
Marco Stranner, BSc

Subsurface Infrastructure Localization

for GIS Data Alignment using
Semantic Segmentation

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Computer Science

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Clemens Arth

Institute of Computer Graphics and Vision

Advisor

Dipl.-Ing. Philipp Fleck

Institute of Computer Graphics and Vision

Graz, Austria, January 2023





In the beginning the Universe was cre-
ated. This has made a lot of people very
angry and has been widely regarded as
a bad move.

Douglas Adams
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Abstract

The use of augmented reality in the outdoor sector is finding more and more

practical applications with better sensor technology on mobile devices. In this

work, we optimize our previous setup for tracking in outdoor augmented reality

(AR) applications within the field of subsurface utility engineering (SUE). We

address limitations in north estimation by compass and the semi-automatic

initialization of tracking fusion that are perceived as impractical for users. An

algorithm for alternative GPS based north estimation is presented. Additionally,

the setup is enhanced with a continuous drift correction to automate tracking completely.

Despite the highly accurate tracking, the quality of data being worked with

remains a challenge. GIS data documentation is often of poor quality due to a lack of

regulation. To address this issue, we propose a solution for segmenting pipes in an open

excavation site and aligning available displaced GIS models. Our approach is based on

segmentation in image space and reprojection of these results into 3D space, allowing for

the estimation of center points along the pipe.
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Kurzfassung

Der Einsatz von Augmented Reality im Outdoor-Bereich findet mit besserer

Sensortechnologie auf mobilen Geräten immer mehr praktische Anwendungen. In dieser

Arbeit optimieren wir unser bisheriges Setup für das Tracking in AR-Anwendungen

im Freien auf dem Gebiet der Untergrundversorgungstechnik (Subsurface Utility

Engineering, SUE). Wir gehen auf die Schwächen bei der Nordschätzung mittels

Kompass und der halbautomatischen Initialisierung der Tracking-Fusion, die von den

Benutzern als unpraktisch empfunden werden, ein. Es wird ein Algorithmus für eine

alternative GPS-basierte Nordschätzung vorgestellt. Zusätzlich wird das System um eine

kontinuierliche Driftkorrektur erweitert, um das Tracking vollständig zu automatisieren.

Trotz sehr genauen Trackings bleibt die Qualität der Daten, mit denen gear-

beitet wird, die größte Herausforderung. Die Dokumentation der GIS-Daten ist

aufgrund mangelnder Vorschriften oft von schlechter Qualität. Um dieses Problem

anzugehen, schlagen wir eine Lösung für die Segmentierung von Rohren in einer offenen

Ausgrabungsstätte und den Abgleich verfügbarer, verschobener GIS-Modelle vor.

Unser Ansatz basiert auf der Segmentierung im Bildraum und der Reprojektion dieser

Ergebnisse in den 3D-Raum, was die Schätzung von Mittelpunkten entlang der Rohre

ermöglicht.
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4.4 (a) Local and global tracking north alignment: To align local track-

ing north to true north, difference of north angles between ground truth
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walk is sufficient for accurate north determination, while the broad stan-
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correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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tracking, and blue represents north-corrected local tracking. Plots (b) and
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accurate north estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



xviii LIST OF FIGURES

4.8 These four plots illustrate the chronological progression (1-4) of continu-
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5.8 Two results of the junction detection algorithm. On the left image, a T-

junction is identified and on the right image, a sharp curve is detected. The
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increasing and decreasing pixel values. The starting points (P1 and P2) and

ending points (P3 and P4) of these sequences are used to compute a new

point (Pmid) and the heading direction (α+β2 ) of the outgoing pipe branch,
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6.3 Poor segmentation examples, as seen in Unity screenshots showing 3D scan
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6.8 These plots exhibit the fitting results, where the red lines represent mis-

placed 3D polylines, and the blue markers are simulated segmentation

points. The green line represents the corrected pipe model, using the trans-

formation [R|t] calculated in the least-squares minimization process. Plot
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Introduction

The utilization of Augmented Reality (AR) in outdoor applications and commercial

products has seen substantial research in recent years. However, one area that has seen

moderate to limited advancement is Subsurface Utility Engineering (SUE). In the context

of this work, SUE is associated with underground infrastructures, like pipes and cables,

excavation works and visualizations of such structures and corresponding metadata. In

1999, Spohrer et al . [5] predicted that AR SUE applications would become available in

the near future once hardware capabilities had improved. Despite the current availability

of accurate and accessible hardware, commercial applications are still rare today. This

may have various reasons, from general interest on this topic to fundamental problems

in the sector itself, which will be discussed later on. As shown in Figure 1.1, latest

commercial products did not advance significantly beyond what was shown in research

projects years ago. Surely, hardware got much handier, while also quality improved, but

those examples point out the limited progress over the last decade.

Despite the limited progress in Subsurface Utility Engineering, AR has the

potential to play a significant role in this field. As outlined in later sections, excavations

can result in significant financial losses due to damage to underground infrastructure.

AR applications can help to overcome these challenges by optimizing and automating

excavation processes, reducing human error and leading to efficient and cost-effective

excavation. Our previous research has presented a mobile setup that combines an

external hardware device called CapsLoc with mobile devices such as tablets, mobile

phones, or head-mounted displays. This setup enables the implementation of AR

applications, such as marking utilities on the surface, as illustrated in Figure 1.2. As

previously discussed in our work [4], expert interviews revealed a demand for such

applications and demonstrated improvements in current workflows. The implementation

of outdoor AR concepts relies on external hardware for precise localization. Localization

in the context of outdoor AR applications refers to accurate positioning in the real-world

coordinate space. High-accuracy positioning and north estimation are crucial for precise

1
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Figure 1.1: Underground Structure Visualization then vs. now: Visualization of sub-
surface utilities. The top two images are latest commercial products from SiteVision and vGIS.
Bottom images show research approaches 10 years ago [1, 2] Comparison between visualization
methods for underground infrastructure by Hansen [3]

augmentations linked to real-world objects or locations. Furthermore, in excavation

work, visualizations should be accurate within a tolerance of no more than the width of a

shovel head, which is approximately 20 cm.

Although our current setup presents a promising approach, further user evaluations

and investigations have revealed certain limitations over time, including:

(a) Compass based north estimation fails to deliver consistent and reliable perfor-

mance in urban areas.

(b) Tracking drift compensation: SLAM systems like used in ARCore and ARKit

drift over time, especially when leaving local areas. This phenomenon can already

appear at distances of 3 to 5 meters from the tracking origin in monotonous envi-

ronments, such as asphalt, which is most common for SUE applications.

(c) Data Quality is an always recurring issue in man-made and man-maintained struc-

tures and data records. Due to non-mandatory documentation standards, subsurface

infrastructure data is not broadly available in sufficient quality for convenient AR

applications.
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Figure 1.2: Virtual Spray marking: An AR application for automated spray paint marking
of SUE utilities. Left image show real spray markings on the surface, right image in contrast
show the virtual spray markings. Realism of visualization can be achieved by overlay blending
in combination with accurate 3D LIDAR reconstruction of the environment. Images from our
previous work [4].

Shortcomings (a) and (b) are setup related problems, where compass based north

estimation is solved by an GPS based alternative approach. This algorithm can be com-

bined with compass based estimation or used as standalone approach. However, it requires

highly accurate GPS positioning for reasonable accuracy. To address the issue of tracking

drift, a continuous drift correction algorithm was implemented to achieve seamless com-

bination of local and global tracking. GPS positioning is used to monitor drift of local

tracking over time and to trigger re-initialization when drift exceeds a certain threshold.

The improved AR setup is capable of robust and precise visualization. In a perfect world,

infrastructure would be digitized with sufficient precision for easy use in AR applications.

However, documentation in the industry is not standardized, and many companies do not

Construction Plan 
& Work

Figure 1.3: The left image illustrates an ideal workflow where utilities are surveyed and doc-
umented in a standardized, high-quality database after installation. This documentation can be
used to create precise 3D geometry that aligns with real-world utilities. In contrast, the right
image shows a real-world example of current documentation. In this example, the telecom asset is
displaced and lacks height/depth information.



4 Chapter 1. Introduction

prioritize documentation after installing new infrastructure, as shown in Figure 1.3.

Our previous research has assumed the availability of accurate data, but this is

not always the case. While some countries have implemented programs and platforms

to improve data access, data quality is still not reliable. No quality obligations for

companies lead on to poor documentation quality. Displaced utilities are not rare,

furthermore information on depth of utilities is mostly not even provided, let alone

some utilities are missing completely, as described later in this work. This problem is

addressed by using pipe alignment with GIS data to create accurate visualizations of

excavation sites, and to detect deviations from real-world objects, which can be used to

update current documentation.

We aim to address the issue of poor quality GIS data (c) in the excavation

setting for improved real-world registration. To achieve this, we propose a

semi-automated GIS data registration algorithm. The user specifies a pipe in real world

to be segmented. Once the segmentation is complete, a generated 3D model of GIS

data is fitted to the segmentation. This can be seen as a complement to the perfect

world example, where instead of surveying, the creation of the 3D reconstruction and the

manual improvement of the current documentation is replaced by automated alignment.

This enables precise augmentations on the real-world excavation scene, as shown in

Figure 1.4. Additionally, the alignment step can be performed offline using geotagged 3D

reconstructions, simplifying documentation without the need for experts on-site, using

inexpensive handheld hardware, such as our setup.

Material:   Metal

Type:        Water Pipe 

ID:             1233456 

Radius:     12cm 

Owner:     Muster Company

CLOSESAVE

EXITOPTIONSMOCKUP DEMO APPLICATION 

Figure 1.4: Mockup of an on site live GIS data visualization application. Utility Asset specific
meta-data can be visualized directly at excavation site. Left: User with hand-held device at
excavation. Right: Application mockup.
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This section presents a comprehensive examination of related work. First the crucial

part for outdoor visualization applications, accurate localization, will be discussed. This is

split up in a general overview of outdoor AR setups, and further localization in context of

this work, including local tracking and GPS based north estimation. Second, algorithms

for point cloud segmentation are discussed, followed by work on further fitting of GIS

data to the segmentation results. Lastly, previous work of AR applications in the field of

subsurface engineering will be reviewed.

2.1 Localization

Localization is a key component in AR applications, as it enables the precise placement

of virtual objects within a physical environment. However, the specific localization re-

quirements vary depending on the nature of the project. For example, in simple games,

such as Pokémon Go1, localization may only require ground plane detection. Whereas

in indoor environments, localization may need to be specific to a local space, allowing

for the placement of virtual objects on walls or tables. In certain environments, such as

warehouses, localization within a known environment is required.

In the context of this work, localization needs to be on a global scale. There are

various methods to achieve this and an overview of these possibilities will be presented,

1
https://www.pokemon.com/us/app/pokemon-go/

5

https://www.pokemon.com/us/app/pokemon-go/
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with a subsequent determination of the optimal approach for the context of this work.

The second part will focus specifically on localization within this context.

2.1.1 Localization for outdoor Augmented Reality

Research on outdoor AR has been done since the first mobile hardware was available. A

quick summary of the road on outdoor AR setups is given in the following paragraph.

• In 1997 and 1998 first outdoor AR prototypes were developed [6, 7]. Both systems

featured a very similar setup, backpacks stuffed with hardware, composed of a wear-

able computer, a digital compass or other orientation sensors and a differential GPS.

Later Thomas et al . [8] advanced their setup also including gloves for haptic input,

to enable interaction with the environment.

• In 2004, Robertson et al . [9] proposed the concept of utilizing image feature matching

with geotagged reference images in a database to determine the user’s current pose.

They presented a setup for urban navigation as an AR application. This idea using

a geotagged image database is pursued in later ideas again.

• Back in 2006 Reitmayr et al . [10] introduced a tracking approach based on known

3D models to perform edge detection for vision tracking. While there are many

approaches that utilize 3D models, for outdoor applications, the size of the 3D data

can be quite large. As a result, approaches using simplified models are preferred for

outdoor applications.

• In 2012, Oskiper et al . [11] developed a setup consisting of a camera, an IMU and

GPS. The system employed an Extended Kalman Filter for fusing IMU and camera

data for robust real-time tracking, complemented by the precise global positioning

provided by GPS. The Kalman filter approach presented in this work is an early ver-

sion of the now-common SLAM approach. From this work on SLAM based systems

became the go-to solution. Especially with enhancing mobile computation power,

vision tracking became the most common approach for local tracking.

Nowadays, all approaches for outdoor AR rely on vision-based tracking for stable,

robust, and real-time ready local pose estimation. To achieve precise geo-referenced

visualizations, tracking must also be registered on a global scale, with an accuracy

level that is appropriate for the specific application. Suurinkeroinen’s thesis [12],

provides an overview of the current state-of-the-art tracking methods that can achieve

centimeter-level accuracy for outdoor AR applications. It summarizes the advantages and

disadvantages of the various methods and gives a clear indication of which approaches

are best suited to the requirements for specific applications.
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After all, SLAM-based systems are mostly trusted today. However, as SLAM

only tracks on a local scale, it must be extended for global tracking. One simple

and straightforward approach is to initialize the system at a known location, such

as scanning a QR code at a surveyed position or by physically placing the device in

a known position. This type of initialization is only feasible for a limited number of

applications. Barcode-based initialization is a possible solution for prototypes or for

limited visualizations on fixed places, like visualizations at city sights. In open-world

SLAM applications, there are generally two possibilities for global registration. The

first is the use of additional geotagged data, such as 3D models or images. The

second is the extension by external localization hardware, such as GPS. There has

been extensive research in this field, and the following paragraph will outline various

approaches and their respective advantages and disadvantages.

First, let’s discuss the previously stated idea of image matching using geo-

referenced data [9]. In the work of Zhang et al . [13], positions for a given view are

calculated using SIFT (Scale-Invariant Feature Transform) feature matching in a

geotagged image database. This method can be integrated into a SLAM tracking

approach, either by adding key frames with calculated global camera poses from this

algorithm, or by incorporating it directly into a SIFT-based SLAM system. One of the

main advantages of this approach is that it does not require any additional sensing

equipment. It can be implemented on a mobile device with internet connectivity and

a camera. To speed up the process, a rough position estimate from phone signal

triangulation or GPS can be used, which is possible even on standard devices. However,

the image database must be created, which can be a challenging task. There is public

data available which could be used for creating such database. Websites like Flickr2,

Tumblr3 and Instagram4 provide millions of images, partly geotagged. This approach

would require the elimination of poor-quality samples, and the quality of geotagging

may not always be reliable. Projects, such as Google Street View, provide an excellent

foundation for creating such databases. Zamir et al . [14] and Vaca-Castano et a [15]

implemented systems that utilize this type of data. Since Google Street View consists

of professionally taken, geotagged images, it is well-suited for this type of approach.

However, it is only applicable in areas where Google Street View coverage is available.

Another vision-based approach combines SLAM with edge-based matching of build-

ings, which is achieved by creating building models using 2.5D maps from publicly available

Open Street Maps (OSM) data [16]. Similar to the approach used by Reitmayr in 2006,

edge detection is effectively used for localization. The advantage of creating 2.5D maps

from OSM is that it can also be used in smaller villages, as building floor plans are often

available. However, the accuracy and up-to-dateness of the data in smaller villages is not

2www.flickr.com
3www.tumblr.com
4www.instagram.com

http://www.flickr.com
http://www.tumblr.com
http://www.instagram.com
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guaranteed, also features such as trees, hedges, and other vegetation can interfere feature

detection, making this approach more suitable for urban environments.

The current trend towards deep learning applications is also reflected in this research

area. Many computer vision problems are well-suited for Convolutional Neural Networks

(CNNs). Rao et al . [17] used a deep learning-based detection approach for image recogni-

tion and matching with a given geotagged image database, similar to the previous exam-

ples. This approach can directly process an input video stream and register the location

where geo-referenced visualizations should be placed in the current view. While their

approach is not yet real-time ready, steady improvements in system architecture and the

increasing power of mobile hardware make it a possibility for future systems. However, it

is also dependent on the availability of geo-referenced data in the region of use.

It shows that at present, vision-based approaches require additional data, which is

only widely available in specific urban areas. Applications that are limited to specific

environments where such databases can be provided are well-suited for such approaches.

However, for SUE applications that are supposed to work nationwide and in any

environment, pure image-based approaches are not practical. Therefore, a combination

of SLAM and additional sensing is the most viable solution at this stage.

What can be used alongside SLAM local tracking without the need of addi-

tional datasets? The obvious choice is GPS and an orientation sensor such as an IMU or

at least gravity sensors. Nevertheless, first let’s look at some other options for position

estimation. There are many possibilities for position estimation such as Triangulation,

Trilateration, or Proximity within a given network. However, many of these approaches

can be eliminated immediately because the necessary infrastructure is not available, or it

is not feasible to install it, such as sonic-based localization. Mobile network infrastructure

can be used for localization almost everywhere, although the current level of precision is

not very high. However, 5G networks could be used to achieve sub-meter accuracy [18].

