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3D Scene Flow Estimation with a Piecewise Rigid Scene Model

Christoph Vogel · Konrad Schindler · Stefan Roth

Abstract 3D scene flow estimation aims to jointly recover
dense geometry and 3D motion from stereoscopic image se-
quences, thus generalizes classical disparity and 2D optical
flow estimation. To realize its conceptual benefits and over-
come limitations of many existing methods, we propose to
represent the dynamic scene as a collection of rigidly moving
planes, into which the input images are segmented. Geom-
etry and 3D motion are then jointly recovered alongside an
over-segmentation of the scene. This piecewise rigid scene
model is significantly more parsimonious than conventional
pixel-based representations, yet retains the ability to repre-
sent real-world scenes with independent object motion. It,
furthermore, enables us to define suitable scene priors, per-
form occlusion reasoning, and leverage discrete optimiza-
tion schemes toward stable and accurate results.

Assuming the rigid motion to persist approximately over
time additionally enables us to incorporate multiple frames
into the inference. To that end, each view holds its own
representation, which is encouraged to be consistent across
all other viewpoints and frames in a temporal window. We
show that such a view-consistent multi-frame scheme signif-
icantly improves accuracy, especially in the presence of oc-
clusions, and increases robustness against adverse imaging
conditions. At the time of writing (August 2014) our method
achieves leading performance on the KITTI benchmark, for
both flow and stereo.
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1 Introduction

The scene flow of a dynamic scene is defined as a dense rep-
resentation of the 3D shape and its 3D motion field. Scene
flow estimation aims to extract this information from im-
ages captured by two (or more) cameras at two (or more)
different time instants. Applications that benefit from know-
ing the scene flow include 3D video generation for 3D-TV
(Hung et al, 2013), motion capture (Courchay et al, 2009;
Park et al, 2012; Vedula et al, 1999), and driver assistance
(e.g., Müller et al, 2011; Rabe et al, 2010; Wedel et al, 2008).
The 3D scene flow can be seen as a combination of two clas-
sical computer vision problems – it generalizes optical flow
to 3D, or alternatively, dense stereo to dynamic scenes.

While progress in dense binocular stereo (Bleyer et al,
2011b; Hirschmüller, 2008; Yamaguchi et al, 2012, etc.) and
optical flow (Brox et al, 2004; Sun et al, 2010; Unger et al,
2012, among others) has been both steady and significant
over the years, the performance of 3D scene flow algorithms
(e.g., Basha et al, 2010; Huguet and Devernay, 2007; Wedel
et al, 2008) had been lacking in comparison. Only recently,
methods emerged (Vogel et al, 2013b, 2014; Yamaguchi et al,
2014) that could leverage the additional information present
in stereo video streams and outperform their dedicated two-
dimensional counterparts at their respective tasks.

This may seem surprising, because 3D scene flow has a
lot of commonalities with stereo and optical flow. This in-
cludes some of the principal difficulties, for example match-
ing ambiguities due to insufficient evidence from the local
appearance, or the aperture problem (more precisely a 3D
version of it). Therefore, 3D scene flow estimation simi-
larly requires prior assumptions about geometry and motion.
A recent trend in both stereo and optical flow is to move
away from simple pixelwise smoothness priors, as they have
been found limiting. More expressive priors have been intro-
duced, for example, by virtue of an over-parameterization
(Nir et al, 2008), layered (Sun et al, 2010) or piecewise pla-
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nar scene models (Bleyer et al, 2011b). In contrast, there has
been relatively little work on using advanced priors in scene
flow estimation. One exception is a regularizer that promotes
local rigidity (Vogel et al, 2011), a common property of re-
alistic scenes, by penalizing deviations from it.

Piecewise rigid scene model. Our first contribution is to go
one step further and represent dynamic scenes as a collection
of planar regions, each undergoing a rigid motion. Follow-
ing previous work in stereo (Bleyer et al, 2011b), we argue
that most scenes of interest consist of regions with a consis-
tent motion pattern, into which they can be segmented. Con-
sequently, we aim to jointly recover an implicit (over-)seg-
mentation of the scene into planar, rigidly moving regions,
as well as the shape and motion parameters of those regions
(see Fig. 1). As we will show, such a parsimonious model
is well-suited for many scenes of interest: The approxima-
tion holds well enough to capture the shape and motion of
many real-world scenarios accurately, including scenes with
independent object motion, while the stronger regularization
affords stability. At the same time, reasoning in terms of
rigid planar regions rather than pixels drastically reduces the
number of unknowns to be recovered. Thereby, we addition-
ally address the challenge of optimization or inference, one
of the other principal difficulties that 3D scene flow shares
with stereo and optical flow.

We (implicitly) represent 3D scene flow by assigning
each pixel to a rigidly moving 3D plane, which has 9 con-
tinuous degrees of freedom (3 plane parameters, 6 motion
parameters). To bootstrap their estimation, we start not from
individual pixels, but from an initial superpixel segmenta-
tion of the scene. Based on the superpixels we compute a
large, but finite set of candidate (moving) planes, and cast
scene flow estimation as a labeling problem. The inference
thus assigns each pixel to one of the segments (superpixels),
and each segment to one of the candidate moving planes. We
split the optimization into two steps. First, we find the best
moving plane for each segment; reasoning on this coarser
level captures long-range interactions and significantly sim-
plifies and stabilizes the inference. Second, we go back to
the pixel level and reassign pixels to segments; this step
cleans up inaccuracies of the segmentation, whose initial
boundaries were generated without taking the previously un-
known surface or motion discontinuities into account.

View-consistent multi-frame scene flow. Our second contri-
bution is to exploit this piecewise rigid scene model to over-
come two limitations of existing scene flow techniques. We
begin by observing that (i) there is no conceptual reason for
a privileged reference view (e.g., Basha et al, 2010; Rabe
et al, 2010; Valgaerts et al, 2010; Vogel et al, 2011; Wedel
et al, 2008), as systematic challenges in imaging (specular
reflections, occlusions, noise, lack of contrast, etc.) affect all

Fig. 1 Example scene from Vaudrey et al (2008): Jointly estimated
3D geometry, 3D motion vectors, and superpixel boundaries, rendered
from a different viewpoint.

frames, but not necessarily equally. Thus parameterizing the
model w.r.t. a single viewpoint may in fact ignore important
evidence present in other views (c.f . Fig. 2); (ii) data usually
comes in the form of a stereo video sequence, and it appears
wasteful not to exploit longer time intervals, especially in
light of the first observation.

We go on to show that our piecewise planar and rigid
scene model can be extended to simultaneously estimate ge-
ometry and 3D motion over longer time intervals, and to
ensure that the estimate is consistent across all views within
the considered time window. To that end we simultaneously
parameterize the scene flow w.r.t. all views. While it may not
be surprising that considering longer sequences may help
motion estimation, at least in classical 2D optical flow esti-
mation multi-frame extensions have largely not had the de-
sired effect; two-frame methods are still the state of the art
(see Baker et al, 2011; Geiger et al, 2012). We argue that
long-term constraints may be more helpful in scene flow,
since the representation resides in 3D space, rather than in
a 2D projection. Constraints caused by physical properties,
such as inertia, remain valid in the long term, and can be
exploited more directly.

To make the estimate consistent across all views from
a longer sequence, we constrain the segmentation to remain
stable over time, enforce coherence of the representation be-
tween different viewpoints, and integrate a dynamic model
that favors constant velocity of the individual planes. We
empirically found this assumption to be valid as long as seg-
ments and temporal windows do not get too large.

Contributions. The main features of our proposed approach
are: (i) A novel scene flow model that represents the scene
with piecewise planar, rigidly moving regions in 3D space,
featuring regularization between these regions and explicit
occlusion reasoning; (ii) a view-consistent model extension
that leads to improved results in challenging scenarios, by si-
multaneously representing 3D shape and motion w.r.t. every
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Fig. 2 Consistency over multiple frames makes scene flow estimation robust against severe disturbances like the windscreen wiper. (left) Input
frames. (center left) The left view at time t = 0. (right) Our scene flow estimate for that viewpoint (shown, from left to right, as disparity and
reprojected 2D flow field).

image in a time interval, while demanding consistency of the
representations; (iii) a multi-frame extension that yields a
temporally consistent piecewise-planar segmentation of the
scene and favors constant 3D velocity over time; and (iv) a
clean energy-based formulation capturing all these aspects,
as well as a suitable discrete inference scheme. The formu-
lation can – at least conceptually – handle any number of
viewpoints and time steps.

We demonstrate the advantages of our model using a
range of qualitative and quantitative experiments. On partic-
ularly hard qualitative examples, our model turns out to be
remarkably resistant to missing evidence, outliers, and oc-
clusions. As a quantitative testbed we evaluate our method
on the challenging KITTI dataset of real street scenes, us-
ing both stereo and flow benchmarks. In both benchmarks
we achieve leading performance, even beating methods that
are designed for the specific situation in the benchmark. At
the time of writing (August 2014) our full (view-consistent
multi-frame) model is the top performing method for both
optical flow and stereo, when evaluated on full images in-
cluding occlusion areas.

The present paper is based on two conference publica-
tions (Vogel et al, 2013b, 2014). We here describe the ap-
proach in greater detail, including the model itself, the in-
ference scheme, proposal generation, and technical issues of
occlusion reasoning. Moreover, we present a deeper analy-
sis and more detailed comparison between the conventional
parameterization and the view-consistent model, an experi-
mental investigation of different optimization strategies, and
study the influence of parameters on the quantitative results.

2 Related Work

Vedula et al (1999) first defined scene flow as the collective
estimation of dense 3D geometry and 3D motion from image
data. Their approach operates in two steps. After computing
independent 2D optical flow fields for all views of the scene,
the final 3D flow field is fit to the 2D flows, thus neglecting
the image data in this step. Similarly, Wedel et al (2008)
and Rabe et al (2010) proceed sequentially on the data of
a calibrated stereo camera system. Starting from a precom-

puted disparity map, optical flow for a reference frame and
disparity difference for the other view are estimated. Pos-
sibly the first to calculate geometry and flow jointly in a
two-view setup were Huguet and Devernay (2007), address-
ing the problem in a variational formulation. The problem
was generalized by Valgaerts et al (2010) to work with an
unknown relative pose between the cameras, solely assum-
ing knowledge of the camera intrinsics. They alternate scene
flow calculation with estimating the relative camera pose.
Operating entirely with 2D entities, these approaches par-
tially neglect the 3D origin of the data. In particular, the
proposed 2D regularizer encourages smooth projections, but
not necessarily smooth 3D scene flow.

In contrast, Basha et al (2010) choose a 3D parameter-
ization by depth and a 3D motion vector w.r.t. a reference
view and estimate all parameters jointly, extending the pop-
ular optical flow method of Brox et al (2004) to scene flow.
Arguing that a total variation prior on the 3D motion field
is biased for realistic baselines, Vogel et al (2011) propose a
regularizer that encourages locally rigid motion. Our model
also employs a local rigidity assumption, but here we explic-
itly identify regions with a consistent motion pattern, into
which the image is segmented.

The history of local rigidity priors dates back at least
to Adiv (1985), who employed this assumption for sparse
motion estimation. The idea was later extended to sparse
scene flow by Carceroni and Kutulakos (2002). In a simi-
lar manner, Devernay et al (2006) extend the Lucas-Kanade
technique (1981) to multi-camera scene flow and track pla-
nar, rigidly moving regions in 3D over several frames. While
the scene representation of Carceroni and Kutulakos (2002);
Devernay et al (2006) is similar to ours, there the regions
move independently without interaction imposed by a global
objective. Furukawa and Ponce (2008) go one step further
and use the locally tracked rigid patch motion as input for
a global optimization step, where the connectivity is defined
by an explicit surface model, thus limiting admissible scenes
to a fixed topology. 3D rigid body motions are further ex-
ploited in the context of scene flow estimation from RGB-D
data by Hornacek et al (2014). They do not need to assume
local surface planarity, but exploit the additional information
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from the depth sensor and use a local rigidity prior to over-
come large displacements. For computing optical flow, Nir
et al (2008) over-parameterize the 2D flow field and explic-
itly search for rigid motion parameters, while encouraging
their smoothness.

