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Abstract: Blue force tracking represents an essential task in the field of military applications. A blue
force tracking system provides the location information of their own forces on a map to commanders.
For the command post, this results in more efficient operation control with increasing safety. In
underground structures (e.g., tunnels or subways), the localisation is challenging due to the lack of
GNSS signals. This paper presents a localisation system for military or emergency forces tailored
to usage in complex underground structures. In a particle filter, position changes from a dual foot-
mounted INS are fused with opportunistic UWB ranges and data from a 3D tunnel model to derive
position information. A concept to deal with the absence of UWB infrastructure or 3D tunnel models
is illustrated. Recurrent neural network methodologies are applied to cope with different motion
types of the operators. The evaluation of the positioning algorithm took place in a street tunnel. If a
fully installed infrastructure was available, positioning errors under one metre were reached. The
results also showed that the INS can bridge UWB outages. A particle-filter-based approach to UWB
anchor mapping is presented, and the first simulation results showed its viability.

Keywords: indoor localisation; blue force tracking; multi-sensor fusion; UWB; foot-mounted inertial
navigation; tunnel model; 3D model; machine learning

1. Introduction

Operations in an urban environment will be a key capability of armed forces in the
future. This environment holds very specific challenges due to different interconnected
levels of movement (supersurface—surface—subsurface) and a significant portion of in-
frastructure hidden from view. The most challenging is the subsurface environment, where
the simultaneous occurrence of armed opponents, toxic gas and smoke, water ingress, and
other kinds of hazards pose a complex subsurface scenario [1]. “Existing underground
service facilities include road and rail tunnels, urban subways, underground parking,
canalisation as well as energy recovery, transport and storage sites. But also structures out
of sight as abandoned traffic systems, former air-raid shelters or nuclear waste deposits
are part of the subterranean environment” [2]. Therefore, millions of people around the
world are relying upon the safe and secure operation of subsurface service structures, and
any violent obstruction unsettles the public. During the past several years, several attacks
affecting subsurface structures have taken place: New York (1993), Tokyo (1995), Moscow
(2004), London (2005), Saint Petersburg (2017)—to name just a few. Events such as the attack
in Tokyo, which claimed over 6200 injured, show how challenging an operation can be [3].
The public transport system of a large city carries many passengers, the Vienna subway
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(Wiener Linien) for example about 500 million per year [4]. To that end, an underground
traffic hub becomes a gathering place for several thousand citizens during peak hours:
thus a possible and very attractive target for attacks. Mission accomplishment within such
complex scenarios can be optimised using military tactics, techniques, and procedures
within a truly comprehensive approach integrating all relevant actors. To develop all the
necessary capabilities, the NIKE (www.milak.at/nike, accessed on 12 January 2022) re-
search and development program was initiated, joining experts from various fields. While
NIKE BLUETRACK was developed mainly for military use cases in subsurface structures,
it is of course also of high relevance for all kinds of emergencies within confined spaces.

One essential prerequisite for successful mission accomplishment is the reliable local-
isation of one’s own forces. Underground navigation, such as in subways, road and rail
tunnels, or sewage canals [2], is considerably more challenging since Global Navigation
Satellite Systems (GNSSs) cannot be used for positioning. The layout of a contorted subsur-
face structure is demonstrated in Figure 1. Together with poor lighting and smoke (e.g., due
to explosions), it shows the necessity of avoiding blue-on-blue situations or, in other words,
the prevention of friendly fire. In specialist jargon, the colour blue is assigned to describe
friendly forces, whereas the colour red is used for opposing forces. Hence, a blue force
tracking system, which provides real-time visualisation of one’s own forces’ positions on a
map to the command post, would offer the possibility of a fast and correct representation of
the mission within environments hidden from view. The decision-making process would
be easier, thereby increasing the safety of the personnel operating.

Figure 1. Subsurface structures pose high challenges to navigation systems due to changing distances,
narrow spaces, and multiple levels without visual connection. The illustration shows a part of the
Zentrum am Berg experimentation facility, where the field tests were conducted. (Picture: laabmayr).

The primary system requirements for NIKE BLUETRACK had to be determined
as follows:

• Allow a distinction between one’s own and opposing forces within a radius of >1 m;
• One’s own forces in the field of view or in the surrounding area shall be visualised;
• The height component shall allow localising the person in a floor or a vertical or

inclined shaft;
• Positioning shall consider changing body postures such as walking, running, jumping,

and crawling, including many changes of direction (stop and turn).

1.1. Related Work

In general, a positioning system for emergency/military personnel should be small,
lightweight, and inexpensive, while providing metre-level accuracy [5]. Another challenge

www.milak.at/nike
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is that pre-installed infrastructures (e.g., WiFi networks) and additional information (e.g.,
map information or fingerprinting databases), are usually non-existent in the targeted
application. Since GNSSs’ signals are not available underground, other positioning sensors
must be considered. Accordingly, vision sensors, such as cameras, inertial sensors, or short-
range communication technologies [6] (e.g., Bluetooth, WiFi, or ultra-wideband (UWB)),
are reasonable instruments for GNSS-denied environments. Vision-based positioning relies
on cameras and prior map information [7]. Therefore, they are not appropriate in an
environment where the field of vision may be reduced by smoke.

With the introduction of micro-electro-mechanical system (MEMS) technologies, foot-
mounted inertial navigation has become an attractive research field. A major challenge in
such an INS is to mitigate the accumulation of navigation errors resulting in a drift [8]. One
way to estimate and correct the drift is regular zero-velocity updates (ZUPTs) [9]. ZUPTs in
a foot-mounted INS are applied during stance phases. However, the detection of such zero-
velocity events has a great impact on the INS’s accuracy. Classical zero-velocity detectors,
which are based on fixed-threshold approaches [10], perform well on homogeneous motions.
However, uniform motions do not apply to standard application cases, especially not in
military operations. Wagstaff et al. [11] proposed two robust zero-velocity detectors, which
are based on ML methodologies, namely: a support vector machine-based motion-adaptive
detector and an LSTM-based zero-velocity classifier. They showed that both approaches
outperform classical zero-velocity detectors. Another way to reduce the drift of an INS
is the usage of two IMUs. By introducing a spatial constraint based on the step length
between the two systems, the heading drift is bounded [12–14]. The precondition for an
improvement of the system is that both INSs show a similar, symmetrical position error [15].
As the authors of [5] emphasise, a foot-mounted INS is a suitable centrepiece of a soldier
and first-responder positioning system. However, it has to be aided with other positioning
technologies to meet the requirements for reliable and continuous positioning on a large
scale. The performance achievements of fusing a foot-mounted INS with short-range-based
communication technologies [16,17] or map information [18] is widespread in the literature.
Woodman [19] investigates approaches to improve a foot-mounted INS by introducing
environmental constraints and WiFi-assisted localisation.

Short-/medium-range communication technologies [6] are often associated with tri-
lateration algorithms. However, Bluetooth is only applicable for small areas, whereas
WiFi signals can cover huge areas, and is easy to deploy. WiFi localisation algorithms are
very sensitive to environmental changes and, therefore, not rugged enough. In contrast,
UWB offers a low power consumption, a higher accuracy (cm-level), and less sensitivity
to interferences due to the broader bandwidth [6]. UWB systems are suited for wearable
applications, making them a promising technology. Moreover, UWB can be effectively used
as a tool for cooperative positioning, as stated in [5]. Cooperative positioning methods
are extremely important instruments in indoor navigation applications, where an existing
infrastructure (e.g., pre-placed UWB tags at known positions) cannot be presumed, as in
the case of our application. Even if an infrastructure is available, there will be no guarantee
that it will be intact. Therefore, a UWB anchor infrastructure has to be deployed during
the mission: making it a portable infrastructure. This deployment includes the installation
of the anchors in the underground structure during the mission and the subsequent esti-
mation of their positions, possibly using observations from all operators collaboratively.
Besides cooperative localisation, this process is often referred to as self-calibration in the
literature [20]. Calibration, in this context, means to determine the positions of the anchors.
Self-calibration methods are often based on distance measurements between anchors (an-
chors act temporarily as tags to conduct measurements from neighbouring anchors). They
are used to estimate the relative anchor positions within the network. Some methods are
based on a variety of assumptions and exhibit a variety of constraints. As an example, the
method presented by [21] requires explicit assumptions about the relative locations of the
anchors. The method implemented in the Qorvo DWM1001 module [22] requires a certain
geometrical shape (rectangle) and a priori information on the arrangement of the anchors
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of the network. Other methods apply multilateration to triangular sub-networks, decreas-
ing the need for assumptions about the network geometry. A notable example of such a
method is presented by [23], using a triangle reconstruction algorithm and channel impulse
response for positioning. In military situations and lengthy underground buildings such as
tunnels, it is unlikely to have a network geometry that allows an accurate self-calibration
based on the aforementioned methods. That gives rise to a different family of methods,
which use a moving tag to estimate (to map) anchor coordinates in an exploratory manner,
also known as simultaneous localisation and mapping (SLAM) [24]. The authors of [25]
presented such a method using an agent that is equipped with a UWB tag and an IMU
to obtain a joint estimate of anchor and tag coordinates from the tag observations of the
anchor distances. Similar methods were developed for an ultrasonic positioning system
with an odometer by [26] and for a system based on IEEE 802.15.4a and an IMU by [24]. An
advantage of this family of self-calibration methods is that there are hardly any constraints
with respect to the geometry of the anchor network. Therefore, it lends itself well to an
application within our system and was adopted.

