostly
derived from statistical properties of the resulting wavelet coefficients inside the
frequency bands. Then the tissue textures, in the CLSM images, are represented
by feature vectors, as for example:

xn =
(
Fn
STD(i)

)
; i = 0, . . . , N

Whereby N is the number of frequency bands. The index n refers to the n-
th image. Fn

STD(i) represents a statistical property of the wavelet coefficients in
the i-th frequency band. From an ensemble of images results a point cloud of
different feature vectors in the feature space.

Data Set Example: A relatively recent development is the creation of the UCI
KnowledgeDiscovery inDatabasesArchiveavailable athttp://kdd.ics.uci.edu.
This contains a range of large and complex datasets as a challenge to the data min-
ing research community to scale up its algorithms as the size of stored datasets,
especially commercial ones, inexorably rises [36].

5.4 Graphs in Image Analysis

The idea of using graph theoretic concepts for image processing and analysis goes
back to the early 1970’s. Since then, many powerful image processing methods
have been formulated on pixel adjacency graphs. These are graphs whose vertex
set is the set of image elements (pixels), and whose edge set is determined by an
adjacency relation among the image elements.

More recently, image analysis techniques focus on using graph-based methods
for segmentation, filtering, clustering and classification. Also, graphs are used to
represent the topological relations of image parts.

Definition 1 (Graph). A graph G = (V,E) is given by a finite set V of
elements called vertices, a finite set E of elements called edges, and a relation of
incidence, which associates with each edge e an unordered pair (v1, v2) ∈ V ×V .
The vertices v1 and v2 are called the end vertices of e.

Definition 2 (Planar Graph, Embedded Graph). A graph is said to be
planar if it can be drawn in a plane so that its edges intersect only at its end
vertices. A graph already drawn in a surface S is referred to as embedded in
S [37].

http://kdd.ics.uci.edu
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5.5 Medical Background

Skin Cancer is still the most common and most increasing form of human can-
cer worldwide. Skin cancer can be classified into melanoma and non-melanoma
and although melanomas are much less common than non-melanomas, they ac-
count for the majority of skin cancer mortality. Detection of malignant melanoma
in its early stages considerably reduces morbidity and mortality and may save
hundreds of millions of Euros that otherwise would be spent on the treatment
of advanced diseases. If cutaneous malign melanoma can be detected in its early
stages and removed, there is a very high likelihood that the patient will survive.

However, melanomas are very complex and a result of accumulated alterations
in genetic and molecular pathways among melanocytic cells, generating distinct
subsets of melanomas with different biological and clinical behavior. Melanocytes
can proliferate to form nevi (common moles), initially in the basal epidermis [38].
A melanoma can also occasionally simply look like a naevus.

Image analysis techniques for measuring these features have indeed been devel-
oped. The measurement of image features for the diagnosis of melanoma requires
that lesions first be detected and localized in an image. It is essential that lesion
boundaries are determined accurately so that measurements, such as maximum
diameter, asymmetry, irregularity of the boundary, and color characteristics, can
be accurately computed. For delineating lesion boundaries, various image seg-
mentation methods have been developed. These methods use color and texture
information in an image to find the lesion boundaries [39].

5.6 Challenges

Basic difficulties when dealing with such lesions include:

1. Morphology is not enough
Melanomas can sometimes appear like naevi. This suggests relying on follow-
ups and to perhaps prefer sensitivity to specificity.

2. Detail Level
Medical doctors are understandably fond of details, whereas preprocessing
often needs to blur images together with noise.

3. Diversity
Especially in dermoscpy there is a great variety of established criteria to
describe melanocytic and non melanocytic lesions [40].

4. Segmentation
Segmentation is one of the main hurdles in lesion analysis, as a good segmen-
tation of different skin lesions is crucial for total body imaging. It is also seen
as a problem by dermatologists themselves [41]: There has been research on
interoperator and intraoperator differences in segmentation by hand of one
and the same lesion.