Most previous dense 3D scene flow methods have in
common that they penalize deviations from spatial smooth-
ness in a robust manner. Explicit modeling of discontinuities
by means of segmentation or layer-based formulations has
a long history in the context of stereo (Tao and Sawhney,
2000) and optical flow (Black and Jepson, 1996; Wang and
Adelson, 1994). Wang and Adelson (1994) start from opti-
cal flow and define the regions by k-means clustering, where
cluster centers are affine motions. Given an initial segmen-
tation Black and Jepson (1996) similarly obtain a parametric
model for each image region, which is then used as an ad-
ditional constrain a final optical flow computation, thus the
model allows for violations of the parametric model. These
ideas recently gained renewed attention, however modern
methods do not hold the segmentation or motion fixed, but
rather infer or refine segmentation together with the scene
parameters. Bleyer et al (2010, 2011b) segment the scene
into planar superpixels and estimate disparity by parame-
terizing their geometry. Additionally penalizing deviations
from an initial solution, segment-based stereo is also pro-
moted by Yamaguchi et al (2012). More recently, this method
was extended to epipolar flow (Yamaguchi et al, 2013) and
epipolar scene flow (Yamaguchi et al, 2014), both assuming
that the flow fulfills epipolar geometry constraints, i.e. is the
result of pure camera ego-motion. General 2D optical flow
is computed by Unger et al (2012), who parameterize the
motion of each segment with 2D affine transformations, and
also allow for occlusion handling. Aside from estimating
2D and not 3D motion, the method differs in the sense that
no inter-patch regularization is performed, such that motion
fields of adjacent segments are estimated completely inde-
pendently of one another. Ju et al (1996) integrate segmen-
tation and motion estimation in a different manner. Starting
from regularly spaced, non-overlapping regions the optical
flow in each region is described by multiple affine motions,
motion layers. Similarly to our proposed spatial regulariza-
tion, inter-segment constraints are imposed, here between
layers across segment boundaries. Because motion layers
can interact and thus influence their parametric represen-
tation, a segmentation into regions with similar motion is
obtained implicitly.

Murray and Buxton (1987) were among the first to per-
form motion estimation over multiple frames. The admis-
sible 2D optical flow fields are, however, limited to only
small displacements. Black and Anandan (1991) instead en-
courage the similarity between the current and the past flow
estimates, extrapolating motion fields from previous frames.
While allowing for larger displacements, information is only

processed in a feed-forward fashion, in particular the present
cannot influence the past. Much later, assuming a constant
2D motion field, Werlberger et al (2009) jointly reason over
three consecutive frames. By considering constant 3D scene
flow over time, we are able to address more general scenes.
This constant velocity constraint is relaxed by Volz et al
(2011), who encourage first and second order smoothness
of the motion field as soft constraints. The motion is param-
eterized w.r.t. a single reference frame, thus reasoning about
occlusion regions or outliers appears hard to achieve. Irani
(2002) operates on much longer time intervals and enforces
the estimated 2D motion trajectories to lie in a (rigid) sub-
space. Similarly, Garg et al (2013) require the 2D motions
to lie in a low-rank trajectory space, but instead can use the
prior as a soft constraint. Sun et al (2010, 2013) argue that
the scene structure is more likely to persist over time than
any motion pattern, hence avoid temporal smoothing at all,
and instead jointly estimate the flow together with a seg-
mentation into a small number of layers while requiring the
pixel-to-layer membership to be constant. With the primary
goal of high-level motion segmentation, Schoenemann and
Cremers (2008) operate in a similar way: A video is seg-
mented into several motion layers with long-term temporal
consistency. Optionally, a 2D parametric motion for each
layer is estimated as well. Our view-consistent formulation
makes a related assumption, since we group pixels into pla-
nar and rigidly moving segments, while enforcing consis-
tency of the segmentation over multiple frames. In contrast
to motion layers, this much more fine-grained representa-
tion with hundreds of small segments enables us to address
a wider range of scenes.

An explicit representation of 3D motion and shape al-
lows scene flow methods to exploit temporal consistency
over longer time intervals in a more straightforward man-
ner, since smoothness constraints are better supported in the
3D scene than in its 2D projection. Rabe et al (2010) take
advantage of this fact and propagate geometry and 3D mo-
tion across frames with the help of a Kalman filter. At each
pixel the measurement vector for the filter is composed of
scene flow vectors from the current and the previous frame,
which are estimated with the method of Wedel et al (2008).
Compared to its input, the filtered 3D motion and geome-
try contains significantly fewer outliers. Hung et al (2013)
concatenate frame-to-frame stereo and flow to longer mo-
tion trajectories, which are, after passing several plausibil-
ity tests, included into the final optimization as soft con-
straints, similar to including feature matches in two-frame
optical flow (Brox and Malik, 2011). The method advocates
to propagate information through the whole sequence and,
therefore, cannot output the scene flow without significant
temporal delay, as is needed for several application scenar-
ios. In their multi-camera setup Park et al (2012) also op-
erate sequentially. Scene flow is first estimated frame-by-
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Fig. 3 Schematic sketch of our scene representation: The scene is
modeled as a collection of rigidly moving planar segments, here three
different segments cover the side of a car.

frame and then smoothed over time by tensor voting. Cour-
chay et al (2009) go further and represent the scene with an
explicit deformable 3D mesh template, which is fitted to the
video data from multiple cameras over 10–60 frames. The
method is theoretically elegant, but computationally expen-
sive. Both approaches target motion capture in controlled
settings.

Techniques that avoid an arbitrary reference frame and
instead treat all views equally are predominantly used in
stereo. The simplest form is the widespread left-right con-
sistency check (e.g., Hirschmüller, 2008) during post-pro-
cessing. More recently, consistency tests were directly incor-
porated in the objective (Bleyer et al, 2011b). In our view-
consistent formulation, we extend the latter strategy to scene
flow, considering consistency across all images within a tem-
poral window.

Introduced by Lempitsky et al (2008) for the case of 2D
optical flow, fusion of different proposal sets has become
a standard optimization technique. Here we employ such a
scheme for the estimation of 3D scene flow.

3 Piecewise Rigid Model for 3D Scene Flow

To estimate 3D scene flow, we describe the dynamic scene
as a collection of piecewise planar regions moving rigidly
over time (Fig. 3). The motion and geometry of each region
is governed by nine degrees of freedom, which we deter-
mine by minimizing a single objective function. During op-
timization, pixels are grouped into superpixels, and a suit-
able 3D plane and rigid motion is selected for each of these
segments. Note that the implicitly obtained spatial segmen-
tation does not aim to decompose the scene into semantic
objects. Rather, an over-segmentation is desired to capture
geometry and motion discontinuities, and to allow for the
accurate recovery of non-planar and articulated objects. We
begin our detailed description with the basic parameteriza-
tion of the scene w.r.t. a single reference view and consider
two time steps (Sec. 4). Later, we show how to achieve view-
consistent scene flow over multiple frames (Sec. 5).

3.1 Preliminaries and notation

We formalize our model for the classical case of images
obtained by a calibrated stereo rig at two subsequent time
steps. However, we note that an extension to a larger num-
ber of simultaneous views is straightforward. To distinguish
between the different views, we use subscripts l,r to iden-
tify the left and right camera1, and superscripts t ∈ T =

{−1,0,1, . . .} to indicate the acquisition time. We let the
left camera at time t = 0 define a common coordinate sys-
tem and refer to it as the canonical view; this simplifies
the notation. This canonical view, on one hand, serves as
an evaluation basis, and on the other hand, coincides with
the sole reference view, in case view consistency is not em-
ployed. These choices lead to the projection matrices (K|0)
for the left and (M|m) for the right camera. For simplicity,
we assume w.l.o.g. the calibration matrix K to be identical
for both cameras.

In our model a 3D moving plane π ≡ π(R, t,n) is gov-
erned by nine parameters, composed of a rotation matrix R,
a translation vector t, and a scaled normal n, each with three
degrees of freedom. Note that we do not explicitly distin-
guish between camera ego-motion and independent object
motion, but describe the full motion in one forward time
step. Later, when we extend our model to reason over mul-
tiple frames, we show how to cope with high frequent ego-
motion of the camera (Sec. 5.3). In case of a single reference
view, we assume all planes to be visible in the canonical
view. Thus, as the canonical camera center and coordinate
origin coincide, no visible plane can pass the origin. We can
then define the scaled normal n ≡ n0

l via the plane equa-
tion xTn = 1, which holds for all 3D points x on the plane.
Throughout the paper it is convenient to transfer the moving
plane also into other views and their respective camera co-
ordinate systems. The plane equation still has to be valid af-
ter any rigid transformation, hence the scaled normal trans-
forms in correspondence with 3D points x on the plane n0

l .
For example, for the left camera at time step t=1 the normal
n1

l in the respective coordinate system is found as:

xTn0
l = 1 ⇔ (Rx+ t)Tn1

l = 1 ⇔ n1
l =

Rn0
l

1+ tTRn0
l
. (1)

We can, furthermore, determine the depth d observed at
a pixel p of the image It

v, acquired at time t w.r.t. the center
of camera v through the inverse scalar product:

d(p,nt
v(π)) = 〈K−1p,nt

v(π)〉−1. (2)

This information is later needed to test for occlusions (Sec.
4.7), as well as to check the geometric consistency (Sec. 5.2)
of the representation.

1 “Left” and “right” are only used for intuition and do not necessar-
ily correspond to the geometric configuration of the rig.
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Utilizing a planar scene representation allows to map
pixel locations conveniently to their corresponding positions
from one view to another. In particular, a moving plane π in-
duces homographies from the canonical view I0

l to the other
views given by:

H0 0
l r (π) = (M−mnT)K−1 (3a)

H0 1
l l (π) = K(R− tnT)K−1 (3b)

H0 1
l r (π) = (MR−

(
Mt+m)nT

)
K−1. (3c)

Concatenating the transformations above, mappings be-
tween arbitrary view pairs can be obtained. This is achieved
by first transforming back to the canonical view and then
into the desired frame, e.g. H1 1

l r (π) = H0 1
l r (π) · H0 1

l l (π)
−1.

For notational convenience we define H0 0
l l (π) to be the iden-

tity, which maps the canonical frame onto itself.

4 Single Reference View

For now our aim is to determine depth and 3D motion for
every pixel of the designated reference view I0

l . To that end,
we formally define an energy function E(P,S ) over two
mappings: a mapping S : I0

l → S that assigns each pixel of
the reference view p ∈ I0

l to a segment s ∈ S; and a mapping
P : S→ Π to select a 3D moving plane π ∈Π from a pre-
defined set of proposals Π for each of the segments s ∈ S.
To find these mappings, we aim to minimize a single energy
consisting of four terms:

E(P,S ) = ED(P,S )+λER(P,S )

+µES(S )+EV (P,S ).
(4)

The data term ED measures photo-consistency across the
four views of our basic model. The regularization term ER
encourages (piecewise) smoothness of geometry and motion
at segment boundaries. The boundary term ES evaluates the
quality of the spatial segmentation, encouraging a compact
and edge-preserving over-segmentation of the reference im-
age. The visibility term EV deals with missing correspon-
dences from areas that move out of the viewing frustum
(out of bounds). The energy is then minimized in two steps:
Starting with a fixed initial over-segmentation S , we estab-
lish the link between segments and 3D moving planes, label-
ing each segment s∈ S to belong to one of the moving planes
π ∈ Π . Subsequently, we operate with a fixed mapping P
and re-assign each pixel p ∈ I0

l to one of the segments and,
thereby, associated 3D moving planes. Note that the basic
form of the energy remains the same when considering view
consistency in Sec. 5.