The combination of foot-mounted IMUs and UWB modules seems particularly suitable
for a robust indoor positioning system, as shown in several studies [16,27–29]. A common
approach represents a cascaded estimation architecture where IMU data are processed in
an ESKF and then integrated into an upper Bayesian filtering framework, e.g., a PF [18].
The usage of a PF enables the easy integration of non-linear information, but shows a
higher complexity in contrast to an extended Kalman filter (EKF). Han et al. [29], e.g.,
utilises a customised PF and ESKF for fusing UWB and IMU data to localise soldiers
and unmanned vehicles under a collaborative network. The authors of [30] introduce a
cooperative positioning algorithm for emergency responders, which fuses inertial data in
form of stepwise dead reckoning, WiFi, and UWB in a PF. They also take the absence of
an existing infrastructure into consideration and achieve an accuracy of 2.6 m in a real-
world experiment. Apart from pedestrians, robots in complicated underground or indoor
environments are a noteworthy research field [31–33].

1.2. Solution

However, no blue force tracking system is existent that provides a reliable positioning
solution for complex scenarios in underground structures. A near-real-time visualisation of
positions at the command post has to be guaranteed. Such a system should deal with the
absence of local infrastructure since it cannot be assumed that the required infrastructure
is available. This paper intends to provide the conception and development of an easily
portable navigation solution for precise localisation, which can deal with harsh under-
ground environment (smoke, poor lighting). The operators are equipped with two low-cost
IMUs (each on one foot), one UWB tag, and several UWB anchors for deployment. The
IMU data are translated into position changes using a dual foot-mounted INS in the form of
an ESKF. Zero-velocity events (steps) are detected through ML methodologies: a new GRU-
based zero-velocity detector was developed, which can handle different gaits at different
speeds. Stepwise position changes are then fed into a PF where the distance measurements
from the UWB anchors, and information from tunnel models is taken into account. In case
of an emergency scenario, the availability of a 3D model of the subsurface structures cannot
be assumed to be available. Therefore, a 3D tunnel model of the environment has to be
generated during the mission, using specialised software. That allows the transformation of
various heterogeneous data sources into a unified format for the tracking solution. Previous
studies have shown that virtual reality (VR) visualisations can drastically improve the
intuitive understanding of complex spatial situations in a military environment [1,34].
Hence, a visualisation of the results is created inside a virtual reality (VR) environment to
give an intuitive overview of the situation to staff officers and commanders. Figure 2 gives
an impression of the use of VR for the preparation of military operations.
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(a) (b)

Figure 2. Usage of virtual reality (VR) for mission preparation. (a) VR user. (Picture: OEBH/Seeger).
(b) Tactical symbols inside virtual reality (VR). (Picture: laabmayr).

Field tests were conducted at the special research facility ZaB (https://www.zab.at/,
accessed on 31 January 2022) in Austria (Figure 1). The ZaB is focused on underground
constructions and operations and provides, among others, road and rail tunnels. During
those test measurements, the tunnel model was assumed to be available and the needed
infrastructure in part. However, the concept for the generation of the tunnel model and the
setup of the infrastructure on-the-fly are presented. The visualisation tool is also treated.

The main contributions of this paper are:

1. A positioning filter approach is proposed for fusing measurements from two foot-
mounted IMUs with UWB and a tunnel model. The IMU data are preprocessed in an
ESKF to reduce the computational complexity and are further combined with distance
measurements and a tunnel model in a PF. In contrast to other positioning systems
where the localisation is based on local coordinates, the position estimation takes
place in a global frame since the virtual environment operates in WGS84;

2. Additionally, a novel NN-based zero-velocity detector for inertial pedestrian naviga-
tion is presented;

3. A method for setting up the infrastructure required for UWB positioning during the
mission is described. Measurements from multiple operators are combined to estimate
the coordinates of newly installed anchors in a centralised particle filter with kernel
smoothing;

4. A rapid mapping tool, the Fast Tunnel Modelling Tool (FTMT), and a visualisation
tool used for monitoring the tracked operators in a virtual reality (VR) environment,
the SOMT, are presented;

5. The results of practical experiments are presented, which were performed in an
approximately 160 m-long street tunnel. A properly setup UWB network of at least
four anchors, as well as a tunnel model were assumed to be present. The construction
of the network on-the-fly was simulated.

This paper consists of three sections: Section 2 describes the materials and methods
and is divided into Section 2.1, giving the sensor specifications, and Section 2.2, showing
the system architecture of the whole navigation system. The following subsections describe
the system components, such as the generation of the tunnel model during the mission, the
positioning algorithms, the dynamic setup of the UWB anchors, and the used visualisation
tool. The last subsection of this part gives an insight into the data collection. Section 3
presents the results including the performance metrics of the NN-based zero-velocity
classifier, the achieved positioning accuracy in different scenarios, and the performance of
the anchor position estimation. The final Section 4 completes the paper with a discussion
of the results.

https://www.zab.at/
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2. Materials and Methods

The following section gives an overview of the selected navigation sensors, as well as
the system architecture as a whole. Furthermore, the positioning algorithm and the anchor
deployment are discussed in detail.

2.1. Selected Navigation Sensors

The navigation sensors used in this study were several ultra-wideband (UWB) transceiver
modules and two low-cost micro-electro-mechanical system (MEMS) IMUs. Furthermore,
a tunnel model was used as an artificial sensor. Qorvo DWM1001 development boards [22]
were selected as UWB anchors and tags. They consist of the DWM1001 transceiver module
and a circuit board with different interfaces (Bluetooth and serial port) and offer several
power supply options. The Decawave Positioning and Networking Stack software pro-
vides the ranging functionalities and handles the configuration of the modules. The data
output rate is configurable up to a maximum of 10 Hz. However, the provided software is
limited to measuring a maximum of four anchors at once, switching automatically between
anchors. The selected IMU was the XSens Dot [35] by the company XSens. The XSens Dots
are wearable inertial sensors and are composed of triaxial MEMS accelerometers, triaxial
MEMS gyroscopes, and triaxial MEMS magnetometers. Inertial data can be provided at
a maximum of 60 Hz over Bluetooth 5.0 in real-time. Information on the environment
is provided in the form of a tunnel model, created using the Fast Tunnel Modelling Tool
(FTMT) (Section 2.3). The relevant information for tracking are the so-called MPs. These
provide—in contrast to the internal dimension of the structure—the traversable space. A
summary of the sensors used is listed in Table 1.

Table 1. Selected Navigation Sensors.

Type Model Description

Ultra-wideband (UWB) Qorvo DWM1001 module UWB modules (anchors
and tags)

IMU XSens Dot
Wearable

micro-electro-mechanical
system (MEMS) IMU

3D model Fast Tunnel Modelling Tool Map polygon (MP)

2.2. System Architecture

Before describing the different system components in detail, we give a brief overview
of the system components and their interaction (Figure 3). The goal of our blue force
tracking system is to localise an operator moving through a subsurface environment and
make this information available at the command post, using the Subsurface Operation
Mission Tool (SOMT) (Section 2.6). The information shall be available in near-real-time. A
tracked operator is equipped with one foot mounted IMU per foot and an UWB tag. The
data from these sensors are fused locally on the main processing unit (MPU), a portable
computer. The zero-velocity-aided INS and the PF fusing the output from the INS with the
UWB ranges (Section 2.4) run on the main processing unit (MPU). The MPU is connected
wirelessly to a server. The MPU sends the estimated positions, which are made available to
the SOMT, and the UWB ranges. The MPU receives the latest map polygon (MP) generated
by the FTMT (Section 2.3), which will be used as additional information in the PF, as well as
the latest positions of the UWB anchors. The anchor positions are estimated on the server
based on the transmitted ranges and positions received from the operators (Section 2.5).

The required infrastructure, UWB anchors with known positions, has to be built up
during the mission. It is foreseen to set up an initial UWB anchor network with known
coordinates in a safe area. We assumed that all operators start in this area and therefore can
initialise their position automatically with high accuracy before leaving this area. This core
UWB network will be extended during the mission. Operators carry UWB anchors that they
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will install in the tunnel. These anchors will be switched on only after having been fixed,
e.g., on the tunnel wall. As soon as the operator’s UWB tag provides range measurements to
the installed anchors they are sent to the server, where the anchor positions are determined.
The determined anchor positions are sent back to the MPU.

