

Spatial characterisation of PES/PVP based membranes by FT-IR

M. Nachtnebel¹, H. Fitzek¹, C. Mayrhofer², C. Brandl², P. Loulergue³, B. Teychene⁴, P. Pölt^{1,2}

¹ Institute for Electron Microscopy and Nanoanalysis, NAWI Graz, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria

² Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria

³ Université de Rennes 1, Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), Rennes, France

⁴ Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Ecole Nationale Supérieure de Ingénieurs de Poitiers, 7 rue Marcel Doré, 86073 Poitiers, France

Introduction

The requirements for membranes have risen over the past few years. One common material for the membrane production is polyethersulfone (PES), modified with poly(N-vinyl pyrrolidone) (PVP) to increase the hydrophilicity. Despite this material is characterized by a good resistance against attacks by various chemical agents, often the assessment of changes in the membranes' cross sections is requested. One method to get such results are FT-IR (Fourier transform infrared) maps of the main components. Especially in case of multilayered membranes spatially resolved measurements of the chemically induced changes across the membrane are required.

Methodology and results

For the investigation a Hyperion 3000 FT-IR microscope coupled with a Tensor 27 spectrometer (Bruker, Billerice, USA) were used. To obtain chemical maps both the macro-ATR (attenuated total reflectance) mode and the transmission mode were used. The former proved to be not applicable, because the pressure of the crystal on the sample surface caused a strong deformation of the sample, see Fig. 2. For the measurement in transmission mode 20 µm semi thin slices from membranes embedded in

EpoHeat[®] were used. Therewith it was possible to obtain the distribution of the two main components across the cross-section of various membrane types and the chemically induced changes due to a treatment with bleach solutions, see Fig. 3 – Fig. 6. To compensate the IR signal changes due to the variations of the membrane content per volume unit caused by the porosity of the membranes, the PVP/PES ratio got used in the maps, see e.g. Fig. 3 c).

Fig. 4: IR transmission maps of the main components of an untreated and NaCIO treated multi-pore membrane.

Fig. 5: IR maps of a hollow fibre membrane in transmission mode.

Fig. 6: Maps of both an untreated and NaClO treated flatsheet membrane. The slight mismatch of the light- and IR images at the treated membrane is due to the serial imaging.

Acknowledgements

The authors thank the company Membrana[©] GmbH (Wuppertal, Germany) for providing materials, Guillaume Darracq from Eau de Paris (Ivry-sur-Seine, France) for the multi-pore membrane modification and Yamina Hanafi from the Université de Rennes 1 (Rennes, France) for the experimental work on the flatsheet membrane.

www: e-mail:

Contact

www.felmi-zfe.at manfred.nachtnebel@felmi-zfe.at