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Fault attacks enable adversaries to manipulate the control-
flow of security-critical applications. By inducing targeted
faults into the CPU, the software’s call graph can be escaped
and the control-flow can be redirected to arbitrary functions
inside the program. To protect the control-flow from these
attacks, dedicated fault control-flow integrity (CFI) counter-
measures are commonly deployed. However, these schemes
either have high detection latencies or require intrusive hard-
ware changes.

In this paper, we present EC-CFI, a software-based cryp-
tographically enforced CFI scheme with no detection latency
utilizing hardware features of recent Intel® platforms. Our
EC-CFI prototype is designed to prevent an adversary from
escaping the program’s call graph using faults by encrypt-
ing each function with a different key before execution. At
runtime, the instrumented program dynamically derives the
decryption key, ensuring that the code only can be success-
fully decrypted when the program follows the intended call
graph. To enable this level of protection on Intel® commodity
systems, we combine Intel®’s TME-MK with the virtualiza-
tion technology to achieve function-granular encryption. We
open-source our custom LLVM-based toolchain automatically
protecting arbitrary programs with EC-CFI. Furthermore, we
evaluate EPT aliasing with the SPEC CPU2017 and Embench-
IoT benchmarks and discuss and evaluate potential TME-MK

hardware changes minimizing runtime overheads.
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I. INTRODUCTION

Fault attacks are active, physical attacks where an adver-
sary injects one or multiple faults into a chip. While these
attacks originally required physical access to the device under
attack, new attack methodologies, such as Plundervolt [27],
CLKSCREW [47], or VoltJockey [36], [37], have demon-
strated that faults can also be injected remotely in software.
The effects of injected faults, which comprise transient bit-
flips and permanent stuck-at effects, can be exploited by an
adversary to manipulate the control-flow of software [7], [32],
[50]. In this scenario, the adversary arbitrarily redirects the
control-flow of a program by injecting bit errors into the CPU.

Control-flow integrity [3] is a well-established countermea-
sure to protect the control-flow from software vulnerabilities,
e.g., memory safety vulnerabilities. The goal of this mitigation
concept is to detect control-flow deviations from the legitimate

control-flow graph (CFG) of the program. As CFI assumes a
software adversary in its threat model, these schemes [21],
[24], [26] only protect control-flow edges, such as indirect
branches and returns, from control-flow manipulations. How-
ever, as the fault attack threat model comprises a broader attack
surface, i.e., any control-flow edge including direct branches,
these attacks can bypass state-of-the-art CFI countermeasures.
In addition to hijacking control-flow edges, faults also enable
the attacker to redirect the control-flow at any execution point,
e.g., by manipulating the instruction pointer [31], [48], [49].

Dedicated CFI schemes offering protection against
faults [29], [33], [38], [40], [55] cover all control-flow
edges in their protection. These signature-based approaches
maintain a global signature during runtime and compare this
signature with the compile time precalculated signature value.
On control-flow deviations, the signature check fails and a
control-flow attack is detected. This mechanism allows these
CFI schemes to verify that the control-flow of a program
follows the intended control-flow. However, as the signature
checks are only conducted at certain points in the program,
control-flow violations are detected with some latency. For
example, a fault into the instruction pointer redirecting the
control-flow of the program could enable the adversary to
still execute security-sensitive code before the signature check
detects the violation. Hence, this detection latency can have
severe security implications, limiting the practicability of
these schemes.

To overcome this detection latency, [8], [52] implicitly con-
duct the signature check on each executed instruction. Here,
the code is encrypted in memory and can only be decrypted
when the signature matches the precalculated signature. On
a signature mismatch, the instructions are decrypted with a
wrong key, yielding garbled instructions which, with a high
probability, trigger an exception. However, these schemes
currently require intrusive hardware changes in the processor’s
pipeline, which makes it hard to deploy them on a larger scale.

Hence, to protect the control-flow of software against fault
attacks, new countermeasures achieving minimal detection
latencies without intrusive hardware changes on commodity
systems are required.

Contribution

This paper introduces EC-CFI, a cryptographically enforced
control-flow integrity scheme designed to counteract fault



attacks aiming to redirect the control-flow of programs outside
of their call graph. In EC-CFI, each function is encrypted with
a different encryption key before the program’s execution. At
runtime, EC-CFI-instrumented programs dynamically derive
the active decryption key before each control-flow edge, i.e.,
direct or indirect function calls. This derivation produces
the correct decryption key only if the control-flow matches
the statically determined call graph that was used to derive
the encryption keys at load-time. When a fault redirects a
control-flow edge to another function outside of the call graph,
the code is decrypted with the wrong key, which can be
immediately detected with a high probability. Moreover, the
protection of EC-CFI comprises not only control-flow edges,
any redirection to other functions, e.g., by instruction pointer
manipulations, can be mitigated.

To enable this level of protection on recent commodity
Intel® platforms without hardware modifications, we utilize
the total memory encryption - multi key (TME-MK) feature for
the function encryption. However, as Intel®’s TME-MK so far
is only used for page-granular memory encryption, which is
too coarse-grain for function encryption, we introduce a new
concept based on extended page table (EPT) aliasing. This
mechanism allows us to leverage TME-MK for fine-granular,
in the case of EC-CFI, function-granular, memory encryption.
Moreover, our approach based on EPT aliasing, which is a
combination of Intel®’s virtualization technology (VT) and
TME-MK, enables us to frequently switch the key used for
encryption and decryption.