It should be emphasised that the output of tracking system is the position of the
operator in a global reference frame. This allows for an integration with available map
information in SOMT. The FTMT uses available geographic information, such as orthopho-
tos, elevation data, maps, and plans, as a basis for the rapid mapping of the underground
structure. Working directly in a global frame facilitates the data integration and pro-
vides flexibility.

IMU + UWB data

UWB distances

map polygon

Real-world state

operator 

UWB
anchor

switch on

place

distance measurement

UWB
anchor

switch on

place

distance measurement

distance measurement

IMU + UWB tag

Main Processing Unit (MPU)

initialise

UWB distances

read data INS

step detected no

yes

anchor position

receive
ephemerides

Particle filter 

feedback

send

IMU data

send

position

filtered position

Server

send
ephemerides

receive
measurements

Anchor Position
Update

save

new anchor

no

yes

create
anchor

DB

SOMT 
FTMT 

positions

Figure 3. The overall system architecture.

2.3. Fast Tunnel Modelling

The FTMT (https://www.laabmayr.at/tunnel-plus/rd/ftmt-fast-tunnel-modeling-
tool/, accessed on 31 January 2022) presented in [36] allows the creation of georeferenced
3D models of subsurface structures (tunnels, subways, etc.) based on 2D plans and available
geodata such as orthophotos and elevation models. The aim of this software is to create
intuitively understandable visualisations of subsurface structures for command and control
in complex subsurface operations. Because in-time availability of these models is essential
in emergency operations, the FTMT prioritises the speed of model creation over precision.
During this study, the FTMT was enhanced to provide the tunnel axis (centre line), as
well as a polygon representing the area in which operators can move (e.g., the street and
sideway in case of a car tunnel) for each modelled subsurface structure. Figure 4 shows an
example of a 3D tunnel model and the corresponding MP. These data are provided in the
form of GeoJSON [37] objects and can be used for particle filtering in the tracking solution.

https://www.laabmayr.at/tunnel-plus/rd/ftmt-fast-tunnel-modeling-tool/
https://www.laabmayr.at/tunnel-plus/rd/ftmt-fast-tunnel-modeling-tool/
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Figure 4. View in Fast Tunnel Modelling Tool (FTMT) from breakdown bay into a tunnel (map
polygon (MP) in red, tunnel axis in white).

2.4. Positioning Algorithm

A two-stage filter consisting of a dual foot-mounted inertial navigation system (INS)
(first stage) and a particle filter (PF) framework (second stage) was chosen as the navigation
filter (Figure 5). The foot-mounted INS was realised as a error-state (extended) Kalman
filter (ESKF) combined with a strap-down navigation algorithm. Since the performance in
an unaided INS mainly relies on the sensor quality (accelerations and gyro rates are directly
used in the strap-down mechanisation, and no prior assumptions about the dynamics of
the subject are made) [18], the introduction of constraints helps to mitigate the influence
of sensor errors on the estimated trajectory. In this study, zero-velocity updates (ZUPTs)
were applied, and the data from the two IMUs were fused. From there, stepwise position
changes enter an upper PF framework where the tunnel model in form of an MP and UWB
ranges are incorporated. Reliable filter positions are used to correct INS drift by applying
coordinate updates (CUPTs).
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Particle Filter

position changes 
standard deviation

dual foot-mounted  
INS

IMU 
(left foot)

distancesUWB

polygonMap

inertial data

IMU 
(right foot)

positionsResponder
location

Initial values

Feedback

trajectory

Figure 5. Proposed filter architecture.

2.4.1. Dual Foot-Mounted Inertial Navigation System

The body frame (b-frame) is centred in the IMU, and its axes are specified as verti-
cal (z), transversal (x), and forward (y), where x is pointing to the right and z is pointing
upwards [38,39]. The axes of the local-level frame (l-frame) are defined as east-north-up.
The global/earth frame is denoted as the e-frame.

Zero-Velocity-Aided INS

The INS is based on measurements (accelerations fb and angular rates ωb
ib) obtained

from two IMUs, each attached to one foot. These measurements are separately translated
into relative position/velocity and attitude changes by applying a conventional strap-down
integration. The used mechanisation equation is stated in Equation (1) [38–40].

 ṙe

v̇l

Ṙl
b

 =


De

l vl

Rl
bfb −

(
2Ωl

ie + Ωl
el

)
vl + ḡl

Rl
b

(
Ωb

ib −Ωb
il)

 (1)

re is the position expressed in ellipsoidal coordinates (ϕ, λ, h); vl is the velocity vector
(ve, vn, vu) expressed in the l-frame; Rl

b is the rotation matrix from the b-frame to the l-
frame. To increase the numerical stability, the rotation matrix Rl

b is parameterised using
the quaternion method [39]. De

l describes the transformation from the l-frame to the e-
frame [39]. In the velocity determination, the normal gravity vector ḡl [41], as well as
the Coriolis part

(
2Ωl

ie + Ωl
el

)
vl are considered. The matrix Ωb

ib contains the measured
angular rates. In general, Ω refers to a skew-symmetric cross-product matrix. A detailed
description can be found in one of our previous works [38]. Note that in [38], the global
position changes are expressed in Cartesian coordinates. The rectangular rule is used to
integrate Equation (1) over the time interval ∆t = 1/60 s. The quaternion vector is updated
according to the closed-form integration [39] (p. 196). An appropriate initialisation enables
a continuous computation of the absolute PVA solution.

However, since the raw IMU measurements are normally corrupted by sensor errors,
such as biases, scale factors, and noise, the PVA solution starts to drift. The drift can be
reduced by applying a so-called ZUPT. In a foot-mounted INS, stance phases are well
detectable. During a stance phase, the estimated velocity from the strap-down is compared
with a zero-velocity pseudo-observation. The resulting discrepancy is used to correct the
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error states. In this study, the state space δx is composed of the position errors δre =
[δϕ, δλ, δh]T , velocity errors δvl = [δve, δvn, δvu]T , and attitude errors δψ = [δp, δr, δy]T ,
where pitch, roll, and yaw are denoted as p, r, and y, respectively. The gyroscope bias
is not explicitly estimated in the filter, but determined during longer static periods. The
accelerometer bias is calibrated before the experiment. Thus, the first-order differential
equation of the error states can be described as [12,38,39]

δẋ = Fδx + Gw δṙe

δv̇l

δψ̇

 =

 03 F0,1 03
03 03 F1,2
03 F2,1 03

 δre

δvl

δψ

+

 03 03
Rl

b 03
03 Rl

b

w
(2)

where F is the dynamic coefficient matrix, G the system noise distribution matrix, and
w ∼ N (0, Q) the system noise, where Q is the corresponding covariance matrix. The
sub-matrices of F are composed as follows:

F0,1 = De
l , F1,2 =

 0 fu − fn
− fu 0 fe

fn − fe 0

, F2,1 =

 0 1
RM+h 0

− 1
RN+h 0 0
− tan ϕ

RN+h 0 0

. (3)

with RN known as the radius of curvature in the prime vertical and RM known as the
meridian radius of curvature [39,40]. The sub-matrix F1,2 contains the measured accel-
erations transformed to the l-frame. Additionally, the position and heading are locked
during prolonged standing. This is achieved by a slight adaption of the state-space model
according to [42]. Finally, the observation model of the zero-velocity-aided INS reads as
follows [12]:

z = Hδx + η, (4)

where the design matrix H is defined as
[

03 I3 03
]
. The measurement vector of the

system output z contains the difference between the zero-velocity pseudo-observations,
which are here assumed to be zero, and the INS output velocities. η ∼ N (0, R) is the
zero-mean observation noise with R being the corresponding covariance matrix.

Fusion of Dual Foot-Mounted INS

Several studies [12–14] showed that the introduction of a spatial constraint between
the left and right foot can reduce the systematic heading drift. The following algorithm is
based on [12] and adapted for ellipsoidal coordinates. Note that the height component is
neglected (height is provided by the tunnel model).

Considering that the two IMUs are mounted on the left and right foot, respectively,
makes it physically impossible that these two systems can be further apart than the step
length ρ. This maximal possible spatial separation can be used to constrain the INS. In
Figure 6, the concept is illustrated: If one foot is stationary and the other foot exceeds the
maximum spatial distance ρ while moving, the position of the moving foot is corrected.
Thus, the errors during movement phases are bounded. If both feet are stationary or
moving, no correction is performed.