This is still ongoing research, and 5G networks are not fully developed yet. This could

become a very promising possibility in the coming years, but currently, satellite-based

localization is the only reasonable option.

Satellite-based position estimation (GNSS or GPS) is subject to noise in

urban areas, such as shadowing or reflection of signals. Having said this, local tracking

is purely vision based, hence stable high precise GPS positioning is not a must-have

but rather just important for initialization and if needed re-initialization at some

points. Nowadays, every smartphone has built-in GPS, but is it precise enough for

reasonable geo-referenced outdoor visualizations? Standard GPS is not suitable at all,

as it has an accuracy of no better than 10 m. However, raw GNSS measurements,

available to developers since Android 7 in 2016, enable improved position estimates

via DGPS (Differential GPS), RTK (Real-Time Kinematic) or PPP (Precise Point

Positioning) positioning algorithms on android smartphones. Evaluations of optimizing
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GNSS positioning on android phones show interesting results [19]. Smartphones with

multi-frequency GPS receivers were used in a NRTK (network-streamed correction data)

setup, achieving good accuracy even in centimeter levels with near reference stations.

However, noise from built-in antennas led to poor outliers and the accuracy is not

sufficient for the purpose of this work. But it is worth considering and feasible for many

other use cases. The experiment of Niu et al . [20] with the combination of VI-SLAM and

RTK positioning provided by the smartphone showed promising results. Unfortunately,

this concept is still in proof-of-concept stage, but could become the go-to combination

for outdoor AR setups. External GNSS systems are currently the best option. There

are some works on integrating external GPS positioning into different SLAM systems.

Nevertheless, using commercial local tracking software like ARCore, ARKit or Vuforia

extended with external global registration seems very advantageous due to constant

professional maintenance. Platform-independent approaches can be implemented using

Unity [21]. Vision-based local tracking with external GPS for accurate global localization

seems to be the best choice at the moment.

2.1.2 SLAM and external sensor combination

In summary, for SUE applications, the combination of SLAM or similar algorithms for

local tracking and external sensors for geo-registration is the best approach. Unity Game

Engine can be used as the base to achieve cross-platform AR applications. Unity’s AR-

Foundation provides robust local vision-based tracking which is combined with external

sensors, as described in our previous work [22]. The sample applications of virtual spray

paint marking and virtual daylighting, using this localization hardware, are shown in de-

tail in our previous work [4]. The setup is described in more detail in Section 4.1.1. This

section will focus on local tracking and GPS-based north estimation, which will be used

to address the reliability issue of compass-based north estimation.

Local Tracking

To achieve robust and real-time capable tracking, standalone hardware-based tracking

is not a viable option, as it is prone to errors and not robust enough on a real-time

scale. Tracking is a major research topic in robotics and computer vision. There are

various approaches for real-time tracking in different setups. The most common one in

AR is SLAM, which was first developed in robotics to localize a robot (2D position and 1

orientation angle) and simultaneously creating a 2D map of the environment using a 3D

scanner sensor [23].

On this basis, many different versions were developed, utilizing various sen-

sors and providing different degrees of freedom. The most relevant research in the

field of AR involves vision-based SLAM versions using single camera setups [24],

stereo camera-based and RGB-D cameras. The work of Klein et al . [25] with early
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approaches using SLAM in an AR application and later extending it to a real-time

version running on a smartphone [26]. ORB-SLAM [27] is a great example, capable of

using all three mentioned sensors. Currently, some form of SLAM algorithm is used in

almost all commercial products like Apple’s ARKit, Google’s ARCore, or Microsoft’s

MR (Hololens). Strictly speaking ARKit is not slam-based, it is built on visual odometry

(VO) [28] , which is similar to SLAM but with focus on local consistency. SLAM is

concerned with global map consistency, whereas VO can be used as part of a full

SLAM system [29]. However, while classical VO does not aim for loop closure, ARKit

is able to recognize previously visited areas. These SDKs are optimized for specific

hardware. Platform-independent engines like Vuforia with Vuforia Fusion and Unity with

ARFoundation provide interfaces for straightforward use of platform-specific tracking

SDKs.

LIDAR bases SLAM: LIDAR sensors are becoming increasingly popular in mobile de-

vices, enabling more accurate and robust SLAM implementation with highly accurate en-

vironment maps. While SLAM alone does not require highly accurate 3D reconstructions

for good tracking, when high-quality reconstructions are required, external 3D ranging

sensors are very common. Single camera-based setups can also provide good 3D recon-

structions via structure from motion [30], but this is more time-consuming and cannot be

run simultaneously with SLAM in real-time.

GPS based North Estimation

Magnetometer-based north estimation can be affected by metal objects. An alternative

approach using GPS is commonly used in mobile robotics and vehicle heading estimation.

The general idea is shown in Figure 2.1. Double GPS-Antenna setups are used to

calculate the angle difference (β) between two points in time (tn). In this simplified

illustration, this is straight forward using trigonometric functions. In practice, there

are more considerations to keep in mind. Single GPS measurements will have some

(a) t1 (b) t2 (c) t2 - t1

Vehicle

Figure 2.1: The illustration shows a simplified version of heading calculation over two time
frames. The heading is represented by the change in direction of the vehicle, as measured by the
two points of the GPS antennas. This is represented by angle α in subfigure (c).
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Figure 2.2: The heading angle error α, is a function of both the baseline L and the GNSS error
δ. By increasing the baseline L, the total error can be minimized as the GNSS error δ becomes
less significant.

degree of error. However, using a two-antenna GNSS setup with a specific baseline can

be integrated effectively in a model of vehicle kinematics to estimate vehicle sideslip.

Covaciu et al . [31] demonstrate a time-varying function based on ”bicycle model”

kinematics in a vehicle equipped with two independent GPS receivers. This approach

is commonly used with Extended Kalman filters for estimation, as it provides accurate

results when well-defined kinematic models are available [32, 33].

In addition to GNSS accuracy, the baseline length has the greatest impact on the

quality of the estimation. In an experimental setup [34] using two DGPS receivers with

baselines ranging from 1 m to 8 m, the error was shown to decrease with an increase in

baseline length, as predicted by the Equation 2.1.

α = tan−1(
δ

L
) (2.1)

In this work, a combination of local tracking positioning and GPS measurements from

a single antenna setup is used for north angle calculation. This idea is derived from the

concept of the common two antenna approaches. To the best of our knowledge, no similar

works have been conducted yet. The algorithm is described in Section 4.2.1.

2.2 Segmentation of 3D point clouds

Segmentation is a broad field in computer vision, with many well-established

approaches. In this work, we focus on segmenting 3D point clouds. Segmentation of

point clouds can be challenging due to high redundancy, uneven sampling density,

and lack of explicit structure. Normally segmentation is the task to classify multiple

homogeneous regions, however in the case of this work we are only interested in one

specific class. There is a wide range of segmentation algorithms in 2D or 3D space,

both have advantages and disadvantages. Additionally, access to prior knowledge

of GIS metadata, especially the radius of pipes, could be useful for the segmentation task.
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An overview of classical segmentation approaches in point clouds is given by

Nguyen et al . [35]. Since point cloud data is mostly noisy, sparse and unorganized,

segmentation can be quite challenging. The data also lacks a statistical distribution,

features are sharp and the foreground is often intertwined with the background. Some

common approaches for segmenting point clouds include:

• Edge Based: Regions are found by detecting boundaries. These methods allow fast

segmentation, but come with accuracy problems due to their sensitivity to errors.

These methods are not suitable for this work as the area of interest lacks distinct

edges.

• Region Based: These methods make use of neighborhood information to cluster

similar regions. They can handle noisy data effectively, but may result in over- or

under-segmentation. These methods can be either seeded, where starting points

are provided, or unseeded, where points are selected randomly or based on certain

criteria. This approach can be used for the given data in this work, but it can be

computationally intensive.

• Attribute Based: Regions are clustered based on specific characteristics of the

point cloud. They are robust but highly dependent on the quality of derived at-

tributes, require careful parameter selection, and are computationally intensive.

• Model Based: Model based methods make use of primitive geometric shapes for

grouping. Algorithms such as RANSAC are very robust at detecting simple struc-

tures and cope very well with outliers. Therefore, it is likely to be a fast method for

detecting cylindrical objects like the pipes in this work.

• Graph based: Point clouds are represented as graphs for efficient search in un-

structured data. This allows fast segmentation based on features such as color or

surface normals. Such an approach could also be quite interesting in the context of

this work.

Among these different segmentation techniques that can be applied to 3D point clouds,

the following three turn out to be suitable: region-based, model-based, and graph-based.

Given the cylindrical shape of the target objects, such as pipes and cables, the model-based

approach is considered as the most promising method.

Model Based : Gelfand et al . [36] proposed a local slippage analysis-based approach

for classifying slippage shapes, such as spheres, helix, planes, cylinders, and linear ex-

tensions. This approach utilizes ”slippage signatures” to cluster points and identify the

most likely shapes. These signatures consist of rigid motion sets, which can be applied to

specific shapes to create sliding transformed copies of the original without creating any

gaps. However, a significant challenge in the field of SUE is that pipes are not always
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reconstructed perfectly, often due to data collection from above the excavation ground.

As a result, only the top portion of underground assets is captured, and depending on the

depth of the structure and the 3D reconstruction approach used, the reconstructed pipes

tend to be rather flat than cylindrical, thus this approach cannot be used in this case.

Region Based and Graph Based: There are several Region-Based approaches to

detect geometrical features by clustering normal vectors of similar direction to planar

shapes [37, 38]. In this work, since the radius of pipes is known, neighbor points can be

clustered using normal vectors. The normals should change according to the distance

between the points derived by the given radius, starting with a seed point on the pipe.

However, due to the issue of poor reconstruction shape, this approach is not feasible.

A more appropriate approach for this scenario would be Color-based segmentation, as

pipes typically have different colors compared to dirt in excavation scenes. Strom et

al . [39] proposed a Graph-based segmentation based on color and surface normals for

clustering. A similar approach could be used in this work, where color values are given

the highest weight in clustering, while normals and distance to neighbors can be used to

detect outliers. This could be implemented as a seeded region growing approach using a

KNN-Tree structure for efficient point cloud representation.

It is also important to consider machine learning approaches for 3D point

cloud segmentation. 3D features can be extracted and machine learning can be used to

learn different classes of object types. In complex scenes, such approaches tend to be

more effective than classical algorithms. The rise of Deep learning has also brought a

significant amount of research in this area. One popular architecture is PointNet [40],

which has been used in various applications. The architecture can be trained for 3D

shape classification and shape part segmentation. However, it should be noted that

Deep Learning applications require suitable training data, which is not available for this

particular problem.

Segmentation in 2D: Segmentation can also be performed in 2D image space. Point

clouds can be rendered, and virtual images can be taken from any desired viewpoint. By

moving from 3D space to 2D space, segmentation can be accelerated and some noise present

in the 3D segmentation will not be present in the 2D projection. However, the results

must be reprojected back into the original coordinate space. Color-based approaches are

suitable as the assets are well differentiated from the background and typically have simple

shapes in image space. Some interesting approaches make use of the watershed algorithm

for seed point identification and subsequent region growing for segmentation [41]. When

using color features for detection, Hue values in HSV Image space are effective [42]. Points

of interest from the segmentation process can be re-projected back into the 3D scene, as

described in the book Multiple View Geometry [43].
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2.3 Fitting GIS models to Segmentation

Depending on the chosen segmentation approach, there are various options for model

fitting. 3D models can be generated from GIS data, where only polylines are provided.

Alternatively, 3D polylines can be used directly for fitting.

Iterative Closest Point (ICP) is a widely used algorithm for registration

of 3D objects, as it is compatible with a wide range of different representations of

geometrical data. As the name suggests, ICP is an optimization algorithm that iteratively

finds the best possible fit of points to a given model. Besl et al . [44] proposed one of the

first versions, which is a least-square fitting approach. Nowadays, there are many different

implementations of the ICP algorithm, customized for various scenarios [45]. However, a

major disadvantage in the context of this work is that ICP requires a good initializa-

tion of a reasonable initial fit and relies on accurate segmentation to avoid excessive noise.

Principal Component Analysis (PCA) is typically used in classification

and compression techniques for projecting data onto other orthogonal basis. However,

it can also be used for rough registration between two point clouds by aligning the

eigenvectors of their covariance matrices. This approach is very sensitive to outliers and

also relies on point clouds with similar distributions. If point correspondences between

both clouds are available, Singular Value Decomposition (SVD) can be used to

minimize Euclidean distances between these points, which is solved as a least-squares

problem [46]. Both algorithms are not feasible for this work. Another common approach

for general primitive fitting is RANSAC (RANdom SAmple Consensus), which can

be used for fitting cylinder shapes, representing pipes in this context. Schnabel et

al . [47] proposed a robust and efficient approach for primitive shape fitting based

on RANSAC. The latest primitive fitting approaches are based on deep learning.

Li et al . [48] proposed a supervised primitive fitting algorithm which outperforms

state-of-the-art RANSAC-based methods. The state-of-the-art point cloud registration

algorithm is presented by Yang et al . [49] with TEASER. The algorithm is highly

robust against outliers and shows superior performance and accuracy when compared

to ICP and RANSAC approaches. The approach is based on truncated least square

estimation relaxed to a semi-definite program (SPD). However, solving large SPDs is

computationally expensive, therefore they also propose a faster approach, TEASER++,

using graduated non-convexity for rotation estimation.

In conclusion, given that our segmentation algorithm computes center-points

along the pipe, there are two options for model fitting. The first option is to extract all

points within a specific distance to the segmented center points and run an algorithm

such as TEASER to match a 3D model created from GIS data. The second option is

to directly fit the segmented center-points to the given polylines from GIS. This can
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be achieved through a simple least-square fitting in 3D space. While the first method

would likely yield higher accuracy, the second approach would be significantly faster.

Therefore, in an offline scenario, a more complex algorithm could be used for fitting,

while a real-time approach should utilize simple least-square fitting.

2.4 Augmented Reality in Subsurface Utility Engineering

There is limited research on the application of AR in the context of SUE. Most of the

existing work focuses on visualizing subsurface data on the surface prior to excavation.

Smart Vidente [1] is an application for real-world interaction with a GIS database in

an AR setup. The system consists of a tablet PC equipped with a camera, a 3DoF

orientation sensor, and a DGPS receiver for achieving centimeter-level accuracy. Earlier,

Schall et al . [2, 50] presented predecessor systems also built on GNSS and orientation

sensors. However, Smart Vidente incorporated a laser range finder, enabling 3D

interaction. Differential correction data is streamed via the internet to achieve accuracy

of less than 10 cm and the orientation sensor provides accuracy up to one degree. The

Interactive GIS Registration application presented by Sun et al . [51] also relied on GPS

and IMU positioning. They combined a head-mounted display for visualization and a

small keyboard for interaction. To overcome displacements, position corrections can

be made by the user. A more recent approach for visualizing GIS data is the LARA

project [52]. Global position is also fully estimated by external sensors. GNSS and IMU

are fused to a 6DOF Camera pose when calibrated before use. Local tracking for AR

and visualization is provided by Unity Rendering Engine. Another approach, though

controversial, is using outside-in tracking, which is not commonly used in outdoor

systems [53]. This approach focuses on tracking multiple devices at road maintenance

work by using several Laser Range Finders to track people walking in the scene. They

achieve an accuracy of less than 25 cm, which is sufficient for road maintenance work.

Overall, the most reliable approaches for SUE combine GPS and IMU. While

there is some interesting research on visualization techniques for SUE in AR [1–3, 54],

these methods could be improved using current visualization standards. Additionally, all

of these works assume perfect documentation. This work aims to present an approach

for pipe segmentation and fitting that deals with poor-quality data commonly found on

excavation sites.
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The chapter on motivation and requirements provides an overview of the benefits of

using AR for SUE and establishes specific requirements for successful implementation.

The section on localization in outdoor AR is reviewed in depth, followed by an analysis of

the problem of poor data quality and the corresponding requirements for its resolution.

3.1 Tracking for AR subsurface utility engineering tasks

Recent hardware advancements, such as the 2020 models of Apple’s iPads and iPhones,

incorporate high-precision sensing capabilities. The integration of LIDAR sensors al-

lows precise 3D reconstruction of the local environment. By extending this localization

technique to a global approach, applications that involve geotagged visualizations with

centimeter-level precision can be developed. There is a wide range of potential outdoor

AR applications, particularly within the construction industry. For example, the use of

highly accurate on-site 3D models can enhance spatial perception of architectural plans.

Thus facilitating communication of the designer’s intent to clients within the physical

context. In this context, precision is particularly important when visualizing plans for

building extensions. Another example is the utilization of AR for providing assistance at

construction sites, where geotagged visualizations can be employed throughout the con-

struction process. This can include the use of on-site 3D plan visualizations to speed up

the execution of construction plans or aid in decision-making processes. However, this

work will focus on the specific use cases within the field of subsurface utility engineering,

which will be discussed later on. The constraints and requirements for such tasks can

vary, but the overall goal is to achieve highly accurate localization. This can be accom-

17
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plished through various methods, depending on the specific environment. In general, the

combination of LIDAR and GPS can provide a sufficient solution for achieving real-time

6 Degrees of Freedom (6DoF) tracking on a global level. The next chapter will dig into

the technical specifications for subsurface utility engineering.