4.1 Data term

In its traditional role, the data term embodies the assump-
tion that corresponding points in different views have similar
appearance. Here, we achieve this through four constraints
per pixel, two for the stereo pairs at time steps 0 and 1,
and two optical flow constraints, one for each camera (see
Fig. 4, left). Denoting the 3D moving plane at a pixel p as
πp = P(S (p)) and utilizing the homographies defined in
Eq. (3), we can define stereo data terms between the cameras
as

Ds
t = ∑

p∈I0
l

ρ
(

H0 t
l l(πp)p, H0 t

l r(πp)p
)
, t ∈ {0,1}, (5)

and optical flow data terms across time as

Df
i = ∑

p∈I0
l

ρ
(

H0 0
l i (πp)p, H0 1

l i (πp)p
)
, i ∈ {l,r}. (6)

The corresponding pixel location in a different view is usu-
ally a sub-pixel coordinate, hence image intensities are ob-
tained via bilinear interpolation. For increased robustness
in general conditions (e.g., outdoors), we utilize the cen-
sus transform ρ = ρC (Zabih and Woodfill, 1994) over a
7×7 neighborhood to assess photo-consistency. We scale the
Hamming distances by 1/30. Although we are not limited to
this specific choice, all examples and results are generated
with the census data cost, unless explicitly stated otherwise.
The complete data term is given as the sum of the four terms
in Eqs. (5) and (6):

ED(P,S ) = Ds
0 +Ds

1 +Df
l +Df

r. (7)

4.2 Spatial regularization of geometry and motion

In our scene representation, geometry and motion param-
eters are shared among all pixels within a segment, hence
explicit regularization within a segment is not needed. We
can thus focus on the segment boundaries. One important
benefit over pixelwise regularizers (Basha et al, 2010; Vogel
et al, 2011) is that our boundary regularizer does not have to
be overly strong to significantly stabilize scene flow estima-
tion. Moreover, it rather naturally deals with discontinuities,
a key problem area of previous scene flow techniques (e.g.,
Vogel et al, 2011). Since boundaries regularly occur within
a single object due to the over-segmentation, our regular-
ization term assumes piecewise smooth 3D geometry and
motion.

We model shape and motion priors independently (given
a segmentation), and define our regularizer ER(P,S ) as the
sum of a geometric term EG

R (P,S ) and a term EM
R (P,S )

to measure the regularity of the motion field.
For now assume that two adjacent pixels p and q are

assigned to the moving planes πp = P(S (p)) and πq =
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Fig. 4 (left) Single reference-view model. Data terms (black arrows) and homographies (green). (center top) Pixels without correspondences
when using a reference view (blue). Areas that are hard to match may be without correspondence in other views; view-consistency avoids this.
(center bottom) Enlarged areas containing pixels without correspondence in the right camera. (right) Data terms in the three-frame view-consistent
model: Consistency is encouraged for spatial and direct temporal neighbors (black arrows). All pixels of all views are considered in the energy.

Fig. 5 Schematic sketch of the geometric part of our regularizer: Smoothly connected regions (left) are favored over bending (center left). The
more the situation degenerates, the higher the energy becomes (center right and right).

P(S (q)). We treat pixels as square patches, residing in the
image plane in which they share a boundary. To measure the
contribution to the regularization term along their common
edge, we consider the (2D) endpoints of the edge between
the pixels, c1 and c2. We begin with the geometry term. By
projecting the endpoints onto each of the two 3D planes, we
obtain the 3D endpoints c1

p, c1
q, c2

p and c2
q (see Fig. 6). In

case p and q lie on different planes, the pixel boundaries
will, in general, not coincide in 3D space. We thus compute
distance vectors between the 3D endpoints: d1=c1

p−c1
q and

d2 =c2
p−c2

q. Our goal is to penalize the distances along the
shared edge. One could compute 3D distances for any point
on the boundary in a similar fashion. However, since we are
using planes as primitives, the 3D distance along the shared
boundary in the image plane is simply a convex combination
of the endpoint distances ||αd1 +(1−α)d2||.

To consider surface curvature we exploit this observa-
tion further and shift the 3D endpoints along their respective
plane normals np and nq before measuring distances. We
denote the difference of the normals as dn = np− nq, and
define a distance function (see Fig. 6)

fγ(α,β ) = ||α(d1 + γβdn)+(1−α)(d2 + γβdn)||. (8)

The weight γ balances boundary distance vs. curvature. The
geometry regularizer is then found by integration. Adding a
factor 3/2 for mathematical convenience, we integrate the
squared distance function ( fγ)

2 along the boundary (w.r.t.

α) and along the normal direction (w.r.t. β ) in closed form:

EG
R (P,S ) = ∑

(p,q)∈N
wp,qψ

(
3
2

∫ 1

0

∫ 1

−1
fγ(α,β )2 dβdα

)
(9)

= ∑
(p,q)∈N

wp,qψ
(
||d1||2+||d2||2+〈d1,d2〉+γ

2||dn||2
)
.

The summation considers pixels to be adjacent in an (8-)
neighborhood N , where the length of the common edge is
taken into account through the weight wp,q, which can op-
tionally also incorporate edge information (Eq. 13) of the
image data. ψ(·) denotes a (robust) penalty function. The in-
tuition behind this form of regularization is shown in Fig. 5.
Setting γ := 1 our energy favors planar configurations over
bending. By integrating squared distances of 3D vectors, the
induced penalty increases smoothly as the situation degen-
erates. This soft transition helps in the realistic case of a
limited proposal set of 3D moving planes Π .

The motion regularizer is obtained by first applying the
rigid transformation to the moving planes. We then simi-
larly integrate the endpoint distances dM

i = Rpci
p+ tp−ci

p−
(Rqci

q + tq−ci
q), as well as the differences between the (ro-

tated) normals dM
n = (Rpnp−np)− (Rqnq−nq), leading to

EM
R (P,S ) = (10)

∑
(p,q)∈N

wp,qψ
(
||dM

1 ||2+||dM
2 ||2+〈dM

1 ,dM
2 〉+γ

2||dM
n ||2

)
.

In both cases, robustness to discontinuities is achieved
by employing truncated penalties ψ(y) = min(

√
y,η) (with

thresholds ηG, ηM).
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Fig. 6 Illustration of the regularization scheme: The bilinear distance
function fγ considers geometric distance and curvature. Integrating the
squared distances along the shared edge as well as along an extrusion
of the normals leads to a closed form expression.

The proposed regularization scheme is not limited to 3D.
For instance, the endpoint distances can be replaced by 2D
entities such as the disparity difference, the difference be-
tween optical flow vectors, and the change of disparity over
time. This is a popular choice for scene flow (Huguet and
Devernay, 2007; Valgaerts et al, 2010) and (optionally) used
here. Note, however, that falling back to 2D regularization
can only yield a (close) approximation of the true 3D penal-
ties, as projective foreshortening is not considered.

When reasoning at the segment level, we can approx-
imate the regularizers by computing the penalties directly
from the endpoints of the segments. By precomputing the
length of the boundary (summing the edge weights along
the shared border), the evaluation of the regularizer becomes
much more efficient. Because superpixels in our framework
are near-convex, the overall accuracy of the algorithm is
barely affected (Fig. 12, right).

4.3 Spatial regularization of the segmentation

Data term and spatial regularization operate not only on the
segment-to-plane mapping P , but also depend on the as-
signment of pixels to segments S , which in our experience
can lead to rather fragmented over-segmentations. To coun-
teract this behavior and to incorporate prior knowledge that
segments should be spatially coherent (but not necessarily
connected) and preserve image edges, we add an additional
regularization term, assessing the quality of the underlying
segmentation:

ES(S ) = ∑
(p,q)∈N (I0

l ),
S (p)6=S (q)

up,q + ∑
p∈I0

l

{
0, ∃e∈E (si):||e−p||∞<NS
∞, else. (11)

The first term resembles a contrast sensitive pairwise Potts
model, again evaluated over the (8-)neighborhood N of a
pixel. Here, the weight up,q allows to take into account the

image structure and the length of the edge between the pix-
els. To define these weights we follow Werlberger et al (2009)
and apply the anisotropic diffusion tensor:

D
1
2 = exp(−α|∇I|)ggT+g⊥(g⊥)T. (12)

The image gradient direction g = ∇I/|∇I| is determined via
bicubic interpolation in the middle between p and q. Assum-
ing I ∈ [0,1], we set α = 5 and define the weight

up,q := |D
1
2−→pq|. (13)

The second term links a segment to its seed point e ∈ E (si)

in order to limit its maximum extent to a size smaller than
(2NS−1)×(2NS−1) pixels. This strategy prevents the scene
flow from becoming overly simplified, but more importantly
also restricts the number of candidate segments for a pixel,
thus reducing the time needed for optimizing the energy
w.r.t. S . We found that a good strategy to define the seed
points is to reuse the center of the original superpixels. Here
we set NS = 25, but values between 10 and 30 pixels per-
form alike (see Sec. 6.1). Note that a similar strategy was
proposed by Veksler et al (2010) to compute an over-seg-
mentation of a single image.

4.4 Visibility term

So far we have not considered the problem of visibility, thus
areas that fall out of bounds, i.e. are not visible in some of the
images. Especially when dealing with large motions, these
regions can cover a significant portion of the image. Con-
figurations with no valid correspondence are not considered
by the data term Eq. (7) and contribute 0 cost to the energy.
Allowing for arbitrary moving planes in our model could,
therefore, easily lead to a solution, where a significant por-
tion of pixels is erroneously assigned a motion that moves
them out of bounds. On the other hand, penalizing these
kinds of configurations strongly could harm the results. Con-
sider, for instance, a saturated region that actually moves out
of bounds. A solution in which this region is mapped to a
similarly saturated, but unrelated area in the other images
lowers the data cost and would therefore be preferred. Since
this regularly happens in challenging scenes, we address the
problem as follows: Let us assume that we have access to an
“oracle” V , which can predict whether a pixel will stay in
the image or move out of bounds. Further, let V 1

l , V 0
r and V 1

r
be the predicted binary visibility masks for all but the refer-
ence image (out-of-bounds: 0, pixel visible: 1), and let Γ

j
i [·]

be a binary function that determines whether its argument
lies within the boundaries of image I j

i . We encourage the
scene flow estimate to stay near that prediction, by defining
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Fig. 7 Demonstration of the per-pixel refinement: (top) Initial super-
pixel segmentation. (bottom) Superpixel segmentation after optimiza-
tion w.r.t. S .

a visibility term that forms part of the energy in Eq. (4):

EV(P,S ) = θoob ∑
p∈I0

l

∣∣V 0
r (p)−Γ

0
r
[

H0 0
l r (πp)p

]∣∣+ (14)

∣∣V 1
l (p)−Γ

1
l
[

H0 1
l l (πp)p

]∣∣+ ∣∣V 1
r (p)−Γ

1
r
[

H0 1
l r (πp)p

]∣∣ ,
with θoob := 0.5max(ρC) set to half the maximal data cost.
In practice, we found that common stereo and variational
flow methods can predict pixels moving out-of-bounds suffi-
ciently reliably, and consequently reuse the output of the 2D
stereo and optical flow algorithms from the proposal genera-
tion step (Sec. 4.6). An alternative visibility predictor could
be the ego-motion of the stereo camera system.

4.5 Approximate inference

Inference in our piecewise rigid model entails estimating
the continuous 9-dimensional variables describing geome-
try and motion of each rigidly moving plane, and the dis-
crete assignments of pixels to segments. By restricting the
optimization to a finite set of proposal moving planes, the
whole problem is transferred into a labeling problem in a
discrete CRF. The benefit is two-fold: First, we can leverage
robust discrete optimization techniques that cope well with
complex energies, particularly here the fusion move frame-
work of Lempitsky et al (2008, 2010). Second, occlusions
are discrete events and can thus naturally be integrated in
the objective (Sec. 4.7).

To bootstrap the process, we start with a fixed segmenta-
tion S and optimize the energy w.r.t. P , selecting a suitable
moving plane for each segment from the proposal set. To
obtain the initial superpixel segmentation, we simply min-
imize the segmentation energy ES alone, and subsequently

split strongly non-convex segments. We alternatively tested
a segmentation into regular grid cells. Interestingly, this sim-
plistic initialization works almost as well (see Sec. 6.1). In
either case, the seed points E are selected as the central pix-
els of the initial segments. When solving for P we need to
consider the data, visibility, and regularization terms only.
After we found a solution for P , the mapping is kept fixed
and the energy is optimized w.r.t. S , reassigning the pixels
to segments and, thereby, implicitly to moving planes (c.f .
Fig. 7). Because the segment size is restricted to a maxi-
mal side length of NS through Eq. (11), the pseudo-Boolean
function (Lempitsky et al, 2008) representing the local en-
ergy has at most (2NS−1)2 variables, which makes the opti-
mization efficient. Distant segments can even be expanded in
parallel. We use a similar strategy when optimizing for P:
We locally restrict the validity of each moving plane pro-
posal to cover only a certain expansion region in the scene.
In practice, we found that a proposal should at least cover
100 of its closest neighboring segments and set the region
size accordingly. This allows to test several proposals in par-
allel. Note that we can iterate the alternating optimization
further, but observe no practical benefit.

