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Effect of geometry on magnetism of Hund’s metals: Case study of BaRuO3
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In order to explore the effects of structural geometry on the properties of correlated metals we investigate
the magnetic properties of cubic (3C) and hexagonal (4H ) BaRuO3. While the 3C variant of BaRuO3 is
ferromagnetic below 60 K, the 4H phase does not show any long-range magnetic order, though, there is
experimental evidence of short-range antiferromagnetic correlations. Employing a combination of computational
tools, namely, density-functional theory and dynamical mean-field theory calculations, we probe the origin of
contrasting magnetic properties of BaRuO3 in the 3C and 4H structures. Our study reveals that the difference in
connectivity of RuO6 octahedra in the two phases results in different Ru-O covalency, which in turn influences
substantially the strengths of screened interaction values for Hubbard U and Hund’s rule J . With estimated U and
J values, the 3C phase turns out to be a ferromagnetic metal, while the 4H phase shows paramagnetic behavior
with vanishing ordered moments. However, this paramagnetic phase bears signatures of antiferromagnetic
correlations, as confirmed by a calculation of the magnetic susceptibility. We find that the 4H phase is found
to be at the verge of antiferromagnetic long-range order, which can be stabilized upon slight changes of screened
Coulomb parameters U and J , opening up the possibility of achieving a rare example of an antiferromagnetic
metal.
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I. INTRODUCTION

Transition metal oxides (TMOs) represent a class of com-
pounds exhibiting a plethora of fascinating physical properties
[1]. For instance, the intriguing interplay of charge, spin, and
orbital degrees of freedom in the context of strong correlations
opens up a scientifically rewarding playground. While most
studies focus on the interplay of charge, spin, and orbitals,
the effect of geometry of the underlying structure is compa-
rably less explored. This is, however, an equally important
issue, given the fact that keeping the basic motif of transition
metal oxygen octahedra, the connectivity of these octahedra
in transition metal oxides can greatly vary from compound to
compound.

To explore the influence of variation of connectivity in a
systematic manner, it is desirable to find a structural variation
within the same chemical composition in systems, where the
interplay of geometry and correlation effect is expected to be
strong. Moving down the periodic table from the 3d to the
4d transition metal series, the covalency between transition
metal and oxygen increases. This leads to a large crystal field
splitting between eg and t2g states that is usually of the order
of the local screened Coulomb interaction U . Furthermore,
the larger spatial extent of the 4d orbitals produces a larger
band width as compared to 3d materials. As a result, the 4d
compounds prefer a low-spin state rather than the high-spin
state, with occupied t2g and empty eg configurations. While
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4d compounds generally show a smaller screened Coulomb
interaction U as compared to 3d compounds, the multior-
bital nature of the problem in the t2g manifold makes the
Hund’s coupling J an important parameter [2]. From that
perspective, the interplay between the structural aspects and
the electronic correlations driven by U and J in 4d TMOs may
turn out to be more interesting than that for their 3d
counterparts.

Ruthenates are an ideal playground for studying the 4d
physics described above. A large number of ruthenate com-
pounds have been experimentally synthesized, and a number
of interesting physical phenomena has been reported, most of
them being a manifestation of correlation effects. To mention
a few, Sr2RuO4 is known for its unconventional p-wave su-
perconductivity [3]. The properties of SrRuO3 are reported
to exhibit sensitivity to strain and compression, e.g., change
in Curie temperature under compression and change in lon-
gitudinal resistivity and magnetic anisotropy to differential
methods of strain application [4], while BaRu6O12 shows a
quantum phase transition in transport and magnetic properties.
Although the strong correlation effect in the 214 family is
established, the large mass renormalization as found in pho-
toemission [5] as well as the presence of incoherent features
in optical conductivity [6], hints towards the importance of
correlation effect in the 113 family too.

Among the ruthenate TMOs, BaRuO3 (BRO), which is the
sister compound of the well-studied compounds SrRuO3 and
CaRuO3, offers a perfect platform for the exploration of the
above-mentioned geometry effects in a systematic manner.
Both SrRuO3 and BRO, which are isoelectronic ruthenates

2469-9950/2022/105(23)/235106(10) 235106-1 ©2022 American Physical Society

https://orcid.org/0000-0001-7852-497X
https://orcid.org/0000-0002-7617-6542
https://orcid.org/0000-0001-6933-3151
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.235106&domain=pdf&date_stamp=2022-06-09
https://doi.org/10.1103/PhysRevB.105.235106


HRISHIT BANERJEE et al. PHYSICAL REVIEW B 105, 235106 (2022)

(Ru4+ with 4d4 electronic configuration), have been consid-
ered as prototypical examples of Hund’s metals with nearly
spin-frozen states [7,8]. However, BRO is reported to exhibit
structural and physical properties different from SrRuO3 or
CaRuO3. The presence of Ba2+ at the A site, which has a
larger ionic size compared to Sr2+ or Ca2+, leads to a tol-
erance factor of BRO of t = (rBa+rO )√

2(rRu+rO )
> 1 (where rBa, rRu,

and rO correspond to the radius of Ba, Ru, and O ions, re-
spectively), favoring the hexagonal polytype as opposed to
SrRuO3 or CaRuO3, for which t < 1 favors an orthorhombic
structure with cubic stacking. Depending on the synthesis
pressure, a sequence of structural types in BRO is reported
from 9R (ambient pressure) to 4H (3 GPa) to 6H (5 GPa),
all based on hexagonal symmetry [9]. Interestingly enough,
the cubic 3C phase of BRO could also be stabilized under
very high pressure conditions [10], giving rise to the unique
opportunity of studying the influence of hexagonal versus cu-
bic connectivity of RuO6 octahedra within the same chemical
formula of BRO. The four structures, synthesized under dif-
ferent pressure conditions, can be stabilized down to ambient
pressure [9,10].