We showcase how to implement EC-CFI using the generic
EPT aliasing approach and introduce a prototype implemen-
tation. We open-source our custom LLVM toolchain, which
is responsible for automatically instrumenting programs with
the key derivation mechanism without any user interaction.
Furthermore, we measure the performance impact of EPT
aliasing on a recent Intel® CPU using the SPEC CPU2017
and Embench-IoT benchmarks. Finally, we discuss potential
minimal-invasive hardware changes decreasing the runtime
overhead of EC-CFIL.

In summary, our contributions are:

o We present a CFI scheme that is designed to hinder a fault
adversary from escaping the call graph of a protected
program by encrypting each function with a different
encryption key. By dynamically deriving the decryption
key at runtime, the code of a function can only be
successfully decrypted if it is reached by following the
static call graph used to encrypt the function.

o We introduce a fine-granular encryption approach for re-
cent Intel® platforms based on EPT aliasing consisting of
a novel combination of TME-MK and VT. This approach
enables us to achieve function-granular encryption and
to use different encryption keys for different functions
without hardware changes.

o We showcase how to implement EC-CFI with EPT alias-
ing on recent Intel® platforms. Here, we open-source our
LLVM-based toolchain capable of automatically protect-
ing programs with EC-CFI.
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Fig. 1: Overview of the TME-MK engine.

o We evaluate the performance impact of our EPT aliasing
approach and analyze security benefits of EC-CFI.

« Finally, we discuss minimal TME-MK hardware changes
and showcase that these changes minimize the runtime
overhead of EC-CFL

II. BACKGROUND
A. Signature-based Control-Flow Integrity

Signature-based control-flow integrity schemes aim to detect
fault-induced control-flow manipulations at a certain granular-
ity. The main idea of these schemes is to check whether the
control-flow of the executed program follows the control-flow
statically extracted at compile time. On a mismatch, an attack
manipulating the control-flow is detected.

To implement this concept, these CFI schemes [11], [15],
[22], [33], [38], [40], [51], [54], [55] assign each code block
at the protection granularity, e.g., function or basic-block
granularity, a unique identifier at compile time. Moreover, the
executed program is instrumented with routines responsible for
updating a global signature S on each control-flow transfer
at this granularity. As this update function is accumulative,
the entire execution history of the program is stored in a
compressed form in this signature. By comparing the signature
derived at runtime with the signature defined at compile time,
control-flow hijacks are detected.

However, as these control-flow checks are costly, they are
only placed at certain locations. For example, FIPAC [40]
performs these checks at the end of each basic-block, function,
or before exiting the protected program. Hence, depending on
the chosen checking policy, the attacker can still execute code
before the control-flow manipulation is detected.

To overcome this detection latency, schemes such as
SOFIA [8] and SCFP [52] implicitly perform this check using
code encryption. However, these approaches require intrusive
hardware changes in the CPU pipeline.

B. Intel TME-MK

Total memory encryption (TME) [17] is a feature provided
on recent Intel® CPUs allowing the system to transparently
encrypt all data passed from the CPU to the external memory.
By using a single secret encryption key, TME is capable of
preserving data confidentiality in different threat scenarios,
e.g., cold-boot attacks [14].

Intel® TME-MK [20] is an extension allowing the system to
use multiple keys to encrypt data. As shown in Figure 1, the
encryption engine for TME-MK resides between the caches



and the memory controller and uses AES-XTS with either
128- or 256-bit keys. Internally, the engine consists of a table
containing a mapping from key identifier to encryption key.
On each memory request, i.e., read or write, the key identifier
is embedded into the upper bits of the physical address,
which are usually not used. By using different key identifiers,
different pages can be encrypted or decrypted with different
encryption keys. To define which key is used, software can set
the key identifier in the page table entry (PTE) of a page. On
address translation, the key identifier is then automatically set
in the physical address. Using this approach, TME-MK can
provide page-granular encryption. One use case of TME-MK
is the cryptographic isolation of different virtual machines on
a host system.

C. Intel Virtualization Technology

Intel® virtualization technology (VT) [18] is a set of fea-
tures allowing the processor to efficiently and securely share
computing resources among different workloads. One key
feature is the hardware-based second level address translation
mechanism allowing each guest to have its own virtual address
space. Here, the guest system is responsible for the first
level address translation, i.e., guest linear addresses (GLA)
to guest physical addresses (GPA), by using page tables. For
each guest, the host then provides a mapping from guest
physical addresses to host physical addresses (HPA) using
extended page tables (EPTs). The vimfunc instruction allows
the guest to set the current active EPT from an extended page
table pointer (EPTP) list stored in the virtual machine control
structure (VMCS).

III. THREAT MODEL

In our threat model, we consider an adversary capable of
injecting a targeted fault into the processor or the external
memory. We assume that this fault is either injected remotely,
e.g., by using Plundervolt [27] or CLKSCREW [47], or locally,
e.g., by using laser fault injection. The goal of the adversary
is to redirect the control-flow of a program outside of the
call graph of the corresponding program. Figure 2 depicts the
presumed attack scenario. In the illustrated call graph, function
A can call function B and function B can either call function A
or C. During the execution of function A, the attacker injects
a fault redirecting the control-flow from A to C.

A fault attacker can redirect the control-flow outside of
the call graph by either targeting the control-flow edges
between functions, flipping bits in any other instruction, or
manipulating the instruction pointer of the CPU. For the
control-flow edges between functions, the attacker can target
direct or indirect branches. To manipulate the execution of
indirect calls, a fault attacker can flip bits in addresses stored
in registers used by these calls. Furthermore, the adversary also
can manipulate the address used by direct calls by injecting
a fault into the address generation unit (AGU) of the CPU.
Moreover, by flipping bits in the program memory of the
application, addresses of direct calls or the registers used by
indirect calls [12] can be manipulated.

