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Abstract. We propose a method to recover dense 3D scene flow from
stereo video. The method estimates the depth and 3D motion field of
a dynamic scene from multiple consecutive frames in a sliding temporal
window, such that the estimate is consistent across both viewpoints of all
frames within the window. The observed scene is modeled as a collection
of planar patches that are consistent across views, each undergoing a rigid
motion that is approximately constant over time. Finding the patches
and their motions is cast as minimization of an energy function over the
continuous plane and motion parameters and the discrete pixel-to-plane
assignment. We show that such a view-consistent multi-frame scheme
greatly improves scene flow computation in the presence of occlusions,
and increases its robustness against adverse imaging conditions, such as
specularities. Our method currently achieves leading performance on the
KITTI benchmark, for both flow and stereo.

1 Introduction

The 3D scene flow is a dense description of surface geometry and 3D motion
in a dynamic scene. Scene flow estimation analyzes images from two (or more)
cameras taken at two (or more) time steps, and delivers depth and 3D motion
densely for every pixel. Hence, it can be seen as a generalization of optical flow
to 3D, or alternatively as stereo for dynamic scenes. Like these two classical
problems, scene flow estimation is ill-posed due to the 3D equivalent of the
aperture problem, and requires some form of regularization. Dense 3D shape
and motion are useful for a variety of tasks, including motion capture [26], 3D
video generation for 3D-TV [12] and driver assistance (e.g ., the Daimler 6D-
vision project [16, 19, 33]).

To this date most scene flow methods in the literature, e.g . [1, 30, 33], base
their reconstruction on two consecutive stereo pairs, and declare one of the four
images as a reference view, for which the shape and motion vectors are computed.
The starting point for this work are two rather straightforward observations: (i)
the two frames typically originate from a longer stereo video sequence, hence it
seems wasteful not to exploit longer time intervals; and (ii) there is no conceptual
reason for a privileged reference view, since imaging problems (occlusions, lack
of contrast, etc.) affect all images equally. In the present paper we address these
two points. Specifically, we propose to simultaneously estimate depth and 3D
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Fig. 1. Consistency over multiple frames makes scene flow estimation robust against
severe disturbances like the windscreen wiper. (left) Input frames. (middle) The left
view at time t = 0. (right) Our scene flow estimate for that viewpoint (shown, from
left to right, as disparity and reprojected 2D flow field).

motion over longer time intervals, in such a way that the results are consistent
across all views within that interval (see Fig. 1).

It seems evident that, at reasonable frame rates, physically plausible scenes
exhibit temporal consistency over more than just two frames. We conjecture that
long-term constraints may actually be more helpful for scene flow than for 2D
optical flow, where the majority of today’s top-performing methods only uses
two frames. A scene flow reconstruction resides in 3D space rather than in its
2D projection, hence constraints caused by physical object properties like inertia
remain valid in the long term, and can be exploited more directly.

The key motivation for, moreover, estimating the scene flow in all views and
demanding consistency (rather than estimating it only in a single reference view)
is to overcome viewpoint-dependent adversities like specularities and occlusions,
where the image data is not consistent (see Fig. 1). Under difficult imaging
conditions (large motions, specular reflections, occlusions, shadows) considering
all views equally in our experience greatly improves robustness against outliers,
and additionally allows for more reliable and accurate occlusion reasoning.

We propose to integrate both consistency across time and across views into
a single energy function, such that one can jointly solve for a reconstruction by
taking into account all evidence (rather than reconstructing independently for
different frames or reference views and merging the results in post-processing).
Having said that, we restrict the estimation to short temporal windows of up to
4 frames to limit the computational cost of our integrated solution. Moreover,
going to longer and longer time intervals yields diminishing returns, and in many
scenarios (e.g ., autonomous driving) immediate feedback is required, such that
a time-lag of more than one or two frames is not acceptable.

Our approach leverages the scene flow representation of [28], i.e. the scene is
modeled as a collection of planar and rigidly moving patches. This parameteri-
zation is more constrained than others in the literature, e.g . [1, 25, 33], but has
been shown to be valid for road scenarios and other typical scenes of interest.
It is well suited for our view-consistent multi-frame approach, since it drasti-
cally reduces the number of unknowns per frame, and inherently provides an
(over-)segmentation into patches with simple geometry and motion, which can
be expected to remain stable over time. In order to go beyond two time steps
we additionally assume that the 3D motion (translation and rotation) of each
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segment is nearly constant within the examined time interval. Empirically this
assumption is valid for the segment sizes and time intervals considered.