General pseudo-Boolean energies are usually optimized
with QPBO (Rother et al, 2007), which can also handle non-
submodular energies, but does not guarantee a complete la-
beling when supermodular edges are present. One disad-
vantage compared to standard graph cuts, however, is that
the instantiated graph has twice the number of nodes than
the (pseudo-Boolean) energy has variables. For our (non-
submodular) energy we can alternatively use the local sub-
modular approximation proposed by Gorelick et al (2014).
This has the advantage that conventional graph cuts can be
used, which is usually faster than QPBO. We particularly use
LSA-AUX, which for each α-expansion replaces pairwise
supermodular potentials by a local plane approximation that
bounds the true energy from above. This idea is very simple
to implement and delivers a significantly better approxima-
tion than a simple truncation of non-submodular terms. We
experimentally compare both approaches in Sec. 6.

4.6 Proposal generation

To perform inference over the 3D geometry and motion of
the segments, we require an (initial) set of proposal planes
together with their rigid motion. We can create these from
either the output of other scene flow algorithms, or from a
combination of stereo and optical flow methods. To convert
the pixelwise correspondence information to our representa-
tion, we separately fit the parameters of a 3D plane and its
rigid motion to each superpixel of the initial segmentation.
Fitting is complicated by inaccuracies or noise in the stereo
and flow estimates, and by superpixels that are not well-
aligned with depth and motion discontinuities. We thus opt
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for a robust procedure and minimize the transfer error inte-
grated into a robust cost function, particularly the Lorentzian
φ(x) = log(1+ x

2σ2 ):

∑
p∈s

φ(||P( H0 0
l r (n)p)−p′||2) →min

n
(15a)

∑
p∈s

φ(||P( H0 1
l l (R, t)p)−p′||2) →min

R,t
, (15b)

where the dependence of the homographies on the parame-
ters (the normal n and rigid motion (R, t)) is made explicit,
and P denotes the conventional projection operator. Each
pixel p of segment s∈ S is matched to its 2D correspondence
p′, determined by the proposal algorithm. We parameterize
the rotation in Eq. (15b) by its exponential map to define the
derivatives, and use the previously determined scaled nor-
mal to derive the homography (c.f . Eq. 3). After bootstrap-
ping this non-convex optimization problem with simple it-
erated least squares, two iterations of the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (LM-BFGS)
suffice for our purposes. The quality of the fit is analyzed in
Sec. 6.1. Note that since we are treating the estimation of 3D
planes and rigid motions independently, the problem of fit-
ting a rigid motion is similar to the computation of the ego-
motion of a stereo camera system, such that algorithms for
this problem could also be applied (e.g., Badino and Kanade,
2011). Here, however, we only consider the motion of an in-
dividual segment and not of the complete stereo rig.

4.6.1 Additional proposals

The strategy of selecting parts of the solution from a set of
proposals allows to include additional information in an un-
biased way, without the need for altering the energy formu-
lation. We exploit this property by including the estimated
ego-motion of the stereo system as an additional proposal.
The ego-motion is found by reusing our fitting procedure
from above (Eq. 15b) on the segment centers and their corre-
spondences, given by the output of our per-segment solution
(obtained after optimizing w.r.t. the mapping P). We then
can fuse the current solution with the estimated ego-motion.

Additionally, we use a local replacement strategy, mo-
tivated by proposal instances for which depth and motion
errors are not correlated. We posit that these largely result
from the 2D proposal algorithms, which estimate motion
and depth independently. We address this with additional
proposals: We randomly select proposals and propagate a
part of their state to other segments in a 2-neighborhood.
This can either be the geometry or the rigid motion, which
simply replaces the corresponding state of the neighbors.
This procedure is iterated several (≈ 4000) times, leading to
a combination of geometry and motion of neighboring seg-
ments. The strategy has similarities to the PatchMatch idea
(Barnes et al, 2009; Bleyer et al, 2011a), as information is
shared and distributed among neighboring segments.

4.7 Occlusion handling

The data term as defined in Eq. (7) assumes that every pixel
is visible; no occlusion reasoning takes place. Given our 3D
scene representation, we can explicitly reason about occlu-
sions. Compared to stereo, the handling of occlusions for
scene flow has the advantage of having two (or more c.f .
Sec. 5.3) additional views of the scene. Accordingly, pixels
that are occluded in a subset of views may still be visible in
one of the view pairs.

To leverage this, occlusion handling is applied to all pairs
of views for which a data term is formulated. We formal-
ize this only for a single view pair, because the mathemati-
cal formulation is equivalent for each summand of the data
term. We make use of the well-known principle (dating back
at least to Kolmogorov and Zabih, 2001) of applying a con-
stant penalty θocc, if a pixel is occluded in at least one of the
two views of the pair. The penalty is chosen as θocc := θoob
(Eq. 14). Although occlusions and out-of-bound areas have
different causes, the impact on the correspondence is the
same: The pixel correspondence cannot be judged by the ap-
pearance, and hence the data costs of Eqs. (5) or (6) are in-
valid. Note that pixels that are assigned to the same moving
plane in our scene representation naturally cannot occlude
each other.

To simplify the exposition, we will not present our oc-
clusion model in its most general form, but rather one in-
stantiation within a single fusion/expansion move of the ap-
proximate inference procedure from Sec. 4.5. Hence, we
are dealing with a binary optimization problem. Assuming a
fixed segment-to-plane mapping P , we will first investigate
the update of the per-pixel segmentation S . Differences in
the update procedure when solving for P will be discussed
later. W.l.o.g. let the binary state xp = 0 denote that the pixel
p retains its current segment assignment and, accordingly,
xp = 1 indicate a switch to the trial segment α . We begin
by expressing the data term from Sec. 4.1 in the form of a
pseudo-Boolean function:

D(x) = ∑p∈I0
l

(
u0

p(1− xp)+u1
pxp

)
, (16)

where the vector x denotes all binary pixel assignments. The
data penalty equals u0

p if p remains in its current segment,
and u1

p if p is assigned to segment α .
Whether a pixel p is occluded or not depends both on its

binary segment assignment xp, and on whether there is any
other pixel q (or possibly multiple pixels) that occludes p.
Determining whether q triggers an occlusion in turn depends
on its segment assignment xq. With O i

p we identify the set of
all pixel-assignment pairs (q, j), for which pixel q occludes
pixel p if xp = i and xq = j. Now we can replace Eq. (16)
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with our occlusion-aware data term

DO(x) = ∑
p∈I0

l

(
θocc +

1

∑
i=0

ûi
p[xp = i] ∏

(q, j)∈O i
p

[xq 6= j]
)
. (17)

Here, we denote the difference of the (unoccluded) data pe-
nalty and the occlusion cost θocc by ûi

p = ui
p−θocc, and with

[·] the Iverson bracket. To facilitate a better understanding of
the equation above, let us focus on a single pixel p. The re-
spective summand becomes û0

p, if both xp = 0 and the prod-
uct equals to 1. The latter happens if no occlusion occurs,
that is either all possibly occluding pixels q are assigned to
a segment xq in which they do not lead to an occlusion, or
the set O0

p is empty, meaning that no pixel exists that could
possibly occlude p. The data cost overall thus equals θocc in
case of an occlusion, and the standard data penalty u0

p or u1
p,

otherwise.
Recall that we establish the segment-to-plane mapping

P by reasoning over entire segments (see Sec. 4.5). There-
fore, we directly extend the occlusion model to the segment
level. The potentials of the respective pseudo-Boolean en-
ergies in Eqs. (16) and (17) look the same, but with vari-
ables representing segments instead of pixels. We consider
a segment to be (significantly) occluded if its central pixel is
occluded. Because our segments are compact and similarly
sized, at least one quarter of a segment has to be occluded
by a different region to render the central pixel occluded. To
check for occlusions we employ conventional z-buffering,
utilizing Eq. (2) to compute the depth at each pixel.

Depending on the number of possibly occluding pix-
els, the (per-pixel) penalty may be a higher-order pseudo-
Boolean function (|O i

p|> 1). Optimization techniques based
on graph cuts, including QPBO, can only be applied to qua-
dratic polynomials, which is why all higher-order terms have
to be reduced to pairwise ones. Over the years several reduc-
tion techniques have been proposed (e.g., Ali et al, 2008;
Ishikawa, 2009; Rother et al, 2009). Each applies a certain
transformation that approaches the reduction independently
for each higher order summand of the energy. We refrain
from presenting these exhaustive details at this point and in-
stead refer to the Appendix A.

5 View-Consistent Model

Equipped with our basic representation and model from Sec.
4, we now generalize it to estimate scene flow for all views
and time instants simultaneously. A major benefit compared
to using a single reference view is that the entire image evi-
dence of all views has to be explained. This results in a more
robust estimate, which is less prone to common imaging arti-
facts. Occlusion handling can be improved as well. Another
benefit is that significantly fewer non-submodular edges oc-
cur in the pseudo-Boolean function constructed during the

optimization process. We defer details to the experimental
evaluation. To enable a view-consistent model, we first need
to extend the notion of the segmentation to all views, with
the challenge of generating a consistent segmentation of the
scene across views and time. An obvious downside of a
view-consistent approach is a significantly enlarged set of
unknowns, since the assignments from segments to moving
planes and pixels to segments have to be computed for each
involved view.

After establishing the concept of view-consistency, we
aim to estimate scene flow for more than two time steps. We
thus extend the idea of rigidity by assuming constant transla-
tional and rotational velocity of the 3D moving planes. Note
that due to the short time intervals considered, this assump-
tion is valid for many application scenarios. In the following,
we start our description for only two time steps, and later ex-
plain how to extend our model to multiple frames in time.

5.1 Model overview

As before we strive to determine depth and a 3D motion vec-
tor for every pixel, but this time for all the views examined.
We thus keep track of a superpixel segmentation in every
view, denoted as St

v, the set of segments in the image It
v in

view v at time step t. The energy definition (Eq. 4) is ex-
tended to be a function of two sets of mappings. The first
set of mappings S = {S t

v : t,v} with S t
v : It

v→ St
v assigns

each pixel of frame It
v to a segment of St

v. With the second set
P = {Pt

v : t,v}, a rigidly moving plane is selected for each
segment in each view: Pt

v : St
v→Π . Recall that Π denotes a

candidate set of possible 3D moving planes. The formal def-
inition of the energy takes the same basic form as Eq. (4):

EVC(P,S ) = EVC
D (P,S )+λEVC

R (P,S )+µEVC
S (S ).

(18)

However, in our view-consistent setting the definition of the
data term EVC

D is significantly different, as not only photo-
consistency w.r.t. a reference view is considered, but also the
consistency of the underlying geometric configuration and
segmentation of the scene. The regularization term EVC

R and
the segmentation term EVC

S are straightforward extensions
of their single view counterpart from Sec. 4. In our experi-
ence, by explaining the available evidence from all images,
this view-consistent formulation does not require an explicit
visibility term (Sec. 4.4).

The spatial smoothness assumption is extended to all
views, simply summing the contributions of motion (Eq. 9)
and geometry (Eq. 10) terms per frame:

EVC
R (P,S ) = ∑

t∈T
∑

v∈{l,r}
EG

R (P
t
v,S

t
v )+EM

R (Pt
v,S

t
v ). (19)
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In a similar fashion we extend the regularization of the seg-
mentation (Eq. 11) to all considered views:

EVC
S (S ) =

(
∑

t∈T,
v∈{l,r}

∑
(p,q)∈N (It

v),
S (p)6=S (q)

up,q

)

+ ∑
p∈I0

l

{
0, ∃e∈E (si):||e−p||∞<NS
∞, else,

(20)

where N is again defined as the 8-neighborhood. Note that
the second term is only applied to the canonical view, such
that the maximal size of a segment is only restricted in the
canonical frame. Also note that we treat the segmentations
of the different frames independently. However we encour-
age the segmentation to be consistent across views (c.f . Fig.
11) such that the restriction on the maximal segment size
is also propagated to all other images2.Consistency between
the superpixel segmentations is encouraged in the data term,
described in the following.