Fig. 2: Call graph with manipulated control-flow.

In addition, the attacker can also flip bits in any instruc-
tion of the program in such a way that the control-flow
is redirected, e.g., the opcode is changed to a branch [31].
Finally, a redirection of the control-flow also can be performed
by injecting faults directly into the instruction pointer of
the CPU [13], [49]. In summary, this attacker model is
stronger than threat models used by traditional CFI targeting
a software-only adversary, where only indirect branches and
returns are considered to be vulnerable.

For our work, we exclude side-channel and microarchitec-
tural attacks and assume that the operating system and the
hypervisor are trusted by the system.

IV. DESIGN

EC-CFI aims to hinder an adversary from redirecting the
control-flow to arbitrary points in the program by encrypting
each function with a different encryption key at load-time. At
runtime, EC-CFI restricts the set of callable functions for the
current execution context to the set of call targets defined in
the call graph by dynamically deriving the decryption key.
When the attacker redirects the control-flow to a function
outside of the call graph, the encrypted code is decrypted
with a wrong key. As this decryption yields garbled code, the
instruction decoding fails with a high probability. Although
it could be possible that decrypting an instruction with an
invalid key could produce a valid instruction, the likelihood of
decrypting multiple instructions correctly is low [4]. Hence,
EC-CFI is capable of detecting control-flow manipulations
with no or minimal detection latency. EC-CFI achieves this
level of protection on recent Intel® commodity hardware by
combining a signature-based control-flow integrity scheme
with fine-granular memory encryption.

A. Fine-Granular Memory Encryption

EC-CFI encrypts each function F' with a different encryp-
tion key K using Intel®’s TME-MK memory encryption en-
gine. However, as highlighted in Section II-B, in the intended
usage mode, TME-MK only provides the possibility to encrypt
entire memory pages (e.g., 4 kB pages) with different encryp-
tion keys. Although increasing the code sizes of functions to
page sizes would enable the processor to encrypt each function
with a different key, this approach would also significantly
increase the memory overhead.

To overcome this limitation, we introduce a novel fine-
granular memory encryption approach based on a combination
of TME-MK with the extended page table (EPT) feature
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Fig. 3: EPT aliasing combined with memory encryption for
fine-grained memory encryption.

of Intel® VT. Hereby, EC-CFI achieves sub-page granular
memory encryption by combing EPT aliasing with memory
encryption. With this approach, the encryption granularity
is only limited by the encryption primitive, e.g., 128 bit
block size for AES. Such a small encryption granularity was
previously only possible using custom CPU designs [30], [45].

Figure 3 illustrates the core idea of EPT aliasing combined
with memory encryption based on an example with three
functions A, B, and C located inside the 4kB virtual page
2. The first level address translation mechanism translates
the guest linear addresses (GLA) of functions A, B, and C
to the guest physical addresses (GPA) using the page frame
number (PFN) of the page table (PT). In our example, a PFN
of 0x10 is used to translate the addresses. Now, our approach
based on EPT aliasing establishes separate extended page
tables (EPTI, EPT2, and EPT3) for each encryption domain
using a different key, i.e., key 1 for function A, key 2 for
function B, and key 3 for function C. In the EPT entries of
these EPTs, the guest physical to host physical address (HPA)
mapping is identical, i.e., EPTI, EPT2, and EPT3 use the PFN
0x100 for functions A, B, and C. However, the key identifier
fields in the EPT entries are different, i.e., key 1 for EPTI,
key 2 for EPT2, and key 3 for EPT3.

This approach allows us to have different views (®) on the
memory by switching the current, active extended page table.
For example, when EPT?2 is active (®), the GPA of function B
is translated by the second level address translation mechanism
to the HPA with the address translation information stored in
the entries of EPT2. As the key identifier key 2 is embedded
into the upper bits of the HPA during the address translation,
TME-MK now encrypts or decrypts function B with the key
assigned to this key identifier. Note that for the actual physical
memory access, the key identifier bits are stripped from the
physical address. When accessing function C with EPT2,
which was encrypted with key identifier key 3 in the EPT3
memory view, only garbled code is retrieved as the wrong
decryption key 2 is used for the access.

To switch between these EPTs, the extended page table
pointer (EPTP) that specifies the active EPT can be changed.
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Fig. 4: Signature init, update, and key switch for a direct call.

Such an EPTP switch is initialized with the vmfunc instruc-
tion. By passing the EPTP index, e.g., 0, 1, or 2, as shown in
Figure 3, to this instruction, the CPU switches the EPTP to
the corresponding EPTP in the configured EPTP list.

As shown in Figure 3, EC-CFI does not restrict the locations
of functions in memory, i.e., multiple functions inside of a
page or functions occupying multiple pages are supported.

B. Signature-Based Control-Flow Integrity Scheme

EC-CFI uses a signature-based control-flow integrity ap-
proach to automatically derive the decryption keys for each
encrypted function at runtime. In our scheme, a random
signature S is assigned to each function F' and the current,
active signature is stored in the global signature register S.

EC-CFI uses the approach based on EPT aliasing (cf.
Section IV-A) for fine-grained encryption of code blocks. For
each encryption domain, EC-CFI initiates a separate EPT with
a different encryption key embedded into the extended page
table entry. As each encryption key only is used in one EPT,
we have a bijective mapping EPTP —— K. EC-CFI now
passes the signature S to the vmfunc instruction to select
the active EPT and, therefore, the current encryption key, i.e.,
S — EPTP —— K. Note that the signature S is not a
signature in the cryptographic sense, instead, it is the index (cf.
Figure 3) to the extended page table pointer (EPTP), which
points to an extend page table.