While 3C has only corner-shared connectivity, 4H has
a combination of face-shared and corner-shared connectiv-
ity. The 6C and 9R structures also contain combinations of
face-shared and corner-shared connectivity. The percentage of
corner-shared connectivity is 50% for 4H ; it is 33% and 66%
for the 9R and 6H phases, respectively. The structures of 6H
and 9R are, however, much more complex. In 9R three RuO6

octahedra share faces with each other, giving rise to a Ru3O12

trioctahedron unit which connects to another trioctahedron
unit through the corner sharing, while for 6H the Ru2O9

dioctahedron unit and single RuO6 octahedral unit arrange
alternately and connect to each other through the connecting
oxygen. However, the magnetic properties of more complex
9R and 6H are similar to that of 4H . Both 4H and 6H are para-
magnetic metals. The low-temperature conducting properties
of 9R, though, are debated, showing an upturn in resistivity
in otherwise metallic conductivity. Phenomena like formation
of charge density wave have been suggested for it [11]. To
make the situation computationally tractable, we thus take up
the 3C and 4H phase of BRO as a case study to investigate
the effect of geometry on correlation-driven magnetism
and the electronic structure of 4d TMOs. Cubic BRO with
perovskite structure and corner-shared RuO6 octahedra is a
ferromagnetic metal, with a Tc ∼ 60 K [10]. On the other
hand, the moderate-pressure 4H phase, which exhibits non-
perovskite hexagonal geometry with face-shared dimers of
RuO6 octahedra does not seem to order magnetically in
experimental studies, although some signatures of antifer-
romagnetic correlations have been reported [5], suggesting
a paramagnetic metal as a ground state [9]. The change in
geometry from cubic to hexagonal, thus, appears to have
a profound effect on the material’s properties. We inves-
tigate this issue by a combination of a variety of tools,
ranging from first-principles density-functional theory cal-
culations to constrained random-phase approximation and
dynamical mean-field theory. For the latter, we employ both
a continuous-time quantum Monte Carlo technique using the
hybridization expansion, as well as the fork tensor product

states method. Our study reveals a Hund’s metallic state for
both 3C and 4H phases, reflected in a strong dependence
of the imaginary part of the self-energies upon variation of
Hund’s coupling. For small coupling, the imaginary parts at
zero frequency, i.e., the electron-electron scattering rates, are
small, and they increase to large values for increasing Hund’s
coupling. This emphasizes the importance of correlation ef-
fects for the description of the properties of BRO in both
3C and 4H phases. Ferromagnetically ordered phases, short-
range antiferromagnetic fluctuations, and long-range ordered
antiferromagnetic phases are found for both 3C and 4H in
parameter space of Coulomb correlation U and Hund’s cou-
pling J . The central finding of our study is that the change
in connectivity between 3C and 4H results in a change in
metal-oxygen hybridization which influences the electronic
screening, amounting to distinctly different estimated values
of U and J for 3C and 4H , respectively. This difference in
the parameters places the 3C phase in the ferromagnetically
ordered regime, and 4H in the paramagnetic regime with
short-range antiferromagnetic correlations. It is intriguing to
note that a slight variation of the U parameter would stabilize
a rare and exotic example of an antiferromagnetically ordered
metallic phase in the 4H variant, which could be used in
spintronics applications.

II. COMPUTATIONAL DETAILS

Our density-functional theory (DFT) calculations for struc-
tural relaxation were carried out in a plane-wave basis with
projector-augmented wave potentials [12] as implemented
in the Vienna Ab initio Simulation Package (VASP) [13,14].
For ionic relaxations using the VASP package, internal po-
sitions of the atoms were allowed to relax until the forces
became less than 0.005 eV/Å. For 3C there is no internal
coordinate to be optimized, since all atoms are located in high-
symmetry positions. For 4H , the comparison of the oxygen
positions between experimental and the nonmagnetic DFT
relaxed structure show the changes to be negligible. An energy
cutoff of 550 eV, and a 6 × 6 × 4 Monkhorst-Pack k-points
mesh provided good convergence of the total energy. Our
ab initio dynamical mean-field theory (DMFT) calculations
are based on the full-potential augmented plane-wave basis
as implemented in WIEN2K [15]. For these calculations, we
used the largest possible muffin-tin radii, and the basis set
plane-wave cutoff as defined by RminKmax = 7.5, where Rmin

is the muffin-tin radius of the oxygen atoms. In all our DFT
calculations, we chose as exchange-correlation functional the
generalized gradient approximation (GGA), implemented fol-
lowing the Perdew-Burke-Ernzerhof prescription [16]. The
consistency between VASP and WIEN2K results have been
cross-checked.