3.1.1 Current workflow for excavations

Excavation of subsurface utilities is a complex task. The cost of excavation can vary

depending on the specific utilities being uncovered and can become quite costly when

encountering hazardous utility lines, such as gas pipelines. Therefore, excavation must

be done with great care in these situations. Current best practice for excavation work

consists of:

1. Spray marking: Manually spraying markings is a common and inexpensive method

in most excavation setups. Locations of underground utilities are marked on the

ground surface, using information provided by a GIS database or sometimes on paper

maps. These markings are done by hand by the workers, making it challenging to

ensure they align exactly with the plans.

2. Enhanced Sensors: To ensure marking placement is correct and to estimate

depth, special sensors are used. Usually, Ground Penetrating Radar is used for

scanning subsurface assets.

3. Daylighting: One of the most efficient ways to do this is by using a hydro-vacuum

excavator, which exposes utilities using a combination of pressure, water, and air.

However, this method can be expensive and may not be suitable for all environments.

Currently, it is common to combine manual labor and the use of excavators.

Especially steps two and three do come along with additional cost. However, to bypass

those steps with alternative solutions precise and also complete documentation would be

needed, which is not the case at the moment.

3.1.2 Utility Strikes

Damage to utilities cause billions of costs every year, to put that into numbers, $50-100

billion in the US, more than e 1 billion in the Netherlands and also more than £1 billion

in UK [55]. DIRT Report (damage information reporting tool) of 2019 reported damage

of more than $ 30 billion in North America [56], where 90% of damage cause was split into

around 30% cause due to locate problem of facility, around 30% no locate data requested

and around 30% excavation practice indebted. In the UK alone, more than 60,000 utility

strikes were reported in 2016 [57]. Reasons leading to damages are reported as following:

• Statutory reports are outdated and do not always reflect as-build information, most

companies said provided data by utility companies and clients are not adequate

mostly and cannot be trusted.



3.1. Tracking for AR subsurface utility engineering tasks 19

• Poor training of workers.

• Inaccurate marking of assets.

• Physical site conditions at excavation site.

• Wrong chosen excavation technique.

• Bad scanning of asset depth by geophysical surveying.

• Planning with inaccurate documentation, therefore updated information after geo-

physical survey should be used.

The true costs of damages are often unknown by most companies. Including indirect

costs, such as road disruption, plant damage, traffic delays, environmental damage, street

regulation, atmospheric damage, loss of service provision, and related damages, the ratio

of overall costs to cost of repair is calculated to be 29:1 [58]. Applying this factor to the

average estimated cost of £3600 (e 4120) per strike gives an average damage of £100.000

(e 114.520) in the UK [59]. Another important consideration is that evaluations of marking

tasks have shown that gas and water utilities are marked more accurately than other

facilities, such as TV, internet, or electricity. Additionally, inaccurate marking and the

lack of depth information have been identified as significant problems[60].

3.1.3 Using AR to improve SUE workflow

The previous section highlighted the huge impact of utility strikes. Given that human error

is a significant contributing factor to damage, the utilization of AR for error prevention

should be considered. This section will discuss the potential for AR to support current

best practice excavation work.

Spray marking: The process of marking utility assets can be directly replaced or sup-

ported by visualizations, as previously demonstrated in our work [4]. This would eliminate

human error in inaccurate marking of underground structures, particularly the issue of

carelessness when marking less critical utilities.

Enhanced Sensors: This step cannot be replaced if feasible documentation is not

present. However, if accurate documentation is provided, this step would not be necessary

in the first place.

Daylighting: Assistance for the excavation process can be achieved through various

approaches, such as providing annotations of the height distance from the current

excavation level to the asset, or utilizing 3D visualizations of the utilities, such as

cut-away or shadow projections. However, determining the most effective approach

would require significant evaluation and research.
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In addition to the excavation process, there are other areas where visualizations can

be beneficial. One such example is the use of previously captured 3D data or accurate 3D

models for informed decision-making with on-site AR visualizations. A prototype system

was used by Hansen et al . [3] to evaluate its usefulness for workers at excavation sites.

Interviews with utility owners and constructors revealed that this could help prevent exca-

vation damages. Visualizations can also help provide clear scene understanding, reducing

misunderstandings between foremen and the excavation team.

3.1.4 Requirements for AR in Subsurface Utility Engineering

Suitable AR applications must ensure the precise overlay of visual augmentations on the

physical environment, requiring accurate 3D reconstruction of the terrain. This is partic-

ularly critical for the task of segmentation, where a high degree of precision is necessary

for accurate depth estimation of pipes, with errors no greater than 5 cm at a scanning dis-

tance of 3 m [R1.1]. Furthermore, the precise positioning of geotagged data visualization

is crucial for SUE, with a minimum accuracy of 20 cm required to ensure the detection

of utilities during excavation with a shovel [R1.2]. In addition, accurate north estima-

tion is crucial for displacement error reduction, as errors increase with distance from the

object of interest, as shown in Figure 3.1. For example, an error of just one degree can

result in a displacement of 90 cm at a distance of 50 m. In this use case of SUE, north

estimation should be reasonably small, to achieve an accurate visualization in relation to

the local environment reconstruction. Here we assess that with the expected sizes of the

excavations a north estimation error of less than 1 degree should be aimed for [R1.3].

Furthermore, interviews [61] showed that most participants see manual realignment of

localization as a major concern in outdoor AR setups. This highlights the need of an

automated initialization and re-initialization logic [R1.4].

Figure 3.1: Small north estimation errors lead to large displacement at distance. An angle error
of 11.8 degrees cause a displacement of 20 cm at 1 m distance (Point B to D) and over 1 m
displacement at 5 m distance (Point C to E).
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3.2 The Problem of poor GIS data quality

Most AR scenarios for SUE ate heavily dependent on the quality of documentation. As

an example, spray marking visualizations are only useful when based on accurate data, as

visualizing displaced or incorrect utilities can harm the excavation process. The previous

chapter demonstrate how precise geo-referenced visualizations can be used for supporting

SUE work. However, the current state of documentation is not sufficient for commercial

applications. Subsequent sections will provide further insight into documentation.

3.2.1 Current state of SUE documentation and how it could be improved

Workers in the field of SUE raise complaint about current state of documentation [61].

Depth information of assets is often unreliable or not provided and only few companies

survey their newly installed utilities. Most of the time reporting of wrong documentation

is only done when damaged or completely wrong, that is the case because proof of duty

is on their side. In Denmark, private secondary utility lines are often not provided at

all, as they are not legally required to do so. Currently, documentation requirements

only necessitate the reporting of 2D data, and there is a lack of standardization in digital

formats. Some documentation may still be in the form of scanned drawings, which cannot

be easily imported into GIS systems. However, several countries, including Denmark,

the Netherlands, and the United Kingdom, are implementing programs and platforms to

address the current challenges in documentation. Despite these efforts, the accuracy and

reliability of data remains a concern, as demonstrated in Figure 1.3.

Hansen et al . [61] explored methods for improving the quality of records in subsurface

utility engineering. An areal-based mapping approach using ground penetrating radar was

found to be infeasible due to high costs and difficulties in nationwide matching to existing

GIS data. Instead, they proposed utilizing ongoing construction and maintenance projects

to improve data quality. Some companies already employ survey methods to locate, verify

and map existing assets, but this information is often not shared beyond the specific

project. The authors suggest the use of photo geometry or laser scanning for on-site

documentation and utilizing geotagged 3D reconstructions for accurate documentation.

Hand-held hardware can be used by workers for reconstructions, and semi-automated

segmentation and matching algorithms can be used for utility data verification, mapping

or correction.

3.2.2 Requirements for dealing with poor documentation data

The specific hardware requirements for a given use-case can vary. 3D reconstructions can

be performed using a smartphone and photogeometry algorithms in an offline approach.

Alternatively, laser scanners can be used for real-time 3D reconstruction. To achieve a

precise geotagged 3D scan, the hardware specifications outlined in the previous section

also apply here. When working with low-quality GIS data, it is necessary to locate utility
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assets within the scene. A segmentation algorithm should be developed to identify the

assets in the 3D data. The segmentation algorithm should be user-initialized and semi-

automated. It would be really challenging to identify assets autonomously in the 3D scan.

However, when providing enough knowledge about the specific appearance of pipes, it may

be possible but still hard to assign them to the correct asset in the database. Therefore,

the segmentation should be easily triggered by the user either on-site in a live application

or afterward in a specific software, such as through an integration into common GIS

Software. The accuracy should also be less than 20 cm here. [R2.1]. The segmentation

should then enable a fitting approach to verify existing documentation or calculate an

error measurement. The alignment process should deliver a transformation that fits the

displaced data as closely as possible to the segmentation. Here we should also aim for an

accuracy in the range of centimeters [R2.2]. The process of 3D scanning, segmentation,

and fitting should be able to achieve accuracy within the SUE standard of an error less

than the width of a shovel. With the corrected data, documentation can be updated and

used for on-site visualizations as described in the previous Section 3.1.3. Due to the lack

of standardization in documentation, an API for GIS data handling must be implemented

[R2.3]. It should be easily extendable to accommodate different data standards of different

companies, to provide asset plans and metadata in a suitable format. Furthermore, an

application for 3D model creation using given GIS data should be implemented to enable

3D visualizations and, if necessary, be used for the fitting approach [R2.4].

In conclusion, the requirements can be divided into two groups: [R1] those specific to

setting up accurate outdoor AR localization, and [R2] those for implementing software to

address the issue of poor documentation. All the requirements discussed in this chapter

are summarized in Table 3.1.

Requirement Describtion

R1 Localization for accurate outdoor AR visualizations
R1.1 Accurate environment reconstruction
R1.2 Global positioning with maximum error of 10 cm
R1.3 Robust and accurate North Estimation
R1.4 Automate (Re) Initialization

R2 Overcome bad and incomplete GIS data
R2.1 Utility Segmentation in 3D reconstruction data
R2.2 Fitting Algorithm for segmented utilities
R2.3 GIS data API to deal with non standardized documentation
R2.4 3D model creation from GIS data

Table 3.1: Requirement List: A compact representation of all found requirements, grouped
into localization related as R1 and GIS data related as R2.
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This section presents the implementation of specific enhancements to the setup. Ini-

tially, a brief overview of the current state is provided, with further details available in

our previous work [4, 22]. Subsequently, the section describes the implementation of im-

provements to the current state.

4.1 Initial Setup

This section introduces the current state of the setup. The setup has undergone multiple

iterations since the initial state during my bachelor thesis, leading to the current prototype.

4.1.1 Hardware Setup

The hardware component utilized in this work, referred to as CapsLoc, was developed

during our previous work. Figure 4.1 illustrates the hardware configuration used in our

experiments, which includes an iPad Pro equipped with a LIDAR sensor and the CapsLoc

localization device. Evaluations comparing 3D reconstructions of industrial LIDAR scan-

ner and 2020 iPad Pro [62], showed that latest mobile devices with built-in LIDAR can

keep up with professional devices. The range of up to 5 m for scanning was also verified

in independent experiments [63]. Results showed an average precision of about 2 cm with

an accuracy of about 4 cm. This fulfills requirements [R1.1]. The CapsLoc device main

components are an ublox high precision GNSS RTK module for global position estimation,

an IMU with compass for orientation estimation and an altimeter for height estimation

23
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Figure 4.1: Setup used in our experiments: Left: iPad Pro with LIDAR sensor combined
with CapsLoc sensor cube. Middle: Close shot of CapsLoc board with important sensors labeled.
Right: Screenshot of CapsLoc App used for data streaming from sensor case to iPad.

since GPS has its greatest error in altitude. Detailed Evaluations and further explana-

tions are found in our previous work [22]. Data is sent via a local Hotspot (WiFi access

point) from CapsLoc to the mobile device using MQTT. MQTT 1 is a standard messaging

protocol for Internet of Things (IoT). For achieving best possible accuracy the setup hast

to be calibrated beforehand. For this purpose a semi-automated calibration routine was

implemented using Furgale et al . [64, 65] work and provided calibration tool kalibr2 from

the Autonomous Systems Lab of ETH Zurich. The calibration approach is described in

detail within our previous work [4]. This yields an IMU to Camera calibration, however

if CapsLoc is used with a directly mounted antenna like in our setup the camera to GPS

calibration can be derived from it. Later calibration is not of biggest importance consid-

ering the given accuracy requirement of around 20 cm, however it is necessary to achieve

best possible accuracy.

4.1.2 Real Time Kinematic GPS in practice

Accurate GPS positioning is the most important component for our setup. GPS is a

satellite based positioning system, which provides the user a 3D position with a maximum

accuracy to 10 m. Accuracy improvements can be achieved using Differential GPS or

Real Time Kinematic (RTK). Both of these applications make use of observations from

reference stations to compute better position estimations. Depending on distance, sim-

ilar environment and common satellites in sight, position accuracy is optimized. The

achievable accuracy is described in Table 4.1. Correction Data is sent as RTCM (Radio

Technical Commission for Maritime Services) messages, normally via radio transmission

or over so called NTRIP Servers (Networked Transport of RTCM via Internet Protocol).

The latter are provided by companies and can usually be accessed via a paid subscription.

1https://mqtt.org/
2https://github.com/ethz-asl/kalibr

https://mqtt.org/
https://github.com/ethz-asl/kalibr
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min Sattelites max Base distance[km] Accuracy[m]

GPS 3-4 X 10
DGPS 4 100 1

RTK Float 5 10 0.20
RTK Fixed 6 10 0.02

Table 4.1: GPS comparison and accuracy requirements: different GPS systems with given
requirements of at least shared satellites in view, maximal distance to base station and consequen-
tial accuracy to be achieved.

However, there is also the option to set up a base station on your own quite easily with

ublox receivers [66].

Nevertheless, we have observed some relevant properties when using GPS in practice.

High accurate position estimates can be achieved using cheap patch Antennas. Drawbacks

using cheaper hardware are, RTK fixed mode is hardly achievable when moving and require

ground planes for better signals. Ground planes are metallic discs with a diameter of at

least 14 cm (the more, the better). Mounting such planes onto a mobile setup decrease

handiness and limits mobility, since it should always stay in a rather horizontal position.

Furthermore, time to accomplish RTK fixed mode is significantly longer. Helix antennas,

which are commonly used with drones, work best in free moving setups. As they are also

used in our current setup, shown in Figure 4.1. The distance to the reference station has

a direct impact on the time required to reach RTK fixed mode. Additionally, weather

conditions also play a role in the accuracy of position estimation. Our observations have

shown that RTK positioning can be unstable during cloudy or rainy weather conditions,

even when using a high-quality antenna. This is probably due to variations in signal

distortion at the rover and the base stations. Minimizing the distance between rover and

base is recommended to reduce the influence of weather conditions on position estimation.

Best practice for achieving RTK fixed mode is to initially place the equipment in an open

space, such as a parking lot, for a few minutes prior to starting actual work. To maintain

fixed mode, it is important to perform smooth motions and ensure that the antenna has

a clear view.

4.1.3 Unity Integration

Unity is used as rendering Engine. Cross-platform support and integration of device-

specific AR APIs enable flexibility in device selection. Building Localization on top of

Unitys ARFoundation simplifies maintainability and ensures best performance, because

the local tracking will always be up-to-date. The goal is to implement an application

capable of fusing drift prone local tracking with global positioning provided by the CapsLoc

device.



26 Chapter 4. Setup Implementation

North

Unity Scene

AR Origin

Camera

North

Unity Scene

AR Origin

Camera

Root Object

(a) local tracking (b) initialize root Object

Unity Scene

AR Origin

Camera

North

Root Object

Geo-referenced 
Visualizations

North

Root ObjectUnity Scene

AR Origin

Camera

Root Object

Geo-referenced 
Visualizations

(c) add geo-referenced objects (d) north correction

Figure 4.2: Illustration of the fusion algorithm broken down into 2D Top view to present it in a
more understandable way. Coordinate systems are shown by two arrows, consistent line for north/y
axis and dotted line for east/x axis. The blue coordinate system is AR origin, which is the local
tracking origin. Orange is the current camera (user) position, moving inside the blue AR Origin
space. The green coordinate system (Root Object) is used to align local space to real world space,
which is represented in UTM. (a) Starting with local tracking in the scene. (b) RootObject is
initialized with current GPS position and aligned with current camera position. (c) Geo-referenced
virtual objects are added and placed as children of the RootObject. Here, buildings are displaced
due to north error given by the local tracking. (d) The Root Object is rotated to align with real
world north. Now geo-referenced visualizations align with the real world objects.