EC-CFI consists of three major runtime primitives: (i)
signature init, (ii) switch key, and (iii) signature update. At the
start of the program, the signature register is initialized (i) with
the signature of the entry function. Then, EC-CFI activates
the key for decrypting the entry function by switching (ii) the
EPTP to the EPT containing the corresponding key. Due to the
bijective mapping from the signature to the key over the EPTP,
the signature S automatically selects the correct key and the
function can be decrypted. During the program’s execution,
the current signature is updated (iii) before each control-flow
transfer to a different function, i.e., on direct or indirect calls.

(1)

Equation 1 shows the used accumulative update function. The
compiler selects the position-dependent constant C' for the call
in such a way that the resulting signature matches the signature
of the called function. After updating the signature, the key
for the called function is activated by switching (ii) the EPTP

S=S¢C
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using the current S. When the derived signature matches the
signature of the call target, the function can be successfully
decrypted. After returning from the callee, the signature is
again updated and the key is switched such that the code of
the caller can be decrypted.

Figure 4 depicts the signature init (Line 1), switch key
(Lines 3 and 7), and signature update (Lines 2 and 6) required
by EC-CFI to correctly derive and switch the key for both
functions. Hereby, the color highlights the corresponding code
encrypted with the different keys K4, and K4. Due to
the mapping S —— K, correctly deriving S and calling the
intended function allows the CPU to successfully decrypt the
code with key K. Note that the key immediately becomes
active after executing the key switching routine. Therefore,
the instruction calling function A (Line 4) already needs to be
encrypted with the key for this function.

For indirect calls, accurately determining the caller target at
compile time is not possible. Hence, EC-CFI determines the
possible set of call targets, which then share an encryption
key. To ensure that the same key is derived, EC-CFI induces
signature collisions, i.e., C' is accordingly chosen to derive the
same signature S for different indirect calls.

1) Multi-Call Targets: Assigning multi-call targets, i.e.,
functions that can be called from multiple other functions,
an identical encryption key enables the adversary to escape
the call graph. Figure 5 describes the security implications of
deploying a shared key for the multi-call target B. By inducing
a fault during the execution of this function, the adversary can
redirect the control-flow either to A or C, independently from
the original call site. EC-CFI mitigates this security weakness
by adapting the concept of call headers introduced in [40].

Figure 6 shows our approach of securely handling multi-
call targets using call headers. Each function is assigned the
corresponding signature, i.e., S, Sp, and S¢ and these func-
tions are encrypted with the corresponding key. Furthermore, a
call header encrypted with a distinct key, i.e., Sag — Kapg
and Scy — K¢y, is added to the multi-call target function
B. Before calling function B, the key is switched to this call
header key. Then, the function is called and the execution
flow is redirected to the corresponding call header. Inside this
header, the key is updated to the key of the called function,
i.e., Sp — K p. Additionally, a return constant Cr,; for each
header is set. When returning from the function, this constant
is used to switch the key back to the call header key. This
ensures that the program only can return to the original call
site. After the call instruction, the key is switched back to the
signature S4 or S of the corresponding function.

S=S+Cp =Sy € if (Cre==CCRep): S=S+Cc=Sc¢
SwitchKey(S) S =S+ Cret SwitchKey(S)
Es SwitchKey(S) e

s 2l |-

else: k2

S=S+ Cgret

SwitchKey(S)

H ret ¥

Fig. 6: Secure handling of multi-call targets.

For indirect calls, the headers of the possible set of call
targets share a common signature, i.e., they are encrypted with
the same key.

V. IMPLEMENTATION

The prototype implementation of EC-CFI consists of three
major building blocks (cf. Figure 7). The (i) compiler is
responsible for instrumenting binaries, the (ii) hypervisor
provides multiple EPTs, and the (iii) loader uses the hypervisor
and metadata provided in the instrumented binary to encrypt
each code block with a different key before execution.
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Fig. 7: Overview of our EC-CFI prototype implementation.

A. Compiler

To automatically protect programs without user inter-
action, we integrate EC-CFI into a custom LLVM-based
toolchain [23]. Our backend pass of the custom toolchain
is responsible for /) assigning signatures to functions, 2)
instrumenting calls, 3) inserting call headers, and 4) aligning
the code blocks to the cache line size.

1) Signature Assignment: The first step the compiler con-
ducts is the assignment of the signatures Sg to all functions
in the program. Here, the compiler chooses a random ID
between S_LOW and S_HIGH for each function and stores this
information into a compiler-internal structure. The signature
range is configured by the user compiling a program and needs
to reflect the number of available TME-MK key identifiers and
EPTs of the targeted processor.



1 push %rax # Save rax & rcx to stack.
2 push %rcx

3 xor %rax, %rax # Set rax to 0.

4 mov %rl3, %rcx # Move signature to rcx

5 vmfunc # Switch EPTP.

6 pop %rcx # Restore rax & rcx from

7 pop %rax # stack.

Listing 1: Key switch instruction sequence.

Afterward, the compiler defines a constant used to initialize
the signature register with the chosen Sp in the program’s
entry point. Hereby, the signature is moved into the signature
register and the key_ switch routine instructions, which are
shown in Listing 1, are inserted. This routine first preserves
the content of registers rax and rcx by pushing them on
the stack, sets up the arguments and invokes the vmfunc
instruction, and restores rax and rcx from the stack. The
argument rax = 0 for vmfunc instructs the CPU to switch
the EPTP to the EPTP specified in rcx = S. Note that the
compiler reserves the callee-saved register r13 exclusively for
the EC-CFI signature.