To facilitate a direct comparison between 3C and 4H , and
to keep the same unit cell for magnetic and nonmagnetic
cases, a

√
2 × √

2 × 2 supercell of 3C cubic phase primitive
cell was considered. This created four Ru atoms in the unit
cell of both 4H and 3C.

We also perform constrained random phase approximation
(cRPA) calculations within VASP, with the states of inter-
est derived from a WANNIER90 projection method [17], to
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have an estimate of the Hubbard U and Hund’s J values for
both geometries. This involves a three-step procedure: a DFT
ground-state calculation, a calculation to obtain a number
of virtual orbitals, and the actual cRPA calculation. For the
Wannier projections an energy window from −2.5 to +2 eV
around the Fermi energy was chosen, and projections were
done to the t2g states. A large number of bands (96 bands) were
taken into account for the G0W 0 calculation. The screened
Hubbard U and Hund’s J are obtained from the calculation as
the static ω = 0 limit of the frequency-dependent cRPA inter-
actions. To cross-check the estimated U and J from cRPA,
we have performed additional calculations of the Hubbard
parameters using the linear response density-functional per-
turbation theory (DFPT) method implemented in the Hubbard
parameters (HP) package of QUANTUM ESPRESSO [18–21].

We perform the DMFT calculations in a basis set of
maximally localized Wannier functions (MLWFs) using
WANNIER90 and the WIEN2WANNIER [22] interface. DMFT
calculations were performed using the TRIQS/DFTTOOLS pack-
age [23–25] based on the TRIQS libraries [26]. Projective
Wannier functions as implemented in the dmftproj module of
TRIQS were employed to cross-check the results and also to
calculate the initial occupancy of the correlated orbitals. The
DMFT calculations in both MLWF and projective Wannier
functions basis have been found to yield consistent results.
In both cases a projection window of −2.5 to +2 eV was
chosen.

For both paramagnetic and magnetic calculations, only Ru
t2g orbitals have been considered for the DMFT calculation.
Low-energy models consisting of only t2g orbitals have been
extensively and very successfully used, and found to be ad-
equate in many past works on ruthenates [7,8,27,28]. The
eg orbitals are higher in energy and are, thus, mostly empty.
Calculation of the eg occupancy in 3C BRO using dmftproj in
this energy range yields occupations of only 0.02e− for each
orbital, which is negligible as compared to the t2g occupation.
Nevertheless, in order to cross-check our results, we have ex-
plicitly included the influence of the eg by performing a set of
calculations in the full d manifold. Our additional calculations
establish that the model including all five d orbitals leads
to essentially the same results as the t2g-only model for the
difference between 3C and 4H within the parameter regions
of interest.

The Ru t2g states hybridize with O p. One possible way
to handle this situation is to explicitly take the oxygen states
into account and construct a so-called d-p model. While
most calculations in the context of ruthenates are based on
d-only models (see, e.g., Refs. [7,8,27,28]), there are only few
exceptions where the d-p model is used, e.g., in Ref. [29].
There, calculations have been carried out within the Hartree-
Fock scheme using estimates for the Hamiltonian parameters.
Of course, the d-p model, as opposed to the d-only model,
implies a number of additional Coulomb parameters such
as Upd and Upp, knowledge of which is poor, as also men-
tioned explicitly, e.g., in Ref. [29]. First-principles (cRPA)
calculations of Upd ,Upp are not even implemented in the pack-
ages that we have access to. Linear response DFPT, though,
can in principle calculate these values but the accuracy of
such values is questionable (see calculations reported in
Ref. [30]). Furthermore, the inclusion of Upd naturally leads to

a Hamiltonian with nonlocal interactions, which is beyond the
applicability of single-site DMFT. Hence, a different, much
more expensive approach such as cluster extensions of DMFT
would be needed. An additional complexity when using a d-p
model is the issue of the double-counting correction, as dis-
cussed, for instance, by Hansmann et al. [31]. Considering the
uncertainties and difficulties of handling the d-p model within
the ab initio scheme of DFT + DMFT, we thus refrain from
carrying out calculations in the d-p model and instead choose
the effective low-energy d-only model (the t2g model, in
particular).

We emphasize, though, that the hybridization with O
p is taken into account by considering a downfolded t2g

orbital basis, in which O p degrees of freedom are not
thrown away, but included in the tail of the t2g Wannier
functions.

The eg and t2g orbitals are defined in the Ru-O octahedra-
based local coordinate system, with the z axis pointing along
one of the Ru-O bonds, and the y axis pointing approx-
imately to the neighboring Ru-O band. In 4H phase due
to the presence of trigonal distortion in the RuO6 octahe-
dra, the t2g orbitals defined in this oxygen-based coordinate
system, are not degenerate, rather they are split into singly
degenerate a1g and doubly degenerate eπ

g formed by suitable
linear combination of t2g orbitals, with the z axis point-
ing along the threefold C3 axis. WANNIER90 projects to a
local coordinate system, and hence any projections with
spherical harmonics correctly identify the orbitals in their
projections.