This paper makes the following contributions: (i) We propose a novel 3D
scene flow model that does not rely on an arbitrary reference view, but rather
reconstructs 3D shape and motion w.r.t. every image in a time interval, while
enforcing consistency of the reconstruction across views; (ii) we extend dense
scene flow estimation to more than two time steps, with a temporally consistent
piecewise-planar segmentation of the scene and a prior that favors constant 3D
velocity over time; and (iii) we formulate a consistent energy that includes both
these aspects, along with a corresponding inference scheme, and can – at least
conceptually – handle any number of viewpoints and any number of time steps.

We evaluate our method on the challenging KITTI dataset of real street
scenes, using the stereo and flow benchmarks. Compared to two-frame scene
flow computation with a fixed reference view [28], the proposed view-consistent
estimation over four frames reduces the average endpoint error from 2.5 to 1.4
pixels, and improves the KITTI error metric by 45% for flow, respectively 36%
for stereo. In the evaluation on full images, including occlusion areas, our method
currently achieves the best results on the benchmark, for both optical flow and
stereo. We further show on some particularly hard examples that our model is
remarkably robust against missing evidence, outliers, and occlusions.

2 Related work

Scene flow estimation is usually traced back to Vedula et al . [26]. With the goal
of multi-camera motion capture, optical flow is first estimated independently
for each camera and then triangulated to obtain a 3D motion field. Later work,
mostly based on only two views, is dominated by variational approaches. Among
these, some again decouple the estimation by first estimating stereo correspon-
dence and then finding flow fields consistent with the disparities, e.g . [19, 33].
In contrast, [11] still uses a 2D parametrization, but exploits correlations be-
tween depth and motion by estimating them jointly. [25] additionally allows for
changes in the relative pose of the stereo rig, and alternates between updating
the scene flow and the relative pose. To alleviate the bias of regularization in
2D, [1] directly parameterizes the scene flow with depth and 3D motion vectors,
and shows that smoothing in 3D improves the reconstructed motion fields. [30]
replaces the total variation regularization of the motion field with a prior that
penalizes deviations from local rigidity. Taking the idea of rigidity further, [28]
proposes to model the scene as a collection of planar regions, each moving rigidly
over time. The representation has also been used for tracking with multiple cam-
eras [7]. Here, we adopt the parameterization of [28], which proved to work well
on realistic data. As we will show, this allows one to include consistency checks
between different views, thus moving away from a single reference view, and to
incorporate temporal contraints on a region’s motion.

Temporal smoothness assumptions for multi-frame 2D optical flow date back
to at least [17], but were limited to small displacements. [2] instead extrapolates
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motion fields from previous time steps and encourages similarity between the
predicted and the estimated flow. This allows for larger displacements, but in-
ference is restricted to the current frame, i.e. the past motion field influences the
current one, but not vice versa. Later [34] jointly reasons over three consecutive
frames, assuming a constant 2D motion field. In contrast, assuming constant 3D
scene flow over time here allows us to address more general scenes. [31] relaxes
the constant velocity assumption to soft constraints that encourage first and sec-
ond order smoothness of the motion field. [8] instead uses a soft constraint that
requires the 2D motions to lie in a low-rank trajectory space. [21, 22] avoid simple
temporal smoothing, and instead jointly estimate the flow and a segmentation
into a small number of layers, enforcing constant pixel-to-layer membership. The
rationale is that even if the motion changes rapidly, the scene structure should
persist over time. In a similar manner, [20] segments a video into several motion
layers with long-term temporal consistency. While they estimate a 2D paramet-
ric motion for each layer, their primary goal is high-level motion segmentation.
Here we make a similar assumption, but for 3D shape and motion: we also group
pixels to (planar, rigidly moving) segments and enforce consistency of the seg-
mentation over time. In contrast to motion layers, our model with hundreds of
small segments can represent a wider range of scenes.

An important observation here is that exploiting temporal consistency over
longer time intervals is easier with an explicit 3D model of shape and motion,
because smoothness assumptions are more likely to hold in the 3D scene than in
its projections. This fact is exploited in [19], where a Kalman filter at each pixel
propagates the geometry and motion estimated by [33] across frames. The pre-
diction is used to detect and remove outliers, but changes neither the present nor
the past flow estimate. [12] constructs longer motion trajectories from frame-to-
frame stereo and flow. Trajectories that pass several heuristic plausibility checks
are included in the final optimization as soft constraints, similar to including
feature matches in two-frame optical flow [5]. [18] parameterizes the scene flow
in 3D, and also proceeds sequentially, first estimating frame-to-frame scene flow
and then smoothing it over time with tensor voting. [6, 13] represent the scene
with an explicit deformable 3D mesh, which is fitted to video data. All three
approaches target motion capture in controlled settings with many cameras.