Now, the algorithm is explained, where the INSs with the superscript i and the
superscript j are associated with the stationary foot and the moving foot, respectively.
As the computational speed is critical, the distance d at time index k between the two
geographical points is calculated based on the equirectangular approximation:

dk = Re

√√√√((
λ̂

j
k − λ̂i

k

)
cos

ϕ̂
j
k + ϕ̂i

k
2

)2

+
(

ϕ̂
j
k − ϕ̂i

k

)2
(5)
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with Re being the Earth radius of 6,371,000 m and hat (ˆ) referring to the INS output. If
dk > ρ, a CUPT is performed. The new position p̂e,j

k in the e-frame, which is utilised as
pseudo-observation in the filter, is obtained as follows:

p̂e,j
k =

1
dk

ρ

([
ϕ̂

j
k

λ̂
j
k

]
−
[

ϕ̂i
k

λ̂i
k

])
+

[
ϕ̂i

k
λ̂i

k

]
. (6)

The observation equation is analogous to Equation (4), except that the design matrix H

is defined as
[

I2 02×1 02×3 02×3
]

and z is the difference between
[

ϕ̂
j
k λ̂

j
k

]T
and

p̂e,j
k . In our study, the maximum spatial distance ρ was set to 1 m.

i

j

j

j

IMU

correction

movement

stance phase 

d 

𝜌 

Figure 6. Concept of spatially constraining a dual foot-mounted inertial navigation system (INS) in
2D using a maximal possible separation ρ. The actual computed distance is denoted as d. (Adapted
from [12]).

Attitude Alignment

The computation of the initial attitude is based on one of our previous works [38]. The
initial roll r and pitch p are determined by the triaxial accelerometer measurements. The
initial heading (yaw y) is composed of the initial magnetic heading (levelled magnetometer
data) corrected by the magnetic variation. In the field of tunnel construction, steel is
used, which represents an interference source for magnetometers. Since the initialisation
phase of the whole navigation system takes place outside the tunnel structure, the heading
computation should not be be affected by ferromagnetic distortions.

2.4.2. Zero-Velocity Detection

The detection of zero-velocity events in a foot-mounted INS is a crucial task since its
accuracy depends on the correct detection of all stance phases. However, conventional
zero-velocity detectors, which are based on fixed-threshold approaches, cannot handle
mixed motions, such as walking combined with running. The use of ML represents one
way to obtain a robust stance detector for varying motion types. In this study, a gated-
recurrent-unit (GRU)-based zero-velocity detector was developed. A GRU is an updated
form of an RNN and represents a simplified version of an LSTM [43,44].

Network Architecture

The GRU cell was firstly introduced by Cho et al. [45]. Equation (7) summarises the
computation steps of a GRU cell j at time k [43]. Based on the current input vector xk, the
GRU cell controls the information flow based on two gates: a reset gate rj

k and an update

gate zj
k. The activation hj

k consists of a linear combination of the previous activation hj
k−1

and the candidate activation h̃j
k, where zj

k decides the level of update. A set of reset gates rk
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controls which information of the previous state is shown to h̃j
k. The GRU cell is presented

in Figure 7 (at the right).

rj
k = σ(Wrxk + Urhk−1)

j

zj
k = σ(Wzxk + Uzhk−1)

j

hj
k =

(
1− zj

k

)
hj

k−1 + zj
k h̃j

k

h̃j
k = tanh(Wxk + U(rk � hk−1))

j,

(7)

with σ being a logistic sigmoid function and W, Wz, Wr, U, Uz, and Ur being weight
matrices.

time 

window #1
window #2

window #3

window #k
: stance phase

: stance phase

: movement phase

: stance phase

T
 [−

]

Tk−M+1

Tk−M+2

Tk−1

Tk

Tk out

...

𝑟 

𝑧 

...

ℎ ℎ 

Figure 7. On the left, the concept of a recurrent-neural-network (RNN)-based zero-velocity detector
is shown. M refers to the length of the sequence. On the right, the structure of a gated recurrent unit
(GRU) cell (adapted from [43]) is illustrated, showing the context between the reset gate r, the update
gate z, the activation h, and the candidate activation h̃.

The NN was implemented as a stateless RNN-based on TensorFlow 2.6.0 [46]. It
consists of 2 GRU layers of 60 units per layer (corresponding to 1 s of inertial data).
Additionally, a dropout rate of 20% was applied on both layers. Note that dropout is only
applicable during training and neglected in the evaluation process [44]. The output layer is
a time-distributed dense layer using the sigmoid function as the activation function. Thus,
the output corresponds to a probability p.

In this study, the input vector xk consists of the sequence of test statistics originated
from the stance hypothesis optimal estimation detector [10,38] (Equation (8)). Tk represents
the weighted average of the Euclidean norm of the accelerations fb

n corrected by the gravity
parameter γ(ϕ, h) [41] and the Euclidean norm of the angular rates ωb

ib,n within a moving
window of size N. The corresponding weights are denoted as σfZUPT and σωZUPT . The bar
(¯) indicates that the mean values of each axis over N samples are taken. In this study, the
window size to compute Tk was three. Note that Tk is invariant to the IMU’s orientation.
The inputs are scaled based on min–max scaling. A general illustration of a the zero-velocity
detector is shown in Figure 7 (at left).

Tk =
1
N

k+N−1

∑
n=k

 1
σ2

fZUPT

∥∥∥∥∥fb
n − γ(ϕ, h)

f̄b

‖f̄b‖

∥∥∥∥∥
2

+
1

σ2
ωZUPT

∥∥∥ωb
ib,n

∥∥∥2
 (8)

Data Splitting

Data were collected according to Section 2.7.1 containing five different motion types,
namely slow/normal/fast walking, jogging, and running. The first 70% of each track were
taken for the training set, the following 15% for the validation set, and the last 15% for the
test set. Since fewer sequences referring to faster movements are present than sequences
containing slower ones, data augmentation in the form of window cropping [47] was
performed. Noise injection [47] was also applied to simulate different drift behaviours
of the sensors. In total, around 1 million sequences are available for training, where
approximately 23% refer to a stance phase. Applying the rule of thumb that the size of the
training set should be at least ten-times higher than the number of trainable parameters
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in the model [48], the total amount of data collected for training was considered sufficient
(the chosen model contains 43981 trainable parameters).

Training

Thus, each training sample xk ∈ R1×M = [Tk−M+1, . . . , Tk] (M = 60) is categorised
by a single label yk ∈ {0, 1}, where 1 corresponds to a zero-velocity event. The labels are
assigned manually and refer to the last value of each sequence (Figure 7). The training is
based on the Adam optimiser with a learning rate of 0.003. The chosen batch size was 64.
Additionally, class weights were taken into account [46]. As it is a binary classification
task, binary cross-entropy was used as the loss function. Early Stopping was introduced to
avoid overfitting. If the validation loss after 5 epochs showed no improvement, then the
training was terminated. The received performance is summarised in the Results Section
(Section 3.1).

Adaptions

False-positive errors are more critical than false-negative errors in an INS [49]. Hence,
only predicted zero-velocity events with p ≥ 85% were assumed as actual zero-velocity
events [49]. This adaption reduces the error rate in transition phases between different
motions. Since predictions on large numbers of individual records are required [50], as well
as on a computing unit with limited memory, the model was converted into a TensorFlow
Lite [46] model.

2.4.3. Particle Filtering

The integration of the measurements is based on previous investigations in [51]. A PF
was chosen to combine the INS position changes with the UWB distances and the 3D tunnel
model. The PF is performed sequentially whenever a step is detected. An interpolation
between the first UWB measurements after the step and the last one before is used for
updating the particles. The MP derived from the tunnel model and anchor positions is
received from the external server. The state vector consists of three-dimensional coordinates:
x̂k = [ϕk, λk, hk]

T .
In Figure 8, the PF algorithm is illustrated. In the beginning, a set of Npar particles xi

k
with uniform weight

wi
0 =

1
Npar

(9)

is generated. The initial position is obtained via the initial UWB core network (Section 2.2).
Particles are spread around this position based on a Gaussian distribution with a fixed
standard deviation. The number of particles Npar affects the stability of the filter, as well as
the runtime [52]. A trade-off between these two factors has to be found. To obtain real-time
capability and an acceptable precision, the number was set to 1000 particles.

Next, the particles are propagated according to the INS position changes [dϕ, dλ, dh]
and their standard deviations [σϕ, σλ, σh]. Within this step, the particles are transferred
from epoch k− 1 to the current epoch k. Using a Gaussian distribution, a random variation
of the position change is created for each particle and added to the last position. ϕ

λ
h

i

k

=

 ϕ
λ
h

i

k−1

+

 N (dϕ, σϕ · c)
N (dλ, σλ · c)
N (dh, σh · c)

i

k

(10)

An additional factor c is defined for fine-tuning the filter since the estimated standard
deviations might not match the UWB accuracy.

In the particle update, weights for each particle are generated based on likelihood
functions. Since the UWB likelihood function is based on metric test measurements,
the particle and anchor positions are transformed to Earth-centred, Earth-fixed (ECEF)
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coordinates [x1, x2, x3]
T . The corresponding formulas can be found in [40]. The true ranges

of each particle to the anchors are calculated using:

d(xi) =

√
(xi

1 − Aj
1)

2 + (xi
2 − Aj

2)
2 + (xi

3 − Aj
3)

2. (11)

d describes the true distance of particle xi to anchor Aj.