The Anderson impurity problems were solved using the
continuous-time quantum Monte Carlo algorithm in the hy-
bridization expansion (CT-HYB) [32] as implemented in the
TRIQS/CTHYB package [33]. We used the density-density vari-
ant of the Kanamori interaction [34]. For our calculations we
not only use the cRPA values but also U values ranging from
1 to 4 eV and J values ranging from 0.1 to 0.5 eV to explore
the phase diagram. We have set the intraorbital interaction to
be U ′ = U − 2J . Real-frequency results have been obtained
using the maximum-entropy method of analytic continuation
as implemented in the TRIQS/MAXENTapplication [35]. It is
to be noted here that there might be an effect of electronic
correlations on the optimization of the crystal structure, which
is not captured in one-shot DMFT calculations. However, the
focus of the present study is not to optimize the lattice within
one structure, but to compare two very different structures, 3C
and 4H . Therefore, even if correlation effects would lead to
slightly different optimized atomic positions in 4H (although
unlikely since DFT and experiments fit nicely in that respect),
it does not affect the qualitative changes between 3C and 4H
(corner shared vs face shared).

As quantum Monte Carlo solvers are limited to higher
temperatures, we also employed an impurity solver based
on matrix product states in a special geometry, the fork-
tensor-product-states (FTPS) solver [36]. This allows efficient
T = 0 calculations for multiorbital systems directly on the
real-frequency axis. To do so, we discretized the hybridiza-
tion function using 50 bath sites per spin, and calculated
the ground state using a density-matrix-renormalization group
algorithm. The time evolution for calculating the interacting
Green’s functions was done using the time-dependent varia-
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FIG. 1. Structures of the (a) cubic 3C and (b) hexagonal 4H
phase of BRO. The cubic phase is a perovskite structure with all
corner-sharing RuO6 octahedra, while the 4H hexagonal phase con-
sists of face-shared dimers of RuO6 octahedra, corner-sharing with
each other. The green spheres represent Ba, red spheres represent O,
and mauve spheres represent Ru.

tional principle using 100 time steps of length dt = 0.1 [37].
The calculations were checked for consistency with the full
Kanamori Hamiltonian for the 3C structure.

III. CRYSTAL STRUCTURE AND DFT BAND STRUCTURE

In Fig. 1 we show the crystal structure of both the 3C
and the 4H phase. As already mentioned, depending on the
synthesis condition, the stacking of BaO3 layers can be of
the hexagonal close-packed stacking (h) or the cubic close-
packed stacking (c). These two different stacking patterns
give rise to face-shared and corner-shared connectivity of
neighboring RuO6 octahedra in 4H and 3C phases,
respectively.

The 3C structure has a perfect cubic symmetry Pm3̄m, and
has lattice constants of a = b = c = 4.075 Å, and unit cell
α = β = γ = 90◦ [10]. The RuO6 octahedra are all corner
sharing, with the corner-shared Ru-O-Ru angle of 180◦, as in
perfect cubic symmetry.

The 4H structure has a hexagonal symmetry P63/mmc,
and has lattice constants of a = b = 5.729 Å and c = 9.5 Å,
and unit cell angles α = β = 90◦ and γ = 120◦, as given by
hexagonal symmetry. The RuO6 octahedra form face-shared
dimers, and the dimers are corner-shared between themselves,
giving rise to a hchc stacking sequence, which indicates a
stacking of alternate hexagonal and cubic units. The face-
shared dimers have an internal Ru-O-Ru angle of 78.5◦, while
the corner-shared dimers have a Ru-O-Ru angle of 180◦ [38].
The percentage of corner-shared connectivity is 100% and
50% for the 3C and 4H phases, respectively. This difference
in connectivity plays a big role in the properties of the two
phases as we shall see in a later section.

In Figs. 2(a) and 2(b), we present the DFT band struc-
ture and density of states (DOS) obtained from nonmagnetic
plane-wave calculations using VASP of 3C and 4H phases.
There are 20 Ru bands for 4 Ru atoms (5 d orbitals each) in the
unit cell of both 3C and 4H phases. The states are projected
to Ru d (red symbols and lines in Fig. 2) and O p orbital
degrees of freedom (green symbols and lines in Fig. 2). Within
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FIG. 2. Nonmagnetic DFT band structure of the (a) cubic 3C and
(b) hexagonal 4H phase of BRO, projected to Ru d and O p states.
(c) and (d) shows the one of the three t2g Wannier orbitals for 3C and
4H structures, respectively, plotted at an isosurface value of 0.015.
The gray spheres represent Ru centers and maroon spheres represent
O centers. The lobes of Wannier function isosurfaces, shown in
red and blue, represent positive and negative signs of the function,
respectively.