2) Call Instrumentation: As functions are encrypted with
different encryption keys, the correct decryption key needs
to be in place when calling functions. Our toolchain finds
all direct and indirect calls and calculates the constant C' =
Scurrent © STargetr. For direct calls, the target signature
STarget 1 the signature of the call header of the corresponding
function. As an indirect call can have multiple possible call
targets, a points-to analysis is needed to reveal these targets.
For external function calls into unprotected programs, e.g.,
shared libraries, a default target signature using the TME-MK
default encryption key is used.

1 xor $C, %rl3 # Update signature S=S&C.
2 key_switch_routine # Switch the key.

Listing 2: Call prologue and epilogue.

Then, right before the call instruction, the compiler inserts
the call prologue. As shown in Listing 2, this prologue consists
of the signature update, i.e., XORing the constant C to
the current signature .S, and the key_switch routine (cf.
Listing 1). After the call instruction, the identical instruction
sequence, i.e., the call epilogue, is inserted to switch back to
the key of the caller function.

3) Call Headers and Footers: To handle multi-call targets
(cf. Section IV-B1), EC-CFI inserts call headers in front of
each function.

call_header_1:

xor $C, %rl3 # Update signature S=S & C.
mov $Cret, %rld # ret_c = Cret.
key_switch_routine # Switch the key.

jmp $function_body # Jump to function begin.

call_header_2:

function_body:

L e R S

Listing 3: Call header.

As illustrated in Listing 3, the call header first updates the
signature with a constant to match the signature of the function
body. Then, the return constant C'..; is loaded into the reserved
r14 register and the key for the function body is activated.
A jump to the function body jumps over the call headers of
other callees. In the callee, the compiler rewrites the addresses
of calls to point to the corresponding call header.

1 xor %rl4, Srl3 #
2 key_switch_routine #

Update signature S=S @ ret_c.

Switch the key.

Listing 4: Call footer.

Before each return in the function body, the modified
compiler adds, for each call header, the call footer instructions
shown in Listing 4. These instructions update the signature
with the return constant such that the signature is identical to
the signature in the call header.

4) Code Block Alignment: The key_switch routine (cf.
Listing 1) switches the EPTP and, therefore, the current, active
decryption key. Hence, as the key is immediately switched
after the vmfunc instruction, the next fetched instruction is
already decrypted with this key. To avoid that a cache line
contains data encrypted with different encryption keys, which
would trigger a cache miss and require a costly additional
memory fetch, our toolchain ensures that vmfunc instructions
are aligned to the end of a cache line. Note that this alignment
needs to be done in the call prologues and epilogues as well
as in the call headers and footers.

B. Hypervisor

The hypervisor is responsible for setting up the EPT aliasing
functionality and providing an interface for the binary loader
to run protected programs.

1) System Setup: When booting the system, the hypervisor
puts the operating system into the guest mode and creates
a virtual machine control structure (VMCS). Furthermore,
the hypervisor creates three default and NUM_PROT_EPTS
EPTs and stores the pointer to them into the EPTP list
of the VMCS. Note that NUM_PROT_EPTS is limited by
the number of available TME-MK key identifiers and the
number of EPTPs which can be stored in the EPTP list.
In our prototype implementation, the hypervisor exclusively
uses EPTO, the kernel EPTI, and the user mode EPT2. The
remaining NUM_PROT_EPTS EPTs are utilized by protected
programs. In the initialization phase, i.e., before starting a
protected program, all of these EPTs are identical and use
the default 0 TME-MK key identifier in the EPT entries.

2) Setup of Protected Programs: By using the vmcall
instruction, the binary loader communicates with the hypervi-
sor to configure EPT aliasing before starting a program. Here,
the loader uses this interface to register the program and the
used code pages to the hypervisor. The hypervisor uses this
information, i.e., page address and size, to set the TME-MK
key identifiers in the entries of the NUM_PROT_EPTS EPTs.
To enable data sharing between functions, only encryption
keys for code pages are set. For data pages, the key identifier



field in the EPT entries for all EPTs contains the default 0 key.
When calling external functions, the compiler ensures that the
EPTP is switched to the default user mode EPT2.

3) Termination of Protected Programs: After the execution
of a protected program, a call to the hypervisor is used to
deregister the program. Hereby, the hypervisor resets the TME-
MK key identifier field in the EPT entries to the default O key.

4) User and Kernel Mode Switches: When switching from
user mode to the kernel, the hypervisor needs to save the
current, active EPTP, i.e., EPT2 for unprotected programs and
EPT2 to EPT2 + NUM_PROT _EPTS for protected programs,
and switch to the kernel EPTI. This saved EPTP is restored
when switching back from kernel to user mode. To provide
the hypervisor with an opportunity to perform these EPTP
switches, the current prototype implementation triggers an
EPT violation on each switch between user and kernel using
Mode-Based Execution Control (MBEC) by marking pages in
user views as only user-executable and pages in the kernel
view as only supervisor-executable.

C. Binary Loader

The modified binary loader is responsible for loading code
blocks of an instrumented binary into memory and starting
the program. An instrumented binary generated with our
custom compiler contains metadata, i.e., address, size, and key
identifier for each code block. The loader first allocates a page
for the code using this metadata and registers this code page
to the hypervisor. Now, the EPT entries of all EPTs for this
code page contain the key identifiers specified in the program
metadata. To encrypt code blocks with their corresponding key
identifier, the loader first switches the EPTP with the vEmunc
instruction to the EPT tagged with the key identifier. Then,
the code is copied from the binary to the memory encrypting
the code block with the key identifier of the current, active
EPT. This procedure is repeated for each code block but with
a different key. Finally, the loader activates the EPT of the
program’s entry point and passes execution to the application.