5. Noise
Having said that, it is a requirement to split the lesion from the background.
This is even more problematic with people of darker complexion. A further
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Fig. 5. A naevus (left) and a melanoma (right)[42]

problem is hair: the pragmatic solution is to physically remove any hair using
a razor. But it is much better to eliminate it (or to “ignore” it) at the image
level, for example through the use of the Hough transform [43].
The Hough transform is a method for detecting curves by exploiting the
duality between points on a curve and the parameters of that curve, hence
it is well-suited for the detection of arbitrary shapes, and therefore ideal for
removing hair. The method is robust to partial deformation in shape and
very tolerant to noise and can detect multiple occurrences of a shape in the
same region, however, it requires a lot of memory and computational power
[44].
The most optimal segmentations we obtained were through the Mumford-
Shah functional, but it requires much processing time [45]. It is therefore
better to rely on a cleverly engineered mixture of morphological operations
and thresholding. A big issue here is in interactivity, because exactly here
the expert end user could come into play, by making her/him either simply
to accept or reject a segmentation or even initialize it or modify it (see below
Interaction with the user).

6. Diagnostic Criteria
Dermatologists trust the following criteria:

– A: Asymmetry
– B: Boundary (border irregularity)
– C: Colour (variegation and uneven distribution)
– D: Diameter (greater than 6 mm)
– E: Elevation (Alternatively: Evolution)

Moreover in patients with many nevi or other skin lesions this simplified
algorithm is not sufficient to diagnose such lesions correctly. Experience,
comparison of multiple lesions, and follow-up information is crucial to come
to a correct diagnosis. At this point one may ask how to make this proce-
dure at least partially automatic, and persistent homology is certainly one
approach, as we shall see.
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7. Interaction with the User
Interaction in time is an important issue. Although it is unreasonable to
expect “real time” outputs, a procedure in the order of minutes is a far too
long time for a medical doctor and also for a patient. A processing time
of approximately 2 minutes, which is usual considering the aforementioned
criteria, requires that something be put on the screen, showing that the
computer has not frozen and that something is actually happening.
Moreover the output must be understandable. Therefore, a trade-off be-
tween richness and simplicity of information is required. One possibility is
to have two (hidden) classifiers, one “pessimistic” algorithm (tuned to high
sensitivity) and one “optimistic” algorithm (high specificity). This, however,
can result in three possible outputs: High risk (both classifiers agreeing on
melanoma), medium risk (disagreeing), and low risk (both agreeing on nae-
vus). This approach is certainly not satisfactory for the present purposes.

8. Representation
On the strictly technical side, one can simply represent the images as graphs
with pixels as vertices, and 4-neighbours as adjacent vertices. Of course,
much more elaborate methods have been developed, which shall be discussed
further in the following sections.

5.7 Related Work

De Mauro, Diligenti, Gori & Maggini [46] in 2003 presented a very relevant piece
of work: they proposed an approach based on neural networks by which the re-
trieval criterion is derived on the basis of learning from examples. De Mauro
et al. used a graph-based image representation that denoted the relationships
among regions in the image and on recursive neural networks which can pro-
cess directed ordered acyclic graphs. This graph-based representation combines
structural and sub-symbolic features of the image, while recursive neural net-
works can discover the optimal representation for searching the image database.
Their work was presented for the first time at the GBR 2001 conference in Ischia
and the authors subsequently expanded it for a journal contribution.

Bianchini (2003) [47] reported on the computationally difficult task of recog-
nizing a particular face in a complex image or in a video sequence, which humans
can simply accomplish using contextual information. The face recognition prob-
lem is usually solved having assumed that the face was previously localized,
often via heuristics based on prototypes of the whole face or significant details.
In their paper, they propose a novel approach to the solution of the face lo-
calization problem using recursive neural networks. In particular, the proposed
approach assumes a graph-based representation of images that combines
structural and subsymbolic visual features. Such graphs are then processed by
recursive neural networks, in order to establish the eventual presence and the
position of the faces inside the image.

