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ETH Zürich

Stefan Roth
Department of Computer Science

TU Darmstadt

Abstract

We present an approach to 3D scene flow estimation,
which exploits that in realistic scenarios image motion is
frequently dominated by observer motion and independent,
but rigid object motion. We cast the dense estimation of
both scene structure and 3D motion from sequences of two
or more views as a single energy minimization problem. We
show that agnostic smoothness priors, such as the popu-
lar total variation, are biased against motion discontinu-
ities in viewing direction. Instead, we propose to regularize
by encouraging local rigidity of the 3D scene. We derive
a local rigidity constraint of the 3D scene flow and define
a smoothness term that penalizes deviations from that con-
straint, thus favoring solutions that consist largely of rigidly
moving parts. Our experiments show that the new rigid mo-
tion prior reduces the 3D flow error by 42% compared to
standard TV regularization with the same data term.

1. Introduction
Unlike disparity estimation from stereo images or optical

flow estimation from monocular videos, the estimation of
3D scene flow has only recently gained attention. Probably
the first to tackle dense scene flow estimation were Vedula
et al. [19], who also coined the term. Given images from
two (or more) different points in time, recorded with two (or
more) synchronized cameras with known intrinsics as well
as relative position and orientation, the goal of 3D scene
flow is to estimate both the 3D geometry and the 3D motion
densely at every pixel. Conceptually, it is thus the synthe-
sis of two classical challenges, 3D shape reconstruction and
dense motion estimation. Densely recovering both shape
and motion of a dynamic scene has many important appli-
cations, such as human motion analysis, virtual and aug-
mented reality, navigation and driver assistance, and more.

One of the challenges of 3D scene flow estimation is
that it requires jointly solving the two-view (or multi-view)
stereo problem at two different time steps, and the optical
flow problem for each of the cameras. Here, we aim to es-
timate the 3D scene flow directly from the images without

precomputing 2D optical flow [19] or disparity [22] in sepa-
rate steps. From both stereo and optical flow, 3D scene flow
estimation inherits the need for regularization: it is ill-posed
because of depth ambiguity and the aperture problem, and
thus requires prior knowledge. To date, most scene flow
approaches have relied on relatively simple priors favoring
smooth surfaces and motion fields [3, 12, 22].

Here, we first analyze the 3D scene flow problem ge-
ometrically, and show that smoothness terms from the 2D
flow literature are systematically biased in the 3D case and
should thus not be uncritically adopted. Specifically, we
demonstrate their inherent tendency against motion discon-
tinuities in viewing direction, which stems from the limited
baseline in typical applications. When projecting the 3D
flow onto the image plane and evaluating in 2D, as is com-
monly done, this does not become apparent. Only when
evaluating the scene flow in 3D, which has been advocated
only quite recently [3], this becomes clearer. The main goal
of this paper is to address the issue and propose a more re-
alistic prior model to improve scene flow estimation.

Rather than being completely agnostic about the scene,
we assume that it is composed of independently, but rigidly
moving 3D parts, which is approximately true for many
scenes of practical interest. Starting from this assumption,
we regularize the problem by encouraging a locally rigid 3D
motion field. We develop a regularization framework that
implicitly estimates rigid motion in local regions from depth
and 3D flow, and penalizes deviations from that motion. A
locally adaptive weighting scheme [14, 23] is used to han-
dle motion discontinuities between independently moving
parts. Such a local rigidity prior is rather different from
global rigidity assumptions as they have been used in 2D
flow estimation [16, 20], where image motion is assumed to
predominantly arise from observer ego-motion.