VI. SECURITY DISCUSSION

This section discusses security benefits of EC-CFI in respect
of the threat model introduced in Section III.

A. Flipping Address Bits

To redirect the control-flow of a program outside of the call
graph, the fault attacker can induce bit-flips into control-flow
related addresses. These addresses comprise the instruction
pointer rip and addresses stored in memory or registers
and used by indirect calls. For direct calls, the adversary
can induce a fault into the relative address encoded into
the instruction, which is then translated to an address by
the address generation unit. Here, in EC-CFI, the fault can
affect guest linear, guest physical, and host physical addresses.
The attacker could aim to redirect the control-flow to any
point in the program by injecting faults into guest linear or
guest physical addresses. However, when the current active
decryption key does not match the encryption key for this

point in the program, the execution of these instructions fails.
By manipulating both the address and the key identifier in the
HPA, the attacker could redirect the control-flow. Nevertheless,
this attack vector is hard to exploit, i.e., precisely manipulating
both fields is challenging, and the effect is limited. More
specifically, executing a single instruction could be possible
when redirecting the control-flow by manipulating the address
and the key identifier in the HPA. However, as the bit-flip
in the key identifier field of the HPA is not permanent for
transient faults, the key identifier of the subsequent instruction
again is determined by the current EPT. Hence, the decryption
of this instruction then fails.

B. Manipulating EPT Entries

The attacker could try to permanently change the key
identifier for an address region by manipulating these bits in
the corresponding EPT entries. However, as TME-MK always
encrypts the entire external memory using the default key
identifier, also the EPTs stored in memory are encrypted.
Hence, deterministically flipping key identifier bits in EPT
entries without knowing the secret key is not possible. By
targeting the translation lookaside buffer (TLB), the attacker
could forge the key identifier used for addresses as long as
the TLB entry is valid. Here, additional countermeasures, e.g.,
error detection or correction checks [41], could be added.

C. Leaking Key Identifiers

When the attacker is capable of leaking key identifiers,
control-flow manipulations with two precise faults can be
possible. Here, the attacker would need to manipulate the
key identifier in the EPT entry to the leaked identifier of the
target function and redirect the control-flow to this function.
However, as controlling a fault, i.e., timing and location,
is extremely challenging on a complex Intel® CPU, the
probability of successfully inducing two subsequent faults is
low. Moreover, as the control-flow signature was not changed,
it no longer matches the predefined signature. Therefore, the
wrong decryption key is used at the next call instruction.

D. Key Space

Ideally, each function in EC-CFI is encrypted with its
own encryption key. Then, redirecting the control-flow to
any other function outside of the call graph deterministically
fails. However, the encryption key space is limited by the
available key identifiers as well as the number of available
extended page tables. According to the Intel® manual [20],
in total, TME-MK supports up to 2!° different key identifiers.
However, as our EPT aliasing approach requires us to have
multiple extended page tables, the encryption key space is also
determined by the number of available EPTs. Currently, the
vmfunc instruction allows the system to switch between 512
different EPTPs [18]. Hence, when there are more functions
in a program than available EPTPs, TME-MK key identifier
collisions can occur.

Note that the actual TME-MK key identifier space imple-
mented by the platform could be smaller than the technical



upper limit of 2'° different identifiers in the TME-MK engine.
When the key identifier space is smaller than the limit of
available entries in the EPTP list, i.e., 512, the following key
assignment strategy could be used: The hypervisor assigns
each EPT a random key identifier. As some EPTs share the
same key identifier, the attacker could redirect the control-flow
to other functions and successfully execute code. However, as
the signature is accumulatively updated independently from
the EPT key identifier, the next derived signature does not
match the signature of the next called function. Hence, with
a high probability, at this point, the control-flow manipulation
can be detected by EC-CFI.

E. Decrypting Instructions with an Invalid Key

The instruction length in x86-64 is between 1 and 15 B and
the opcode can utilize 1 to 3B in an instruction. To form a
valid instruction, both the opcode as well as the other bytes in
the instruction need to be valid. Depending on the density of
the x86-64 instruction set, which is hard to determine [9], it is
possible to retrieve a valid instruction when using an invalid
decryption key. Nevertheless, the security impact of decrypting
an instruction with a wrong key is minimal due to two reasons.
First, the attacker’s goal is to execute a specific instruction
and not just a random one. Although some instructions could
have multiple opcodes, e.g., 0x00 and 0x01 for an add, the
remaining decrypted bytes of the instruction are either invalid,
causing an instruction fetch failure, or change the behavior of
the program. Second, while it might be possible that a single
instruction was correctly decrypted, the probability that the
subsequent instruction also is valid, is very low. Note that
an encryption engine also providing integrity, such as used
by Intel® TDX [19], could immediately detect decryption
attempts with the wrong key.

FE. Intra-Function Control-Flow Attacks

Control-flow hijacks within a function, e.g., skipping in-
structions, cannot be mitigated with the current protection
granularity used by EC-CFI. This is in line with our threat
model defined in Section III. However, as EC-CFI is a generic
concept and not bound to the function-level protection granu-
larity, future work could aim to encrypt code blocks at a finer
granularity.