State evaluation

Particle propagation

Update weights

calculate weight based on
distances

exclude particle with low
weight

weight particles based on
map information 

anchor  
positions

UWB  
distances

map polygon

position  
changes calculate true distance

likelihood function

resampling

true
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no solution
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w_MAP = 0

initialisation
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Figure 8. Flowchart of the particle filter architecture.

The UWB weight calculation consists of three steps: First, an outlier elimination is
performed on the individual measured ranges. Second, the particle weights are computed
using the likelihood function p(z|x), given the remaining range measurements z ∈ Rm

after removing the outliers (Equation (12)). Third, UWB weights below a threshold and
weights based on less than two measurements are set to zero.

A GMM consisting of two components is chosen to represent the likelihood given the
UWB ranges:

p(z|x) =
2

∑
c=1

βcN (z− d(x), µc, Σc). (12)

N is the probability density function of a multivariate normal distribution with mean
µc ∈ Rm and variance–covariance matrix Σc = diag(σ2

c ) ∈ Rm×m. The UWB weights wUWB
for each particle can now be computed as follows:

wi
UWB = p(z|xi). (13)

The parameters of the GMM were chosen to obtain a slightly right-skewed shape. This
reflects the fact that it is more probable that the distance measurements are too long rather
than too short. The experiments were carried out using the following parameter values:
β1 = 0.8, µ1 = 0, σ2

1 = 1.5 cm and β2 = 0.2, µ2 = u · 20 cm, σ2
2 = 6 cm. I ∈ Rm×m is a unit

matrix. 0 ∈ Rm and u ∈ Rm are vectors of zeros and ones, respectively.
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In the second part, weights were calculated based on the tunnel model. For each
subsurface model, an MP describing the edges of the tunnel in the form of a MultiPolygon
GeoJSON object is provided, using ellipsoidal coordinates (WGS84) including height
information. Additionally, the centre line of the tunnel is provided as a LineString GeoJSON
object. The centre line always lies in the area of the polygon. For each particle, it is checked
if it lies within the polygon that describes the tunnel edges. Accordingly, a binary weight
wmap is assigned excluding all particles outside the tunnel. Further, a Gaussian probability
function is used to calculate the likelihood of the height component wH . As a mean, the
height of the closest centre line of the tunnel plus the height of the subject is used.

Each weight is normalised and then combined to a final particle weight by multiply-
ing them:

wi = 〈wi
UWB, wi

H , wi
map〉. (14)

These weights are passed on to the state evaluation segment (compare to Figure 8).
Out of all weighted particles, a state for the current epoch is estimated. Furthermore,
possible failure scenarios are handled. Therefore, three cases are differentiated:

• Particles with a nonzero weight exist;
• All particles have a zero UWB weight, but lie inside the tunnel polygon;
• All particles lie outside of the tunnel structure—defined by the inner dimension.

In the first case, the weighted mean

xk =
∑N

i=1 xi
k · w

i
k

∑N
i=1 wi

k

(15)

is estimated. In both lower cases, the weighted mean cannot be calculated, because all
weights are zero. If the particles are propagated inside the MP, but have no UWB weight,
the mean of the propagated particles without weights is used. If the particles lie outside of
the tunnel, no solution for the current epoch exists. In the last two cases, a re-initialisation
is performed spreading particles around the last known position with a three-dimensional
Gaussian density. The radius of the new initialisation is defined by the standard deviation
σ = 0.6 m.

To reduce particle degeneracy, resampling is performed, whenever the number of
effective particles

Ne f f =
1

∑N
i=1(w

i
k)

2
(16)

falls below 2
3 . Systematic resampling [53] is performed to select a new set of particles. It

uses one random value ũ ∼ U
(

0, 1
N

]
from a uniform distribution U to pick particles from

the cumulative sum of all N importance weights:

wsum =
N

∑
i=1

wi. (17)

To generate N sorted values separated equally, the following formula is applied:

un =
n− 1

N
+ ũ. (18)

The particle that corresponds to this value in the cumulative sum is reproduced. The
particles are then passed on to the next epoch.

2.4.4. Feedback

The particle filter relies on either accurate UWB measurements or correct IMU mea-
surements. If one suffers from outage, systematic errors, or outliers, the other one can
compensate for the error. However, the longitudinal characteristic of tunnels, as well as
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the fact that the propagation of the particles relies on position changes of the IMU can lead
to difficulties. Small deviations in the heading of the INS can lead to false propagations
of the particles. In combination with erroneous UWB ranges, the filtered trajectory might
deviate from its nominal. This especially occurs if the drift and range bias point in the
same direction or no UWB measurements are available at all. In the following, a feedback
loop is presented that reduces the heading drift of the INS and improves the accuracy and
robustness of the filter solution.

The feedback uses the filtered position solution as CUPT inside an ESKF to correct
the raw IMU solution. The observation z is the difference between the raw IMU position
and the filtered position. Note that the height component is currently not supported by
the feedback, since it is intended that the INS’s height component will be utilised for floor
detection. Similar to the fusion of the dual foot-mounted INS (Section 2.4.1), the observation
model reads

z = Hδx + η (19)

with the design matrix
H =

[
I2 02×1 02×3 02×3

]
. (20)

The measurement noise covariance matrix R is derived from the average UWB weights
w̄UWB at each epoch. With the help of a bias bupt and scale factor supt, a weight

w0 =

(
1

w̄UWB
+ bupt

)
· supt (21)

is defined. This value can be interpreted as the standard deviation in metres.
The working principle of the feedback is shown in Figure 9. For demonstration

purposes, two steps are visualised. It was assumed that the IMU solution drifts to the
left, while the UWB solution is a straight path. In the first panel 1©, a step is detected
and calculated. This position change is used in 2a© to propagate the particles. Due to
randomness, they become scattered in the process. Since particles in the probable direction
of motion are assigned a larger weight, the filtered position in 2b© lies right of the IMU
solution. The filtered PF solution is sent back to the INS and used to calculate the error
of the raw IMU solution in 3©. Finally, the IMU is corrected within the ESKF in 4©. The
relationship between the coordinate difference and the attitude is defined in the dynamic
model of the Kalman filter. The corrected state is used in the next epoch shown in the
second column. While the uncorrected solution would drift even further to the left, the
corrected propagation stays closer on a straight line. The PF once again favours particles at
the bottom. The filtered position is used to further correct the IMU solution.

The average particle weight is used as the quality measurement to apply feedback only
when accurate UWB measurements are assumed. Thereby, the unintentional correction of
the IMU with faulty UWB ranges should be minimised. This factor is kept intentionally
high, so that the white noise is greater than the correlated noise between the IMU and PF.
Only then, the convergence of the Kalman filter can be retained [54]. Of course, feedback is
only possible when UWB measurements are available.

2.5. Dynamic Setup of Anchors

In our use cases, we cannot rely on an existing calibrated UWB anchor infrastructure.
Therefore, we developed a calibration method for anchors that have been installed during
the mission. Given the range measurements ro,j

k between operator o and anchor j, as
well as the estimated operator position x̂o

k, both given for epoch k, we wished to estimate
the static anchor position Aj. We chose a centralised approach, which can exploit range
measurements taken by all moving operators. The method should allow integrating the
MP to constrain the space of possible anchor locations.
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Figure 9. Schematic of the feedback algorithm.

2.5.1. The Process of Extending the UWB Anchor Infrastructure

Starting from a small properly set up and initialised core network, the network is
extended. The core network is installed outside the danger zones, where the coordinates
can be measured by accurate means (e.g., using GNSS, if it is available). We assumed that
the mission always starts in this core network, i.e., every operator has properly initialised
absolute positions before entering the area outside this network. At this point, the deploy-
ment of the anchors and their subsequent mapping starts. Every operator contributes to
this mapping process by sending the observed distances to the anchors and their current
position estimate to a central server. The server estimates the anchor positions based on
these observations and sends the current anchor positions to the operators (Figure 3). The
coordinate of a certain anchor is broadcast only after obtaining a sufficient accurate estimate
at the server site. Thus, the operator will only be able to process the measurements from that
anchor in his local particle filter (PF) after having received its coordinates. This approach
differs from the full SLAM, treated for range measurements in [24–26], because we did not
use the information about the estimated anchor positions from the very beginning. We
waited until a certain accuracy was given and the position could be fixed, i.e., we did not
perform the mapping of the anchors and their calibration at the same time.

Several range measurements from different directions are required to generate the
geometry that allows for an accurate multilateration in order to unambiguously estimate
the anchor position. These range measurements do not have to be made at the same epoch
because the anchor is static. Thus, the anchor coordinates can be estimated using a set of
range observations from one or several moving operators. As soon as the measurement
geometry is generated by the operator movement, the estimation of an unambiguous
anchor position is possible.