Fusion of Local and Global Positioning

The necessary steps to align both coordinate spaces are sketched in Figure 4.2 (a-d).

Since ARFoundation provides sandboxed tracking, we cannot directly integrate global pose

updates into the tracking algorithms. In Unity, there is a main coordinate space where
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GameObjects are placed. In addition, each GameObject has its own local coordinate

space. GameObjects can also be attached as child of other GameObjects, then they are

placed within the local coordinate space of the parent GameObject, where the parent

Object defines the origin. Local tracking origin (AR Origin) is initialized on startup and

cannot be changed. The Camera (current user pose) is a child of AR Origin and is moving

within this coordinate space (a). To fuse global positioning into local tracking space, a

new GameObject is introduced called RootObject. This Object is placed as child of the AR

Origin). To align global objects correctly into local tracking, the RootObject is aligned

with the current camera position (b). Therefore, the position of the RootObject is set to

the current Camera position and the latest global position of the CapsLoc system is saved

as reference position. At the time of this alignment process, the camera is at this known

global position. This allows placing geo-referenced objects in correct local distance to this

global reference point, since local and global difference is the same in reference to this

point (c). Furthermore, the RootObjects Y axis rotation (north) is set by the difference

of AR Origins Y (local tracking north) angle and the latest north estimation angle (d).

Step (c) and (d) can also happen in different order. New geo-referenced Objects can be

placed at any time as child of the RootObject.

As previously stated, this state of the system suffers from errors due to north estimation

via compass. Furthermore, the mapping of global and local pose is triggered by the user.

Hence, drift of local tracking has to be adjusted manually.

4.2 Enhancing Accuracy to enable in-field use

In this section, we will discuss strategies for enhancing the current experimental setup.

As previously stated, the reliability of compass based north estimation is limited under

certain conditions. Thus, GPS-based north estimation is implemented as a supplementary

method. Additionally, the ultimate goal is to achieve fully autonomous global localiza-

tion. Therefore, the global-local mapping component (Tracking Fusion) has been revised

and optimized. The data flow diagram in Figure 4.3 illustrates the integration of all

components used in the setup.

4.2.1 GPS Based North Estimation

The concept of GPS based north angle estimation is a widely used technique in the fields

of autonomous driving and robotics. Typically, this method utilizes a two-antenna setup

to calculate the bearing angle between them. In contrast to traditional two-antenna setup,

we present a single antenna approach utilizing the UTM coordinate system for north angle

estimation.
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Figure 4.3: This figure shows the dataflow diagram of the whole (upgraded) Setup. The two
Devices in the setup are on the left side the CapsLoc device (light blue) and on the right side
the smart device (green). CapsLoc App (blue) is hosting an MQTT Server (purple dashed) to
stream data between all parties. CapsLoc Firmware (purple) is responsible to collect data from
the sensors (white inside CapsLoc) and handle configurations. In the Unity Application (white
inside smart device) the CapsLoc Library (red) is responsible for communication with the CapsLoc
device via MQTT. Local tracking is provided by ARFoundation (yellow). The GPS Northing (grey)
component uses UTM position from GPS observations and local positions to calculate north offset
of the local tracking. The tracking Fusion Algorithm (turquoise) gathers local poses, poses from the
CapsLoc device and the north offset to manipulate the RootObject (orange) GameObject in the
Unity Scene (light green) to align local tracking with global tracking. The final result is accurate
visualization of geo-referenced Objects (light purple).

North angle calculation

In UTM coordinate space the Y-axis is aligned with true North. This enables the possi-

bility to directly calculate the north angle between two given points. The angle can be

calculated using trigonometric functions as shown in Equation 4.1. Depending on where

the second point is located in relation to the first point, the calculation is slightly differ-

ent. The four possible relations are sketched in Figure 4.4 (b). A right triangle is drawn

between the two points and either the X or Y axis. Within the triangle the asin of either

xi or yi (distance between both points on axis X/Y) and ci (euclidian distance between

both points) is used to calculate the angle between these two sides of the triangle. The

offset of the used axis to the positive X-axis, pointing towards north is added onto this

angle to get the final north estimation α.

α =


asin(x1c1 ) · 180π , if P1

asin(y2c2 ) · 180π + 90, if P2

asin(x3c3 ) · 180π + 180, if P3

asin(y4c4 ) · 180π + 270, if P4

(4.1)
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(a) Align local to true North (b) North angle estimation (c) Maximum error

Figure 4.4: (a) Local and global tracking north alignment: To align local tracking
north to true north, difference of north angles between ground truth of two GPS positions (β) and
corresponding local tracking positions (α) is used. (b) North angle calculation: This geometry
sketch exhibits the trigonometry to calculate north angle between two Points using UTM Y-Axis
pointing towards north. Depending on the section the second point is in, calculation differs as
shown in equations 4.1. (c) North estimation error: α is given by position estimation error
at both Points (P1 and P2) εGPS and the distance between both points.

Algorithm: In order to perform north angle estimation, a significant number of local

and global position pairs are required. Each pair consists of a GPS position in UTM for-

mat, as well as the position of the local tracking at that corresponding time. Both the GPS

position and the local tracking position are represented as two-dimensional vectors, with x

and y values. These position pairs are stored in an array (point pairs) for computations.

With each incoming GPS position, a new position pair is generated by com-

bining the GPS position with the most recent local position. Also, calculation of possible

angle corrections is initiated. By continuously performing these calculations, the total

computation load is distributed over multiple points in time, thus avoiding any potential

blocking of the main thread. The calculation of a single correction value is done as follows:

Two position pairs are selected and the North Angle calculation, as previously described,

is performed for each of the GPS positions and local positions. The angle between the

two GPS positions should correspond to the true north angle. Additionally, as illustrated

in Figure 4.4 (a), the difference between the two calculated angles should correspond to

the correction value that must be applied to align the local north to the geographic north.
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The accuracy of corrections is depending upon various factors. As depicted

in Figure 4.4 (c), smaller GPS errors lead to more accurate angle estimation. As such,

the use of RTK fixed GPS position is recommended. Additionally, the illustration

indicates that an increase in the distance between points results in a decrease in the

impact of GPS errors on angle calculation. Timing is also a crucial consideration, as

the frequency of local positioning is typically higher than that of GPS. As such, proper

time synchronization is essential, as poor timing can result in a misalignment between

local position and corresponding GPS positions, leading to errors in correction value

calculation. Additionally, the possible drift in local tracking should be considered too.

To minimize its influence, position pairs for calculation should not be too far apart in

both spatial and temporal distance.

When a new correction value calculation cycle is triggered, the algorithm

calculates all potential corrections between the newly acquired point pair and a subset of

point pairs selected from the point pairs array. These new corrections are added to

a list of all values calculated so far (correction values). The selection of point pairs

is determined by following properties: the maximum number of correction values to

be used, as specified by max corrections len which balances the trade-off between

accuracy and computational efficiency; the maximum number of point pairs to keep for

calculating the correction values, as specified by max comparable points, which limits

the number of calculations performed at each iteration; and the acceptable range of

distances between point pairs, as defined by min distance and max distance, which

addresses potential errors arising from both local tracking drift and GPS position

estimates. Additionally, the maximum time offset for point pairs to be retained for

calculations is specified by max time offset.

A final estimate of the angle correction is derived from the accumulated

correction values stored in the correction values list. These values form a normal

distribution, with a low standard deviation of a few degrees in optimal cases. To

eliminate outliers, values outside the first standard deviation are removed by sorting the

correction values list and discarding the first and last 15% of elements. The final

angle correction is determined by the mean of the remaining values. The settings that

yield optimal results are reported in Table 4.2.
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Condition Value

max corrections len 10000
max copmareable points 300
min distance 1 m, εmax = 2.3°
max distance 3 m, εmax = 0.8°
max time offset 20000 ms

Table 4.2: Specifications of the properties utilized for north estimation in this work. These
settings have been identified as optimal based on the results of our evaluations.

4.2.2 Continuous Drift Correction

Fusion of ARFoundation and CapsLoc tracking is primarily depending on accurate north

alignment. This alignment can be continuously refined through the incorporation of accu-

rate GPS positioning. The alignment process involves synchronizing the local and global

positioning of the device, which enables the use of UTM coordinate space for visualiza-

tions. LIDAR sensing allows for highly accurate ground estimation, eliminating the need

for precise height estimation of the device itself. The concept of alignment, as previously

described and illustrated in Figure 4.2, is solved using a root GameObject in Unity. The

rotation of this object is updated via either GPS-based north estimation or compass-based

estimation, depending on the availability of data. The root object is positioned at the cur-

rent AR Camera position, and the corresponding real-world position is saved as a reference

position. With the help of accurate GPS tracking, it is continuously checked whether the

local tracking is moving in the same way in the reference space. In cases where the dif-

ference between these two tracks exceeds a certain threshold, re-initialization is triggered,

the root object is repositioned at the current local position, and the reference position

is updated. To correctly place objects in this reference space, positions are calculated

through subtraction of the reference point, as given in Equation 4.2.

xdis = x− xref
ydis = y − yref

(4.2)

When re-initialized, local positions of the geotagged objects are not valid anymore and

have to be recalculated using the new reference position. Visual examples of this process

can be seen later on in the evaluation chapter.
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4.3 Evaluation of setup improvements

In this section, experiments performed with the improved setup are presented. The pri-

mary focus of the evaluation is on GPS-based north estimation, as the second part of

continuous drift correction is relatively straightforward.

4.3.1 GPS Based North Estimation

To evaluate the implementation of GPS based north estimation, movements were tracked

for different scenarios. To ensure that the evaluation was conducted in environments

that are representative of SUE construction sites, all recordings were obtained on surfaces

that are commonly found in urban environments, such as asphalt or concrete. In the

most favorable scenario, a continuous RTK fixed mode was present. Further experiments

with RTK float and local tracking without LIDAR sensor were performed. All data was

collected using the presented Unity approach, utilizing a tablet device in combination with

the CapsLoc sensor cube. North estimation was then performed offline to evaluate the

impact of different properties of the algorithm.

Records under the best conditions

In these experiments, the setup described in Section 4.1.1 was used. The utilization of RTK

fixed GPS positioning minimizes positioning error to 2 cm, thereby enabling the obtained

position estimates to serve as a ground truth measurement. As previously demonstrated in

Figure 4.4 (c), the accuracy of angle estimation is dependent on the positioning error and

the distance between two points. In theory, a distance of 3 m between two GPS positions

results in a maximum angle error of 0.8 degrees, satisfying requirements.

Best practice: As demonstrated in our experiments, the most favorable results are

obtained when the user performs straight and smooth walks over a distance of at least

8 m. This is in line with the typical length of excavation sites, and therefore this type

of movement can be performed in real-world scenarios. In the case of linear movement,

local tracking drift is not a significant concern, as local tracking tends to be consistent in

direction. This is because drift in the distance between two points does not affect angle

calculation. Figure 4.5 illustrates an example of an optimal north estimation movement.

In this calculation, a minimum distance of 1 m and a maximum distance of 3 m between

points were used. The histogram in Figure 4.5 (c) shows a first standard deviation within

the range of only one degree, indicating a highly accurate estimation. The theoretical

maximum error is given by 2.3 degrees with a distance of 1 m which can be seen in the

whole normal distribution in the histogram (b).
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(a) Position Tracks (b) full Histogram (c) first standard deviation

Figure 4.5: Best practice north estimation: These plots show an example where positions
from local and global tracking were recorded to evaluate the GPS north estimation algorithm. GPS
positions (red) are assumed as ground truth, for corrected local tracking (blue), due to their high
level of accuracy and use of north-aligned UTM coordinate system. Raw local tracking is visualized
in green (a). The North correction algorithm uses minimum distance of 1 m between two points,
yielding max error of 2.3 degrees, which can be observed in the histogram of all correction values
(b). A maximum distance of 3 m should yield a maximum error of 0.8 degree, which is almost the
case for corrections inside the first standard deviation (c).

How movements affect the result: The evaluation of various movements revealed

that straight walks show the best performance. Additional examples of this can be ob-

served in the top two Figures 4.6, which illustrates tracks of in the first row two linear

movements over approximately 10 m and in the second row a rectangular shaped walk.

These movements can be compared to walks around an excavation site. Furthermore,

movements over 10 m are no problem in outdoor applications. The correction histograms

show first standard deviation in the range of 2 degrees. Results from additional experi-

ments are presented in Table 4.3. In the case of random movements, the normal distri-

bution is significantly wider, with a first standard deviation distributed over more than

6 degrees. This is likely due to increased drift in local tracking. Nevertheless, the rota-

tional alignment remains reasonable. Additionally, a scenario involving very fast straight

movement was performed. Due to the limited number of positions, fewer correction values

were calculated. However, a first standard deviation in the range of 1.5 degrees was still

achieved. These results were obtained using the best currently available properties listed

in Table 4.2.

Is RTK float mode sufficient for north estimation?

Since RTK fixed mode cannot be achieved in all circumstances, experiments with less

accurate RTK float mode were performed. The setup was identical to that of the RTK

fixed mode experiments, but in these tracks, fixed mode was not achieved and the receiver

consistently operated in float mode. The maximum estimation error, given 20 cm GPS

positioning accuracy, is 21 degrees with a distance of 1 m and 7.5 degrees with a distance

of 3 m in theory. However, only the correction estimation histogram of the random walk

track, shown in the last row of Figures 4.6 (b), had a normal distribution exceeding 20
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(a) Position Tracks (b) full Histogram (c) first standard deviation

Figure 4.6: GPS-based north estimation experiments are illustrated. 2D positions in UTM coor-
dinates (Y-axis=North) are shown in (a) where red represents GPS positioning, green represents
original local tracking, and blue represents north-corrected local tracking. The distribution of
correction values is depicted in a histogram (b) and corrections within one standard deviation
are shown in (c). Linear movements with GPS RTK fixed positioning (2 cm accuracy) were per-
formed in the first two tracks, while the last two tracks were performed with RTK float mode. The
standard deviation in linear walk is sufficient for accurate north determination, while the broad
standard deviation in the random walk track does not ensure accurate north correction.
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degrees. The other tracks with linear movements had smaller maximum errors. Nonethe-

less, the rectangular track had a range of 6 degrees in the first standard deviation, as seen

in Table 4.3. Notably, the straight walk track (shown in the third row of Figures 4.6) and

the two straight motions track yielded a standard deviation of 3 degrees. Although the

entire normal distribution is wider than in RTK fixed mode experiments, the results are

still accurate enough for reliable north estimation.

Monocular local tracking

The final experiment involved mounting the CapsLoc sensor on a Samsung Tab6 and

utilizing the same Unity application for recording. However, since the tablet runs on

Android, local tracking was based on ARCore, which relies on a single RGB camera and

the device’s built-in orientation sensors. In this setup, the drift in local tracking was even

more noticeable during random motions. Nonetheless, best practice still yielded good

results. Figures 4.7 shows the recording of a linear motion, which showed a range of only

2 degrees in the first standard deviation.

Conclusions

Sparse local tracking drift leads to best results, particularly in terms of high accuracy

orientation estimation during linear movements. Initialization of rotation can be accom-

plished through a simple straight walk of 10 m. Excavations are typically of similar size,

making the application of best practice in real-world scenarios manageable. Virtual spray

marking can be initialized using compass north estimation and refined through GPS-based

estimation during movement along markings. Plausible results of the algorithm with both

RTK float and monocular-based local tracking further enhances its usability.

Performed Motion GPS Mode 1σ [°]
straight walk fixed <1

two straight motions fixed 2
rectangular walk fixed 3

random walk fixed >6
fast straight walk fixed 2

straight walk float ≈ 3
two straight motions float ≈ 3

rectangular walk float 5
random walk float >7

Table 4.3: North estimation results obtained from various movements and GPS fix conditions.
The first standard deviation represents the range of the mean within the 70th percentile. Results
with a value less than 3 degrees are considered as good estimates.
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Figure 4.7: This example was performed with monocular local tracking and GPS RTK fixed
mode. 2D positions in UTM coordinates (Y-axis=North) are shown in (a) where red represents
GPS positioning, green represents original local tracking, and blue represents north-corrected local
tracking. Plots (b) and (c) show the histogram of calculated correction values. (b) shows the
whole normal distribution, while (c) exhibits the first standard deviation. A variation of less than
2 degrees in the first standard deviation is sufficient for accurate north estimation.

4.3.2 Continuous Drift Correction

This evaluation examines tracking using the combination of north estimation and local

drift correction. The optimal setup is employed and tracks are recorded to assess not only

north alignment, but also the alignment of local and global tracking. A track featuring

circular motion and significant local tracking drift serves as an example to demonstrate

the effectiveness of the algorithm. This is illustrated in Figure 4.8, where the trigger for

drift correction is set to 0.5 m. The four plots depict four successive instances when drift

correction was activated. The red track represents GPS positions, serving as the ground

truth. The blue track represents raw local tracking positions, while the black track reflects

the positions after drift correction. The green crosses indicate the positions at which re-

initialization was triggered and served as the current reference position until the next

trigger point. As seen in the final frame (4), there is a high degree of overlap between the

corrected positions and the GPS positions.