5.2 View-consistent data term

In our view-consistent model we explicitly store a descrip-
tion of the scene in terms of moving planes as observed in
each of the views. To exploit the redundancy in this repre-
sentation, we check the consistency of the scene flow esti-
mate in each view with its direct neighbors in time, as well as
with the other views at the same time instant (Fig. 4, right).
We here slightly abuse the term consistency: In its classi-
cal sense we check for photo-consistency of the images at
corresponding pixel locations, determined through their as-
signed moving planes π ≡ π(R, t,n). However, in our novel
scene representation we can also check the geometric con-
figuration for plausibility, test for occlusions, and verify the
consistency of the segmentation. This is done by comparing
depth values induced by the respective moving plane (Eq. 2),
based on the underlying image segmentation (see Fig. 8).

Now let us assume we want to check the consistency be-
tween a pixel location p≡ pt

v in view v at time t and its corre-
sponding pixel location p̂t̂

v̂ in view v̂ at time t̂. We denote the
3D moving plane of the pixel p by πp = Pt

v (S
t
v (p)). The

related homography allows to determine the corresponding
pixel location in the other view, p̂t̂

v̂ = Ht t̂
v v̂(πp)p, and the

depth function d(p,nt
v(π)) from Eq. (2) enables evaluating

the geometric configuration at that pixel. The data term for a
single pixel p in view v at time-step t assigned to the moving
plane πp with the adjacent view v̂ at time-step t̂ is then given

2 this property is further exploited in the inference procedure

by

ρ(p, p̂t̂
v̂) =



θimp if
d(p̂t̂

v̂,n
t̂
v̂(πp̂t̂

v̂
))

d(p̂t̂
v̂,n

t̂
v̂(πp))

> 1+ ε

θocc if d(p̂t̂
v̂,n

t̂
v̂(πp))

d(p̂t̂
v̂,n

t̂
v̂(πp̂t̂

v̂
))
> 1+ ε

θoob otherwise if p̂t̂
v̂ /∈ I t̂

v̂

ρC(p, p̂t̂
v̂)+θmvp otherwise if πp 6= πp̂t̂

v̂

ρC(p, p̂t̂
v̂) otherwise.

(21)

The first two cases are depicted in Fig. 8a and b. Here the
relative difference in depth is used to distinguish between
implausible and occlusion cases. This distinction is simi-
lar to comparing disparity values for the stereo case (Bleyer
et al, 2011b). The first case (Fig. 8a) describes a geometri-
cally implausible situation, in which the depth of the mov-
ing plane πp, observed from the 2nd camera in pixel p̂t̂

v̂, is
smaller than the depth assigned to the pixel in that 2nd view.
In this situation the 3D point on the plane πp̂t̂

v̂
would be oc-

cluded by the moving plane πp and not be visible by the
2nd camera. We apply a fixed penalty θimp in this case. In
the second case (see Fig. 8b), the depth of the moving plane
πp is greater than that of the corresponding plane πp̂t̂

v̂
and,

therefore, the pixel p is occluded in the second view. Again,
a fixed penalty θocc is applied. This concept of occlusion rea-
soning via cross checking the current solution among views
is only possible by simultaneously estimating a solution for
all views and rather different from the occlusion detection
technique presented in Sec. 4.7 for a single reference view.
An additional benefit is that the resulting energy function in-
duces only pairwise edges. In Eq. (17), in contrast, multiple
possible labels for the corresponding location in the other
view may exist, which in turn leads to higher-order terms
in the respective pseudo-Boolean energy. In our experience
the view-consistent formulation leads to fewer supermodu-
lar edges in the optimization (see Sec. 6.2), resulting in a
simpler optimization problem.

Since the set of proposal planes is limited due to practi-
cal considerations, we cannot assume that our representation
always assigns a fully accurate depth for every pixel. Instead
of strictly comparing relative depth values we, therefore, opt
for a relaxed test by including the ε parameter, empirically
set to ε := 0.015. This additionally alleviates aliasing arti-
facts introduced by the finite resolution of the pixel grid.

The third case penalizes pixels moving out of the view-
ing frustum (out of bounds) with a fixed penalty θoob. By
employing view consistency, the solution has to respect the
information from all views of the scene. Hence the treat-
ment of this event can be a lot simpler than in the case of
a single reference frame, where an additional visibility term
(Sec. 4.4) was included.
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(a) Implausible case (b) Occlusion (c) Normal case

Fig. 8 Illustration of the per-pixel view-consistent data term (see text for more details).

When pixels are in geometric correspondence we ap-
ply the usual census data penalty ρ =ρC to measure photo-
consistency (c.f . Sec. 4.1). In (Vogel et al, 2014) we origi-
nally proposed to additionally truncate the data term at half
the maximal possible cost at a pixel (0.5max(ρC)). An in-
vestigation of this particular choice shows that the number
of resulting non-submodular terms in the optimization is re-
duced (Sec. 5.4), however some of the information is lost,
which can lead to a decreased accuracy. Consequently, we
avoid the truncation here.

If the pixels are in geometric correspondence, but belong
to different moving planes, we assert a moving plane viola-
tion and impose an additional penalty θmvp. This leads to
the desired view-consistent segmentation, as pixels are en-
couraged to pick the same 3D moving plane in neighboring
views.

In practice, it appears prudent to penalize pixels without
correspondence equally, thus we set both penalties for oc-
clusions and pixels moving out of bounds to θoob = θocc =

0.5max(ρC). Aliasing again prevents us from penalizing im-
plausible configurations with an infinite penalty; instead we
set θimp := max(ρC), which also prevents deadlocks in the
optimization. While this can lead to a few implausible as-
signments in the final estimate, the overall error is reduced.
For the same reasons we allow for deviations from our con-
sistency assumption for the segmentation and empirically
set θmvp := 5/16 θoob.

All views are treated equally in our model, thus the per-
pixel contribution from Eq. (21) is summed over all pixels of
all frames. Our data term consists of the summed data costs
for all stereo pairs and frames that are direct neighbors in
time (Fig. 4, right):

EVC
D (P,S ) = (22)

∑
t∈T

∑
v∈{l,r}

∑
p∈It

v

(
∑
v̂ 6=v

ρ(p, p̂t
v̂)+ ∑

t̂∈T
|t̂−t|=1

ρ(p, p̂t̂
v)

)
.

In contrast to the reference-view formulation (c.f . Fig. 4,
left), each view pair is considered twice by the data term,
because every view holds its own scene flow representation.

Fig. 9 Example from the KITTI training set (#191): Active data term
ρ (Eqs. 21 and 22). Colors denote normal photo-consistency (yellow),
out of bounds (red), occluded (green), moving plane violation (dark
blue) and implausible (light blue) cases.

Fig. 9 illustrates the view-consistent data term. The internal
states assigned by the data term (cases of Eq. 21) to each
view pair are shown for each individual pixel.

5.3 View-consistent multi-frame extension

We now discuss the details of extending our view-consistent
model to more than just two frames. As mentioned, geom-
etry, motion and segmentation regularizers can be extended
to a larger number of frames in a rather straightforward fash-
ion (Eqs. 19 and 20). The data term however needs special
consideration, as we need to define homographies between
the additional views and also transform the normals into the
specific view coordinate system. Recall that we restrict our-
selves to reason only over shorter time intervals and thus
can assume the motion of a moving plane to be of constant
velocity in both its rotational and translational component.
Under this condition suitable homographies can be found
by a concatenation of the homographies defined in Eq. (3).
Similarly, view-normals for the different time steps are gen-
erated by a repeated application of Eq. (1), thus again as-
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Fig. 10 Variation in camera pitch limits the validity of the constant velocity model: (left) A scene observed by a moving camera with varying
pitch. (right) Camera images with induced 2D flow (black arrows). We compensate camera pitch by removing the ego-motion of the camera.

suming constant velocity. Note here, that the normals in the
proposal set Π are always stored in the canonical coordinate
system.

Such a model can tolerate small deviations from this
constant 3D velocity assumption in the scene, but this is
put to a test if the camera system itself is violating this as-
sumption. Especially abrupt rotational changes in the view-
ing direction affect the whole image of the scene. The au-
tomotive application in our experiments is a good example
for this. Scene flow estimation is challenged by a common
high-frequent pitching motion of the stereo rig, often caused
by an unsteady road surface and amplified by the suspen-
sion of the vehicle. In our model the motion is encoded rel-
ative to the respective camera coordinate system, such that
even slight changes in the relative camera position can in-
duce significant changes in the relative geometry and motion
(Fig. 10). To address this problem, we introduce the follow-
ing extension, in which we include ego-motion estimates for
the different time steps.

First, we compute the relative ego-motion Et = [Qt |st ]

between all consecutive time steps t and t + 1. The com-
putation of homographies between successive frames then
proceeds by first applying the motion induced by the mov-
ing plane representation with the ego-motion part removed,
and then the relative ego-motion from time step t to t + 1.
Recall that the rotation R and the translation t of a moving
plane are stored in the coordinate system of the canonical
view, thus unaware of any ego-motion. Then we can remove
the relative ego-motion of the canonical view E0 by apply-
ing (E0)−1 = [(Q0)−1|− (Q0)−1s0].

As an example, the homography between the frames t
and t +1 in the left view becomes

Ht t+1
l l (π) = (23)

K
(

Qt(Q0)−1R−
(
Qt(Q0)−1(t− s0)+ st)(nt

l)
T
)

K−1.

Further note the use of the corrected view normal in Eq. (23),
for which we can find a similar expression:

nt
l =

Qt−1(Q0)−1Rnt−1
l

1+(t− s0)TRnt−1
l +(st−1)TQt−1(Q0)−1Rnt−1

l

. (24)

Other homographies and view-normals can be corrected for
ego-motion accordingly. The estimation of camera ego-mo-
tion of a stereo camera system is a well-studied problem

(e.g., Badino and Kanade, 2011). Here we use the method
proposed in Sec. 4.6.

5.4 Approximate inference for view-consistency

Our inference procedure closely follows the approach for
a single reference view in Sec. 4.5. Again, we perform in-
ference in a discrete CRF and optimize the energy in two
steps, first solving for the mappings P , while keeping the
segmentation fixed. Then we proceed the other way around,
fixing the mappings from segments to moving planes and
optimizing w.r.t. to the segmentation mappings S . The al-
ternation can be iterated further, but again without practi-
cal benefits. Instead of an initial superpixel segmentation,
we prefer to start from a regular checkerboard grid with an
edge length of 16 pixels. Seed points e ∈ E (see Eq. 20) are
simply the grid centers. This trivial “segmentation” is more
efficient and also reduces aliasing artifacts, caused by a pos-
sibly uneven size of segments across views. The per-pixel
refinement step (Fig. 11) will eventually deliver a consistent
over-segmentation across views, adhering to depth and mo-
tion boundaries.

Because of the grid structure, segments can be treated
as large pixels when solving for P . However, the use of an
initially not view-consistent segmentation will lead to alias-
ing effects. We thus relax the consistency constraints and
set ε := 0.1 and θmvp := 3/16 θoob in the first optimization
round, to ensure that proposals are not discarded at an early
stage. We generate the proposal set in the same manner as
described in Sec. 4.6. We discovered that by first running a
single segment-to-plane step of our reference-view version
above, and removing unused proposals, the proposal set is
filtered without loosing important information, leading to
a significantly reduced computation time. When optimizing
over more than two frames, proposals are generated for all
consecutive frame pairs. I.e., when using 3 frames we gener-
ate proposals for time steps t=−1 and t=0, and additionally
for t =1 when using 4 frames. The additional proposals are
discarded when they are found to be similar to already ex-
isting ones nearby. We consider proposals to be valid in a
certain expansion region, centered at the seed point in the
canonical frame. Empirically, we found that an expansion
region size of 13×9 cells (208×144 pixels) yields a good
compromise between accuracy and speed. During a fusion
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Fig. 11 Example from the KITTI training set (#191): Consistent moving plane assignments at segment level (left) and final consistent superpixel
segmentation (right).

move, we thus only have to instantiate a local graph, which
is determined by a projection of the expansion region into
all other views.