the non-spin-polarized scheme of calculations, both systems
are metallic with Ru t2g states crossing the Fermi level, with
a strong admixture of O p states. The computed electronic
structure is in good agreement with what has been reported
earlier [39]. Comparing the DFT electronic structure of 3C
and 4H we observe a marked difference, in terms of the Ru d
band width as well as the charge-transfer energy between Ru
d and O p states, which we infer from the band centers of Ru
d and O p bands. The latter is expected to be important in the
calculation of the screening of Coulomb parameters U and J .
We further notice multiple peaks in the DOS of 4H compared
to that of 3C, which arises due to bonding-antibonding split-
ting of trigonally split Ru t2g states as discussed in Ref. [39].
It has also been seen in previous calculations that there is
an energy gap of approximately 3 eV between the t2g levels
around Fermi energy and the eg levels at higher energies [39].
Moreover, Wannier projections to both the t2g subspace as
well as to the full d manifold yields an occupation of four
electrons. Hence, only the t2g levels are relevant in our case
and are considered in the subsequent DMFT study of the
low-spin state of Ru. In Figs. 2(c) and 2(d), the representative
low-energy Wannier functions of 3C and 4H are shown, with
lobes of opposite signs of wave functions colored as red and
blue. The head part of the Wannier functions situated at Ru
sites are shaped according to the xz symmetry for 3C and eπ

g
symmetry for 4H , while the tails are shaped in downfolded O
p symmetry. The maximum spread of the Wannier functions
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for 3C is found to be 2.774 Å2, while that for 4H is 5.067 Å2.
This analysis already points to the higher hybridization of Ru
d and O p in 4H than in 3C.

IV. DEGREE OF CORRELATION AND POSSIBLE
MAGNETIC ORDERING PATTERNS

To take into account the correlation effect of Ru 4d states,
we first carry out single-impurity DMFT calculations for a
Ru t2g-based low-energy Hamiltonian defined in the basis of
DFT-derived Wannier functions. In particular, we solve the
impurity problem only for one Ru atom and use the resulting
self-energy on all of the four Ru atoms. A local Coulomb
interaction of density-density type between the orbitals is
introduced. The interaction part of the Hamiltonian is given b,

H int
ii =

3∑

i,m=1

Uni,m↑ni,m↓

+
∑

i,m �=m′

∑

σ,σ ′
(V − Jδσ,σ ′ )ni,mσ ni,m′σ ′ ,

where i is the lattice site, and m and m′ represent orbital
indices. U is the Coulomb repulsion between two electrons
with opposite spin in the same orbital. Orbital rotational sym-
metry is imposed by setting V = U − 2J , where J is the
Hund’s coupling, which lowers the energy of a configuration
with different orbitals (m �= m′), and parallel spins σ = σ ′. In
this section, the effective impurity problem is solved within
DMFT by using the hybridization expansion continuous-time
quantum Monte Carlo which works at finite temperatures. In
the following, we vary the value of U within a range of 1–4 eV
and J in the range of 0.1–0.5 eV, which are sensible parameter
ranges for 4d transition metal oxides [8].

A. Coherence to incoherence crossover

A crossover from a rather coherent correlated metal with
small scattering rates to an incoherent metal with large scat-
tering rates with changes of Hund coupling J has been
demonstrated for the 3C phase in a previous study [8]. We
find the same to be true for the 4H phase, as determined
by the single-impurity DMFT self-energy 	(iωn). Figure 3
summarizes the results which shows the imaginary part of
Matsubara self-energies of 3C and 4H for fixed U = 2.3 eV
and inverse temperature β = 40 eV−1, for a range of J values.
For small values of J , the low-frequency limit of the self-
energy is small; for J = 0.1 eV the extrapolation gives almost
vanishing −Im	(iωn → 0). Upon increasing J , a deviation
from such a behavior is found at low ωn, manifested as the
nonzero intercept of −Im	(iωn → 0). For 3C [Fig. 3(a)], we
observe a progressively increasing scattering rate from very
small values for J = 0.1 eV and also for J = 0.2 eV, to large
values for larger Hund’s couplings. A very similar behavior is
observed for 4H ]Fig. 3(b)], which confirms the importance of
Hund’s coupling for strong-correlation effects in both 3C and
4H . This behavior of increasing scattering rates as a function
of J , which implies incoherent electronic states at least at
elevated temperatures, is well known from other ruthenate
compounds [40], as well as other Hund’s metals such as iron
selenides [41].

FIG. 3. The imaginary part of self-energies of the (a) cubic 3C
and (b) hexagonal 4H phase of BRO, calculated at inverse tem-
perature β = 40 eV−1. Both phases show a transition from a more
coherent behavior with small scattering rates to incoherent behavior
with large scattering rates, depending on the choice of Hund J pa-
rameter for a fixed U = 2.3 eV. The extrapolation of the imaginary
part of the self-energies to ωn = 0 is shown by dotted lines. The inset
shows the y-axis intercepts obtained by extrapolation as a function of
of J .