Chen & Freedman (2011) [48] reported on an alternative method in the pre-
processing stage: In cortex surface segmentation, the extracted surface is required
to have a particular topology, namely, a two-sphere. The authors presented a
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novel method for removing topology noise of a curve or surface within the level
set framework, and thus produce a cortal surface with the correct topology.
They defined a new energy term which quantifies topology noise and showed
how to minimize this term by computing its functional derivative with respect
to the level set function. This method differs from existing methods in that it
is inherently continuous and not digital; and in the way that our energy di-
rectly relates to the topology of the underlying curve or surface, versus existing
knot-based measures which are related in a more indirect fashion.

5.8 Relevant Algorithms

TheWatershedAlgorithm is a popular tool for segmenting objects whose con-
tours appear as crest lines on a gradient image as it is the case with melanomas. It
associates to a topographic surface a partition into catchment basins, defined as at-
traction zones of a drop of water falling on the relief and following a line of steepest
descent [49].

Each regional minimum corresponds to such a catchment basin. Points from
where several distinct minima may be reached are problematic as it is not clear
to which catchment basin they should be assigned. Such points belong to water-
shed zones, which may be thick. Watershed zones are empty if for each point,
there exists a unique steepest path towards a unique minimum. Unfortunately,
the classical watershed algorithm accepts too many steep trajectories, as they
use neighborhoods which are too small for estimating their steepness. In order
to produce a unique partition despite this, they must make arbitrary choices
that are out of the control of the user. Finally, their shortsightedness results in
imprecise localizations of the contours.

We propose an algorithm without myopia, which considers the total length
of a trajectory for estimating its steepness; more precisely, a lexicographic or-
der relation of infinite depth is defined for comparing non ascending paths and
choosing the steepest. For the sake of generality, we consider topographic surfaces
defined on node weighted graphs. This allows us to easily adapt the algorithms
to images defined on any type of grid in any number of dimensions. The graphs
are pruned in order to eliminate all downwards trajectories which are not the
steepest. An iterative algorithm with simple neighborhood operations performs
the pruning and constructs the catchment basins. The algorithm is then adapted
to gray tone images. The neighborhood relations of each pixel are determined by
the grid structure and are fixed; the directions of the lowest neighbors of each
pixel are encoded as a binary number. In that way, the graph may be recorded
as an image. A pair of adaptive erosions and dilations prune the graph and ex-
tend the catchment basins. As a result, one obtains a precise detection of the
catchment basin and a graph of the steepest trajectories [50].

Note: Stable image features, such as SIFT or MSER features, can also be
taken to be the nodes of the graph.

The watershed segmentation is a regionbased technique making use of
image morphology; a classic description can be found in [51]. It requires the
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selection of markers (“seed” points) interior to each object of the image, including
the background as a separate object.

The markers are chosen by a human expert who takes into account
the application-specific knowledge of the objects. Once the objects are
marked, they can be grown using a morphological watershed transformation
(Figure 6) [52].

Fig. 6. Result of applying a watershed transform to an image of relatively distin-
guished regions. The resulting segmentation (and thus vertices for the output graph)
corresponds well to the overall shape of the image and represents regions of about equal
size.

5.9 Region Splitting (Graph Cuts)

Understanding the original image as a graph consisting of one large, connected
component, the goal of region splitting is to obtain a graph G(V,E) with a
number of vertices (|V |) significantly smaller than the number of input pixels
(|V | << n). In order to achieve this we have to group certain areas consisting of
varying amounts of pixels together. This can be done via a partition of the image,
with a partition being defined as a subgraph (G′(V,E′)) of the original graph
with the set of vertices being the same as in the original and the set of edges
being a strict subset of the original set (E′ ⊂ E) (one must remove edges in order
to separate formerly connected components). This separation occurs recursively
until a cutting threshold is obtained for all remaining connected components,
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which are then interpreted as regions or superpixels (-voxels) represented by some
additionally extracted information, stored as a feature vector for the individual
partition.

5.10 Region Merging (Minimum Spanning Tree)

This is essentially the opposite from the method just mentioned, in that the
input image is considered as a set of pixels, each constituting its own region.
The goal is to merge regions based on a (dis-)similarity measure. Felzenswalb
(2004) [53] proposed an algorithm which in effect defines one numerical figure
representing the internal similarity of a region, and a second figure representing
the dissimilarity between two adjacent regions. In short, the approach works like
this:

Int(C) = max
e∈MST(C,E)

ω(e)

is the internal region similarity figure, given by the maximum edge weight of the
regions MST (Minimum Spanning Tree).