Also related to our work are methods that employ (over-)segmentation to
make discontinuities explicit, starting with [32] for flow and [23] for stereo match-
ing. While such early work was constrained by the initial segmentation, more
recent methods infer or refine the segmentation together with the scene depth [3,
4, 35], the 1D epipolar flow [36], or the 2D optical flow [24]. The representation
of [28], which we use here, adapts this idea to scene flow.

Moving away from an arbitrary reference frame, and treating all views equally,
has been prominently used in stereo vision in the form of a left-right consistency
check. In its simplest form the consistency between the forward and backward
disparities is checked in post-processing, e.g . [10], but it can also be included
directly in the objective [4]. We extend the latter strategy to ensure consistency
of the scene flow across all images in a temporal window.



View-Consistent 3D Scene Flow Estimation over Multiple Frames 5

3 Method

Our formulation follows [28] to represent the 3D scene geometry and motion
as a collection of piecewise planar regions that move rigidly over time. More
specifically, we define the problem of 3D scene flow estimation as determining
two assignments, a mapping S that assigns pixels to spatially localized segments
(super-pixels), and a mapping P that assigns a planar 3D geometry and rigid
motion to each segment. These mappings implicitly define the 3D geometry and
motion at every pixel. Note that the spatial segmentation S is free of semantic
meaning. Pixels belonging to a moving plane do not necessarily form a connected
component. Moreover, an over-segmentation is actually crucial to account for
non-planar or articulated objects, as well as to accurately preserve motion and
depth discontinuities. There are two key distinctions to the formulation of [28]:
First, we not only estimate the scene flow for a reference view, but for all views
(in space and time). The main benefit is that we can check consistency of the
representation across views, which makes the estimate more robust and allows
for improved occlusion handling. This also means that the notion of the seg-
mentation is extended to all views, with the challenge of obtaining a consistent
segmentation of the scene over time. Second, we aim to estimate scene flow from
more than 2 frames, hence extend the notion of rigid motion through time by
assuming constant translational and rotational velocity of the moving planes.

Notation. We formulate our model for the classical two camera stereo-rig con-
figuration, although no actual limitation on the number of cameras exists. We
distinguish left and right camera through a subscript l,r. Superscripts t ∈ T =
{−1, 0, 1, . . .} indicate the time step of image acquisition. Despite computing
scene flow in all cameras and not having a reference view for representation, we
still designate the left camera at time step 0 as a canonical view that defines
a common coordinate system. This canonical view simplifies the notation and
later serves as evaluation basis. W.l.o.g. we assume the camera matrix K to
be identical for both cameras, with projection matrices (K|0) for the left and
(M|m) for the right camera. For now we assume that the camera rig does not
move itself; in Sec. 3.4 we show how to cope with camera ego-motion.

A 3D moving plane π ≡ π(R, t,n) is defined by 9 parameters: the rotation
matrix R, a translation vector t, and a scaled normal n. Note that we assume the
motion parameters to describe the rigid motion in one forward time step. Recall
that the moving plane is defined in the coordinate system of the canonical view.
Assuming that all planes are visible in the canonical view, they cannot pass the
origin. We thus define n ≡ n0

l via the plane equation xTn = 1, which holds for
all 3D points x on the plane. Over the course of this section we will need to
transform the moving plane also into views (coordinate systems) other than the
canonical one. The respective scaled normal can be found by observing that the
normal equation must still hold after a rigid transformation. E.g ., consider the
left camera at time step 1: for all points x on the transformed normal we have

xTn1
l =1⇔ (R−1x−R−1t)Tn0

l =1⇔ xTRn0
l−tTRn0

l =1⇔ n1
l =

Rn0
l

1 + tTRn0
l

. (1)
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Fig. 2. (left) Data terms in the three-frame case: Consistency is enforced for spatial
and direct temporal neighbors (black arrows). (right) Illustration of the per pixel data
term: (a) impossible case, (b) occlusion (c) normal case (see text for more details.)

Our scene parameterization, furthermore, allows for a simple transformation
of pixel locations to their corresponding position in other views using the ho-
mography induced by its assigned moving plane. The homographies from the
canonical view I0l to the other views given the moving plane π are written as:

H0 0
l r(π) = (M−mnT)K−1 (2a)

H0 1
l l (π) = K(R− tnT)K−1 (2b)

H0 1
l r(π) = (MR−

(
Mt + m)nT

)
K−1. (2c)

Homographies between arbitrary view pairs can be obtained by concatenating
the transformations above, first transforming back to the canonical view and
then into the desired frame, e.g . H1 1

l r(π) = H0 1
l r(π) · H0 1

l l (π)−1.