B. Correlation-driven magnetism and electronic structure

The paramagnetic correlated spectral function for U =
2.3 eV and J = 0.4 eV, which are accepted values for ruthen-
ate oxides [40], in 3C and 4H phases at β = 40 eV−1 is shown
in Fig. 4. We see that in the paramagnetic phase both struc-
tures have metallic ground states. In the case of the 3C cubic
state the three t2g orbitals are degenerate, while in the case
of 4H the degeneracy between the t2g orbitals is broken, with
two degenerate orbitals and another singly degenerate orbital
arising due to the trigonal distortion of the RuO6 octahedra in
hexagonal symmetry.

Next, we proceed to exploring magnetism within single
impurity DMFT by introducing symmetry breaking. For that
purpose, we start from the paramagnetic solutions, add a
symmetry-breaking term in the form of a spin splitting in
the real part of the self-energies, and let the DMFT iterative
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FIG. 4. Correlated spectral functions of the (a) cubic 3C and
(b) hexagonal 4H phase of BRO, projected to three t2g states in
the paramagnetic phase. The t2g states (red) are degenerate in the
3C phase, while getting split into eπ

g (blue) and a1g (green) states
in 4H . The calculations here have been done with U = 2.3 eV and
J = 0.4 eV.

cycle converge to a possible symmetry-broken solution with
net ordered magnetic moment. We carry out the calculations
at various different values of inverse temperature with β

between 40 and 200 eV−1, for both 3C and 4H structures.
At β = 40 eV−1, the calculations are found to converge to
a paramagnetic state, while upon reducing temperature, a
transition to a magnetic solution is found. In Fig. 5(a), we
show a plot of the ordered moments of Ru Wannier functions
with the number of DMFT iterations. For the 3C phase we
see a stable ferromagnetic (FM) state. A critical tempera-
ture of TC ≈ 116 K is determined for 3C, albeit the critical
temperatures being overestimated [10] due to the mean-field
nature of the DMFT calculations. On the other hand, for 4H
the ordered moments are found to be not stable, but they
rather oscillate as a function of iteration. The reason for these
oscillations is that antiferromagnetism naturally gives rise to
two distinct sublattices A and B, with the symmetry for the
local Green’s functions GA,σ (iωn) = GB,σ̄ (iωn). Here, in our
ferromagnetic setup, we do not have a sublattice structure,
which corresponds to GA,σ (iωn) = GB,σ (iωn). Since the impu-
rity hybridization function for sublattice A is calculated from
the self-energy and Green’s function on sublattice B, it is clear
that this leads to oscillations, when the sublattice structure and
the above given symmetry is not explicitly taken into account.

We next take a look at the spectral functions for the
spin-polarized DMFT calculations for the 3C structure, as
shown in Fig. 5(b), calculated at β = 100 eV−1, for U =
2.3 eV and J = 0.4 eV. We find that in the case of 3C, a
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FIG. 5. (a) Variation of Wannier moments as a function of DMFT
iterations for both 3C and 4H , showing stable FM moments for 3C
and fluctuating moments for 4H . (b) Spectral function of the cubic
3C phase of BRO in the spin-polarized phase. The dashed curve
represents the up-spin channel and the solid curve the down-spin
channel.

ferromagnetic correlated metallic state appears with the up
spin channel majorly occupied and the down spin channel ma-
jorly unoccupied. This is in agreement with the experimental
observation [10].

C. Variation of interaction parameters and influence on
the magnetic phases

Having established the importance of correlations in the
description of properties of both 3C and 4H , we next explore
the effect of variation of the correlation strength, parametrized
through parameters U and J , on the magnetic properties of
3C and 4H . We carry out this exercise primarily due to two
reasons. Although we will later in this section estimate the
values of U and J from first principles, it is well known that
this estimate carries some degree of uncertainty [42]. Second,
it has been shown previously that it is possible to tune the
Hubbard U and Hund J parameters by application of strain
[43]. We thus wish to study the trend of magnetism as a
function of U and J values, highlighting the different trends in
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3C and 4H , before we proceed to use first-principle estimates
to place the actual materials in the phase diagram.

For this purpose, we repeat the symmetry-broken DMFT
calculations at β = 100 eV−1, for a range of U and J values,
and monitor two quantities, modulo M and M. The latter
refers to the ordered magnetic moment given by nup–ndn,
nup/ndn being the occupancy in majority and minority spin
channels while modulo M refers to the absolute value of
the ordered magnetic moment, averaged over the last four
iterations of the DMFT cycle. A comparison of these two
quantities helps in distinguishing different magnetic states.
If there is no magnetic ordering, i.e., the system is in the
paramagnetic state, both M and modulo M are zero. If modulo
M is finite, but M is zero, antiferromagnetic correlations are
signaled. On the other hand, if M is equal to modulo M, a fer-
romagnetic state is stabilized. We want to stress here that the
case when the Wannier moment changes sign over the DMFT
iterations, corresponding to M = 0 but modulo M finite, is not
a converged self-consistent DMFT solution. In that sense, this
case is not a physically relevant solution. Nevertheless, this
behavior signals the tendency to a stable antiferromagnetic
(AFM) solution, as the rigorous calculation with an extended
unit cell allowing one to host the AFM pattern shows. We
will discuss the extended unit cell calculations in the next
section.