G. Control-Flow Attacks within the Call Graph

Similar to related work [8], [33], [38], [40], [53], EC-
CFI aims to prevent control-flow manipulations outside of
the call graph and not within the borders of the call graph.
This is an inherent characteristic of CFI schemes as the
compiler cannot exactly determine the targets of indirect
calls [2]. When targeting conditional branches or data used by
these instructions, EC-CFI, prevents control-flow redirections
outside of the call graph. To mitigate redirections within the
call graph, i.e., from one branch target to the other, orthogonal
countermeasures [40], [42] are needed.

H. Shared Libraries

As shared libraries need to be accessible for unprotected
programs, they are encrypted with the systemwide default 0
key identifier. To avoid that a fault attacker manipulates calls
to external functions in libraries, programs can be statically
linked, i.e., the libraries are then part of the binary and are,
therefore, also protected. This protection behavior is in-line
with related CFI schemes [33], [38], [40], [53].

VII. PERFORMANCE EVALUATION

In this section, we first evaluate the code size overhead of
protecting the Embench-IoT and SPEC CPU2017 benchmarks
against fault-based control-flow manipulations using EC-CFI.
Then, we analyze the runtime overheads of these benchmarks
when using our extended page table aliasing approach. Here,
our focus is on evaluating the impact of switching the extended
page tables on the translation lookaside buffers (TLBs). We
conduct our experiments without enabled TME-MK as the
expected performance impact of the memory encryption is
small and as we currently do not have access to a system
supporting TME-MK for the performance evaluation. Accord-
ing to Intel® [6], TME-MK induces a performance impact of
less than or equal to 2.2 % for certain workloads.

A. Code Size Overhead

To measure the code size overhead of EC-CFI, we com-
piled the C-based SPEC CPU2017 [44] benchmarks without
OpenMP support using our custom LLVM-based toolchain.
We compiled all benchmarks twice, i.e., in the protected
and unprotected mode, with identical compilation flags and
enabled the —O3 optimizations. Similarly, we compiled the
Embench-IoT [35] benchmark with our custom toolchain.
Then, we compared the code sizes of the protected binaries to
the unprotected binaries with the GNU size utility.

The measured code size overhead for SPEC CPU2017 is
between 61.36 % and 143.89 % with a geometric mean of
82.87 %. For Embench-IoT, we measured a geometric mean
of 22.93 % for the code size overhead.

In general, the code size overhead consists of three parts:
The (i) call headers and footers increase the code size for
each function in the program. Similarly, EC-CFI adds (ii) a
call epilogue and prologue responsible for switching the key
before and after each direct and indirect call. Finally, the (iii)
alignment of the code blocks and vmfunc instructions to
cache lines increases the code size of protected programs as
EC-CFI performs this alignment with nop instructions.

B. Runtime Overhead

To measure the performance impact of switching the ex-
tended page table pointers, and therefore the view on memory
with the extended page tables, with vmfunc, we use the
instrumented and uninstrumented binaries generated for the
code size evaluation in Section VII-A. Here, we executed both
versions of the binaries on an Intel® CPU supporting the VT
building-block of EC-CFI without TME-MK.
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Figure 8 illustrates the percentual runtime overhead of the
instrumented binaries relative to the uninstrumented baseline.
Here, we measured a performance impact between x1.18 and
x27.05, and a geometric mean of x6.63 for SPEC CPU2017.

Furthermore, we compiled the Embench-IoT [35] bench-
mark with our custom toolchain and measured the number
of cycles with rdtsc [34]. Figure 9 highlights the runtime
overheads for the Embench-IoT benchmarks. When averaging
the cycle count over 10000 runs and comparing it to the
baseline without instrumentation, we measured a geometric
mean for the runtime overhead of x5.97.

C. TLB Misses

The EPT aliasing approach requires us to frequently switch
the view on memory by switching the EPTP using the
vmfunc instruction. This switching negatively affects the
hit rate of the translation lookaside buffers (TLBs) as the
address translation information stored inside these buffers
is tagged with the EPTP [18]. Moreover, according to the
Intel® manual [18], an EPT violation also invalidates the TLB
entries associated with the current EPTP. Hence, EPT aliasing
increases the pressure on the TLBs. Figure 10 depicts the TLB
misses for the Embench-IoT benchmarks. Here, we measured
with the perf tool a geometric mean of x36.46 for the data
TLB load misses, x7.08 for the data TLB store misses, and
x24.02 for the instruction TLB load misses.

VIII. TME-MK HARDWARE CHANGE

A minimal-invasive hardware change altering the TME-MK
mode of operation can minimize the performance impact of
our encryption-based control-flow integrity scheme. Currently,
as described in Section II, the TME-MK engine leverages the
upper bits of the physical address as the key identifier bits.
Hence, to encrypt data with different keys, the identifier needs
to be set in the page table or extended page table entries, which
requires techniques such as EPT aliasing used in this paper.

In our proposed hardware change, the TME-MK engine
retrieves the key identifier from a user-accessible key identifier
register instead from the upper bits of a physical address.
The key associated with the key identifier can be rapidly
switched by writing to that register. Hence, EC-CFI could be
implemented without the EPT aliasing approach, significantly

reducing the runtime overhead. With this proposed hardware
change, EC-CFI does not induce any additional TLB pressure.
Moreover, the key identifier space is no longer limited by the
available bits in the physical address, i.e., up to 15bit, and
therefore could be increased to 32 bit.