Energy. We formally define the problem of 3D scene flow estimation as the min-
imization of an energy E(P,S) over two (sets of) mappings: First, the mappings
S = {Stv} with Stv : Itv → St

v assign each pixel of camera v at time t to a segment
from the set St

v, hence define a super-pixel segmentation of each view. This is in
contrast to [28], which only infers a segmentation of the reference view. Second,
the mappings P = {Pt

v} with Pt
v : St

v → Π select a rigidly moving plane for
each segment from a candidate set Π of possible moving 3D planes. We define
the energy function as

E(P,S) = ED(P,S) + λER(P,S) + µES(S). (3)

The most crucial term is the data term ED, which unlike [28] not only considers
photo-consistency w.r.t. a reference frame, but rather enforces photo-consistency
across all neighboring views. Moreover, it considers whether corresponding pixels
have a consistent geometric configuration and handles occlusions. The regular-
ization term ER evaluates the smoothness of motion and geometry at segment
boundaries in all images. The final term ES assesses the quality of the spatial
segmentation per view. In the following we first describe our model for only two
time steps, and later explain how to extend it to multiple frames in time.

3.1 View-consistent data term

Since we compute 3D scene flow for all views involved, we define a data term
for each image. In particular, we check the consistency of the scene flow in each
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view with its direct neighbors in time, and with the other view(s) at the same
time step (Fig. 2, left). With consistency we, on the one hand, mean classical
photo-consistency of the images at the corresponding pixel locations; the corre-
spondence is determined from the assigned moving plane π ≡ π(R, t,n). On the
other hand, because each pixel (in each view) is associated with a moving plane,
we can additionally ensure that corresponding pixel locations are geometrically
consistent, and detect occlusions. To that end we have to compare depth values
induced by the respective moving planes (Fig. 2, right). Note that this form of
cross checking is rather different from the occlusion reasoning in [28], and only
possible here because we no longer have a reference frame, but instead estimate
the scene flow for all views.

Suppose we want to check consistency between a pixel location p ≡ pt
v in view

v at time t and its corresponding pixel location p̂t̂
v̂ in view v̂ at time t̂. Denoting

the moving 3D plane of a pixel p as πp = Pt
v (Stv(p)), the corresponding pixel

location in the other view is determined as p̂t̂
v̂ = Ht t̂

v v̂(πp)p. To check geometric
consistency, we furthermore determine the depth d of a pixel p w.r.t. the camera
center of an image Itv through the inverse scalar product

d(p,nt
v(π)) := 〈K−1p,nt

v(π)〉−1. (4)

This allows us to define our data term for consistency of pixel p in view v at
time-step t and its moving plane πp with the adjacent view v̂ at time-step t̂ as

%(p, p̂t̂
v̂) :=



θocc if d(p̂t̂
v̂,n

t̂
v̂(πp))/d(p̂t̂

v̂,n
t̂
v̂(πp̂t̂

v̂
)) > 1 + ε

θimp if d(p̂t̂
v̂,n

t̂
v̂(πp̂t̂

v̂
))/d(p̂t̂

v̂,n
t̂
v̂(πp)) > 1 + ε

θoob otherwise if p̂t̂
v̂ /∈ I t̂v̂

ρ(p, p̂t̂
v̂) + θmvp otherwise if πp 6= πp̂t̂

v̂

ρ(p, p̂t̂
v̂) otherwise.

(5)

The first two cases consider the relative distance in depth to differentiate be-
tween occlusions and implausible geometric configurations, similar to comparing
disparity values in the stereo case [4]. In particular, a pixel p in the first view is
being occluded in the second view, if the depth of the moving plane πp is greater
than that of the corresponding plane πp̂t̂

v̂
(both depths determined in the second

view). Since we cannot check photo-consistency in case of an occlusion, we assert
a fixed penalty θocc. On the other hand, if the depth of the moving plane πp is
smaller than that of the corresponding plane πp̂t̂

v̂
, then an implausible geometric

configuration occurs. The 3D point corresponding to the plane stored in pixel
p̂t̂
v̂ would be occluded and hence cannot have been observed in the pixel p̂t̂

v̂. We
penalize this using the fixed penalty θimp. The ε parameter adds some “softness”
to the relative depth comparisons, in order to alleviate aliasing problems induced
by the pixel grid resolution and because practical considerations limit us to a
finite proposal set of moving planes. Using the third case, we penalize a pixel
moving out of the viewing frustum using the fixed penalty θoob.