The experiments demonstrate that the requirements outlined in Table 3.1

[R1] are met. This leads to high-accuracy tracking for geo-referenced applications. In

addition to applications such as spray paint marking, this capability also allows precise

3D reconstructions to tackle the problem of inaccurate utility documentation.
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Figure 4.8: These four plots illustrate the chronological progression (1-4) of continuous drift
correction applied to a track with substantial local tracking drift. The red points represent ground
truth GPS positions, while the blue points depict the rotation-corrected local tracking positions.
The green crosses indicate the positions used for re-initialization (drift correction), and drift cor-
rection is triggered when the drift exceeds 0.5 m. The black track subsequently represents the
drift-corrected local tracking. The final outcome (4) demonstrates a high level of alignment be-
tween the corrected positions and the GPS positions, indicating an accurate alignment of local and
global tracking.
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Semantic Segmentation using GIS Data

Contents

5.1 GIS Data API and 3D model creation . . . . . . . . . . . . . . . 39

5.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

In this chapter, a segmentation and fitting approach for identification of Utility Assets,

specifically pipes, in open excavation sites is presented. Initially, an interface is introduced

for the acquisition of GIS data, which is subsequently standardized for further processing.

This standardization is crucial for the alignment of segmentation results with the acquired

data and the generation of accurate 3D models, providing better understanding of the

excavation site for geo-referenced visualizations. The segmentation process is applied to

3D reconstructions of the excavation site, beginning at a user-specified starting point on

the pipe. This is done via image renderings along the pipe, resulting in the identification

of pipe center points. Since the segmentation only yields individual points and not a

subset of the entire 3D reconstruction, the alignment problem can be solved through a

simple least squares minimization. Furthermore, the GIS model can be directly aligned as

a polyline structure to the segmentation points. This eliminates the need to create a 3D

model explicitly for the alignment process.

5.1 GIS Data API and 3D model creation

The process of parsing Utility Asset documentation and 3D model creation is split into

two independent components. The first component, an adaptable data parsing compo-

nent, is required to handle non-standard data representation, which is then converted and

structured for further processing. The second component, an expandable module, allows

for the creation of 3D models in various styles and levels of detail.

39
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Vendor A Vendor A Vendor B

Figure 5.1: Comparison of three sections of GIS metadata (screenshots taken in QGIS). The
first two sections are from the same utility provider, but from different cities. Although the most
important values are equally labeled, documentation is not even standardized within the same
vendor. The third section shows documentation for the same utility type (water pipe) by another
vendor. The important values of pipe ID (yellow) and the diameter (red) are highlighted here.
Labels are not the same for different data provider.

5.1.1 GIS Data API

GIS data can either be predefined handcrafted plans in QGIS1 or streamed from a data

provider like ESRI2. However, pipe data is not provided in a standardized manner, varying

in format and accuracy depending on the facility provider. As such, a versatile interface

for data import must be implemented to handle different formats and data structures.

As seen in Figure 5.1, metadata is described differently by each provider. Pipes are

typically represented using polylines, which are connected series of line segments, with

each segment representing a line between two points. Some companies provide polylines

in 3D, others provide height information in separate files, while some do not provide height

information at all. Figure 5.2 illustrates our parsing pipeline, where different formats are
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Figure 5.2: This sketch illustrates the process of creating a model using GIS data, which is
provided in different formats (yellow) and includes polyline data for the pipes and associated
metadata. The height information is often provided separately and not integrated in the utility
documentation (red). The GIS Data Parser component (green) is responsible for parsing different
formats and the Pipe Data Handler (blue) converts the information into a unified format that
can be used for model generation. The height information is also interpolated to obtain valid 3D
polylines. The 3D Model Creator component creates geometries from this data.

1https://www.qgis.org
2https://www.esri.com

https://www.qgis.org
https://www.esri.com
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Pipe
Height Information

Figure 5.3: On the left is an extract from QGIS showing an excavation with overlapping GIS
data. The blue lines represent pipes and the pink points represent the given height information.
On the right, a plot of the same GIS data is shown, where individual pipes (with unique IDs) are
visualized in different colors. The red dots indicate points with given height information, while blue
dots indicate points for which no height information is provided. This plot represents the state of
the Pipe Data Handler before height interpolation. To enable 3D model creation, all points must
have appropriate height information.

read in the GIS Data parser, correctly assigned and passed to the Pipe Data Handler.

The Pipe Data Handler creates a unified structure from this information and generates

additional knowledge from the given data, which is needed for further processing. This

knowledge includes correct linkages between all individual pipes and to complete height

information throughout the entire structure.

GIS Data Parser

The focus of this component is on parsing data standards from different vendors. One

approach to achieve this is through the use of QGIS scripting to standardize different

formats, however, this requires the installation of QGIS and manual execution by the

user. As an alternative, we have integrated this functionality directly into the pipeline for

GIS data parsing and 3D model generation. Despite variations in overall data structure,

the placement of pipes is consistently represented as polylines in at least 2D (UTM)

space. To enable the creation of 3D models, it is crucial to correctly link metadata,

such as pipe radius, material, heights, and other attributes, which may not be labeled

uniformly. Additionally, height information may also be provided through a series of

single measurement points in an additional file or database table, as seen in Figure 5.3(a).

This information must be parsed and linked correctly to the corresponding polyline points.

This component loads pipe structures within a defined radius around a refer-

ence point. Polylines that only partially fall within the area of interest are cut off using

this circle. The polyline points are transformed from global UTM coordinates to relative

coordinates using the reference point. Metadata is parsed and collected in a dictionary

with standardized labels. Each pipe is then passed individually to the pipe data handler

as an array of points linked with their unique ID and additional metadata of interest.
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Figure 5.4: This Entity Relationship Diagram illustrates the connections within the data struc-
ture generated by the Pipe Data Handler. Each pipe is identified by a unique pipe ID and contains
pipe-specific metadata, such as radius, material, etc. Pipes consist of at least two and up to any
number of points. Each point must be part of at least one pipe, but can also belong to multiple
pipes, such as in the case of an intersection. Points also contain a 2D position and an optional
height. The points are linked to one another to represent the correct ordering. Therefore, each
point must have at least one neighboring point, but in the case of a crossing it can have any number
of neighbors.

If height information is not included in the metadata or polylines, a separate height

information file is parsed. Instead of polylines, single points are specified. The unique

pipe ID is used to correctly assign height measurements. The height points are then

passed on to the Pipe Data Handler.

Pipe Data Handler

The Pipe Data Handler generates uniform pipe structures for further processing. Data

structure is illustrated in Figure 5.4. Pipes contain specific metadata, including a unique

Pipe ID. Each pipe can have any number of points, but must have at least two. Points

have at least one neighboring point, and can be connected to multiple points to create

pipe structures. Points must be associated with at least one pipe. Branch points are

linked to all associated pipes. Points store their position as a 2D vector and their height

information, which is not mandatory and can be left empty initially. The links between

points beyond individual pipes enable traversal of the entire pipe structure, which is

necessary for height interpolation. The pipe structure is constructed incrementally by

successively adding individual pipes (from the GIS Data Parser), each consisting of an

array of points, a unique ID, and a dictionary of metadata. The aim is to create a link

between the individual pipes and to avoid duplicated 3D points. Therefore, before a

point is created, it is checked if a point from another pipe already exists at the same

position. A small epsilon (ε > 1cm?) serves as the maximum distance to identify point

matches. If the point already exists, links to the new pipe and neighboring points are

added. Height information, if available in a separate file, can be added individually

afterwards. In the best case, height measurements are assigned to a pipe using the

unique pipe ID, otherwise, all points must be searched to determine to which point the

height measurement belongs.
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At this stage, a fully linked pipe system is established. But in most cases,

only isolated points are provided with height values, as shown in Figure 5.3 (b).

Therefore, the remaining elevation values have to be estimated through interpolation.

The linked point structure is used to go through the pipe system using a recursive

algorithm, as outlined in Algorithm 1. The algorithm starts at any endpoint (p current),

with the parameter for the previous point (p prev) passed as a NULL value and

to interpolate passed as an empty list.

5.1.2 Implementation Details

All three components, GIS Data Parser, Pipe Data Handler, and 3D Model Creator,

are implemented using Python. For mobile operation, this system runs on a server and

provides 3D models through web requests. Since the GIS data is only available in the

shapefile format (ESRI data format), the Python Shapefile Library (PyShp)3 is used for

file reading and parsing. If data is provided through a database, the PyShp library is

replaced with appropriate database requests. The data is in a similar format as ESRI also

provides an online service.

5.1.3 3D Model Creation

By standardizing the received information with the Pipe Data Handler, we can generate

3D geometry. As previously stated, the goal is to make model creation as independent

and interchangeable as possible. To achieve this, we chose to implement the geometry

creation part using ESRI’s CityEngine4, a powerful tool for automatically generating

3D geometries from simple 2D or 2.5D data through procedural modeling. Rule files

determine how to generate 3D models from certain 2D/2.5D shapes. These shapes can

be given attributes, such as the radius of the pipes in our case. The rule files enable easy

exchange or extension of the 3D model generation. Additionally, CityEngine allows the

use of existing CAD models of the individual pipe parts for automated 3D geometry

generation, resulting in the most realistic model possible.

3https://github.com/GeospatialPython/pyshp
4https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
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Algorithm 1 Recursive height interpolation

1: function interpolate height(p current, p prev, to interpolate) . Point,
Point, List<Point>

2: if p current has height information then
3: if to interpolate not empty then
4: if to interpolate[0] has height and to interpolate[-1] has height then
5: Interpolate(to interpolate)
6: else
7: Set all Points in to interpolate to height of to interpolate[0]

8: end if
9: end if

10: clear to interpolate
11: end if
12: add p current to to interpolate
13: p neighbours ← neighbours of p current
14: if length of p neighbours == 1 then . p prev == p neighbours[0]

15: if p neighbours[0] has no height then
16: Set all Points in to interpolate to height of to interpolate[0]

17: end if
18: return . end of the recursion in this branch of the pipe structure
19: end if
20: for all p i ∈ p neighbours do
21: if p prev == p i then
22: Skip this Point . coming from this direction
23: end if
24: if p i is first neighbour then
25: interpolate height(p i, p current, to interpolate)
26: . Interpolation of this Branch is finished here
27: assert p current has a height value now
28: else
29: add p current to to interpolate . to interpolate is empty, p current

first point in next branch to interpolate
30: interpolate height(p i, p current, to interpolate)
31: end if
32: end for
33: end function
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// radius attribute, default value if not specified

attr radius = 0.4

@StartRule

Pipe-->//to align cylinder correct, GeometryScope is aligned to longest side

alignScopeToGeometry(yUp,0,longest)

center(xyz)

//cylinder rotated 90 deg because would go up not on ground

rotateScope(0,0,90)

//create cylinder along shape primitiveCylinder(sides,radius,height)

primitiveCylinder(32, radius ,scope.sy)

Table 5.1: Rule code for CityEngine used for creation of the simple cylindrical 3D models.

CityEngine is required to compile the rule files, but thanks to PyPrt5 it can be

executed directly from Python without the need of a CityEngine installation. For

model creation, polynomial shapes are generated, which are then passed to the PyPrt

library for further processing. To achieve this, all points in each pipe are iterated and a

rectangular 2.5D polynomials are created from every two consecutive points. All these

shapes and their attributes, such as the radius in this case, are passed to the library as

a list. Additionally, the compiled rule files to be used are specified, and an encoder is

selected. Several encoders are available, we use the OBJEncoder. Rules are linked to

individual polygons to determine how 3D geometry is created. In the simplest case,

the pipe consists of a set of straight polygons from one point to another, with only the

radius as an additional attribute. Therefore, more complex pipes are subdivided into

straight lines, and the 3D structure is created as a cylinder along the polygon with

the specified radius. The Rule file used for simple pipe geometry is illustrated in Table 5.1.

During initial tests, we observed that strange artifacts can appear when using real

UTM coordinates, which can become very large numbers, to create the models. This

can be seen in Figure 5.5 (top left). Therefore, it is recommended to work in a smaller

referenced area. Examples of generated 3D models are shown in Figure 5.5. The models

match well with the pipes in the referenced 3D scans. Height interpolation appears to be

successful, as all models match perfectly in height with the ground truth 3D scans. This

implementation satisfies Requirements [R2.3] and [R2.4], as specified in Table 3.1.

5https://github.com/Esri/pyprt
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Figure 5.5: Image (a) shows GIS data model created in UTM space where artifacts arise, while
on (b) the same data is used in a local space. Images (c-h) are examples withing the ground truth
dataset. Those excavations are part of the model shown in the top image. In Image (d) created
3D model is superimposed into the 3D scan. Images (e-h) are four sections from an excavation
where the generated model was superimposed on the 3D scanned data. The created geometry fits
over the real pipes. These examples show heights in the created model are correct, indicating that
height interpolation logic works.

5.2 Segmentation

The proposed segmentation approach utilizes image-based segmentation on renderings of

a 3D reconstruction obtained via virtual cameras. The segmentation results in image

space are then projected into the 3D space. The advantage of this approach is that 3D

representation format does not matter and the 3D scan noise is usually negligible. The

concept is illustrated in Figure 5.6, where the thick red line, L, represents a pipe in the

3D scene. Images are rendered from various poses around the pipe. Camera positions

are indicated by C1 and C2. Segmentation results in image space are denoted by both

red lines l′1 and l′2. Two arbitrary points on each segmented line can be taken for later

3D projection (x1, x2 and y1, y2). Rays from the camera position through the segmented
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Figure 5.6: The segmentation is performed in 2D image space, rendered from different views.
The left and middle sketch describe the geometry behind the approach and the right image is a
3D rendering to illustrate it in a real setup. From different camera positions (C1 and C2) the
pipe (L) is segmented in image space (l′1 and l′2). Rays from the camera through any point in the
segmented line of the image space (x1,x2,y1,y2) should hit the pipe in 3D space (X1,X2,Y1,Y2). We
use this fact to span a plane for each view over the camera position and the segmentation points
in the image plane (gray and light gray). Intersection of these planes yields a line in 3D space
representing the pipes center.

points in image space should pass through the real pipe in the 3D scene, represented by

X1, X2, Y1, and Y2. To project segmentation from image space to 3D space, planes are

created from each camera position and the corresponding segmented points in the image.

The intersection of these planes creates a line that should be in the center of the pipe.

5.2.1 Algorithmic Implementation

In order to implement our proposed segmentation concept, we describe the procedure in

nine distinct steps. Additionally, we provide insight on the implementation of the crucial

steps within the algorithm.

1. Start the segmentation process using a point on the pipe and the color of the pipe

(there can be several colors).

2. The next item from the list of positions to check (3D positions where a segmentation

cycle should be performed) is selected. If no estimate of the pipe direction is provided

or if the last estimation did not result in a correct segmentation, an estimate of the

pipe direction (Z/height-axis angle) is made at this stage. To achieve this, the pipe is

rendered from a top-view perspective and a rectangular fit is performed on the color

mask. The pipe heading angle is approximated by the rotation of this rectangular

fit.

3. With the direction estimate, six images are rendered from different perspective

around the pipe. The camera positions are determined based on the specified dis-

tance and angles ranging from -30 to 30 degrees.
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4. Pipes are segmented in image space for each perspective. If not at least 4 out of 6

views are successful, it is assumed that there is no pipe at the current position, and

the segmentation process for that branch is terminated. If the segmentation fails,

two retries are triggered. The first retry skips the current position and moves on

to the next position (+walk distance). If nothing is found, the current position is

reused, but the heading angle is discarded to reinitialize it. If still nothing is found,

the segmentation process is considered finished. If there are positions for possible

junctions, these are used to initiate new segmentation processes from these points

(back to step 1) in order to distribute points of different pipe branches into individual

groups.

5. In the contour image of the color segmentation, it is checked whether a junction

is present. If the junction is confirmed in 4 out of 6 views, a 3D position on the

outgoing branch is saved for later initialization of the segmentation of that branch.

6. Planes are calculated using two points on the segmented line in image space and the

corresponding camera position.

7. The planes are intersected to calculate a line in 3D space, the center point of the pipe

at the current segmentation position and a direction from that point are determined.

8. Based on the calculated new center point and direction, the next point for segmen-

tation is determined and added to the list of points to be checked. In the initial

step, the next point is used in both directions of the pipe, then in one direction to

ensure that nothing is checked twice.