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

ω(vi, vj)

denotes any two regions’ dissimilarity figure, given by the minimum edge weight
connecting them.

Finally,

D(C1, C2) =

{
true if Dif(C1, C2) > MInt(C1, C2)
false otherwise

determines if two regions should be merged, based on the relation of their inter-
region dissimilarity and minimum respective internal similarities.

As per the region splitting approach, once no further regions can be merged,
the final image partition is obtained.

6 Open Problems

6.1 Medical Problems

One of the greatest problems in skin cancer screening is to select the right lesion
for further investigation. An adult person has anywhere between 20 and one
hundred different lesions. The segmentation and recognition of suspicious lesions,
which need further investigation by dermoscopy or RCM or another procedure,
is of utmost importance.

Furthermore the differentiation of physiologic changes from malignant changes
in a lesion is a great challenge for the dermatologist. The same is true for the
validation of benign and malignant criteria in one lesion. The question is, does
a small part of the lesion showing criteria of malignancy justify an excision or
not?
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6.2 Graphs from Images

In implementing and testing different techniques for graph extraction out of
medical image data several areas of consideration have arisen.

Is a Graph a Good Representation of an Image? This is logical as every
image consists of pixels that share some form of collocation with one another,
may it be geometrical neighborhoods or distances in some feature space. Sec-
ondly, image representation through graphs is already used by several segmenta-
tion algorithms, as the above sections have sufficiently discussed. The difference
between our approach and the aforementioned methods is that the former are
treating the raw structure of the image as the input graph to their algorithm,
whose output then is a general segmentation. This work however intends to pro-
duce a graph representation of the image as its output for further use, while it
may or may not use a graph based algorithm to compute it.

Why Compute another Graph? One could argue that every image in pixel
form (there are other representations like wavelets used in JPG) already contains
an implicit graph. While this is certainly true, an image of several megapixels
would translate to a graph containing millions of vertices (n) and (given a k-
neighborhood for each pixel) m = k ∗ n edges. This input size is clearly too
large for any algorithm of polynomial runtime complexity, especially if it is in-
tended to be used on standard desktop computers or even mobile devices. It is
thus imperative to reduce the number of vertices by first applying some form of
segmentation or clustering.

Can a Reliable Graph Be Extracted from One Image Alone? Another
interesting question is how well a (2D) image represents a surface topography
at all. Usually the only pieces of information contained in an image are the
coordinates of its pixels plus their corresponding color values. The latter (after a
transform to an intensity value) is typically interpreted as the height of its pixel,
thereby transforming the image to a topographic map. This information however
might be imprecise due to light conditions at the time of photography, hardware
inaccuracies, angle of the recording device etc., leading to artifacts and thus
misrepresentation. The only solution to this problem would be to take several
images in a sequence over time, from different angles, or applying a different
image taking technology (3D or radar scanning) altogether.

Based on this, a topological analysis of a graph extracted and merged from
several images (sources) might reveal information not contained in a single image,
while avoiding the incorporation of the same artifacts or inaccuracies that a single
input source might contain.

Is Image Segmentation the Pertinent Approach in Our Case. In tradi-
tional applications the goal of segmenting an image is mostly object recognition
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or detection, either as an unsupervised grouping of areas belonging together or
by matching a template representation to an area within the image, often con-
sidering different scales, angles or other deviations. The output segmentation of
this class of tasks consists of a small set of image regions, representing either
the locations of potential object matches or regions logically belonging together.
This approach however does not yield enough differentiated regions in order to
constitute a usable graph (a graph of 5 vertices cannot topologically analyzed
in any useful way). Thus the major traditional goal of image segmentation is
incompatible with the goal of this work.

Nevertheless, segmentation does use techniques that could be adapted to gen-
erate hundreds or even thousands of smaller regions representing the different
topological elements within an image – this is usually referred to as overseg-
mentation, yet it has already been used to generate finer grained partitions
[54]. Depending on the algorithm, this can be accomplished by setting some re-
gion merging criteria to a higher threshold or adapting the rules for erecting
watersheds.