The fifth case is the default case when pixels are in geometric correspondence.
Specifically, we use the robust census transform ρC [37] over a 7×7 neighborhood
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to measure the photo-consistency, truncated at half the maximum possible data
cost ρ(·, ·) = min{ρC(·, ·), 0.5 max(ρC)} at a pixel. We impose an additional
penalty θmvp in the fourth case, if pixels are in geometric correspondence, but
their moving planes are not the same. This encourages corresponding segments
from two views to pick the same moving 3D plane, leading to a view-consistent
segmentation.

In practice, we penalize pixels moving out of bounds and classical occlusions
identically and set θoob = θocc = 0.5 max(ρC). In our experience this ensures a
small number of non-submodular edges in the corresponding graph (see Sec. 3.5)
and therefore leads to good results. Due to aliasing, we cannot penalize physically
implausible configurations with an infinite penalty; we instead set θimp := 2θoob,
as such a limited penalty prevents deadlocks in the optimization. Note that we
rarely encounter implausible configurations in the final estimate. The penalty for
not assigning the same plane to pixels in geometric correspondence is empirically
set to θmvp := 5/16 θoob, thus allows for deviations from our prior assumption.

Since we compute scene flow for all views involved, we need to sum the per-
pixel contribution from Eq. (5) over all pixels of all frames and their considered
neighboring views (Fig. 2):

ED(P,S) :=
∑
t∈T

∑
v∈{l,r}

∑
p∈It

v

(∑
v̂ 6=v

%(p, p̂t
v̂) +

∑
t̂∈T
|t̂−t|=1

%(p, p̂t̂
v)

)
. (6)

It is important to note that each view pair is considered twice by the data term,
since both of the views have their own scene flow representation.

3.2 Shape and motion regularization

The spatial regularization term promotes piecewise smooth geometry and 3D
motion in all views considered. For each of the views, we closely follow [28].
In particular, discontinuities can only occur at segment boundaries, as all pixels
within a segment are on the same moving plane. If adjacent pixels are assigned to
different moving planes, a penalty is defined by integrating a squared distance
function, evaluated at points along the shared edge. Because of the piecewise
planarity, the integral can be evaluated in closed form and simplifies to measuring
distances only at the endpoints of the shared edge, see [28]. To achieve a certain
robustness against object and motion discontinuities, the integrated distance is
further embedded into a robust cost function. More formally, assuming that the
two adjacent pixels p and q lie on different moving planes πp = P(S(p)) and
πq = P(S(q)), then we can define the induced penalty as:

eR(p,q) := wp,q

(
ψ
(
||d1||2+||d2||2+〈d1,d2〉+γ2||dn||2

)
+ (7)

ψ
(
||dm

1 ||2+||dm
2 ||2+〈dm

1 ,d
m
2 〉+γ2||dm

n ||2
) )
. (8)

Here the vectors d1 and d2 describe the distance in geometry, and dm
1 and dm

2

the distance in motion at the two endpoints of the shared edge. The vectors dn
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and dm
n define the distance of the normals before and after the moving plane

induced motion is applied. While it appears natural to measure these distances
in 3D space, current scene flow benchmarks are biased toward 2D accuracy,
hence a 2D regularization delivers better results. Therefore, we use disparity
for geometry regularization, and 2D flow and disparity difference across time to
regularize the motion. Robustness is achieved using a truncated penalty function
ψ(y) := min(

√
y, η); we set η := 20 and γ := 1 for both geometry and motion.

The weight wp,q allows to take into account the image structure and the
length of the edge between the pixels. Since we found the weighting scheme from
[28] based on bilateral filtering to be noisy, we instead follow [34] and employ

the anisotropic diffusion tensor D
1
2 = exp(−α|∇I|)ggT + g⊥(g⊥)T with α = 5,

thereby assuming I ∈ [0, 1]. The direction of the image gradient g = ∇I/|∇I| is
determined in the middle between p and q via bicubic interpolation. We then
define the weight as

wp,q := |D 1
2
−→pq|. (9)

Because we compute the scene flow simultaneously in all images, we also
apply regularization on all views and define the full spatial regularizer as

ER(P,S) :=
∑
t∈T

∑
v∈{l,r}

∑
(p,q)∈N (It

v)

wp,qeR(p,q). (10)

Here, N are all neighboring pixels of the respective image (8-neighborhood).