The inference for the pixel-to-segment mappings S fol-
lows similar principles. Unused moving plane proposals are
discarded. The size of the instantiated graph is restricted by
the region constraint (Eq. 20), using an expansion region of
39×39 pixels (NS = 20), and determined by projection into
the other views. We penalize inconsistencies more strictly
here, since the decisions are made on a per-pixel basis, and
use the default parameters for ε and θmvp from Sec. 5.2.
Fig. 11 illustrates the computed mappings over the course
of the optimization for one of the cameras. Consistent mov-
ing plane assignments at segment level are shown on the
left, illustrating the distribution of P . The final, consistent
superpixel segmentation S is depicted on the right.

5.4.1 Hierarchical refinement

The grid-based segment structure, furthermore, allows for a
very simple refinement procedure, which we found to work
well in practice. Instead of directly redistributing pixels to
segments by solving for S after all segments have been as-
signed a moving plane, we optionally refine the segmenta-
tion and solve for P again. In practice we halve the grid
resolution in each image and start the inference from the
previous assignment. We prune the initial proposal set by
retaining only those moving planes that are in use. In our ex-
perience, this hierarchical approach allows to reduce alias-
ing problems due to the smaller segment size, but still con-
siders a more global context during the optimisation stage.
Because we again set the expansion region to 13×9 cells
and the set of moving plane proposals is already reduced
significantly, this step is very efficient. Note that after the re-
finement, we also reduce the expansion region (i.e. NS = 10)
accordingly when re-assigning pixels to segments.

6 Experiments

We begin the experimental evaluation with our basic model
based on a single reference view and later examine the view-
consistent approach. Quantitative experiments rely on the
KITTI dataset (Geiger et al, 2012), which has emerged as a
standard benchmark for optical flow and stereo algorithms,
with over 50 submissions in both categories. Its images are
acquired by a calibrated stereo rig, mounted on top of a car
together with a laser scanner, which delivers the semi-dense
ground truth. Targeting automotive applications, the scenes
are challenging for mainly two reasons. First, the strong for-
ward motion of the car leads to very large displacements in
stereo (>150 pixels) and flow (>250 pixels). Consequently,
there are also many pixels without direct correspondence
in the other image. Second, the images are acquired out-
doors under realistic lighting conditions and exhibit over-
saturation, shadows and lens flare, but also translucent and
specular glass and metal surfaces. The KITTI benchmark is
the first large scale dataset that allows evaluating scene flow
methods along with their 2D counterparts, stereo and opti-
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Fig. 12 (left) Proposal fitting procedure: Error of the 2D proposal al-
gorithms (blue) and after planar rigid segment fitting (orange). (right)
Approximation of the regularization term after the per-segment step:
Error when evaluating the integral per pixel (orange) and when inte-
grating the distances at the endpoints of the shared edge (blue).
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Fig. 13 Evaluation of different model choices on the KITTI training set for the per-segment and the final solution after per-pixel refinement.
(left) Initial segmentation: Using a grid (light blue and red) compared to a superpixel segmentation (blue and yellow). (center left) Regularization:
Comparison of 2D (blue and yellow) and 3D regularization (light blue and red). (center right) Occlusion handling: Our basic model with (light
blue and red) and without (blue and yellow) occlusion handling. (right) Visibility term: Predicting all pixels to stay in bounds (orange) compared
to our standard predictor (blue) (only per-pixel error).

cal flow. However, it often lacks ground truth for indepen-
dently moving objects, which leads to a bias toward meth-
ods that focus on the dominant background. Nonetheless, we
strongly believe that this dataset is better suited for the eval-
uation of scene flow methods than other existing, synthetic
datasets used previously (e.g., Huguet and Devernay, 2007;
Vogel et al, 2011).

Our quantitative experiments mainly employ the KITTI
training dataset, which is ideal for a detailed performance
and parameter study due to its size of 194 images (1240×
376 pixels) with public ground truth. For a comparison to
the state of the art, we also submitted our results on the 195
images of the test portion of the KITTI dataset to the of-
ficial KITTI benchmark (Sec. 6.5); there the ground truth
is withheld. Because of inaccuracies in the laser measure-
ments from the moving platform, the standard KITTI metric
is to compute the number of outlier pixels that deviate more
than a certain threshold from the ground truth. We report
results for error thresholds of 2, 3, 4, and 5 pixels for the
entire image (All), or only for unoccluded areas (Noc). We
additionally report the endpoint error (EPE) for optical flow
and stereo. We occasionally use the abbreviations SN for
stereo without occluded areas, and SA when including these
regions. Similarly, we shorten the respective identifiers for
optical flow as FN and FA.

6.1 Evaluation of the single reference view model

All experiments use fixed parameters, except where stated.
We set the smoothness weight to λ = 1/16, and the weight
of the segmentation term relative to λ as µ = 1/10λ . If
not mentioned otherwise, we regularize in 2D space and fix
ηG=ηM =20.

We generate the proposal set from the output of 2D op-
tical flow and stereo algorithms. For computing optical flow
we employ the algorithm of Vogel et al (2013a), which uses

a census data term and a total generalized variation regu-
larizer, a popular and effective combination for the KITTI
scenes. To obtain an estimate in a reasonable time, we only
apply 3 warps and 10 iterations per warp with an up-scaling
factor of 0.9 in the image pyramid. The disparity map is ob-
tained using semi-global matching (Hirschmüller, 2008).

First, we evaluate the proposal fitting procedure from
Sec. 4.6. Fig. 12 (left) shows the KITTI metric at the default
threshold (3 pixels), as well as the endpoint error of the plain
2D proposal algorithms (Init), and after the per-segment fit-
ting took place (Fit). We observe only small changes in er-
ror, thus can conclude that planar rigid segment fitting does
not significantly affect the accuracy. We attribute slight de-
viations in error to non-planar or non-rigid segments, e.g.
due to misalignment with depth and motion boundaries.

Next, we investigate the simplification of the smooth-
ness term when reasoning over segments, and how it affects
the results. Recall that for computational efficiency we eval-
uate the spatial regularizer directly on the endpoint distances
of the shared edge, instead of accumulating the contribution
of all boundary pixels (Sec. 4.2). As we can see in Fig. 12
(right), the approximation (App) is quite accurate given our
compact superpixels and on par with the exhaustive compu-
tation (Full), but in our experience ∼ 30× faster. Note that
we here report results directly after the segment-level opti-
mization, since both approaches employ the same per-pixel
refinement step.

We now demonstrate that our representation and opti-
mization approach are quite robust, in the sense that the re-
sults do not strongly depend on the initialization, parame-
ter choice, etc. The importance of the initial segmentation
is evaluated in Fig. 13 (left). Starting from a trivial “grid”
segmentation (edge length 16 pixels) leads to a slight de-
crease in performance before the per-pixel refinement takes
place. This gap is closed after the refinement step. Only a
small difference in accuracy remains compared to starting
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Fig. 15 Comparison of different strategies to generate proposals: We compare using only 2D proposals (Pix), adding more proposals from scene
flow algorithms (3D-Props), local replacement (R), ego-motion (E), a combination of both (R+E), and removing all but ego-motion proposals
(E-Hard (constraint)). Errors are evaluated using the KITTI metric and w.r.t. the endpoint error after per-pixel refinement.

from a proper superpixel segmentation. Note that this also
helps understanding why, as mentioned, iterating the alter-
nating inference further has little practical benefit; energy
and error are not significantly reduced further.

The effect of starting with a different number of super-
pixels is depicted on the left of Fig. 14. After using more
than∼ 1000 initial segments, the accuracy of the final result
becomes stable, as the per-pixel refinement can compensate
for eventual inaccuracies in the coarser initial segmentation.
But even starting with fewer segments does not harm the
performance dramatically.

Similarly, varying the weight for the regularization term
λ (Fig. 14, center) and the maximum superpixel size NS
in the per-pixel refinement (Fig. 14, right) shows that the
method is not sensitive to changes in these parameters. In
the latter case higher values lead to better results, but also
longer computation times.

Next, we investigate the behavior when switching from
2D to 3D regularization. For 3D regularization we set ηG=

ηM = 5 and λ = 0.25, thus increase the robustness in the
smoothing process. We can observe from Fig. 13 (center
left) that regularization w.r.t. 2D entities is slightly superior
in the evaluated measures. This can possibly be explained by

the fact that the error measures do not evaluate the 3D qual-
ity of the scene flow, but only its reprojection, i.e. disparity
and 2D optical flow.

Fig. 13 (right) depicts the effect of replacing the visibil-
ity prediction (Sec. 4.4) by a trivial predictor, which assumes
pixels to always stay in bounds. As we can see, predicting
visibility by the initial 2D algorithms has a strong effect on
the flow endpoint error in occluded regions. Other measures,
however, are nearly unaffected.

The biggest impact on the quality of the estimated scene
flow is given by the different proposal algorithms we utilize.
In Fig. 15 we extend our standard 2D proposal set by adding
proposals from 3D scene flow methods (3D-Props), namely
L1-regularized 3D scene flow (Basha et al, 2010) and locally
rigid 3D scene flow (Vogel et al, 2011). Furthermore, we
evaluate our local replacement strategy (R), the ego-motion
proposals (E, Sec. 4.6.1), and combine both proposal meth-
ods (R+E). Additionally, we evaluate a variant in which we
replace the rigid motion component of our proposals with
the estimated camera motion (E-Hard), thus simulating a
motion stereo algorithm, which enforces a rigid scene with
only ego-motion, similar to Yamaguchi et al (2013, 2014).
We can observe that adding more proposals improves re-
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Fig. 16 Example scene from Vaudrey et al (2008), demonstrating occlusion handling and the different processing steps. Results are given for the
estimated depth and the lateral 3D motion component. Detected occlusions are highlighted in white.

sults; especially the endpoint error of optical flow is reduced.
A larger gain is achieved by local replacement and, further-
more, by adding additional ego-motion proposals. Both ap-
proaches are complementary to some extent, as a combina-
tion slightly improves the results further. Finally, the best
results can be achieved by enforcing ego-motion as a hard
constraint, underlining the bias in the KITTI benchmark.

6.1.1 Evaluation of the occlusion model

We begin the evaluation of our occlusion model of Sec. 4.7
with a qualitative example of a street scene3 from Vaudrey
et al (2008). The scene is recorded from a vehicle approach-
ing a roundabout. Several independently moving traffic par-
ticipants and a rather complex occlusion pattern pose a chal-
lenging scenario for our method. Fig. 16 displays the results
after the different processing steps of our approach. The es-
timate appears acceptable without occlusion handling, ex-
cept for regions that are not visible in the reference image,
e.g. at the left of the pedestrian. Adding the occlusion han-
dling from Sec. 4.7 allows to detect occluded regions and to
extrapolate the lateral motion in a plausible way. The per-
pixel refinement (Per-Pixel & Occlusion) enhances the ob-
ject contours and improves the occlusion boundaries even
more.

We now quantitatively compare our basic model with
and without additional occlusion handling. Fig. 13 (center
right) shows a small, but consistent advantage of explicit
occlusion handling. The gap is largest for optical flow eval-
uated over the whole image. Note, however, that with addi-
tional proposals the advantage diminishes and the difference
between both models becomes smaller. Recall that in order

3 Compared to KITTI images, the less challenging lighting condi-
tions allow us to refrain from our usual census data cost. We use bright-
ness constancy with ρ(a,b)=min(|a−b|,ζ ), truncated at ζ =10% of
the intensity range. We use 3D regularization with rather aggressive
truncation parameters (ηG=ηM =1). Other deviating parameters were
set to λ =0.1,µ =0.1,θocc=0.03.

Table 1 Optimization with explicit occlusion handling: Percentages
of supermodular edges and resulting unlabeled nodes, resulting energy
when using QPBO or QPBO-I. Numbers are averaged over the KITTI
training set.

inference supermodular unlabeled energy energy
stage edges nodes w/ QPBO w/ QPBO-I

Seg 4.8% 3.8% 760692 753196
Pix 1.3% 7.7% 678110 664497

to perform optimization with graph-cut based techniques,
like QPBO, the higher-order potentials, which can occur in
case of multiple occlusions, have to be reduced to pairwise
ones (Sec. 4.7). The resulting optimization problem pos-
sesses supermodular edges, such that nodes can remain unla-
beled after running QPBO. To approximately minimize this
NP-hard problem, Rother et al (2007) proposed the QPBO-I
method, which we also apply here. Table 1 summarizes our
experience when applying the method on the KITTI training
dataset. While the number of supermodular edges and unla-
beled nodes appears to be small, employing QPBO-I instead
of QPBO has a notable impact on the resulting energies. At
the pixel level, the number of nodes that cannot be labeled
by QPBO alone appears rather high at 7.7% . Optimization
with QPBO-I, however, takes an order of magnitude more
time. Another challenge is that this form of occlusion rea-
soning is sensitive to outliers in the data term, such as spec-
ular highlights on the window of the car in Fig. 16. Note that
without occlusion handling unlabeled nodes occur only very
rarely (<1 per image).