2.5.2. PF-Based Anchor Position Estimation

The anchor position estimation is based on our particle filter framework already
described above. This approach allows for dealing with ambiguous situations during the
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estimation process, for integrating the MP and reusing the range measurement model based
on the Gaussian mixture model (GMM). However, two modifications are required to solve
the problem at hand.

The first PF modification concerns the incorporation of the uncertainty of the operator
position estimate, given by its covariance matrix Σ̂o

k, in the likelihood function (Equa-
tion (12)). A correct handling of the uncertainty mitigates the propagation of errors from x̂o

k
into Aj. This is critical because errors will accumulate in the operator’s position estimate in
the absence of range measurements. The incorporation of the uncertainty is achieved by
projecting the variance of x̂o

k on the line of sight and adding this variance to the variance of
the first component of the GMM (Equation (12)):

σ
o,j
1

2
= σ2

1 + eo,jT
Σ̂o

k eo,j, (22)

where eo,j is the line-of-sight unit vector: eo,j =
(
x̂o

k −Aj)/∣∣x̂o
k −Aj

∣∣.
The second modification of our PF is required due to the fact that the anchor positions

are static parameters instead of time-variable states. Due to the static nature of the param-
eters, no particle propagation step is carried out. It is well known that estimating static
parameters using a standard PF leads to particle impoverishment. Resampling will reduce
the number of unique particle values. Kernel smoothing methods have been developed
to counter this problem. Our approach is based on the Liu and West filter [55]. It can be
realised by adding a kernel smoothing step after resampling. We omitted a theoretical
treatment of the method (the reader is referred to the original publication) and focused on
the practical implementation instead. First, we estimated the mean x̂k and covariance Σ̂k of
the particles. Using these values, we computed

mj
k = a xj

k + (1− a) x̂k, j = 1, 2, 3, ...N (23)

where a =
√

1− h2 and h ∈ [0, 1] is the smoothing parameter. Using this, we can sample
from the smoothed posterior, drawing xj

k+1 from N (mj, h2Σ̂). The measurement update
with the new measurements at epoch k + 1 is applied to this set of particles.

In our system, we assumed that the new anchors are fixed to the tunnel walls. There-
fore, we can add an additional constraint to update the particle weights, which pulls the
particles towards the tunnel walls. Such a constraint can be realised using an additional
likelihood function:

p(z|x) = χ2
2(d

2/s), (24)

where d is the minimum distance to a tunnel wall, χ2
2 is the density of a chi-squared

distribution with two degrees of freedom, and s is a scaling parameter. d can be easily
computed from the MP.

For each new anchor, an own PF is initialised. Each of these filters is used to estimate
the coordinates of a single anchor using the data from all operators. As the prior, we used a
uniform distribution over the space of allowed positions as defined by the MP, i.e., the only
assumption made about the anchor location is that it is located in the tunnel.

2.6. Subsurface Operation Mission Tool

The Subsurface Operation Mission Tool (SOMT) (https://www.laabmayr.at/tunnel-
plus/rd/somt-subsurface-operation-mission-tool/, accessed on 31 January 2022) is a collab-
orative virtual-reality (VR)-based C2IS, especially developed to support decision-making
in complex subsurface operations. It enables decision-makers to have immersive three-
dimensional insight into the area of operation.

“Mission planning and support can [...] be done digitally, in a 3D environment,
significantly improving the understanding of the area of operation as SOMT
enables integrated mission planning, integrating all actors and factors relevant
for subterranean operations.” [56]

https://www.laabmayr.at/tunnel-plus/rd/somt-subsurface-operation-mission-tool/
https://www.laabmayr.at/tunnel-plus/rd/somt-subsurface-operation-mission-tool/
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In this study, SOMT was used to visualise the positions of soldiers inside the subsur-
face structures (modelled with FTMT). Each soldier equipped with a tracking system is
associated with a corresponding tactical symbol, selected from [57]. Figure 10 depicts the
collaboration of two VR users, planning a mission at the research facility ZaB, using tactical
symbols and annotations.

Figure 10. Multiple VR users looking at tactical symbols in the Subsurface Operation Mission Tool
(SOMT).

2.7. Data Collection

In the course of this study, training data for the zero-velocity detector were collected,
as well as test measurements at Zentrum am Berg (ZaB) were performed. ZaB at the
Styrian Erzberg (Austria) provides access to a unique research infrastructure specialised for
underground operations.

2.7.1. Training Data for the Zero-Velocity Detector

Inertial data were collected at the athletics track at Universitätssportzentrum Rosen-
hain (Graz/Austria). Five different motions (slow/normal/fast walking, jogging, and
running) were performed on a straight track of a length of 80 m by three different per-
sons (56 different tracks in total). Additionally, 5 whole run laps of 400 m were recorded,
where each person randomly changed to faster or slower gaits. Forward/backward/lateral
movements were also free to choose. Table 2 gives an overview of the collected data set. In
total, 4 different XSens Dots were in use. The recorded data were stored within the sensor
internal storage at 60 Hz and later exported via the Xsens DOT Data Exporter [35]. Note
that the pedestrian subject, which records the data in the field tests (Section 2.7.2), was not
included in the data collection process for the zero-velocity detector.

Table 2. Overview of collected data.

Slow
Walking

Normal
Walking

Fast
Walking Jogging Running Mixed

number of repetitions (-) 10 10 8 14 14 5
length per track (m) 80 80 80 80 80 400
average number of steps per track (-) 139± 4 116± 8 100± 4 91± 4 64± 4 -
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2.7.2. Field Tests

ZaB provides underground service facilities, such as two parallel road tunnels (ap-
proximately 400 m per tunnel) and two parallel railway tunnels. In July 2021, the test
measurements took place in the approximately 160 m-long northern road tunnel. UWB
anchors were placed on existing tunnel survey prisms (bireflex targets) so that the ab-
solute position of a total of eight anchors could be retrieved. A pedestrian test subject
was equipped with two foot-mounted IMUs and one UWB tag on a helmet, as shown
in Figure 11. Data collection relied on a notebook for UWB and a smartphone for the
IMUs. The IMU data were transmitted via Bluetooth at 60 Hz, whereas the UWB data were
obtained via a serial port connection at 10 Hz. An approximate synchronisation between
the IMU and UWB was established in post-processing. The IMUs were time-synchronised
with each other via the XSens Dot smartphone app [35].

Five different tracks/tests were walked to obtain detailed knowledge about the be-
haviour of the sensor system in the test area. For those tracks, a provisional reference was
created in post-processing. Since the tracks were limited to the walkways on each side and
to the centre line of the street tunnel, they could be reconstructed in a three-dimensional
laser scan model of the tunnel. The hand-drawn lines were matched with the movement
measured by the IMU to generate a reference trajectory. However, the reference was only
judged by eye and is therefore prone to errors. The tunnel model was assumed to be already
available. Thus, the MP describing the edges of the tunnel (MultiPolygon GeoJSON object)
was generated in advance. The initial heading was set manually, since the pre-initialisation
of the system outside the tunnel was not possible.

Figure 11. Test subject with sensors mounted on helmet and shoes.

3. Results

Section 3.1 presents the performance metrics of the proposed GRU-based zero-velocity
detection model. Section 3.2 deals with the pure positioning solutions of the field tests,
which took place in a street tunnel at ZaB in July 2021. Here, prior map information, as well
as a (partially) pre-installed UWB-infrastructure were presumed. In the last Section 3.3, the
first simulation results of the anchor position estimation are presented.

3.1. Zero-Velocity Detector

In Table 3, the accuracy, precision, and recall scores of the training, validation, and test
set of the GRU-based zero-velocity classifier are listed. The model reached an accuracy of
over 93% for all sets. However, the accuracy as a performance metric should be interpreted
with care, since we were dealing with an imbalanced data set [44]. The precision and
recall scores are also reasonably high. Here, a trade-off between the accuracy of positive
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predictions (precision) and the ability to identify the correct class (recall) was made. Since
the IMU only operates at 60 Hz in real-time, zero-velocity events during faster movements
were hardly detectable. Therefore, the recall score was prioritised. As a result, the INS
trajectories during slow/normal walking can be too short.

Table 3. Evaluation scores of training, validation, and test set of GRU-based zero-velocity detector.

Set Accuracy (%) Precision (%) Recall (%)

Training set 95.5 87.5 98.4
Validation set 95.4 81.0 99.2

Test set 93.2 85.0 90.8

3.2. Positioning Solution

The focus of the evaluation of the positioning filter lies on Test 5 (Figure 12). Test 5
consisted of an already existing, small, properly setup and initialised UWB network (43B9,
242F, 000B, 02BD). The network can reliably cover the depicted part of the tunnel (≈80 m).
The width of the tunnel is around 10 m. Due to the decreasing quality of the UWB ranges
and non-line-of-sight conditions, no reliable UWB measurements were available in the
other half of the tunnel. In the test setting, an operator walked along the northern tunnel
wall, walked back along the centre line, and repeated this. Test 5 tried to imitate the actual
application case where an operator goes deeper into the tunnel to, e.g., deploy new anchors,
while not being continuously supported by a UWB network.