9. Go back to Step 2).

Rendering

Rendering can be performed with any Rendering Engines. The principle is always the

same, but it is crucial to ensure that the camera position is calculated in the correct co-

ordinate system. In this work, Unity is used as an external rendering engine, and it is

important to note that Unity uses a left-handed coordinate system. The LookAt function-

ality is used to calculate the pose of the camera, which requires three parameters: Center,

the point where the camera should look, Eye, the position of the camera itself, and Up,

which describes the vector up in the rotation of the camera. The relevant segmentation

attributes that affect rendering are: image height and width, field of view, and camera

distance. The image size can be kept relatively small to improve the segmentation per-

formance in the image space. The field of view is somewhat dependent on the distance of

camera (Eye) to the pipe (Center). The closer the camera, the larger the field of view can

be. A significant advantage of the virtual 3D scan representation is that we can use near

and far clipping to selectively hide the background and foreground in the rendering. This
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way, only the pipe is usually rendered, and possible disturbances are avoided during the

rendering process. For the first directional estimation of the pipe, the first image is shot

from the top. Once the orientation is known, other images are taken in a quarter-circle

around the pipe.

Segmentation in Image space

Segmentation in image space is based on a color-based approach. First, a basic image

blur is applied to reduce potential noise. Color-based filtering is performed in the

HSV color space, as it is the most suitable. Depending on the quality of the input, a

simple range filter in the Hue range will suffice in the quick procedure. Otherwise, a

region growing algorithm is used, which segments regions based on the similarity of

adjacent pixels in a certain range of the given color. The region growing approach

only needs to segment a region where the starting point is given by the current

step in segmentation, either centered in the image or centered on the side of the

last segmentation position. Morphological transformations can be used to ensure a

closed segmentation region. The output of the color filter is shown in Figure 5.7 (a).

To initialize pipe heading direction, the top view rendering is used. It is assumed

that the starting position is at a straight section of pipe and not at an intersection.

After color filtering, a minimal rectangle is fitted around the outline of the pipe.

The angle between the rectangle and the bottom of the image is used as an estimate

of the pipe direction. This angle can now be used to walk along the pipe for segmentation.

The next step is to determine the center of the pipe. This is achieved by

using the distance transform function, which assigns grayscale intensities to pixels based

on their distance to the nearest boundary, as shown in Figure 5.7 (b). The brightest

values in the image indicate the center of the pipe. To ensure that the central estimate

is not affected by outliers or intersections, a binary filter is applied which only returns

true if the values above and below the center of the filter window are equal, as shown in

Figure 5.7 (c). This can be done because the pipe is assumed to be relatively vertical

in the image. The result of this filter is a vertical line that corresponds to the central

estimate of the pipe. A 2D line fitting algorithm can now be performed on this line

estimate (OpenCV provides this functionality), as seen in Figure 5.7 (d). Using the fitted

line in image space, any two points on this line can be used to construct a plane in 3D

space. In this case, we use the two points on the left and right edges of the image.

Reproject Segmentation to 3D space

The projection of image space segmentation into the 3D scene is achieved by defining

a plane through the camera position and two points on the segmented line in the

image. This process is repeated for all six rendered frames surrounding the pipe. The

intersection of all planes create a 3D line in the middle of the pipe.
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(a) color segmentation (b) distance transform (c) filtered (d) estimated line

Figure 5.7: Main steps of segmentation in image space: (a) Color based segmentation to mark
pipe area in the image. (b) Perform distance transform to highlight the middle part of the tube.
(c) Individual filtering to detect horizontal line. This is used to eliminate disturbance of junction
parts or other noise in the color segmentation. (c) Visualization of the segmentation result in the
given examples. The red lines are used for reprojection into 3D space. Three different scenarios
are shown, the top row depicts a straight pipe, the second row shows a T-junction, and the third
row depicts a slightly curved pipe part.

The initial step involves the computation of two rays starting from the cam-

era position (pcam) and passing through two points on the segmented line in image space.

To obtain a single ray, the image space pixels (px and py) are transformed into camera

space coordinates using equation 5.1. This calculation takes into account both the image

dimensions (width: wimg, height: himg) and the camera’s vertical field of view (fovv).

First the aspect ratio (aspect ratio) is calculated and then the position of the pixels in

the camera space (x and y).

aspect ratio =
wimg
himg

x = (2 ∗ px + 0.5

wimg
− 1) ∗ tan(

fovv
2
∗ π

180
) ∗ aspect ratio

y = (1− 2 ∗ py + 0.5

himg
) ∗ tan(

fovv
2
∗ π

180
)

(5.1)

The camera position (pcam) and the pixel position (ppixel) in camera space are repre-
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sented by equation 5.2. As the image plane is placed at a distance of one unit from the

camera, the z-coordinate is initialized to -1.

pcam =

0

0

0


ppixel =

 x

y

−1


(5.2)

The points in camera space are then transformed to world space using the camera view

matrix (Mview), yielding the camera world position (p′cam) and the pixel world position

(p′pixel). The ray (rayi) is obtained by subtracting these two points, as per equation 5.3.

Mview =

(
Rview tview

0 0

)
p′cam = Mview ∗ pcam
p′pixel = Mview ∗ ppixel
rayi = p′pixel − p′cam;

(5.3)

The next step is construction of a plane in 3D space, which can be represented by the

equation Ax + By + Cz = D. The calculation of this plane from the two rays and the

camera position (p′cam) is described in equation 5.4. The normal vector of the plane is

obtained by taking the cross product of the two rays (ray1 and ray2). This normal vector

provides the values of A,B and C in the plane equation. The value of D is calculated by

taking the dot product of the normal vector (ni) and the camera position vector (p′cam).

ni = ray1 × ray2

D = ni ∗ p′cam

Plane => Ax+By + Cz = D where ni =

AB
C

 (5.4)

The straight forward solution to cut two planes would be to equate their formulas 5.5.

A1x+B1y + C1z −D1 = A2x+B2y + C2z −D2 (5.5)

This solution provides the complete 3D line, however we are interested in a single

3D Point representing the center-point at the current segmentation step. An alternative

approach is to compute the direction of the line and a point on the line that has the

minimum distance from a given reference point using Lagrange multipliers[67]. In this

case, the two normal vectors of the planes (n1 and n2) and two points on the planes, in
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our case the camera positions (p1 and p2), are used to define the planes. The intersection

line of both planes is represented by a point (p) and a direction vector (n). As the point

(p) must lie on both planes, two Lagrange constraints are given by equation 5.6.

(p− p1) ∗ n1 = 0

(p− p2) ∗ n2 = 0
(5.6)

The point (p) should now be as close as possible to the reference point (p0). Then the

distance equation 5.7 is used for minimization in Lagrange multipliers.

‖p− p0‖2 = (px − p0x)2 + (py − p0y)2 + (pz − p0z)2 (5.7)

With the use of the objective function 5.7 and the two constraints 5.6, Lagrange

multipliers can be applied effectively. In this case, the midpoint between the two camera

positions (p1 and p2) is chosen as the reference point (p0), as given by equation 5.8.

p0 =
p1 + p2

2
(5.8)

These five linear equations represented in matrix form 5.9 follow, in which λ and µ are

the Lagrange multipliers of the two constraints. Solving this system of equations yields

the desired point p. 
2 0 0 n1x n2x
0 2 0 n1y n2y
0 0 2 n1z n2z
n1x n1y n1z 0 0

n2x n2y n2z 0 0




px
py
pz
λ

µ

 =


2p0x
2p0y
2p0z
p1n1

p2n2

 (5.9)

The direction of the intersection line is calculated using the cross product of the two

normal vectors 5.10.

n = n1 × n2 (5.10)

At each segmentation step, all planes are intersected and an average point and di-

rection are calculated. The point of intersection should represent the center of this pipe

section. The direction found is used for the next segmentation steps. This completes

the reprojection for this segmentation step. An alternative approach could be to use an

optimization algorithm to directly compute the optimal estimate of the intersection of all

planes, which may yield more precise results.

How to identify junctions

In reality, there are only two types of junctions, namely T-junctions and cross junctions.

Curves that are sharp in nature are also detected in this step. The detection of junctions
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is done by analyzing the contours of the colored mask.

1. Calculate contours of the color mask image.

2. Go through the upper part of the contour:

2.1 Search for a sequence of pixels with increasing y values until the maximum

image height (img height), followed by a sequence of decreasing y values until

the starting point of the initial increasing sequence is reached.

2.2 Upon identifying this pattern, mark it as a potential upward-facing junction. If

only increasing or decreasing part of the pattern was found, mark it as potential

curve and go to step 3.

2.3 Determine the midpoint between the last point of the increasing sequence and

the first point of the decreasing sequence, which serves as the center point of

the detected intersection.

2.4 Estimate the direction angle by calculating the angles using the first and last

points of the two sequences, and by taking the average of these two angles.

3. Go through the lower part of the contour:

3.1 Search for a sequence of pixels with decreasing y values until 0, followed by a

sequence of increasing y values until the starting point of the initial decreasing

sequence is reached.

3.2 Upon identifying this pattern, mark it as a potential downward-facing junction.

If only increasing or decreasing part of the pattern was found, mark it as a

potential curve.

3.3 If possible junction:

3.3.1 Determine the midpoint between the last point of the decreasing sequence

and the first point of the increasing sequence, which serves as the center

point of the detected intersection.

3.4 If possible curve:

3.4.1 Determine the midpoint between the last two points of the found sequences,

which serves as the center point of the detected intersection.

3.5 Estimate the direction angle by calculating the angles using the first and last

points of the two sequences, and by taking the average of these two angles.

This check is always performed in the initial top rendering. If at least one branch

is identified in this step, the process is also applied to all other views in the current

segmentation step. Figure 5.8 provides two examples of the segmentation process.

The four points (P1 - P4) depict the two identified sequences of increasing and

decreasing values in the contour that define a junction. Pmid is given as the midpoint
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α

β

P1

Figure 5.8: Two results of the junction detection algorithm. On the left image, a T-junction
is identified and on the right image, a sharp curve is detected. The blue colored segmentation
contours are traversed to identify sequences of increasing and decreasing pixel values. The starting
points (P1 and P2) and ending points (P3 and P4) of these sequences are used to compute a
new point (Pmid) and the heading direction (α+β2 ) of the outgoing pipe branch, which serves as
initialization for the segmentation of the outgoing branch.

between, whether P2 and P3 or P2 and P4, depending on the detected junction type.

The angles α and β indicate the angle at which the identified branch leaves the

pipe. After identifying possible midpoints in all images, they are projected into 3D space.

A ray (ray) is shot from the camera (p′cam) through the crossing point Pmid
as previously described in equations 5.1 to 5.3. By utilizing the Symmetric Form

representation of a line in 3D, as outlined in equation 5.11, we can compute a point on

the line at a specific height. In this form, the point on the line corresponds to (x0, y0, z0)

and the direction corresponds to (a, b, c). In our case, the point is the camera position

(p′cam) and the direction is the calculated ray (ray).

x− x0
a

=
y − y0
b

=
z − z0
c

(5.11)

Using the previously estimated height of the current segmentation step, a point is

calculated on the ray up to this height 5.12. This point should represent the midpoint in

the intersection found.

y = centery where y is height axis in unity

x =
y − p′camy
rayy

∗ rayx + p′camx

z =
y − p′camy
rayy

∗ rayz + p′camx

(5.12)

The final point in 3D space is computed as an average of all the points calculated from

the various camera positions. The calculated direction angles of the identified intersection
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are also averaged. These values are used to initialize the segmentation algorithm for the

outgoing pipe branch. In this case, the heading estimate for the initial top rendering is

already known, and the direction from which the intersection originates is also provided,

allowing the segmentation process to proceed in a single direction.

Software tools

The segmentation is implemented as a stand-alone C++ library. As external libraries

OpenCV6 is used for processing image data and RapidJson7 for parsing input and return

values. Additionally, two implementations of rendering are available. The first option uti-

lizes Open3D8 for background rendering, which requires the use of Open3D as an external

library. The second option is the possibility that rendering is done by the application

calling the segmentation. In this case, images are requested from the library via callbacks.

The latter approach has the advantage of not requiring a separate render platform if the

calling program has already loaded the 3D model.

Unity Integration

For the implementation of segmentation in Unity, the potree Unity library 9 is used to

represent pre-recorded point cloud data. However, since the segmentation is performed in

image space, the representation of the 3D data can be managed at will. Unfortunately,

the option of obtaining 3D data directly from the LIDAR sensor is currently not

straightforward. In the current state (iOS 16), it is only possible to acquire depth data

without associated color information. While real-time meshing is available, it is not

textured at all. There are apps available in the store that enable textured 3D scanning

with the LIDAR sensor (e.g., 3D Scanner App 10), but implementing this functionality in

your own Unity app would require additional development effort.

The interaction of the segmentation library and Unity is done via a callback

from the C++ level. The segmentation script is assigned to its own GameObject. During

initialization, the GameObject creates a new camera with the desired parameters for the

segmentation, such as the vertical field of view and the near and far clipping planes. To

share image data with the C++ library, a byte array of size img width * img height

* 3 (RGB) is created and the pointer to the array is shared. Additionally, a rendering

function is specified at Unity level and passed as a function pointer to the C++ level.

The segmentation process is executed as a separate thread to avoid blocking the main

Unity thread. The RenderCallback is not called within the main thread, but Unity

6https://github.com/opencv/opencv
7https://github.com/Tencent/rapidjson
8https://github.com/isl-org/Open3D
9https://github.com/SFraissTU/BA_PointCloud

10https://3dscannerapp.com/

https://github.com/opencv/opencv
https://github.com/Tencent/rapidjson
https://github.com/isl-org/Open3D
https://github.com/SFraissTU/BA_PointCloud
https://3dscannerapp.com/
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(a) Top View (b) Side View (X-Axis) (c) Side View (Y-Axis)

Figure 5.9: These are three screenshots of a segmented Point Cloud in Unity. Segmented mid-
points are visualizes as white Spheres. The samples show results from all three Axis, (a) Top view,
(b) X-Axis, (c) Y-Axis (in real world, but actually Z-Axis in Unity)

only allows the main thread to manipulate objects in the scene or render an image.

Therefore, moving the camera and rendering the image must be done in the main thread.

So there must be a synchronization between the main thread and the segmentation

thread. This is achieved by using two action queues and an EventWaitHandle (both .Net

components). One queue is processed in Update and one in LateUpdate. Transformation

work packages are processed in Update and rendering in LateUpdate. This has the

advantage that in LateUpdate all transformations in the scene have definitely already

been completed. When the RenderCallback is fired, it pushes a camera transformation

work package to the first queue and then waits using EventWaitHandle(WaitOne(int

millisecondsTimeout)). In the Update function of the main Unity thread, the

action queue is processed. When a camera move has been made, the image rendering

workpackage is pushed to the second queue. So in the next LateUpdate call, an image is

rendered, the image data is written to the byte array, and then the wait state is resolved

by EventWaitHandle(ewh.Set()). This allows the segmentation thread to continue

with the new image data. When the segmentation is completed, the library returns a list

of center points. Figure 5.9 shows an example of the segmentation result in the Unity

implementation.

5.3 Fitting

The goal of fitting is to align displaced GIS data with the segmented points. This is

achieved by solving a least squares minimization problem, where the objective is to mini-

mize the distance between individual segmented points and the 3D polylines provided in

the GIS data. As a result, a transformation matrix should be obtained, which moves the

model to the segmentation points.

Distance Calculation

The minimum distance between the segmented point (yi) and a polyline segment (x1 to

x2) can be calculated by constructing a triangle between the three points in 3D space, as
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(a) cross product correspondence (b) distance to segment

Figure 5.10: Figure (a) is an illustration of the correspondence between the length of the cross
product and the area of the parallelogram. (b) Calculation of the distance between a segmentation
point (yi) and a polyline segment (x1 to x2). Depending on whether the point is inside (green point)
the space of intersection of two spheres given by the ends of the segment, or outside (red point),
the distance (green) is given by the height inside an extended triangle or the distance between two
points. The illustration is presented in 2D space for better visualization of the triangle formed by
the three points.

illustrated in Figure 5.10(b). The distance from point yi to the line defined by points x1
and x2 can be determined by calculating the triangle height. To calculate the area of a

triangle in 3D space, one can use the fact that the normalization of the vector product

between two vectors corresponds to the area of the parallelogram spanned by those two

vectors. This fact is illustrated in figure 5.10 (a). Halving this area gives the area of the

triangle (A). Once the area of the triangle is known, the distance (dline) from yi to the

line can be calculated, as stated in equation 5.13.

dline = 2
A

|x2 − x1|

A =
|(x2 − x1)× (x1 − yi)|

2

dline =
|(x2 − x1)× (x1 − yi)|

|x2 − x1|

(5.13)

The distance shown in this context refers to the direct distance from a point to the

line passing through the two endpoints of a segment. It should be noted that a point

that is not situated between these two points, as illustrated in Figure 5.10(b) with the

point y2, would not yield the distance to the segment, but rather to the line. In order to

determine the minimum distance to the segment (dsegment), it is necessary to take into

consideration three distinct cases, as schown in equation 5.14. We define that a point (yi)

is situated between the segment points if it falls within the intersection of two spheres,

with the segment endpoints (x1 and x2) serving as the midpoints. The radius of these

spheres is equivalent to the distance between the two endpoints (|x2 − x1|). In the event
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that the point is located outside this intersection, the distance between the point (yi) and

the closest segment endpoint (x1 or x2) is used as the smallest distance. This decision is

highlighted in green in Figure 5.10 (b).

dsegment =


dline, if |(x2 − yi)| < |(x2 − x1)| and |(x1 − yi)| < |(x2 − x1)|
|x2 − yi|, else if |(x2 − yi)| < |(x1 − yi)|
|x1 − yi|, else

(5.14)

Points that are situated between the segment points, yet outside the spheres are as-

signed a greater distance than the actual shortest distance. This can be interpreted as an

added penalty in the least squares problem.