3.3 Spatial segmentation regularization

The segmentation regularizer promotes the spatial coherence of the underlying
over-segmentation. We again define the energy for all views considered:

ES(S) =

( ∑
t∈T,

v∈{l,r}

∑
(p,q)∈N (It

v),
S(p)6=S(q)

wp,q

)
+
∑
p∈I0

l

{
0, ∃ e∈E(si):||e−p||∞<NS

∞, else.
(11)

The first term takes the form of a pairwise Potts model, which encourages seg-
ment boundaries to coincide with the image edges. We use the weights from the
diffusion tensor (Eq. 9) to take into account the edge contrast. The second term
restricts the size of a segment within the canonical view (maximum extent of
2NS − 1 with NS = 20) and binds them to their respective seed point e ∈ E(si).
The seed points are spaced on a regular grid. The key motivation behind this is
that it reduces the time needed for optimizing the mapping S, because only a
limited set of segments needs to be considered at any pixel. Note that the second
term only needs to be applied to the canonical view, since the data term from
Eq. (5) encourages the segmentations in the other views to be consistent.

This segmentation regularizer is based on ideas of [27], where a similar energy
is used to compute an over-segmentation of one image, and is also employed in
[28], but only w.r.t. the reference image.
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Fig. 3. Variation in camera pitch limits the validity of the constant velocity model.
(left) A scene observed by a moving camera with varying pitch. (right) Camera images
with induced 2D flow (black arrow). We compensate camera pitch by removing the
ego-motion of the camera.

3.4 Multiple frame extension

Extending our formulation to more than two frames seems straightforward on a
first glance: The spatial and segmentation regularizers can be trivially extended
to any number of frames, but the data term is more subtle. As discussed, we
generally assume motion of constant translational and rotational velocity in case
we have more than just two time steps. Note that in many applications this
assumption is valid, especially because we restrict ourselves to only a short time
interval. Consequently, one could extend the data term by defining appropriate
homographies between the views. Assuming constant velocity in rotation and
translation, this can be achieved by concatenation of terms from Eq. (2). Care
must be taken to use the correct normal, which must be transformed into the
appropriate view coordinate system. This can be similarly achieved by repeated
application of Eq. (1), again assuming constant velocity.

In certain applications, e.g . the automotive application in our experiments,
the constant velocity assumption is challenged by a common and high-frequent
pitching motion of the stereo rig, which can arise from undulations in the road
surface or from not perfectly securing the rig. Because the motion between two
time steps is always estimated relative to the respective camera coordinate sys-
tem, even small changes in relative camera position already lead to significant
changes in the relative geometry and motion (Fig. 3). Therefore we extend our
formulation to incorporate ego-motion estimates for the different time steps.

In particular, we first estimate the relative ego-motion Et = [Qt|st] between
all consecutive time steps t and t+1. When computing the homographies between
subsequent time steps, we first apply the motion induced by the moving plane
representation (disregarding any ego-motion) and then the relative ego-motion:
Since the rotation R and the translation t of a moving plane come from a
proposal (see below), which is computed for the canonical view unaware of any
ego-motion, we need to disregard the relative ego-motion of the canonical view
E0 first by applying (E0)−1 = [(Q0)−1| − (Q0)−1s0]. For example, in case of
computing a homography between frame t and t+ 1 in the left view, we have

Ht t+1
l l (π) = K

(
Qt(Q0)−1R−

(
Qt(Q0)−1(t− s0) + st

)
(nt

l)
T
)
K−1. (12)

Other homographies can be corrected for ego-motion accordingly.
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3.5 Optimization and proposal generation

Our piecewise rigid model energy (Eq. 3) amounts to a CRF with continuous,
9-dimensional variables for motion and geometry, and discrete variables for the
pixel-to-plane assignment. Like [28] we perform inference in two steps with fusion
moves [14]. First, starting from a fixed segmentation S we select a moving plane
for each segment from a finite set of proposals; then we update the segmentation
S, given the geometry and motion P of the segments. To bootstrap this two-step
procedure one needs an initial segmentation S. [28] proposes to start from an
intensity-based super-pixel segmentation. We found that the initial segmentation
is not critical, and instead start from a regular checkerboard grid (16 pixel edge
length) as trivial “segmentation”. The center points of the grid cells also serve
as seed points e ∈ E (see Eq. 11). Optimization w.r.t. S will eventually refine the
segmentation and adjust it to depth and motion boundaries, consistently in all
views. Aside from being more efficient, the grid structure also reduces aliasing
from an uneven size of the segments across views.

When first solving for P, we can treat the segments as large pixels and ig-
nore the segmentation term ES , as it is independent of P. To cope with aliasing
induced by the initial (not view-consistent) grid segmentation we relax the con-
sistency constraint and set ε := 0.1 and θmvp := 3/16 θoob. This softer setting
ensures that proposals are not prematurely discarded because of the inaccurate
initial segmentation. Edge weights (Eq. 9) are summed along the segment edges.