Quantitative results on synthetic scenes demonstrate that
the proposed rigidity prior avoids systematic biases of
isotropic regularization, and leads to significantly more ac-
curate motion fields, reducing the 3D flow error by 42% on
average compared to standard total variation regularization.
Results on real scenes show the applicability of the novel
rigidity prior also for scenarios with articulated motion.
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2. Related Work
The problem of 3D scene flow estimation was introduced

by Vedula et al. [19], who defined it as the dense estima-
tion of 3D geometry and motion vectors. This early work
followed a two-step approach: First, 2D optical flow is es-
timated independently for each camera of a multi-camera
array; after that, the 3D flow field is fitted to the 2D flow
fields. Thus, optical flow computation and 3D modeling
are decoupled. In particular, the constraint that flow fields
in different images must be consistent reprojections of the
same 3D motion is not used during optical flow estimation.

Only much later, Pons et al. [12] proposed an approach
that estimated the 3D scene flow directly from the image
data, rather than fitting it to intermediate 2D flow fields.
Their method is a generalization of the level set method for
multi-view stereo, to also include the motion field.

Wedel et al. [22] proposed to parametrize the scene flow
completely in 2D image space. Stereo disparity is pre-
computed and kept fixed, thus depth and motion estima-
tion are again decoupled. Given disparities, the scene flow
constraints are employed to estimate the optical flow for
one image, and the per-pixel disparity difference between
the two time steps. As discussed below, the employed
2D smoothness term is problematic as it operates in image
space: it favors smooth 2D projections, which is not the
same as a smooth 3D motion field. In particular, gradients
in viewing direction are projected away. Rabe et al. [13]
subsequently extended this work with a Kalman filter mod-
eling temporal smoothness over multiple frames.

In recent work, Valgaerts et al. [17] assume that only the
camera intrinsics rather than the full calibration is known.
They show that, even if the scene contains independent
object motion and deformation, one can estimate both the
scene flow and the relative orientation of the two cameras
from the raw image data. The method alternates between
estimating the orientation parameters and the scene flow.

The approach most similar to our work is by Basha et
al. [3]. As done here, the scene flow is parametrized in
3D in terms of the depth w.r.t. a reference view as well
as 3D flow vectors, and all unknowns are estimated jointly
in one optimization framework. However, the scene flow
is regularized using total variation, whereas we explicitly
model the local rigidity of the scene. Furthermore, [3] con-
centrates on multi-camera setups with relatively large base-
lines, whereas we also evaluate the performance for the two-
view case with narrow baselines, and thus weaker 3D con-
straints. Note that the latter case is important in practice:
a key application are vehicle-mounted cameras [13], where
the total baseline is limited by the physical dimensions of
the vehicle.

Rigidity assumptions date back to early work by
Adiv [1], who recovered 3D scene structure and ego-motion
from 2D image motion. Our approach instead recovers

depth and dense 3D scene flow directly from image se-
quences. Moreover, we do not strictly enforce rigidity in
a set of segments, but rather penalize deviations from lo-
cal rigidity. In this way our approach also differs from soft,
but global rigidity priors that have been used for 2D flow
estimation [16, 20]. Assuming a globally rigid scene with
optical flow arising from ego-motion, they consequently pe-
nalize deviations of the flow from the epipolar lines. This
works very well for scenarios with predominant observer
motion, but cannot be expected to work as well for scenes
with independently moving objects. Local rigidity has also
been used for 3D motion capture with surfel [5] and mesh-
based representations [7]. Here we focus on dense scene
flow estimation without explicit surface representations in
scenes with arbitrary depth and object discontinuities.

Our rigidity prior is also related to work of Nir et
al. [11], who penalize deviations from local rigidity by
over-parameterizing the flow field in terms of rigid mo-
tion parameters and penalizing parameter changes. While
an attractive concept, penalizing changes in such an over-
parametrization was found to be dependent on the choice of
coordinate system [15]. Our approach avoids this issue by
directly penalizing deviations from local rigidity without a
reference coordinate system. Moreover, we extend the idea
of local rigidity priors to the estimation of 3D scene flow.