To measure the runtime overhead of EC-CFI with this
hardware modification, we emulated the key switch routine
by replacing all vmfunc instructions in a protected program
with a write to a register. As shown in Figure 11, the runtime
overhead of EC-CFI for the SPEC CPU2017 benchmark is
significantly lower than with the EPT aliasing approach. More
specifically, we measured a runtime overhead between x1.02
and x1.51 and a geometric mean of x1.15. Similarly, as shown
in Figure 12, the proposed hardware change minimizes the
runtime overhead of the Embench-IoT benchmarks protected
with EC-CFI to a geometric mean of x1.21. We measured
a code size overhead between 63.99 % and 151.73 % and
a geometric mean of 86.45% for SPEC CPU2017 and a
geometric mean of 24.27 % for Embench-IoT.

IX. RELATED WORK

Control-flow integrity [3] is a generic countermeasure that
also can be used to protect programs against software attacks.
Here, these schemes assume that the adversary manipulates
the control-flow by overwriting control-flow related addresses,
such as function pointers or returns, by exploiting a mem-
ory safety vulnerability [46]. To mitigate this threat, CFI
schemes [3], [21], [24], [26] aim to maintain the integrity of
these addresses. However, as the underlying threat model of
these countermeasures is weaker (cf. Section III), they can
only provide limited protection against fault-induced control-
flow hijacks. More specifically, contrary to a software adver-
sary, a fault attacker can also manipulate direct calls and flip
bits in the instruction pointer. Hence, even in the presence of
a CFI scheme mitigating software attacks, fault attackers can
still manipulate the control-flow.

Therefore, dedicated CFI schemes aiming to protect against
faults are commonly used. These schemes [29], [33], [38],
[40], [55] derive a signature and, in contrast to EC-CFI, explic-
itly compare this signature to the signature defined at compile-
time. Hence, depending on the location of these checks, an
adversary capable of redirecting the control-flow still can
execute some instructions before the control-flow manipulation
is detected. Although within a protection domain, i.e., intra-
function, EC-CFI provides similar protection, the protection
across function boundaries is stronger. More specifically, when
the attacker redirects the control-flow to a function encrypted
with a different key, the execution immediately fails. In other
schemes, such as FIPAC [40], the attacker still can execute
instructions until the signature is checked, e.g., at the end
of a function. Moreover, EC-CFI, with the minimal hardware
change, performs similar in terms of runtime overhead than
FIPAC, i.e., 15 % for EC-CFI and 22 % for FIPAC (function
end checking policy) for the SPEC CPU2017 geometric mean.

Similar to EC-CFI, SCFP [52] also implicitly conducts the
signature checks by using code encryption. However, SCFP
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adds a dedicated pipeline stage between the instruction fetch
and decode stage for the protection. Moreover, dedicated
instructions are added to the instruction set to interact with
this pipeline stage. We argue that integrating such intrusive
hardware changes into the pipeline of a complex Intel® CPU
are not feasible as such changes negatively affect area and
power consumption as well as they add complexity to the
overall functionality of the processor. In comparison, EC-CFI
requires no or only minimal-intrusive hardware changes, i.e.,
changing the behavior or TME-MK, not affecting the general
structure of the CPU pipeline.

X. FUTURE WORK AND LIMITATIONS

Future Work. The hardware change described in Sec-
tion VIII could be implemented in a system emulator. How-
ever, as neither QEMU [5] nor gem5 [25] currently support
TME-MK, this hardware extension first needs to be integrated.
Moreover, as described in Section V-B4, we currently trigger
an EPT violation when switching between kernel and user
mode to save and restore the active EPT. As an EPT violation
causes a costly vmexit, future work could investigate how
to avoid these exits. One possibility would be to extend the
hypervisor and the kernel. The hypervisor could store the
current active EPTP into a kernel-accessible memory region.
When entering the kernel from a protected program, the
extended kernel then switches to the default kernel EPTP.
When leaving the syscall, the kernel could fetch the last active
EPTP from the memory region and restore the EPTP. Another
option would be to to map the kernel address space for each

EPTP. Then, when switching from kernel to the user and back,
a EPTP switch would not be necessary.

Limitations. In our current prototype implementation, we
do not perform a points-to analysis to identify all potential call
targets of indirect calls. Instead, we use a default signature for
these calls. Although this is a security limitation of the current
prototype, this simplification accurately models the runtime
and code size overhead. Our current implementation does not
support the protection of multiple programs executed on a
CPU. To overcome this limitation, the hypervisor needs to
be extended to manage the key identifiers and EPTs for each
process. Finally, as there are no system emulators available
supporting TME-MK and the HDL description or netlist of a
Intel® CPU is not publicly available, we focused on providing
a security discussion instead of performing fault experiments
with fault injection frameworks [10], [16], [28], [39], [43].

XI. CONCLUSION

In this paper, we presented EC-CFI, a cryptographically
enforced control-flow integrity scheme utilizing recent hard-
ware features of Intel® platforms and effective against a fault
adversary. EC-CFI prevents that an adversary escapes the
call graph of a program by encrypting each function with
a different encryption key before executing the application.
Only when the execution history is identical to the statically
determined control-flow and the call target is within the bounds
of the call graph, the decryption key for the called function is
correctly derived. On control-flow manipulations outside of the
call graph, code is decrypted with the wrong key, which can
be detected with no or minimal detection latency. To achieve
function-granular encryption on Intel® commodity platforms,
we introduced a novel combination of TME-MK and the
virtualization technology. In our paper, we showcased how
to utilize our approach based on EPT aliasing to implement
EC-CFI and open-source our custom toolchain. Moreover, we
analyzed the EPT switching mechanism using the Embench-
IoT and SPEC CPU2017 benchmarks. Finally, we described
and evaluated a TME-MK hardware modification that could
significantly reduce the performance impact of EC-CFL.
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