The start and end of the clockwise track were at anchor 43B9. In the top panel, the
joint position changes from the INS are shown. The relative changes were used for particle
propagation. It is visible that the solution was close to the reference across the tunnel
axis, but too short. The IMU further showed only a minimal drift, which was affected by
the correction of the feedback loop. In the middle panel, a UWB-only baseline solution
is presented. These positions were generated with a least-squares adjustment for each
epoch based on the UWB range measurements. Without additional filtering, a very noisy
trajectory was obtained. Since several epochs contained observations strongly affected by
multipath, some of the estimated positions lied outside the tunnel. Accurate results were
obtained in the western part around the first four anchors. For this test, the four eastern
anchors were not switched on. Therefore, position solutions faded out since not enough
range measurements were available. However, it has to be noted that position solutions
differed from the influence of separate range measurements on the particles. Within the PF,
single ranges were eliminated, and updates were possible even with less than three ranges.
With the implemented setup, ranges up to 140 m were received. In conclusion, the PF might
show different behaviours even when there are no raw UWB positions. Still, a UWB outage
for approximately 75 s was present. In two areas, noisy and inaccurate solutions can be
found: on the northern tunnel wall in the vicinity of anchor 000B and between anchors
02BD and 4A5C. This was due to suboptimal anchor placement and obstacles. In particular,
metallic signs and parked vehicles (visible in Figure 11) lead to multipath effects in these
areas. The lower panel shows the integrated solution from the PF following the reference
until halfway of the track and afterwards drifting off until the trajectory finds itself back
to the reference at anchor 4A5C. Compared with the UWB results, it can be assumed that
accurate ranges in the front area counteracted the slight IMU drift. Outliers in this area
were eliminated, and the IMU smoothed the trajectory. In the worst-case scenario, a small
number of noisy ranges was followed by a UWB outage. As seen in the illustration, the
trajectory was dragged away, but could not be corrected afterwards. The following section
relies exclusively on the INS without feedback. In case range measurements are available
again, the filter pushes the INS solution back to the reference.
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Figure 12. Filter solutions of Test 5. The top panel, middle panel, and bottom panel show the
accumulated position changes from the INS, the derived position from the ultra-wideband (UWB),
data and the filter solution, respectively. The UWB anchors are marked as triangles (white filling: on,
black filling: off).

The effects of different INS processing steps are explained based on Figure 13, where
the first round of Test 5 can be seen. The top panels show the general position solution of
the zero-velocity-aided INS, once without (left) and another time with (right) applying the
spatial constraint between the two INS. Both trajectories were too short (see Section 3.1).
The heading drift of the two IMUs was similar and symmetrical for the first 190 m. Here,
the fusion of the two INS resulted in an improvement in accuracy and robustness. However,
then, the drift of the right IMU changed significantly, resulting in a dissimilar position
error. Now, the IMU with the lower drift values was dragged towards the other IMU.
Consequently, the position correction was biased [15]. In an attempt to limit this problem,
the PF solution was delivered back to the INS in the form of a CUPT (feedback) to put the
INS solution back on track. The bottom left panel of Figure 13 shows the accumulated,
relative position changes, which are sent from the INS to the PF. Note that the solution was
affected by the fusion of the dual foot-mounted INS and the feedback itself. Due to the
introduced constraint, both INS solutions were similar. Thus, the position changes from the
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left leg were used as the input for the PF. The orange dots show the number of used UWB
ranges (largest dots =̂ four ranges, smallest dots =̂ one range). The filled dots highlight
the positions where a feedback was applied. The INS operated for approximately 110 s
on its own with no information from the upper PF. Although UWB ranges can exist for a
longer time, only reliable filter positions were fed back to the INS. Unfavourable geometry
and multi-path effects played a role. Note that single distances still affected the filter
solution (Figure 12). The last panel represents the corrected INS position by the feedback.
This is well illustrated by the jumps in the area where beneficial UWB measurements
were again available. Comparing the bottom left panel with the bottom right panel, it is
noticeable that the INS trajectories in the back area of the tunnel significantly deviated from
each other. Due to the last feedback (blue dot after 000B) that was applied before loosing
reliable range information, the INS shifted southwards. The relative information was still
correct, as seen in the bottom left panel. Nevertheless, the stochastic model will need to be
refined. In summary, through this example—which represents a real-life application of the
mission—the INS can bridge the positioning filter over a short period, e.g., to deploy new
anchors.

Figure 13. Different filter effects on the INS using the first round of Test 5 as an example. The top
left and top right panels illustrate the individual and the fused solution of the foot-mounted zero-
velocity-aided INS, respectively. The bottom left panel represents the accumulated position changes
from the INS, which act as the input to the particle filter (PF). The bottom right panel shows the
corrected INS positions due to the feedback from the PF. The UWB anchors are marked as triangles
(white filling: on, black filling: off).

Two tests with the full anchor configuration are presented in Figure 14. Test 3 followed
the same reference as Test 5. In the middle section, the UWB outliers due to multipath can
be seen clearly. However, the increased number of range measurements and improved
geometry provided an overall accurate filtered trajectory. Test 4 shows a similar result
when walking to the centre line and then running along with it. Both tests proved that,
with this density of anchors, an arbitrary trajectory can be performed over a long period
without a loss of accuracy and that the INS can handle different types of motions.
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Figure 14. Filter solutions of Tests 3 (top) and 4 (bottom). In Test 3, the operator walks 3 times
along the wall and centre line, whereas Test 4 contains running along the centre line. UWB data are
additionally plotted to highlight interference areas due to parked vehicles. The UWB anchors are
marked as triangles.

Table 4 summarises the details of all tests. It covers, inter alia, the average root-mean-
squared error (ARMSE) of the horizontal and vertical position error. The positioning
error could be kept under 1 m for all tests where a fully deployed infrastructure was
available, regardless of whether more or fewer inferences were present. However, Test 4
(running) showed a marginally reduced accuracy. The combination of higher variation
in the movement with the limited data rate of the IMU (60 Hz) resulted in a slightly less
accurate INS processing. Test 5, as introduced in Figure 12, had the highest horizontal
position error due to the limited infrastructure. Almost half of the position solutions relied
only on the INS and the tunnel model. The vertical error was similar for all tests since it was
constrained by the same height model. While the INS solution drifted heavily, the UWB
had large outliers due to the geometry of the anchors. As a consequence, the constraint
was set strictly, so that the filtered solution resembled the height model closely, with some
remaining UWB noise. Note that the reference trajectories were only provisional and of
different qualities.



Sensors 2022, 22, 2982 25 of 31

Table 4. Estimated positioning error expressed in terms of average root-mean-squared error (ARMSE)
determined by 10 repetitions. For Tests 1–4, a full anchor configuration is available.

Test Description Distance (m] Horizontal
Position Error (m]

Vertical Position
Error (m]

Test 1 1 5× walking (43B9 − 02BD − 242F − 43B9) ≈536 0.72± 0.02 0.53± 0.03
Test 2 1 3×walking (43B9− 000B− 02BD− 242F− 43B9) ≈342 0.82± 0.02 0.61± 0.01
Test 3 2 3× walking along wall and centre line ≈915 0.75± 0.11 0.57± 0.05
Test 4 2 1× running along centre line with 180° turn ≈305 0.94± 0.06 0.89± 0.16
Test 5 2,3 2× walking along wall and centre line ≈610 2.11± 0.14 0.66± 0.20

1 Hardly any interference. 2 Local interference due to parked vehicles. 3 Anchors 4711, 4A5C, 02BF, and 01ED
removed.

3.3. Dynamic Setup of Anchors: Simulation Results

The data from Test 5 were used to simulate the estimation of anchor positions. As
already described, this test consisted of two laps and the operator leaving the area with
UWB coverage before coming back each lap. This was exactly the situation at the beginning
of a mission, when there was only a small, but initialised core network and new anchors
were installed in the tunnel to extend the network.

The positions of the anchors 4711, 02BF, 4A5C, and 01ED were determined in our
experiments based on simulated range measurements. These simulated measurements
were computed from the reference trajectory and the anchor positions. To reflect the range
limit of UWB, only ranges shorter than 45 m were simulated. Noise according to the
Gaussian mixture model (GMM) (see Equation (12)) was added. The particle filter with
kernel smoothing described in Section 2.5.2 was used. The smoothing parameter h of the
filter was set to 0.2. For each anchor, a particle filter was initialised with 500 particles
uniformly distributed in the MP. These particles were sequentially updated using the range
observations and the MP. An additional constraint pulling the particles against the walls
can be optionally applied as well. In this experiment, we simulated one range measurement
for each anchor per step, which is the current output rate of the operator’s filter.