For our fusion move framework we need a set of moving plane proposals.
These are generated by running 2D stereo [10] and optical flow [29], and refining
the output with a two-frame version of our method, leading to a significant
reduction of the initial proposal set. The refinement, done only in the canonical
view for the same grid segmentation, resembles the segment-to-plane assignment
step of [28]. For the multi-frame case we generate proposals for all consecutive
frame pairs (t=−1 and t=0 for 3 time steps, and also t=1 for 4 time steps). To
avoid unnecessarily inflating the proposal set, proposals from other time steps
are only kept if they differ significantly from already extracted ones nearby.
Proposals are considered valid only in a 192×144 pixel (12×9 cells) neighborhood
centered at the seed point in the canonical frame, to speed up optimization.
During a fusion move we project the neighborhood into all other views and only
instantiate the graph for segments within the projected box.

Once the segment-to-plane mapping P has been found, we infer the pixel-to-
segment assignment S in a similar manner. I.e., we discard all unused moving
plane proposals and optimize again, this time labeling individual pixels rather
than grid cells. The region constraint from Eq. (11) ensures the locality of the
fusion move. Because our consistency decisions are made on a per pixel basis we
can penalize inconsistencies more strictly now and set ε := 0.015.

Our local expansion strategy allows to optimize multiple non-overlapping
image regions in parallel. With our current implementation we observe runtimes
of 23s (2 time steps) and 46s (3 time steps) to solve for P, respectively 18s and
32s to solve for S. Timings were measured for 0.5 Mpixel images on a dual Intel
Core i7, working with ∼ 1850 segments and proposals from 3 time steps.
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Fig. 4. Example from the KITTI training set (#191). (left) Consistent super-pixel seg-
mentation (right) Active data term % (Eq. 5). Colors denote normal photo-consistency

(green), out of bounds (red), occluded (light blue), and implausible (dark blue).

4 Evaluation

For our evaluation we fix the remaining parameters to of our algorithm to λ=
1/50 and µ= λ/5, and scale the census transform to deliver values between 0
and 1.6, thus max ρ(·, ·) = 0.8 in Eq. (5). We begin by illustrating the internal
representation of our model in Fig. 4. On the left we depict the (consistent) over-
segmentation overlayed on two consecutive frames and beside it the assigned
states of the data term % from Eq. (5), for the same images.

4.1 Qualitative Evaluation

We first show a hard example from the KITTI benchmark (Fig. 5). Most opti-
cal and scene flow methods fail on these images because of severe lens flares in
both cameras. However, the presence and the location of the artifacts are not
consistent through all views (although they are rather consistent in consecutive
frames). Our method is able to exploit the absence of a consistent depth and mo-
tion pattern for the flare, and reconstructs the scene flow reasonably well, with
only 3.7% of the disparities and 8.1% of the flow vectors (including occluded
areas) outside the standard 3-pixel error threshold of KITTI. We note that the
improvement is achieved only through view- and multi-frame consistency – imag-
ing artifacts that exhibit a consistent motion pattern across all images still can
lead to erroneous reconstructions (which is however rather unlikely because the
two views stem from physically different cameras).

In Fig. 6 we present further results on difficult outdoor scenes from [15]. On
the left the input images are shown, on the right are the disparities and the flow
(reprojected to 2D) estimated with our method from 3 consecutive stereo pairs.
Only qualitative results are given, as no ground truth is available. The examples
show that even under adverse imaging conditions our model correctly recovers
not only the dominant background, but also the motion of smaller, independent
objects. The scenes feature challenges such as reflections on the wet road, strong
occlusions at a crossroads, and saturated headlights. The most difficult examples
even include flares from headlights on the wet windscreen, and heavy snowfall.
Also from this dataset is the example shown in Fig. 1, in which the windscreen
wiper occludes a large part of the viewing field. This particular scene is extremely
hard to reconstruct with only a single reference view.
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Fig. 5. A hard example (KITTI training set, #74). (left) Input frames. (right) Recon-
structed scene flow, reprojected to disparity and 2D flow field (from left to right).

Fig. 6. Results for challenging examples from [15]. (left) Input frames. (right) Recon-
structed scene flow, reprojected to disparity and 2D flow field. Best viewed on screen.

4.2 KITTI benchmark

We quantitatively evaluate the performance of our algorithm on the KITTI
dataset [9]. The images were acquired with a calibrated stereo rig at a reso-
lution of 1240 × 376 pixels. The cameras are mounted on top of a car together
with a laser scanner, which delivers semi-dense ground truth. KITTI has be-
come a standard testbed for modern stereo and optical flow algorithms. It is
challenging mainly for two reasons, (i) very large displacements in both stereo
(>150 pixels) and flow (>250 pixels); and (ii) having real outdoor scenes under
realistic lighting, with shadows, saturation, specular reflections, lens flare, etc.