6.2 Evaluation of the view-consistent model

As before, we keep all parameters fixed, unless otherwise
mentioned. The only parameter that deviates strongly from
the reference-view model is the smoothness weight. We set
λ = 1/60, and regularize using the intensity-weighted edge
length (Eq. 13), which is now based on multiple images. We
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Fig. 17 (left) Error after refining the segmentation in the two-frame model, once (green), twice (red), or not at all (blue). (center) Effect of the
proposals on the view-consistent three-frame model: 2D proposals (blue), single reference-view model (light blue), local replacement (yellow), and
additional ego-motion (red). (right) Evaluation with a poor proposal set: 2D proposals (blue) and VC-2F (orange), with PWRS-Seg+R pruning.
Results are shown w.r.t. the KITTI metric (> 3 pixels) and the endpoint error.

set NS = 20 to speed up the per-pixel refinement, and start
from an initial grid segmentation.

We begin with several quantitative analyses to illustrate
the different aspects of the proposed approach. First, we in-
vestigate whether our model can benefit from the hierarchi-
cal refinement of the grid described in Sec. 5.4.1. Fig. 17
(left) compares the performance after a single and two re-
finement levels to the result without hierarchical refinement.
The gain in performance is not large, but consistent through-
out the evaluation; we use a single refinement step in the
remaining experiments.

As our model is capable of jointly reasoning over mul-
tiple frames by assuming constant velocity for the rigidly
moving segments, we investigate the performance when con-
sidering 2, 3, or 4 consecutive frames in Fig. 18. We further
distinguish the addition of proposals from time steps other
than the current one (“+”), meaning that we derive proposals
from the disparity and 2D flow computed from the other ad-
jacent frame pairs in the time window. Moreover, we include
a variant that reasons about only two frames, but is provided
with proposals extracted from three frames (VC-2F+). For
comparison, we also add the single reference-view version
PWRS+R (with local replacement), which is used to reduce
the initial proposal set of the current frame pair. Note again
that this reference-view method is only applied at the seg-
ment level.

Analyzing Fig. 18 one can observe that moving away
from the single reference view (PWRS+R vs. VC-2F) al-
ready yields a significant improvement, most notably in the
optical flow error w.r.t. all pixels. View-consistency benefits
by considering the data of all views jointly. Parts that are
occluded in the canonical view used for evaluation (and as
a reference view PWRS+R) can still be visible in two other
views. Furthermore, a strong drop in the endpoint error hints
at a reduction of gross outliers. Including proposals from

the previous time step (VC-2F+), and considering the im-
age data of the previous frames (VC-3F) improve the results
further. But only a combination (VC-3F+) of both leads to a
larger performance gain in all measures, again affecting oc-
cluded regions most strongly. This suggests that a larger set
of proposals from multiple frames alone is not sufficient, but
that the image evidence from the longer sequence is impor-
tant. Finally, including a fourth frame into the model yields
diminishing returns, with only marginal improvements over
the three frame case.

In another experiment we analyze the effect of the pro-
posal set. Recall that we use the reference-view version of
our method in order to prune the proposal set in the begin-
ning, with the advantage of a reduced computation time for
the view-consistent model. Fig. 17 (center), however, also
shows an effect on the accuracy of the algorithm, here eval-
uated for the three frame case without considering addi-
tional proposals from the previous time step. Interestingly,
despite the fact that the application of PWRS-Seg yields only
a subset of the original proposals (2D-Proposals), the re-
sults improve. An analysis shows that both variants deliver
almost the same final energy, such that the cause is not well-
captured by our energy formulation. We posit that this may
be due to the proposal set not being sufficiently varied in
crucial parts of the solution space, which is supported by
the fact that the observed accuracy difference diminishes
when we use proposals from the previous time step as well
(VC-3F+). As we would expect given previous results (Fig.
15), we observe a strong gain in accuracy from the local re-
placement strategy (PWRS-Seg+R) and ego-motion propos-
als (PWRS-Seg+R+E); in these cases the additional propos-
als also noticeably lower the final energy.

Because our method requires proposals for computing
scene flow, we investigated how much a poor proposal set
affects the performance. To that end we change the param-
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Fig. 18 Evaluation across different number of frames: Single reference-view method on 2 frames (dark blue), view-consistent method on 2
frames (blue), 3 frames (cyan), 2 frames with proposals from the previous frame (yellow), 3 frames with proposals from previous frame (orange),
and 4 frames with proposals from all 4 frames (red). Results are shown w.r.t. the KITTI metric (> 3 pixels) and the endpoint error.

Table 2 Optimization in the view-consistent model (3 frames): Av-
erage number of nodes and edges in the graph, average percentage
of supermodular edges and resulting unlabeled nodes (before apply-
ing QPBO-I), and resulting energy when using LSA-AUX or QPBO-I.
Numbers are averaged over the KITTI training set.

inference # # super- unla- energy energy
stage nodes edges modular beled QPBO-I LSA-AUX

Seg 2064 7485 4.01% 0.4% 3295790 3306453
Pix 3749 20102 0.64% 1.2% 2907666 2908031

eters of the initial 2D stereo and flow algorithms. For in-
stance, in the optical flow case we use only a single warp
per image pyramid and change the pyramid scale to 0.5.
We then apply our two-frame view-consistent method (VC-
2F) with PWRS-Seg+R to reduce the proposal set. The re-
sult is depicted in Fig. 17 (right). The notably high error of
the 2D algorithms is reduced by a factor of 6 on average,
showing that our scene flow approach can also cope with
unfavorable proposal sets. This somewhat surprising result,
achieved without considering ego-motion information, can
partially be explained by the particularities of the dataset and
the algorithms used to compute the proposals. The flow al-
gorithm should deliver reasonable results in areas with only
small 2D motion vectors. Given the largely planar nature of
the street scenes in the dataset, these parts can then be prop-
agated into other image areas, which have the same 3D mo-
tion and geometry, but strongly differing 2D motion. This in
turn suggests that 3D scene flow may be well-suited to cope
with large motions due to its internal 3D representation.

Recall that the formulation of the data term, although di-
rectly leading to only pairwise edge potentials, introduces
supermodular edges into the energy. In Table 2 we investi-
gate the situation in a similar manner as for the occlusion
handling strategy with a single reference view, again col-
lecting data over the whole KITTI training set. We apply the

QPBO-I algorithm to the optimization problem given by our
three-frame version (VC-3F) and count the number of unla-
beled nodes and supermodular edges over the course of the
optimization. As we can see, the number of non-submodular
edges is not much lower than in the reference-view case, but
unlabeled nodes occur significantly less often. This moti-
vates us to also consider a different but more efficient graph
construction4: The LSA-AUX algorithm (Gorelick et al, 2014)
is applied at each expansion step, in order to find a submod-
ular approximation of the problem. Conveniently, the local
approximation bounds the true energy from above, such that
the overall energy cannot increase, which is not the case if
supermodular terms are just truncated. The final solutions
show a comparable energy to results obtained with QPBO-I,
while being an order of magnitude faster. Instead of LSA-
AUX a similar performance can be also obtained by using
QPBO without improve moves, where the former method
delivers a moderate (10−15%) speed-up.

6.3 Qualitative examples

We begin with an illustration of several difficult examples
from the KITTI benchmark (Fig. 19) recovered by our three-
frame method (VC-3F+). The most interesting example is
shown at the top (#74). In the presence of severe lens flares
in both cameras, many optical and scene flow methods fail
hopelessly to recover the motion in this scene. While the ap-
pearance of these artifacts is rather consistent in consecutive
views, their location is not. This allows our approach to re-
cover the scene flow reasonably well. Notably only 8.1% of
the flow vectors of all pixels and 5.7% in the visible areas
are outside the standard 3-pixel error threshold of KITTI. It

4 compared to QPBO the graph contains only half of the nodes
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Fig. 19 Examples from the KITTI training set. Input images (top left) and recovered scene flow (top right), color coded as disparity (from white
– near to blue – far) and motion vectors, reprojected into the image plane. Arrow lengths are depicted with a log-scale. Colors encode the length
of the actual 2D displacement (blue – small to red – large). Color coded endpoint error for disparity (bottom left) and flow (bottom right).
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is important to note that the robust handling of these arti-
facts is achieved only through view- and multi-frame con-
sistency. Also depicted is a scene (#11) with low image con-
trast in shadow regions. Scene #123 is interesting because
of similar problems with lens flare as for #74, here however
challenging the reconstruction of the geometry as their loca-
tion is consistent across frames. Finally #116 has fine struc-
tures in the image (e.g., the traffic sign), several areas with
occlusions, and a car moving independently, albeit without
ground truth.

Fig. 20 illustrates results for different outdoor scenes
from Meister et al (2012). We display the input images on
the left. Our scene flow estimates (VC-3F+) are shown as
disparities (center) and reprojected optical flow in the usual
color coding. These examples show that our model is capa-
ble of handling independent object motion under unfavor-
able conditions. Even though the motion displacements in
the image plane are rather small, the scenes contain many
scenarios that are hard for conventional flow and stereo algo-
rithms. The scenes ‘car truck’ and ‘crossing’ have saturated
highlights and reflections, as well as a rather complex occlu-
sion pattern. The scene ‘car truck’ also exhibits cast shadows
dancing on the truck and the street. More challenging is ‘sun
flares’, where the sun causes lens flares and ‘flying snow’,
which as the name suggests contains heavy snow fall and a
wet and reflecting street. The scene from Fig. 2 shows the
wiper occluding the view and is, therefore, very difficult to
recover for conventional approaches that parameterize the
scene in a single camera only. The most complex scene is
‘night snow’, in which the aperture of the cameras is wide
open and the image has only a shallow depth of field. More-
over, the windshield is wet, causing the headlights of ap-
proaching cars to flare. We can only give a qualitative eval-
uation here, as no ground truth for these scenes is available.
Apart from the last scene, which has an incorrect depth in
the sky region, our estimates appear quite appropriate.

6.3.1 Typical failure cases

Fig. 21 displays some typical failure cases of our method.
For example, it is challenged by over-saturated areas, espe-
cially if these are located close to the boundary of the images
or in occlusion regions. Recall that we replace the data term
with a fixed penalty (θocc or θoob), if a pixel lacks a corre-
spondence in other images. Now assume that a proposal ex-
ists that maps this over-saturated image region to a similarly
over-saturated, but incorrect one in the other images. The
data penalty in this case is close to zero, which compared to
the energy of the true solution in our model (θoob) is decid-
edly lower. By demanding view-consistency, this incorrect
solution will still incur penalties for the incorrect regions,
since the geometry and/or motion is not consistent. How-
ever, as the penalties are accumulated per pixel, whether the

Fig. 21 Typical failure cases from the KITTI training set: (top) Over-
saturated area moving out of viewing frustum at the wall on the left.
(bottom) Example from Meister et al (2012) showing a sun flare with a
consistent motion pattern.

correct correspondence can be recovered depends on the size
of the respective regions in the images.

As already mentioned, a second challenge are imaging
artifacts, e.g. sun flares (Fig. 21, bottom), that appear con-
sistently in all the views. In the example the sun flare even
leads to over-saturation, such that the low data energy may
overrule the consistency penalty.

