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Introduction 

“Jamming occurs when a system develops a yield stress—behaves as a 
solid—in a disordered state.” (Liu Research Group webpage) 

• Stress relaxation time of a system exceeds a 
certain value 

• Can be found in many applications as 
• Supercooled liquids 
• Glass 
• Foams and emulsions 
• Granular materials 

 
• Granular material at high packing density 

relevant for reactors, geomechanics, etc. 
• Thus, effect of jamming on local particle 

temperature is interesting 
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Introduction 
Jamming Point Diagram1 

 

1A. J. Liu and S. R. Nagel, Nature 396, N6706, 21 (1998) 
2Mohan et al. (2013), Fluidization XIV 

Local Particle Temperature? 
Effective Heat Conductivity?2 

 T* 
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Simulation Method 
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• Deformation of box with constant wall 
velocity, periodic BC 

• Parameter dependency: 
• Biot number  
• Wall velocity (shear rate) 
• Volume fraction 
• Particle conductivity 

• Thermal fluxes are simulation result 
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Simulation Method 
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• Conduction due to particle-particle 
contact 
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• (Granular) Convection due to individual 
particle motion 
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• Transferred thermal energy to the environment, 
fixed Tenviro, fixed Biot number 
 

Simulation Method 

• Particle-Particle radiative flux currently not 
considered. Energy emission does not heat 
particles. 

• Reference heat flux equals flux in 
the pure solid 
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LIGGGHTS 
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Simulation Method 
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Results 
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Softer particles 

Results 

Crystallized versus Non-crystallized Flow 
Pe = 0.01, Bi = 0.1, ϕP = 0.64 
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Results 

• Significant increase of the conductive 
thermal transport rate in case of jamming 

 
• Critical jamming volume fraction depends 

on particle stiffness 

(a) soft particles (b) stiff 
particles 

• Effect seen for all Biot numbers 
 
• Critical volume fraction does not 

depend on Peclet number 
 
 

φc 
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Results 
Conductive flux versus Dimensionless Contact Pressure  
n ~ 4/5 leads to a collapse of all data 

• Correlate dimensionless 
conductive flux with 
dimensionless contact pressure 

  
• Increase in dimensionless contact 

pressure in jammed system 
explains high conductive heat 
flux 

 
• Large fluctuations in pressure 

and heat flux when transitioning 
between regimes 
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Results 
Convective flux versus Particle Concentration 
(a) Pe = 1, (b) Pe = 100 

(a) 

(b) 

• Convective flux unaffected by change of 
particle concentration 

• No significant effect due to jamming 
transition  
 

• Nearly independent of Biot number 
for stiff particles 

• Peclet number key for modeling 
convective flux 
 



15 

Conclusion  
& Outlook 
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• Detailed simulation of convective, conductive, and transferred thermal fluxes 
including intra-particle temperature profiles 
 

• Drastic increase of the conductive flux in a jammed system. Closure 
relationship for conductive flux provided based on contact pressure 
 

• Convective flux unaffected                                                                                         
by jamming 
 

• Current research focus:  
include radiation by fast 
algorithm to quantify  
shadowing effect 
 

• More: PTF poster  
session, Tue, Nov 15th,  
6.00 p.m. 
 

Conclusion & Outlook 
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