The variation of modulo M and M within a wide range of
values of U and J is shown in Fig. 6. A nontrivial variation
of magnetic states is found to be achieved with variation of U
and J . One can identify three regions in this phase diagram in
general. At small values of U and J one finds a paramagnetic
state. With increasing U but still small J , a region is found
with moments fluctuating over iterations. With larger values
of U and J , a state with stable FM moments is seen.

While this general feature is found to be true for both 3C
and 4H , there are subtle differences. For a fixed U value

of 2.3 eV, 3C shows moments fluctuating over iterations for
J = 0.3 eV, and stable FM moments for J = 0.4–0.5 eV.
The 4H phase, however, shows moments fluctuating over
iterations for J = 0.3–0.4 eV, and stable FM moments only
for J = 0.5 eV. Fixing now J = 0.4 eV, upon variation of U ,
for the 3C structure a fluctuating moment state is found for
U = 1.7 eV, while a FM state stabilizes beyond U = 2.3 eV.
We notice that for a large enough U value a fully polar-
ized magnetic moment of 2μB/Ru is obtained. A previous
GGA + U work [39] reported a total moment of 1.2μB in
3C phase, but for a rather small value of U = 2 eV. An
experimental work [10] reported the saturation moment to be
much less than 2μB/Ru, though the effective magnetic mo-
ment calculated from the paramagnetic phase was found to be
close to the saturated value of S = 1 for the Ru4+ ion. To the
best of our knowledge, there does not exist any photoemission
experiment on the possible half-metallic nature of cubic FM
BaRuO3 as would be the case for fully polarized moments.
This calls for further studies.

On the other hand, the 4H phase for the same J = 0.4 eV
shows fluctuating moments until U = 2.3 eV, and stabiliza-
tion of the FM state only beyond U = 2.7 eV. This exercise
conclusively demonstrates that the magnetic state is crucially
dependent on the choice of U and J , with critical U and J
values for the stabilization of the FM state as compared to
moments fluctuating over iterations being different between
3C and 4H .

The above exercise calls for the need of a first-principles
evaluation of U and J values in 3C and 4H phases. As
discussed above, the change of Ru-O covalency due to dif-
ferences in the connectivity of RuO6 octahedra between 3C
and 4H , is expected to influence the screening and, thus, the
value of U and J . In particular, we carry out cRPA calculations
as implemented within VASP to calculate the Coulomb matrix
elements Ui jkl (ω = 0) for the Ru t2g states of BRO in both
4H and 3C phases. For 3C we obtain from cRPA screened
U = 3.5 eV and J = 0.5 eV, and for 4H we obtain screened
U = 1.4 eV and J = 0.3 eV. Even considering the standard
errors in the estimation of U and J in the cRPA methods,
one can see that there is a significant difference between the
interaction values for the two phases. The cRPA estimated U
and J values for 3C and 4H are indicated in Fig. 6 with green
dashed arrows. With the choice of cRPA estimates, 3C falls
in the regime of a stable FM state as expected, while 4H falls
in the regime of fluctuating moments, with vanishingly small
oscillating moments. For 4H , we further find, as the Hubbard
U is progressively decreased at fixed J = 0.3 eV, the ordered
moment keeps decreasing from U = 2.3 to U = 1.7 eV, and
finally vanishes at U = 1.4 eV. Thus, at the limit of the cRPA
estimated value of Hubbard U for 4H , the ordered moment
vanishes, indicating a lack of any tendency to magnetic long-
range order. It is to be noted to cross-check cRPA results, we
have also carried out additional calculations for the determi-
nation of the Hubbard parameters using the HP package of
QUANTUM ESPRESSO [18,19] which calculates Hubbard U in
the linear response method. From linear response calculations,
we obtain Hubbard U values of U = 4.55 eV for 3C and
U = 1.88 eV for 4H . Keeping in mind that cRPA and linear
response are two very different methods for calculating U ,
these additional calculations provide a confirmation of the
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FIG. 7. FM and AFM susceptibility for the 4H structure calcu-
lated in the supercell with four Ru atoms.

trend that 3C has a much larger interaction parameter as
compared to 4H . In particular, this provides strong evidence
that the U value of 4H is small enough to stabilize the FM
state. Furthermore, to estimate possible influence of intersite
Coulomb repulsion V , we evaluated it in 3C phase from the
linear response method. The calculated value turned out to
be just 0.06 eV, about two orders of magnitude smaller as
compared to U .

V. LONG-RANGE ORDER IN 4H STRUCTURE

To further elucidate on the nature of magnetism in a
4H structure, we expand our DMFT calculation to a multi-
impurity problem, in which we treat the four Ru atoms
in the unit cell inequivalently, and solve a four-impurity
problem with U = 2 eV (slightly higher than cRPA esti-
mate), and J = 0.3 eV. We carry out calculations at β =
80–120 eV−1. The four-impurity DMFT calculations at
these temperatures result in metallic solutions with vanish-
ingly small ordered moments for 4H . However, the small
moments show an antifferomagnetic orientation within the
Ru-Ru dimer and a ferromagnetic orientation between the
dimers. The vanishingly small ordered moment corroborates
the experimental finding of absence of long-range magnetic
ordering at finite temperatures, with some antiferromagnetic
fluctuations [5].