Implementing Least-Square Fitting

The fitting process is integrated into the C++ library for segmentation. Google’s Ceres

Solver11 is used to solve the least squares minimization. The AutoDiffCostFunction is

employed as the cost function template. This way, derivatives are calculated by Ceres.

The parameters for the cost function include a 3D segmentation point and a pointer to

an array of 3D model polyline points, along with the number of segments in the polyline.

The template only requires implementation of the operator() function, which, in this

case, takes in rotation and translation parameters and calculates the residuals. Rotation

and translation are modified by Ceres solver during the minimization process. The

residuals are the minimum distance between the segmented point and any segment of

the polyline. To compute the residuals, all segments are iterated through, translated

according to current rotation and translation values, then distance from the point is

calculated as previously described. The smallest distance found during this iteration is

defined as the residual.

The Ceres problem is constructed by iterating over all segmentation points

and adding a new block to the problem via AddResidualBlock, using the standard

squared loss as loss function. All blocks share the same reference to rotation and

translation. Both rotation and translation are initialized with 0 values. If specified,

any of the parameters can be fixed, e.g. if only the translation is to be calculated. A

dense Cholesky factorization normal equations approach is selected as the solver type

(SPARSE NORMAL CHOLESKY).

11http://ceres-solver.org/



6
Evaluation of Segmentation and Fitting

This chapter deals with evaluation of the segmentation and the fitting approach. First,

the segmentation accuracy in a given dataset is evaluated against the ground truth. The

alignment approach is then tested with synthetically generated data based on GIS docu-

mentation. Finally, the combination of segmentation from the given dataset and fitting

the segmentation to ground truth data is analyzed.

6.1 Segmentation

First, the given data set containing of 3D point coulds of excavations and corresponding

(ground truth) GIS documentation is discussed. It is explained how ground truth data are

generated. Next, problem cases encountered during the evaluation of the segmentation

algorithm are pointed out and strategies to overcome them are discussed. Finally, the

segmentation is evaluated against the ground truth.

6.1.1 Ground Truth Data Analysis

We have a limited number of 3D scans with GIS data available, consisting of 30 photogram-

metrically captured 3D reconstructions, all of which are limited to water pipes only. All

types of pipe structures are listed in Table 6.1. Simple straight pipes or T-junctions are

common in excavations, while curves, fire hydrants, or S curves are less so. However, our

data set is evenly distributed. Figures 6.1 show different examples of given pipe structures.

Different Pipe Structures

Straight Pipe T Junction (Double T)

Curved Pipe S-Curve Part

with Fire Hydrant without Fire Hydrant

Table 6.1: Listing of the different pipe structures which are available in the scenes.

59
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a b c

d e

f

Figure 6.1: Examples of different pipe structure setups given in the 3D cloud dataset. (a) is a
double T-junction with fire hydrants on both junctions. (b) a straight pipe ending in a fire hydrant.
(c) is a straight pipe with fire plug. (d) a T-junction. (e) shows a curved pipe example with two
45 degree curves with a fire hydrant inbetween. (f) is a big Junction with a small S shift, a fire
hydrant and a T junction.

The ground truth data provided is not always precise. In the field of SUE, errors

within 20 cm are considered acceptable. However, for the purpose of evaluation, highly

accurate ground truth is required. Some of the data is already well aligned, but others

require improvement. An example of such GIS data can be seen in Figure 6.2 (left). Since

it is already quite well aligned, ICP can be used for registration in such cases. However,

ICP still has some limitations due to the presence of noise in 3D scan data. With ICP and

some manual pre-processing, 3D models can be registered with high accuracy, as shown in

Figure 6.2 (right). GIS data correction was applied to all data to create sufficient ground

truth. In most cases, a height shift of approximately the radius of the pipe was observed.

This is likely due to the fact that measurements were taken at the top of the pipes and
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Figure 6.2: The left side shows given ground truth data. Top two screenshots are visualized
pipes (red) in the corresponding 3D scan and the bottom left plot is a segmentation outcome (blue
marks) compared to the given ground truth (red). After fine-tuning of given data, the new aligned
ground truth is shown on the right side. Top two right screenshots are visualized pipes (green)
in the corresponding 3D scan and the bottom left plot is a segmentation outcome (blue marks)
compared to the updated ground truth (green). Given ground truth is good enough for typical
SUE usecases, but not precise enough for evaluation of a segmentation algorithm. The updated
data should fit well enough for evaluation.

taken directly. During this process, it was also noted that ICP introduces the largest error

in height estimation, due to the relatively flat reconstruction of pipes in 3D space.

6.1.2 Findings during testing on different 3D data

A number of problematic scenarios emerged during the evaluation. Fire plugs moving

towards the camera affect the spatial segmentation of the image. For straight pipes,

they are usually not a big deal, if so, just the segmentation around can be a bit worse,



62 Chapter 6. Evaluation of Segmentation and Fitting

(c) (d) (e)

a b

c d e

Figure 6.3: Poor segmentation examples, as seen in Unity screenshots showing 3D scan with
segmented points represented as spheres. Scene (a) shows an undetected intersection, where the
foreground crop causes the junction to go undetected. Figure (b) depicts larger errors around the
fire hydrant. Figure (c) shows a fire hydrant angled rather than mostly straight, being wrongly
detected as a pipe. Figure (d) illustrates an intersection that is not detected due to the presence
of a fire hydrant. Figure (e) depicts a detected junction but poorly segmented branch, where
the combination of poor 3D reconstruction and a steep slope causes issues for the segmentation
algorithm.

as shown in the Figure 6.3 (c). But they can interfere with the correct detection of

branches, or if they rise a little obliquely, they can themselves be segmented as part

of the pipe. These cases can be seen in Figures 6.3 (c and d). Furthermore, limiting

the culling space (near and far clipping), which actually reduces noise, can also be

problematic. For example, it prevents the detection of the T-junction in Figure 6.3 (a).

It also causes problems with very steep pipes as in Figure 6.3 (e). It should also be taken

into account that we assume that pipes run rather vertically and do not have too steep

slopes. Nevertheless, better reconstructed (and also thicker) pipes with a slope of about

45 degrees are segmented perfectly in another scene (See Figure 6.2 (bottom)).



6.1. Segmentation 63

z [m]

0.60.40.20.00.20.40.6

y [m
]

0.6
0.4
0.2

0.0
0.2
0.4
0.6

x 
[m

]

0.6
0.4
0.2
0.0
0.2
0.4
0.6

segmented Points
3D Model ground truth

segmented Outliers

Figure 6.4: In this example, a fire hydrant is incorrectly segmented as part of the pipe structure,
as seen in the Unity screenshot on the left and the ground truth comparison on the right. The
left image displays segmentation points as spheres and corresponding points on the right plot are
marked in blue/red. This can occur when the hydrant is not oriented vertically, but at an angle.
Points where the vector from the previous segmentation point to the current one shows the highest
value in the up axis are classified as outliers (red).

To reduce the impact of poor segmentation on fire hydrants, points with steep slopes

relative to the previous point are treated as outliers. As demonstrated in Figure 6.4, points

whose direction vector has a gradient of more than 60 degrees from the previous point are

considered outliers. Inaccurate segmentation around fire hydrants on straight pipes can

be neglected, because the few smaller outliers should not cause any major problems in the

fitting process. In an attempt to relax the intersection detection properties, many incorrect

intersections were classified, so this is not adjusted. For now, to solve this problem, we

simply choose a second starting point on the adjacent branch and segment the two pipes

independently.

Segmentation property selection: Empirically, we found an image size of 160x120

most suited for the segmentation approach. This size allows for effective segmentation

while also ensuring faster processing of images. A walk distance value of 0.2 m or 0.15

m is typically appropriate. However, too large steps can result in missed junctions and

more points are beneficial for the fitting algorithm. On the other hand, smaller steps also

decrease the efficiency of the segmentation process, as more points need to be segmented.

The camera distance (cam distance) depends on the scene and should take into account

the radius of the pipes, with thicker pipes requiring a larger distance. A distance of 0.6 m

has been found to be suitable. The camera’s field of view performed well at 40 degrees,

but this value should be adjusted according to the camera distance, with a closer distance

often requiring a wider field of view.
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6.1.3 Distance based Evaluation

To measure the accuracy of the segmentation, the distance of the segmented points from

the ground truth is used. The distance is calculated as described in Section 5.3. Each

segmented point is thus evaluated based on its distance to the ground truth. Figure 6.5

provides an example of point distance calculation.
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Figure 6.5: These examples visualize the point-to-model distance evaluation. For the evaluation
of the segmentation algorithm, the shortest distance (red dotted) from the segmented points (blue)
to the ground truth model (green) is calculated. Both plots show segmentations on 3D scans of
the previously described data set.

All existing excavations were segmented for evaluation. Each excavation has been

initiated from at least two different start-points. The segmentation algorithm parameters

have been slightly modified for some scenes, but are generally used as described above. All

individual segmentation points were stored and then evaluated against the ground truth.

The results are shown in Table 6.2. At evaluation time different scenes are subdivided to

see if different pipe structures lead to different results. For a better overview, the results

are also visualized as a boxplot in Figure 6.6. As already mentioned, incorrect height

segmentations are already filtered out at this stage. Table 6.2 presents the average and

maximum values for all segmentation points, as well as the average, median, and maximum

of the best 98% to exclude outliers. The results indicate that the errors tend to be less

than 5 cm, which is considered sufficient for reasonable segmentation. The boxplot shows

that the maximum error in all configurations is less than 10 cm, and there are only a

few outliers above that. These results fulfill requirement [R2.1]. However, the problem

cases mentioned in the previous paragraph should be examined more closely in order to

eliminate them as far as possible.
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all values best 98%

Scene Type # Avg. [m] Max [m] Avg. [m] Median [m] Max [m]

Straight Pipe 10 0.039033 0.300554 0.031225 0.028427 0.096917
T Junction 18 0.034915 0.273999 0.028473 0.024416 0.099826

Curve 2 0.056413 0.112391 0.053401 0.051858 0.107196
w. fire hydrant 17 0.035632 0.300554 0.028870 0.024108 0.100664

w/o fire hydrant 13 0.042254 0.173779 0.037045 0.032090 0.096917

Overall 30 0.036906 0.300554 0.030443 0.026050 0.100664

Table 6.2: Evaluation of the accuracy of the segmentation algorithm. The distances of the
individual segmentation points to the ground truth model are shown in this table. Grouped in
the different pipe structure configurations available. Segmentation was performed at least twice
per scene and the number of available scenes is provided in column two. The results indicate an
overall segmentation accuracy of less than 5 cm, with maximum errors at less than 10 cm. Larger
errors are only observed as outliers. The curved dataset has the largest median error, which may
be attributed to the small sample size.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Point to Model Distance [m]

Overall

w. fire hydrant

w/o fire hydrant

T junction

Curve

Straight Pipe

Distance of Segmentation Points to Ground Truth

Figure 6.6: The evaluation shows that the different pipe structure setups have similar errors,
suggesting that the structure does not affect the accuracy of the segmentation. The Curve scenario
appears to have a slightly larger error, but it must be noted that it is based on only two scenes,
which reduces the strength of the conclusion. Overall, the mean error is around 3 cm and more
than 75% of all segmentation points have a distance from the ground truth model of less than
5 cm. When outliers are excluded, the errors are clearly below 10 cm, which is within the desired
range.
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Figure 6.7: The synthetic input for evaluation is created by sampling points (blue) along the
ground truth model (green) and applying Gaussian noise to simulate segmentation error. The
model is transformed by random [R|t] to simulate model displacement (red).

6.2 Fitting

The evaluation of fitting is divided into two parts: Evaluation on synthetic data and on

real segmentation data. First, using synthetically generated data to test it independently

of the segmentation algorithm. Second, the combination of segmentation results on the

ground truth dataset from the previous chapter is used to evaluate the fitting approach.

6.2.1 Experiments on synthetic Segmentation Points

The GIS Data API is used to retrieve pipe data. Using this pipe structure, points are

sampled along the pipes at a specified frequency (sample distance, which is the equivalent

in synthetic data generation, to walk distance in the segmentation algorithm). Gaussian

noise (σ = 0.1m) is applied to the sampled points to simulate the inaccuracies of the

segmentation algorithm. The pipe structure is then offset with arbitrary transformations

([Rtrue|ttrue]) to simulate the disalignment of GIS data, as illustrated in Figure 6.7.

Using the sampled points and the displaced pipe structures, the fitting algorithm is

executed. The resulting transformations ([Rres|tres]) can be compared to initial transfor-

mations for displacement to estimate the accuracy of the alignment result 6.1.

Rerror = Rtrue −Rres
terror = ttrue − tres

(6.1)

Another indicator for evaluating the result is the distance between the segmentation

points and the line segments. The average distance of all points should be similar to the

applied noise (σ ≈ avg distance). In fact, it should be smaller. As the points can also be

moved along the pipe after the noise is added, this does not increase the distance to the

line segment. The error from the final step of the least-squares optimization can be used

as the distance metric.
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Rotation [°] Translation [m]

Axis Minimum Maximum Minimum Maximum

x -2 2 -2 2
y -5 5 -2 2
z -2 2 -2 2

Table 6.3: In order to evaluate the performance of the fitting algorithm, a benchmark dataset
is generated by applying random transformations within predefined bounds to the ground truth
data. Bounds for translations are determined based on observations of real-world displaced GIS
documentation. Assuming potential edge cases, we cover more rotational displacement variance
than would be anticipated in real data because rotational displacements are not as significant in
real data. This allows for a more comprehensive assessment of the algorithms ability to handle
rotational alignment.

To use the pipe structure in the evaluation, we draw from ten random junc-

tions with a radius around the central node of 7 m. The segmentation points are

simulated as previously described and the pipe structure is randomly transformed to

generate displacement as given in Table 6.3.

These ranges are realistic deviations that can be expected in real excavations. This is

repeated many times to obtain results to evaluate the quality of the fitting approach.

Only pipe constructions with a junction or significant directional change are used in this

experiment. This is because there is no unique solution for the alignment process of a

line in 3D space. The rotation along the line cannot be defined unambiguously.

During the evaluation, we noticed that configurations with one branch, in

which the outgoing branch is represented by only a few segmentation points, often failed

in the rotation estimation. Such a case is illustrated in Figure 6.8 (a). The translation

estimate is good, but there is a large error of almost 90 degrees in the X-axis rotation

correction. The problem is probably that the four points of the outgoing branch are

treated as outliers during the optimization process. One solution is to attach the

fitting twice. During the first pass, the rotation is fixed and only the displacement in

translation is calculated. This translation serves as an initialization in the second pass.

This procedure fixes the rotation error as shown in Figure 6.8(b).

If the initial fitting results in an average distance greater than 0.3 m, or a rotation

error greater than 5° in any of the x, y, or z axis, then the fitting algorithm will be

re-executed using the two-step approach. The overall results, as described in Table 6.4,

show no rotation errors greater than 5°. This indicates that reinitialization can effectively

eliminate such poor fits.

With this change, we performed an evaluation over 1000 random samples with a

sample distance of 0.3 m. The results are listed in the top half of Table 6.4. The

results are split into two parts, first all experiments including the problematic junction
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Figure 6.8: These plots exhibit the fitting results, where the red lines represent misplaced 3D
polylines, and the blue markers are simulated segmentation points. The green line represents the
corrected pipe model, using the transformation [R|t] calculated in the least-squares minimization
process. Plot (a) shows one run where rotation and translation are calculated simultaneously. This
leads to an error in this example with only four samples on the short side branch. In Plot (b),
this estimation was done in two runs. First, only translation was calculated and used to initialize
the translation error in the second run. The second run then performed optimization on both
translation and rotation variables.

(with edge case) and second, these experiments are omitted (w/o edge case). The average

distance between sample points and the pipe line segments is smaller than the σ of the

Gaussian noise, indicating a good fitting result. The maximum error of almost 5 degrees

on the X-Axis estimates indicates that there is still a problem with a few points on a side

branch. Since only 4 points do not contribute significantly to the overall distance error

used in the optimization process, we must accept this limitation. The median translational

error is less than 0.05 m for both data sets, and the median rotational error is less than

0.3 degrees in both cases. Maximum errors have higher peaks in the X-Axis for both data

sets. These outliers probably come from the fact that the pipes in our data tend to be

oriented along the X-Axis. Thus, junctions with few data points on the adjacent branch

(as described before) are not weighted enough in the alignment process. Since these points

could also be outliers, it is not feasible to increase the weighting of such points.