The benchmark consists of a “training” set of 194 images with public ground
truth and a test set of 195 images, for which the ground truth is withheld. The
data is provided in stereo video snippets of 20 frames, so that our multi-frame
method can be applied. We analyze different variants of our method on the
training set, and run it on the test set to compare to the state of the art.

Table 1 summarizes the results of the evaluation on the training images. As
error measures we use the average end point error (AEP) and the KITTI metric,
i.e. the percentage of pixels that deviate by more than 2/3/4/5 pixels from the
ground truth. Both metrics are calculated both for the complete images (

√
), and

only for the non-occluded pixels (×). The following variants are evaluated: view-
consistent estimation for two frames (VC-2F ), three frames (VC-3F ) and four
frames (VC-4F ). To separate the impact of propagating proposals over multiple
frames from the impact of multi-frame optimization, we also test a variant in
which proposals are extracted from 3 frames, but model optimization is done
only for two frames (VC-2F+). As a baseline we also run our method for only



14 Christoph Vogel, Stefan Roth and Konrad Schindler

Table 1. KITTI metric (% of flow vectors / disparities above 2/3/4/5 pixels of end-
point error) and average endpoint error [px], for the complete KITTI training set.

Flow Stereo
KITTI metric AEP KITTI metric AEP

Occ pix.
√ × √ × √ × √ ×

2px 3px 4px 5px 2px 3px 4px 5px 2px 3px 4px 5px 2px 3px 4px 5px
PRSF [28] 9.9 7.3 6.0 5.2 5.8 4.1 3.3 2.8 2.5 1.2 8.0 5.6 4.4 3.7 7.0 4.8 3.8 3.1 1.2 1.0
VC-2F 8.0 5.5 4.2 3.4 4.4 2.9 2.2 1.7 1.4 0.8 6.8 4.7 3.6 3.0 5.8 3.9 3.0 2.5 1.0 0.8
VC-2F+ 7.4 4.9 3.7 3.0 4.2 2.6 1.9 1.5 1.3 0.7 6.4 4.3 3.3 2.8 5.5 3.7 2.8 2.3 0.9 0.8
VC-3F 6.6 4.1 3.0 2.3 4.1 2.6 1.9 1.5 1.1 0.7 5.5 3.7 2.8 2.3 5.0 3.3 2.5 2.1 0.8 0.7
VC-4F 6.5 4.0 3.0 2.4 4.0 2.5 1.9 1.5 1.1 0.7 5.3 3.6 2.7 2.2 4.9 3.3 2.5 2.0 0.8 0.7

two frames and using a single reference view (PRSF ). The baseline is essentially
the same as the basic version of [28], called “PRSPix-2D” in that paper.

Moving from a single reference view to view-consistent estimation (PRSF vs.
VC-2F ) already yields significant improvements. In the standard KITTI metric
(3px error threshold) the gains are 25% for flow, and 16% for stereo (respectively
29% and 19% in visible areas). In line with these results also the AEP is reduced
by 44% and 17% (respectively, 33% and 20%), showing that view-consistency is
especially helpful in the presence of occlusions.

Including proposals from the previous frame (VC-2F+) already improves the
results further. A much larger improvement however is brought about by moving
to three frames (VC-3F ). Note in particular the strong gains in occluded areas,
which significantly reduce the errors on the full images despite the small number
of affected pixels. When adding a fourth frame (VC-4F ) we observe diminishing
returns, with only marginal improvements over the three-frame case. Compared
to the baseline, our best result reduces the KITTI error on the full images by
45% for flow and by 36% for stereo. The corresponding AEPs drop by 56%,
respectively 33%. We submitted the three-view version VC-3F to the official
KITTI benchmark. In the evaluation on full images including occluded areas
(“Out-All”) the proposed scene flow method current achieves the best results
for both flow and stereo, among >40 submissions. Note that in contrast to the
nearest competitor, our method can handle scenes with independently moving
objects (see Fig. 6), which are rare in this benchmark, but not in general scenes.

5 Conclusion

In this paper we have addressed the question of how to exploit consistency over
time and between viewpoints for dense 3D scene flow estimation. For piecewise
planar and rigid scenes, we have shown a way to leverage information from mul-
tiple consecutive frames of a stereo video, and thereby significantly improve both
shape and 3D motion estimation. The proposed model has proven remarkably
robust against outliers, occlusions and missing evidence, and makes it possible
to estimate depth and motion of road scenes even under adverse imaging con-
ditions, where most methods fail. In future work we plan to handle deviations
from the constant velocity assumption in a more flexible manner.
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