Supervised or Unsupervised Learning? Because the final goal of most
image processing techniques in medicine is to differentiate between healthy and
pathological tissue, they belong to the group of problems known as classification
problems, and are therefore supervised learning problems. However, the methods
described above presuppose no anterior knowledge about the input images (or
parts thereof) in order to group regions of pixels or features together, so the
segmentation is done in an unsupervised fashion. This is certainly not the only
possibility, as templates of individual features could be provided to the algorithm.
Then again, the method would lose its generality, as different templates would
be needed for different types of images. A possible solution to this problem is
discussed later.

What Information to Put into a Feature Vector? Once a satisfying seg-
mentation is obtained, some representative information has to be extracted from
the individual regions in order to be stored as the feature vector of the resulting
graph node. A whole phalanx of region properties can be chosen, and some will
make more sense than others for a particular purpose. Aside from basic geo-
metric information (centroid coordinates, length, or length-to-width ratio) [55]
describes common features like histogram-based (mean grey values or grey level
entropy distribution), pixel-co-occurrence related (angular moment, correlation,
sum variance) as well as frequency-based (such as the wavelet) properties.

7 Future Challenges

Computational Efficiency. In comparison to extracting point cloud data from
text documents, multimedia content such as images or video streams contain a
very large amount of data (that might not necessarily contain much information).
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As a simple example, in order to represent a 5 megapixel image as an adjacency
graph, 25 billion entries would be necessary, while a more efficient representation
as an adjacency list would still hold (depending on the neighborhood-definition)
on the order of several dozen million list entries. This calls for efficient segmen-
tation and clustering algorithms, as even quadratic runtime complexity would
result in unacceptable computing times for interactive data mining in a real-
world working environment. Possible solutions comprise downsizing images and
the exclusive use of algorithms with near-linear (O(n∗ log(n)) being acceptable)
runtime behaviour, as several graph-based algorithms like MST fortunately ex-
hibit. Moreover, depending on the features selected to extract per output node,
additional computation will be needed. While this may result in computing times
acceptable for professionals depending on that particular information, it might
not be to others, which calls for the inclusion of the professional end user into
the data mining process.

User Interaction Pipeline. Although most algorithms discussed can produce
results in a purely unsupervised fashion, in order to achieve excellent and relevant
results, we propose designing an interactive data mining work flow. For exam-
ple, a trained medical professional could identify regions-of-interest in an image
which are then utilized by our algorithms to extract templates (feature vectors
of those regions) for further use in future classification tasks. While most algo-
rithms proposed today focus on very narrow fields of application (colon images,
melanoma samples etc.), this would add to our software the flexibility to include
per-user parameters into its machine learning process, solving the problem of
what feature vectors to extract, thus significantly widening the applicability of
our work.

Visualizing n-Dimensional Point Clouds as Topological Landscapes.
A very promising research route has been opened by [56], [57], [58]: they utilize
a landscape metaphor to images, which presents clusters and their nesting as
hills whose height, width, and shape reflect cluster coherence, size, and stabil-
ity. A second local analysis phase utilizes this global structural knowledge to
select individual clusters, or point sets, for further, localized data analysis. The
big advantage is that the focus on structural entities significantly reduces visual
clutter in established geometric visualizations and permits a more efficient data
analysis. This analysis complements the global topological perspective and en-
ables the end user to study subspaces or geometric properties, such as shape.
This is a very promising research route to follow.

8 Conclusion

Much further promising research routes are open for further exploration in the
discovery of knowledge from natural images, however, the first question is how
to preprocess the raw data as to get relevant data which is applicable for the use
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of methods from geometry and topology. As this paper only describes methods
to extract point cloud data from different weakly structured sources, once a
point cloud (or graph) is extracted, it will have to be topologically analysed
in order to produce workable results. The quality of those results will not only
depend on the quality of the algorithms themselves, but to a large degree also
on the quality of the input graphs they receive. In order to determine how well
suited our graphs are for further computation, we will have to conduct those
experiments, adapting our methods and parameters as needed.
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