To confirm this further, we carry out susceptibility calcula-
tions with both ferromagnetic and antiferromagnetic external
magnetic fields (field pointing up on two impurities and point-
ing down on the other two impurities) on the 4H system.
We vary the applied field from 0.01 to 0.05 eV in steps of
0.01, and for each value of temperature we obtain the inverse
slope of the magnetization vs applied field within the linear
regime. This gives the inverse of the uniform susceptibility
1/χ vs temperature T , as shown in Fig. 7. By fitting the curve
to a straight line in Fig. 7 we see that the antiferromagnetic
susceptibility is much larger than the ferromagnetic suscep-
tibility, thus confirming the possible presence of short-range
antiferromagnetic fluctuations in the system.
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as a function of interaction strength U (with constant J = 0.3 eV).
The green arrow indicates the cRPA value of U = 1.4 eV. It can be
seen that a small increase from the cRPA value is sufficient to lead to
an (AFM) ordered state.

A. Magnetic phase of 4H at zero temperature

Having established the absence of long-ranged magnetic
ordering of 4H at finite temperature that were accessible by
quantum Monte Carlo, we next investigate the magnetic phase
at T = 0 K. We carry out these DMFT calculations using the
FTPS solver as implemented in TRIQS. We do spin-polarized
calculations with a density-density Hamiltonian, keeping J =
0.3 eV fixed and varying U around the cRPA estimated value,
from 2 to 1.1 eV.

We find that at the larger values of U = 2 and 1.95 eV,
the magnetic ordering is stabilized, leading to an anti-
ferromagnetic state with the Ru atoms within the dimer
aligned antiferromagnetically, and the dimers themselves be-
ing aligned ferromagnetically. It is noteworthy that this is the
same antiferromagnetic state that is found in spin-polarized
DFT calculations in the same unit cell. However, as the value
of U is decreased to 1.9 eV and further down towards the
cRPA estimate of 1.4 eV, the ordered moments vanish after
a few DMFT iterations. This is shown in Fig. 8. This leads to
the conclusion that the magnetic state in 4H does not order
in experimental studies due to both thermal and quantum
fluctuations. The spectral function calculated for U = 2 eV
and U = 1.4 eV is also shown in Fig. 8. As seen, the antifer-
romagnetic state at U = 2 eV, and the nonmagnetic state at
U = 1.4 eV turn out to be metallic.

VI. CONCLUSION

To conclude, considering the example of 3C and 4H poly-
types of BaRuO3 as a test set, we investigate the effect of
geometrical connectivity on magnetic properties of correlated
transition metal oxides. The cubic 3C and hexagonal 4H
phases with corner-shared versus face-shared connectivity of
RuO6 octahedra are reported to exhibit distinctly different
magnetic behavior. While the 3C phase shows ferromagnetic
ordering with a moderately high magnetic transition tempera-
ture of ∼60 K, the 4H phase does not order magnetically, but
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shows rather paramagnetic behavior with evidence of short-
range antiferromagnetic correlation.

The single impurity DMFT calculations for a Ru t2g Hamil-
tonian shows a crossover from a generalized Fermi liquid to
a non-Fermi liquid kind of correlated behavior upon variation
of Hund’s coupling J in both 3C and 4H phases, thus char-
acterizing them as correlated Hund’s metals. Moreover, we
find that the magnetism is highly dependent on the choice
of Hubbard U and Hund J coupling, and the trend is not
trivial. Depending on the choice of U and J , either an or-
dered ferromagnetic state, or a paramagnetic state, or a state
with ordered moments oscillating over DMFT iterations is
achieved for both 3C and 4H . The ab initio estimates for the
interaction parameters, both from constrained RPA as well as
from linear-response calculations, yield significantly larger U
and J values for the 3C phase as compared to the 4H phase.
The ab initio estimates of U and J place 3C in the FM region
in the (U, J ) parameter space of magnetic phases, while 4H
is placed in a fluctuating magnetic state but with vanishingly
small value of moment. Extending the DMFT calculations to
the multi-impurity problem of four Ru atoms in a supercell
shows that the magnetic state of 4H is indeed paramag-
netic with antiferromagnetic short-range fluctuations. This is

further confirmed by the uniform ferro- and antiferromagnetic
susceptibilities, who show absence of long-range ordering but
a larger AFM susceptibility. Finally, the FTPS calculations at
T = 0 K show that the 4H phase is close to a long-range
antiferromagnetically ordered metallic state, which can be
stabilized upon a slight increase of Hubbard U . This opens up
the possibility of exploring exotic antiferromagnetic metallic
phases in 4H BaRuO3, by strain or a dielectric substrate which
is expected to tune the screening, thus influencing the U and
J values.

In summary, our study solves the puzzle of the contrast-
ing magnetic behavior of 4H and 3C polytypes of BaRuO3,
and provides a microscopic understanding in terms of the
influence of geometric aspects on the magnetic behavior of
correlated oxides.
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