6.4 Quantitative summary and timings

A direct comparison between the view-consistent and sin-
gle reference-view models is given in Table 3. Note that
these differ from the published results in (Vogel et al, 2013b,
2014) due to a change in the KITTI ground truth, slightly
different parameter sets, and extensions such as the local re-
placement strategy. The first row gives results for the 2D
algorithms used to derive the proposals (2D Algorithms).
Otherwise, we use the usual notation: PWRS for our basic
reference-view model, PWRS+R for a version with local re-
placements, and PWRS+R+E to denote the usage of addi-
tional ego-motion proposals. For the view-consistent ver-
sion (VC) we use PWRS+R+E to prune the proposals and
distinguish between the two, three and four-frame versions,
with (+) and without proposals from all frames. In general
the numbers improve from top to bottom. Already our ba-
sic version achieves a significant reduction in all error mea-
sures compared to the state-of-the-art 2D proposals. Both
strategies to generate additional proposals show their bene-
fit, especially for flow. The view-consistent model leads to a
visible reduction of the error in all measures already for the
two-frame case. Moving to three frames further improves
the results, especially for occluded areas, but considering
four frames only yields marginal improvements. Notably,
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Fig. 20 Challenging examples from Meister et al (2012): Input frames of our method (left). Recovered scene flow, reprojected to disparity (center)
and 2D flow field (right).
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Table 3 Results on the KITTI training set: Average KITTI metric (% of flow vectors / disparities above 2, 3, 4, 5 pixels of endpoint error) and
average endpoint error [px] with (All) and without (Noc) counting occluded regions.

Method Flow Stereo

KITTI metric AEP KITTI metric AEP

All Noc All Noc All Noc All Noc

2px 3px 4px 5px 2px 3px 4px 5px 2px 3px 4px 5px 2px 3px 4px 5px

2D Algorithms 14.6 11.7 10.1 9.0 8.5 6.5 5.5 4.8 3.5 1.6 10.3 7.5 6.1 5.2 9.4 6.8 5.5 4.7 1.5 1.4

PRSF 9.9 7.3 6.0 5.2 5.7 4.0 3.2 2.7 2.4 1.1 7.7 5.3 4.1 3.4 6.7 4.5 3.5 2.9 1.1 1.0
PRSF+R 9.1 6.4 5.0 4.3 5.2 3.5 2.7 2.3 1.9 1.0 7.4 5.1 4.0 3.3 6.4 4.4 3.4 2.9 1.1 1.0
PRSF+R+E 8.6 6.0 4.7 3.9 5.0 3.3 2.6 2.1 1.7 0.9 7.3 5.1 4.0 3.3 6.3 4.3 3.4 2.8 1.0 0.9

VC-2F 7.8 5.2 4.0 3.2 4.3 2.8 2.1 1.7 1.2 0.7 6.6 4.5 3.5 2.8 5.7 3.8 2.9 2.4 0.9 0.8
VC-2F+ 7.4 4.9 3.7 3.0 4.2 2.7 2.0 1.7 1.2 0.7 6.2 4.2 3.3 2.7 5.4 3.6 2.8 2.3 0.9 0.8

VC-3F 6.9 4.3 3.1 2.5 4.1 2.6 1.9 1.6 1.1 0.7 5.7 3.8 2.9 2.3 5.1 3.4 2.6 2.1 0.8 0.8
VC-3F+ 6.4 4.0 2.8 2.2 4.0 2.5 1.9 1.5 1.1 0.7 5.4 3.6 2.8 2.3 5.0 3.4 2.6 2.1 0.8 0.7

VC-4F+ 6.3 3.9 2.8 2.2 3.9 2.5 1.8 1.5 1.1 0.7 5.2 3.6 2.8 2.2 4.8 3.3 2.5 2.1 0.8 0.7

Table 4 Timings on KITTI images (0.5MPixels), measured on a dual Intel Core i7 computer and two proposals per segment, for two different
numbers of initial segments.

# Segments Proposals PWRS VC-SF

Init Fit Seg R E Pix Seg-2F Seg-Ref-2F Seg-3F Seg-Ref-3F Pix-2F Pix-3F

1850 60s 16s 19s 8s 9s 15s 23s 9s 46s 12s 18s 30s
1150 60s 16s 10s 8s 5s 10s 17s 6s 32s 8s 14s 23s

all but two numbers are at least halved when comparing our
best result with the initial 2D solution.

Table 4 illustrates the time spent on the different parts
of the algorithm. We distinguish between running the 2D
flow and stereo algorithms (Init), the proposal fitting proce-
dure (Fit), and further time the inference at the segment level
(Seg) and at the pixel level (Pix). We also show the time
needed for generating additional proposals (R and E), and
one hierarchical refinement step (Ref ). We compare num-
bers when starting with 1850 and 1150 segments. In both
cases, our model with a single reference view (PWRS) needs
less time for the optimization and both additional proposal
generation strategies than for computing the initial optical
flow and disparity maps. For the view-consistent case, we
exploit the reduction in the number of proposals by first run-
ning PWRS+R+E at the segment level. With a low number
of segments, our basic version (PWRS) needs only 20s to de-
liver a result. However, running the 2D proposal algorithms
already takes significantly more time. Our most advanced
three-frame method needs ∼ 3 minutes including proposals.

6.5 Comparison with the state of the art

Table 5 shows a comparison of our piecewise rigid scene
model with the state of the art on the KITTI test set. At
the time of writing (August 2014), the benchmark has over
50 submissions in both categories. Our scene flow meth-
ods rank among the top performers, with the view-consistent

model coming out first overall for both stereo and flow, when
considering full images with occluded areas. Note that sev-
eral top-ranked methods assume epipolar motion as a hard
constraint (Setting ms). In contrast, our method can han-
dle scenes with independently moving objects (c.f . Fig. 20),
which are uncommon in the benchmark. Considering only
methods applicable to general scenes, i.e. with independent
object motion, the distance to the next best competitor is
rather large, which demonstrates that scene flow from our
piecewise rigid scene model, has a clear advantage over sin-
gle camera methods for motion estimation under challeng-
ing conditions.

7 Conclusion

In this paper we introduced a scene flow approach that mod-
els dynamic scenes as a collection of piecewise planar, local
regions, moving rigidly over time. It allows to densely re-
cover geometry, 3D motion, and an over-segmentation of the
scene into moving planes, leading to accurate geometry and
motion boundaries. Employing unified reasoning over ge-
ometry, motion, segmentation and occlusions within the ob-
served scene, our method achieves leading performance in
a popular benchmark, surpassing dedicated state-of-the-art
stereo and optical flow techniques at their respective task.
We extend our basic reference-view technique to leverage
information from multiple consecutive frames of a stereo
video. Our view-consistent approach exploits consistency
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Table 5 Comparison with the state-of-the-art on the KITTI test set: Our methods are denoted as PRSF+R (reference view, 2D proposals, local
replacement), PRSF+R+E (with ego-motion proposals), and VC-3F+ (view consistent, 3 frames, using PRSF+R to reduce the proposal set). The
settings column marks scene flow (sf), multi-frame (mv), and motion stereo (ms) methods.

Stereo evaluation

Method Setting KITTI metric EPE [px]
(% > 3 px)

All Noc All Noc

(Yamaguchi et al, 2014) sf ms 3.64 2.83 0.9 0.8
VC-3F+ sf mv 3.31 3.05 0.8 0.8
(Yamaguchi et al, 2013) 4.72 3.40 1.0 0.8
(Yamaguchi et al, 2013) 5.11 3.92 1.0 0.9
PRSF+R+E sf 4.87 4.02 1.0 0.9
(Yamaguchi et al, 2012) 5.37 4.04 1.1 0.9
PRSF+R sf 5.22 4.36 1.1 0.9
(Einecke and Eggert, 2014) 5.94 4.86 1.2 1.0
(Spangenberg et al, 2013) 6.18 4.97 1.6 1.3
(Ranftl et al, 2013) 6.88 5.02 1.6 1.0

Optical flow evaluation

Method Setting KITTI metric EPE [px]
(% > 3 px)

All Noc All Noc

VC-3F+ sf mv 4.84 2.72 1.3 0.8
(Yamaguchi et al, 2014) sf ms 5.61 2.82 1.3 0.8
PRSF+R+E sf 7.07 3.57 1.6 0.9
(Yamaguchi et al, 2013) ms 8.28 3.64 2.2 0.9
PRSF+R sf 7.39 3.76 2.8 1.2
(Yamaguchi et al, 2013) ms 10.56 3.91 2.7 0.9
(Ranftl et al, 2014) 11.96 5.93 3.8 1.6
(Braux-Zin et al, 2013) 15.15 6.20 4.5 1.5
(Demetz et al, 2014) 11.03 6.52 2.8 1.5
(Vogel et al, 2013a) 14.57 7.11 5.5 1.9

over time and viewpoints, thereby significantly improving
3D scene flow estimation. In particular, our model shows
remarkable robustness to missing evidence, outliers, and oc-
clusions, and can recover motion and geometry even under
unfavorable imaging conditions, where many methods fail.

In future work we plan to incorporate long-term tempo-
ral consistency into our framework, and to relax the constant
velocity assumption to a more flexible formulation. More-
over, we aim to explicitly model small deviations from the
local planarity and rigidity assumptions. Another promising
route may be to include object-level semantic image un-
derstanding into the segmentation scheme, with associated
class-specific motion and geometry models.
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A Higher-order Reductions for Occlusion Handling
with a Reference View

We here describe how to convert the occlusion-sensitive data term from
Eq. (17) into a quadratic pseudo-Boolean function. Note that the only
interesting case is |O0

p |≥2, that is there are two or more possibly oc-
cluding pixels. Otherwise, the problem is already in quadratic form
(|O0

p |=1), or there is no occluding pixel and only the (unary) data term
is required (|O0

p |=0).
Recall that Eq. (17) is defined as part of a single α-expansion step,

i.e. a pixel can only be assigned two possible labels (α or its previous
label). For simplicity we restrict the analysis to the case i=0. We thus
consider the term

û0
p[xp = 0] ∏

(q, j)∈O0
p

[xq 6= j]. (25)

The reduction for i=1 is analogous.
First, let us consider the special case in which there is a pixel q that

occludes pixel p in both possible assignments of xq, that is (q,0) ∈O0
p

and (q,1)∈O0
p . In that case the pixel p is always occluded and Eq. (25)

vanishes. For the remaining cases, we distinguish between û0
p <0 and

û0
p>0.

Case û0
p < 0: We can substitute the whole term with the help of

at most one non-submodular term with weight û0
p. No non-submodular

term is introduced if all Boolean variables in the term are inverted, i.e.
j ≡ 1. In that case Eq. (25) becomes

û0
p(1− xp) ∏

(q,1)∈O0
p

(1− xq). (26)

Introducing an additional variable z, the polynomial in Eq. (26) can be
replaced by

min
z

û0
p

(
1− z− (1− z)xp− ∑

(q,1)∈O0
p

(1− z)xq

)
(27)

in quadratic form.
If xp = 0 and the other variables encode a constellation where p

is not occluded, then the expression becomes equal to û0
p (by setting

z=0). Otherwise, the minimum is attained at 0 (with z=1).
In the case of there being a (q,0) ∈ O0

p , we follow the scheme in-
troduced by Rother et al (2009). With the introduction of two auxiliary
variables z0,z1, we replace the product in Eq. (25) by

min
z0,z1
− û0

p(z0z1− z1 +(1− z0)xp)

− û0
p ∑
(q, j)∈O0

p

(
z1(1− xq)+(1− z0)xq

)
.

(28)

Here, the term−û0
pz0z1 is not submodular. Like in the previous case, if

the variables do not encode an occlusion, and if xp =0, the minimum
is û0

p (setting z0 =0 and z1 =1). Otherwise the minimum is 0 (setting
z0=1 and z1=0).

Case û0
p > 0: We approach this problem using a series of substitu-

tions. Following Ali et al (2008) we replace a product of two variables
in Eq. (25), xq1 xq2 , with a new variable z, and add

min
z

û0
p(xq1 xq2 −2xq1 z−2xq2 z+3z), (29)

such that after the substitution Eq. (25) becomes

û0
p(xq1 xq2 −2xq1 z−2xq2 z+3z)+

û0
p(1− xp)z ∏

(q, j)∈O0
p\

{(q1,0),(q2,0)}

[xq 6= j]. (30)

Two inverted Boolean variables can be replaced in the same manner.
Note that we are not restricted to replacing only variables from O0

p , but
can also substitute 1− xp itself.

The substitution introduces one non-submodular term with weight
û0

p. To arrive at a quadratic polynomial one needs to replace all but
two literals of the product as described, leading to n−1 or n−2 non-
submodular terms.