Further experiments, with a three times higher sampled point frequency

(sample distance = 0.1 m), are shown in the lower half of Table 6.4. Results indicate

that, on average, the rotational error is almost halved. However, notable outliers remain

in the X-axis rotation. Translation error is also reduced, but only slightly, which doesn’t

make a significant difference. A direct comparison of the two evaluations is shown in

Figure 6.9. The improvement in the accuracy of rotation estimation is evident, whereas
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Rotation [°] Translation [m]

Axis Median Max Median Max
sa

m
p

le
d

is
ta

n
ce

=
0.

3m

ed
ge

ca
se

Avg. Distance - - 0.069825 0.088471
error (x) 0.279028 4.546382 0.037170 0.238620
error (y) 0.107049 0.571547 0.014570 0.105548
error (z) 0.109813 1.490714 0.038234 0.217004

w
/o

ed
ge

ca
se Avg. Distance - - 0.070222 0.085800

error (x) 0.170775 1.215341 0.038621 0.238621
error (y) 0.094429 0.536870 0.013768 0.068598
error (z) 0.097739 0.675852 0.039110 0.200522

sa
m
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d
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n

ce
=

0.
1m

ed
g
e

ca
se

Avg. Distance - - 0.071563 0.079621
error (x) 0.121080 2.241106 0.033723 0.178539
error (y) 0.054118 0.546967 0.011802 0.069970
error (z) 0.062881 1.442006 0.033414 0.182977

w
/o

ed
ge

ca
se Avg. Distance - - 0.071636 0.079161

error (x) 0.090692 0.822003 0.033285 0.178539
error (y) 0.049876 0.466418 0.011569 0.062050
error (z) 0.058663 0.626382 0.034008 0.174351

Table 6.4: Result of four evaluation passes. The upper two were performed with synthetic
segmentation points at a sample distance of 0.3 m and the lower two at 0.1 m. The two scenarios
are both divided into one run with and one without the problematic junction (edge case). The
rotation errors in the examples with the problematic junction are higher, because few samples are
on the outgoing branch. With a higher sample rate and thus more points on the branch, this error
decreases. Overall, median errors are more than sufficiently small enough. Here it is noticeable
that with the higher sample rate the rotation errors are almost halved, while the translation error
is not significantly smaller. It is also noticeable that the translation error on the Y (height) axis
is clearly the smallest in each scenario. This is probably due to the fact that the pipe structures
almost lie on a flat surface and therefore the Y value is very similar in all samples.

the improvement in translation estimation is minimal. Overall, it can be seen that the

estimation error for rotation can be determined with an accuracy of less than 0.6 degrees,

and translation within 15 cm. It is also noticeable that the error in the height axis (Y)

is smaller. This is probably due to the fact of similarity in the distribution of points in

the height axis as the pipe structures are level. Three randomly selected plots from the

evaluation process are shown in Figure 6.10, which demonstrate that the displaced 3D

models can be aligned very well to the synthetic segmentation points.
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Figure 6.9: The direct comparison between results of higher (blue) and smaller (purple) sample
rate is plotted. Rotational error is shown on the left and translational error on the right. A
higher sample rate of segmentation points is observed to reduce the error of the alignment process,
particularly in the rotational case. The overall results, with a sample distance (sample distance)
of 0.3 m, already demonstrate sufficient accuracy with 95% of rotational alignment error within
0.6 degrees. The translational alignment is similar for both sample sizes. The trend towards the
lowest error in the height (Y) axis can be attributed to the similarity in the distribution of points
in the height axis as the pipe structures are level.
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Figure 6.10: Three randomly chosen evaluation examples on synthetic data. The displaced 3D
model is seen in red and the sample points to align this model are marked in blue. The result
of the fitting algorithm is visualized in green. Dashed light green indicates model endpoints to
highlight the transformation of the displaced 3D model. Example (a) with sample rate of 0.3 m
comes with a rational error of: x = 0.261352; y = 0.184; z = 0.048° and a translational error of
x = 0.048m; y = 0.023m; z = 0.052m. Example (b) with sample rate of 0.1 m comes with a rational
error of: x = 0.166; y = 0.168; z = 0.353 and a translational error of x = 0.033m; y = 0.025m; z =
0.073m. Example (c) with sample rate of 0.3 m comes with a rational error of: x = 0.076964; y =
0.145; z = 0.114 and a translational error of x = 0.072m; y = 0.001m; z = 0.094m.
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Conclusion

Except for a few outliers, the fitting approach satisfies requirements for aligning the dis-

placed GIS documentation with given segmentation points. This fulfills requirements

[R2.2] as listed in Table 3.1. The results indicate that increasing sampling frequency of

segmentation points improves the accuracy of the alignment process. As the optimization

only aligns a relatively small number of points on line segments, instead of an entire sub-

part of the 3D scan on a full 3D model, alignment calculation is performed more efficiently.

An increase in the number of segmentation points would not be a problem, as the number

of samples would rather be limited by the execution time of the segmentation algorithm.

6.2.2 Experiments on real Segmentation Points

To evaluate the alignment approach with real data, we use the results of the segmentation

evaluation. As rotation in three-dimensional space can only be accurately determined

when an intersection is present, we only consider examples with junctions. The evaluation

process is similar to the previous chapter with synthetic data, but actual segmentation

results are used and ground truth models are randomly displaced. The results of aligning

a particular segmentation stood out, as the rotational error of about 7 degrees along the

x-axis remained consistent regardless of how the ground truth model was shifted. It was

observed that the average distance from the segmentation points to the aligned model

was less than 0.03 m compared to the ground model at 0.04 m, suggesting that the fit

aligns better with segmentation points than with the ground truth. The error is caused

by an increasing error in height estimation at the end of the outgoing branch of the pipe.

This problem can be seen in Figure 6.11 (a). This error is present in multiple examples,

but is not as serious in others. Segmentation of this larger error is excluded from the

remaining evaluation. The excavation sites have a size of up to 10 m, and since the

rotation is applied at the center of the scene, the displacement error is given by the

rotation-caused displacement at a distance of 5 m. In this case, we aim for a rotation

accuracy of less than 1 degree to ensure adequate visualization. Greater errors are too

height for a usable application. Nevertheless, translation remains precise enough even in

cases with poor segmentation at the corners, which is the most critical aspect.

During the evaluation of 1000 randomly displaced models, another error in

the fitting approach was identified. For ten of the 1000 samples, the optimization

procedure found a local minimum that did not correspond to the correct solution, an

example of which can be seen in Figure 6.11 (b). This can be corrected by using a

different initialization. To address this issue, we now reattempt fitting four times with the

previously found translation, but shifted by 1 m in the X and Z axes ([+1,0],[-1,0],[0,-1],[0

,+ 1]) if the average point distance is still greater than 0.05 m after initial alignment.

The result with the lowest average distance is then used. While this currently solves the

problem, a more efficient approach may be developed in the future.



72 Chapter 6. Evaluation of Segmentation and Fitting

z [m]

2.01.51.00.50.00.51.0

y 
[m

]

0.5

0.0

0.5

1.0

1.5

x 
[m

]

1.51.00.50.00.51.01.52.0

3D Model fixed
3D Model ground truth
endpoint indicator
sampled Points

x [m]
0.60.40.20.00.20.40.6y 

[m
]

0.60.40.20.00.20.40.6
z [m

]

0.4
0.2

0.0
0.2
0.4
0.6
0.8

3D Model fixed
sampled Points
distance point to model

(a) (b)

Figure 6.11: Figure (a) illustrates a major drawback when poor segmentation occurs at the ends
of the pipe. The rotation error of the fitted model (green) with respect to the ground truth (orange)
is approximately 7 degrees. Despite this, the alignment works well, with an average point-model
distance of 0.03 m after fitting as compared to 0.04 m to the ground truth. The problem originates
from the incorrect height estimate of the two last segmented points on the outgoing branch. This
illustrates that poor segmentation of edge points can lead to inaccurate estimates. Figure (b)
shows a fitting result (green) to segmentation points (blue) in which the Ceres solver found a local
minimum during the optimization process, which was not the best solution. The distance (dotted
in red) from the points to the model is minimized, but the resulting transformation is wrong.

The final results of the 1000 sample evaluation are presented in Table 6.5.

The average distance between the sample points and the model is smaller compared to

the evaluation with synthetic data. This was expected, since the error of the actual

segmentation is more constant, rather than distributed with Gaussian noise. The small

error indicates a functional fit. Average translation values of less than 5 cm are more

than sufficiently accurate. Despite this, the median values of the rotation error are

quite high. In Figure 6.12, the results are visualized using a boxplot. The distribution

of translation errors is similar to that of synthetic data. Rotation errors, on the other

hand, vary significantly from experiments with synthetic data. This is likely due to

two reasons. First, in real excavations, the junctions are often only visible for a short

distance and quickly disappear into the ground. This results in fewer segmented points

on these branches, contributing to worse results in rotation estimation, as described in

the previous section. Additionally, as shown in the example in Figure 6.11 (a), we have

seen that errors at the end of a pipe significantly affect the alignment.

A rotation error of 3 degrees would result in a displacement of approximately 28 cm at

a distance of 5 m. As larger rotational errors are more likely to occur in smaller excavations

where there are fewer segmentation points, the desired accuracy of a shovel head is still
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Rotation [°] Translation [m]

Axis Median Max Median Max

Avg. Distance - - 0.031317 0.041186
error (x) 0.602720 3.355823 0.039110 0.193550
error (y) 0.963099 2.600000 0.019330 0.172001
error (z) 0.305951 3.057889 0.043835 0.205524

Table 6.5: The results of the alignment process of real segmentation points show a lower average
distance from the model. As expected, since segmentation errors are not artificially introduced.
This indicates that the fitting algorithm is also effective with real values. The translation alignment
is sufficiently accurate, with a median error of less than 5 cm and a maximum error of less than
20 cm. The distribution of translation results is similar to that of the synthetic segmentation data
experiments. However, the rotation errors can be quite large in some cases, which may not be
sufficient. Poor results in rotation estimation can come from view bad segmentation points at the
end of the disclosed pipes.
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Rotational Fitting Offset [°]
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Figure 6.12: Results on real segmentation data show suitable median values. The distribution of
translational alignment errors is similar to that of synthetic data. A median error of less than 5cm
and maximum error of less than 20cm is considered adequate for practical applications. However,
a few bad segmentation points at the end of pipes and a significant number of real-world scenarios
with only small exposed parts of the outgoing branches at junctions lead to higher rotational errors.
Despite this, a majority of the rotation results are still within one degree offset, which is considered
accurate enough.

likely to be met in these scenarios. The rotation of the model takes place at the center

of the excavation, and small excavations do not exceed 5 m, thus the displacement offset

must remain small enough. The translation accuracy is highly accurate and can be used

to improve GIS data. In Figure 6.13, 9 randomly selected visualizations of evaluation

results are displayed, showcasing that the fitting approach also works effectively with real

segmentation examples.
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Figure 6.13: Nine randomly selected plots from the 1000 examples of the evaluation with real
segmentation points are shown. The fitting approach is consistent throughout. Higher errors in
the statistics of the comparison between the fitting result and the ground truth are attributed to
issues in the segmentation itself.
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Conclusions and Future Work

In this work, we present a complete solution for real-time visualizations in subsurface

utility engineering (SUE) works. First, we discuss the improvements to our outdoor

AR setup presented in previous work. Such as the implementation of north estimation

with RTK GPS measurements, which makes it independent of compass to achieve

highly accurate and reliable outdoor tracking. Furthermore, we have implemented a

continuous drift correction algorithm that allows both local and global tracking to be

combined robustly and consistently over a longer period of time. Evaluations show

that tracking accuracy below the target of 20 cm is achieved. Additionally, real-time

LIDAR reconstruction enables the placement of visualizations with sub 5 cm accuracy

at distances up to 5 m. This enables the reliable and accurate implementation of

applications such as virtual spray marking tools. Of course, highly accurate tracking is

also the key to generate useful geo-referenced 3D reconstructions, which are crucial for

the segmentation algorithm.

With poor GIS documentation, SUE visualizations are not very useful. The

current workflow requires a significant amount of additional effort to align displaced

data. To address this issue, we propose a segmentation algorithm using semantic

segmentation to identify pipes in open excavation sites and uses this information to

align displaced data, improving the workflow efficiency. Our approach is based on

segmentation in the 2D image domain, followed by the reprojection of the segmentation

results into 3D space. Benefits of segmentation in the image space are the reduced

influence of 3D reconstruction noise and the flexibility in the representation formats

of the 3D reconstruction. The implementation of the segmentation was done in an

independent library which can be used with any rendering engine. This enables a wide

range of applications, including real-time on-site applications, and background renderings

for GIS processing software like QGIS. In order to align the displaced 3D models to

the segmentations, we have implemented a fitting algorithm. Since the segmentation

provides single 3D points along the pipe structure, this process could be implemented

75
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using a simple leas squares minimization method. The limited number of segmentation

points, as opposed to entire sub-parts of the 3D reconstruction, results in a small

minimization problem. The algorithm calculates a transformation of the displaced 3D

polyline to align the segmentation points as accurately as possible. The evaluation of

our proposed segmentation approach shows an accuracy of less than 10 cm, which meets

the set requirements. Further evaluation of the fitting algorithm using synthetic data

indicates that it allows for highly accurate alignment of the segmentations. Translation

errors were found to be within the targeted 20 cm range, and rotation errors were also

below the targeted 1 degree. The alignment experiments performed on real segmentation

data also yielded good results, with translation errors remaining within the target

range. The rotation errors, however, have shown larger outliers to the compared ground

truths. These errors occur especially with bad segmentations at pipe endings. Overall

the results are usable in translation, but an improvement of the segmentation at the

edge of excavations where pipes disappear into the ground should be considered. In

real-world scenarios, rotational shifts are less likely to occur as pipes are typically laid on

a relatively straight plane and deviations from the plan are usually translational.

Future Work

There are some possible improvements and extensions to the approached segmentation

algorithm. Additionally, several promising potential applications for this work are worth

exploring. One area of focus for further research is to investigate the cause of the recurrent

issues in height estimation of the segmentation at the borders of excavations. Our analysis

suggests that the Distance Transform filtering method may contribute to this problem,

particularly in images where pipes do not occupy the entire width of the image. Alternative

methods or modifications to the current approach should be considered to avoid such

behavior. While the option of skipping edge points may appear to be a viable solution,

it could lead to branches with a limited number of segmentation points, which could

negatively impact the alignment process. In addition, a revision with the aim of optimizing

performance would be a good idea. The current implementation is not optimized in

terms of speed and memory consumption. After that, comparisons could be made with

other possible segmentation algorithms in 3D space. This would be a crucial step in

preparing the work for practical application. Furthermore, the development of a real-time

system is needed for the practical implementation of the work. Although the described

components are functional on mobile devices, the current iOS version (16) only allows

for LIDAR 3D reconstruction using non-textured meshes. Thus, the implementation of a

real-time capable mesh texturing in Unity is necessary to finalize the prototype. Another

interesting application area is GIS software integration. This would enable geo-referenced

3D reconstructions captured by excavation workers to be integrated with GIS software for

data optimization using our segmentation and alignment approaches. One could select

a starting point in a 2D top view of the 3D reconstruction, and using the background
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rendering, the 2D starting point can be projected as a ray into the 3D scene to obtain a

starting point for segmentation. Afterwards segmentation and fitting can be performed,

and suggestions for adjustments to the GIS data can be made within the software. In any

case, this work would certainly be useful for supporting the construction of a large database

to enable the creation of deep learning based segmentation methods. Currently, a lack

of sufficient data is a significant challenge that hinders the feasibility of such approaches.

However, in the future, such techniques may become viable as they are well-suited for

computer vision problems and have the potential to produce fast and accurate results.





A
List of Acronyms

API Application Programming Interface

AR Augmented Reality

CAD Computer-Aided Design

CNN Convolutional Neural Network

DGPS Differential GPS

DoF Degrees of Freedom

fov field of view

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

HSV Hue, Saturation, Value

ICP Iterative Closest Point

IMU Inertial Measurement Unit

IoT Internet of Things

KNN K-Nearest Neighbors

LIDAR Light Detection and Ranging

MQTT MQ Telemetry Transport, MQ is reference to IBM MQ

NTRIP Networked Transport of RTCM via Internet Protocol

NRTK Network-streamed correction data

OSM Open Street Maps

PCA Principal Component Analysis

PPP Precise Point Positioning

RANSAC RANdom SAmple Consensus

RGB(-D) Red, Green, Blue (plus Depth)

RTK Real-Time Kinematic

RTCM Radio Technical Commission for Maritime Services

SIFT Scale-Invariant Feature Transform
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SLAM Simultaneous Localization And Mapping

SUE Subsurface Utility Engineering

SVD Singular Value Decomposition

UTM Universal Transverse Mercator

VI-SLAM Visual-Inertial SLAM

VO Visual Odometry

QR Quick Response
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