Two different cases were considered: in Case 1, the reference operator position was
used to evaluate the likelihood function (Equation (12)); in Case 2, the estimates by the
operator’s PF as discussed in the previous section were used. The comparison of these two
cases allowed us to assess the influence of the errors in the estimated operator trajectory on
the anchor position estimation.

The results are shown in Tables 5 and 6 and Figures 15 and 16. The errors for the
estimation based on the reference trajectory (Case 1) are generally smaller than the es-
timation in the realistic case based on the estimated trajectory (Case 2). Case 2 showed
that the errors in the operator positions propagated into the anchor positions if they were
not mitigated by the constraints. In the results for the anchors installed on the northern
wall (4711 and 02BF), we observed the same error patterns as in the estimated operator
trajectory. All positions were shifted to the south (see Figure 12). For the anchors on the
southern wall (01ED and 4A5C), this effect was mitigated by the MP update. The particles
were pushed against the southern wall due to the errors in the trajectory, but could not
penetrate it. The shift in the east direction could be observed in all four estimates. This
was a direct result of error propagation from the operator trajectory. However, even when
using the true operator positions, the errors were still on the order of decimetres. This
showed that the observation geometry generated by the trajectory of Test 5 was not ideal to
obtain an accurate estimation, especially along the transversal tunnel axis (approximately
the south–north direction). As can be seen in Tables 5 and 6, the estimates converged to
their final values after 50 to 100 epochs.

The accuracy could be improved by adding an additional constraint, which pulled
the particles towards the tunnel walls (see Equation (24)). The errors of Case 1 were now
very small (1–2 dm), and the errors of Case 2 were significantly lower. The accuracy in the
transversal direction could be greatly improved by applying the additional constraint. The
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problems from the longitudinal errors in the estimated operator trajectory (Case 2) could
not be mitigated, however.

Table 5. Case 1: error of the anchor position estimation based on Test 5.

Case 1 Case 1 with Wall Constraint
Anchor ∆N (m) ∆E (m) ∆hor (m) ∆N (m) ∆E (m) ∆hor (m)

4711 −1.36 −0.48 1.44 0.08 0.17 0.19
4A5C 0.78 0.27 0.83 −0.11 0.10 0.15
02BF −1.48 −0.28 1.50 0.08 0.09 0.12
01ED 0.72 0.31 0.79 −0.07 −0.07 0.10

Table 6. Case 2: error of the anchor position estimation based on Test 5.

Case 2 Case 2 with Wall Constraint
Anchor ∆N (m) ∆E (m) ∆hor (m) ∆N (m) ∆E (m) ∆hor (m)

4711 −1.05 −1.66 1.96 0.44 −1.01 1.10
4A5C 0.83 −1.40 1.63 0.39 −1.36 1.41
02BF −1.65 −2.59 3.07 0.63 −2.27 2.36
01ED 0.78 −1.34 1.55 0.24 −1.35 1.37
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Figure 15. Time series of errors in the anchor position estimates for case 1 for each anchor, with and
without the wall constraint. In each epoch one range measurement was processed. The number of
epochs differs due to number of available ranges (simulated ranges <45 m).
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Figure 15. Time series of errors in the anchor position estimates for Case 1 for each anchor, with and
without the wall constraint. In each epoch, one range measurement was processed. The number of
epochs differs due to the number of available ranges (simulated ranges <45 m).
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Figure 16. Time series of errors in the anchor position estimates for case 2, with and without the wall
constraint. In each epoch one range measurement was processed. The number of epochs differs due
to number of available ranges (simulated ranges <45 m).
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Figure 16. Time series of errors in the anchor position estimates for Case 2, with and without the wall
constraint. In each epoch, one range measurement was processed. The number of epochs differs due
to the number of available ranges (simulated ranges <45 m).

4. Discussion

This paper proposed a blue force tracking system in Global Navigation Satellite System
(GNSS)-denied environments, with a focus on tunnel structures. The challenge was to
develop a reliable and robust navigation system for military/emergency operators that is
ideally suited to cope with any environmental challenges in case of attacks. The tracking
system relies on the fusion of a dual foot-mounted INS with UWB ranges and data from
a 3D tunnel model. Existing infrastructure and prior map information are usually not
available in such a use case. Even if the infrastructure were available, it could be damaged.
Therefore, a Fast Tunnel Modelling Tool was developed for rapid map polygon (MP)
generation, as well as a method for the calibration of UWB anchors during a mission.

The proposed filter consists of two stages: a zero-velocity-aided INS, which fuses
information from two foot-mounted IMUs (first stage), and a PF (second stage). The PF
combines relative position changes from the INS, UWB ranges, and MPs to a 3D position
solution. In contrast to conventional pedestrian dead reckoning algorithms, position
changes instead of heading information and step length are used as the input to the upper
Bayesian filtering framework. Additionally, a new feedback loop approach was proposed
that limits the heading drift of the INS. The whole tracking system operates in the global
frame to provide interoperability to C2ISs such as SOMT.

A novel zero-velocity detector—designed for a foot-mounted INS—was introduced
that copes with different motion types, such as walking and running. The zero-velocity
detector is based on a GRU network that represents an updated form of an RNN network.
One major advantage of our GRU-based zero-velocity detector is the invariance to the
IMU’s orientation. Due to the limitations of the Bluetooth’s channel bandwidth (maximal
60 Hz in real-time), fast motions are less accurately sensed by the IMU. Hence, the model
was optimised to recognise zero-velocity events in all motion types prioritising running,
but resulting in too short trajectories when performing slow/normal gaits. The usage of
two IMUs is beneficial, on the condition that the symmetrical position error remains similar
over the operating time [15].

Field tests were conducted in an approximately 160 m-long street tunnel where metal-
lic signs and parked vehicles (buses) acted as sources of interference. To analyse the
performance of the positioning filter, a partially and a fully UWB network consisting of
four and eight anchors, respectively, were installed. The MP was assumed to be available
prior. The resulting trajectory was compared with a provisional reference. The horizontal
and vertical positioning errors were under one metre where a fully deployed infrastructure
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was available. Even though, serious disturbances due to parked vehicles were present.
However, one track was selected according to a real-life application: in the front section of
the tunnel, a properly setup and initialised UWB network was present; in the back section,
ranges were only occasionally available. The horizontal positioning error was about two
metres. However, the INS could bridge UWB outages over 75 s, thus making it possible to,
e.g., deploy new anchors in the infrastructure-free zone.

A method for the estimation of anchor coordinates in the tunnel was developed, and
the first results were presented based on simulations. A PF with kernel smoothing was
used to estimate the anchor positions based on UWB range observations, MP updates, and
optional wall constraints. The simulations showed that the operator’s position estimate
propagated into the estimated anchor position. Another limiting factor was the observation
geometry in the tunnel. However, the MP and wall constraints could mitigate these
influences and improve the accuracy.

The presented work is the basis for the further development towards a fully integrated
real-time tracking system. Future works and examinations will focus on the anchor de-
ployment considering the cooperative anchor mapping in more detail. The zero-velocity
detector will be further refined, incorporating additional complex and tricky movements,
such as crawling or jumping. Another focus will be on the integration of the system compo-
nents, the communication link to the command post, and the implementation in a real-time
environment. By integrating the anchor deployment and the on-the-fly map information,
we hope that the blue force tracking system will be universally usable in a wide range of
complex underground areas.

The more intricate and extensive an underground structure is, the more important it is
to determine the exact position in order to avoid casualties and collateral damage. Therefore,
the development of the estimation of the altitude component during the remainder of the
project and the integration of vehicles and unmanned aerial vehicles through networking
with other projects from the NIKE research and development program will be additional
milestones. Accurate positioning of responders in an underground operation is critical
for successful mission command, and NIKE BLUETRACK provides a crucial prerequisite
for this.
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Abbreviations
The following abbreviations are used in this manuscript:

ARMSE average root-mean-squared error
C2IS command and control information system
CUPT coordinate update
ECEF Earth-centred, Earth-fixed
EKF extended Kalman filter
ESKF error-state (extended) Kalman filter
FTMT Fast Tunnel Modelling Tool
GMM Gaussian mixture model
GNSS Global Navigation Satellite System
GRU gated recurrent unit
IMU inertial measurement unit
INS inertial navigation system
LSTM long short-term memory
MEMS micro-electro-mechanical system
ML machine learning
MP map polygon
MPU main processing unit
NN neural network
PF particle filter
PVA position, velocity, and attitude
RNN recurrent neural network
SLAM simultaneous localisation and mapping
SOMT Subsurface Operation Mission Tool
UWB ultra-wideband
VR virtual reality
ZaB Zentrum am Berg
ZUPT zero-velocity update
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