3. Basic 3D Scene Flow Framework
Our goal is to compute the depth d :Ω→ (0,∞) and the

3D motion field w=(wx, wy, wz)
T :Ω→R3, which we as-

sume to be parametrized over the image domain Ω ⊂ R2

of a reference camera. We, moreover, assume a setup of
N cameras with known intrinsics and known relative posi-
tion and orientation (i.e., a calibrated camera rig). Since we
parametrize the scene with 3D entities, the images do not
need to be rectified. Like most stereo and optical flow meth-
ods, we assume brightness constancy across time and view-
point, and consequently penalize brightness differences us-
ing a data term ED. This data term is combined with a
spatial term ES for regularization into an energy

E(d,w) = ED(d,w) + λES(d,w), (1)

where λ controls the amount of regularization. To enable ef-
ficient energy minimization we employ a relaxation similar
to the one introduced in [24] for optical flow computation.

3.1. Setup and notation

In our approach the scene is parametrized over the image
domain of a reference camera K0. Additional views are de-
noted by Ki, i = 1 . . . N , where Ki ∈ R3×4 specifies the
respective projection matrix. We assume that the cameras
capture the scene at two time steps t ∈ {0, 1} yielding im-
ages Iti . The cameras project 3D scene points Pt at time t
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Figure 1. (left) The principle of scene flow computation: from im-
age points p0 and p1 observed at two different times t = 0 and
t = 1, estimate the 3D point P0 and its 3D motion vector w;
(right) Data terms in the two-view case: red – optical flow, green
– stereo, blue – cross-couplings.

to homogeneous 2D image points pti = (xti, y
t
i , 1)T ; note

that subscripts denote the camera, superscripts the time.
The surface points are parametrized by their pixel coor-
dinates and depth in the reference camera at time t = 0.
Hence P0 = K̃−1

0 p0
0/‖K̃−1

0 p0
0‖ · d(p0

0), assuming w.l.o.g.
that the camera center is the origin of the world system,
such that K0 = [K̃0|0]. In slight abuse of notation we
sometimes abbreviate coordinates in the reference system
as x= (x0

0, y
0
0). At time t= 1 the same point has been dis-

placed to P1 = P0 + w(x0
0, y

0
0). Per pixel, we thus need

to determine four unknowns d(x) and w(x). In the image
plane of camera Ki the displaced point P1 is projected to
p1
i = p0

i +ui. Here ui = (ui, vi, 0) is the projection of the
3D scene flow and can be observed as the optical flow of
camera i at point p0

i . The setup is summarized in Fig. 1.

3.2. Data term

Since the data term is not a main concern in this paper,
we adopt a rather standard brightness constancy term, which
penalizes brightness differences between image locations
corresponding to the same scene point according to the re-
constructed depth and motion. A difference to standard ap-
proaches, however, is that we exploit brightness constancy
between all pairs of images (see Fig. 1, right). In real-world
scenes brightness constancy only rarely holds exactly. To
reduce the influence of outliers due to occlusions, shadows,
specularities, etc. the penalty function thus should be robust.
We use the function ρ(x) =

√
x2 + ε2 [4], a differentiable

variant of the L1-norm.
Temporal correspondence in each view leads to N + 1

brightness constancy terms for the optical flow:

D01
i = ρ

(
I1
i (p1

i )− I0
i (p0

i )
)
, i = 0, . . . , N (2)

Geometric correspondence between the reference camera
K0 and one of the other views Ki, i 6= 0 in both time steps
leads to two terms for the stereo correspondence:

Dt
0i = ρ

(
Iti (p

t
i)− It0(pt0)

)
, t ∈ {0, 1} (3)

For each camera we complement these terms with two
“cross terms”, which impose brightness constancy across

views and time with the reference camera (Fig. 1, right):

D01
0i = ρ

(
I1
i (p1

i )− I0
0 (p0

0)
)

(4a)

D01
i0 = ρ

(
I1
0 (p1

0)− I0
i (p0

i )
)
. (4b)

Although for each image pair only three of the six terms are
linearly independent, we use all six to increase robustness
with respect to the influence of noise.

Adding the contributions of all terms leads to

ED(d,w)=

∫
Ω

D01
0 +

N∑
i=1

(
D01
i +D01

0i+D
01
i0+

1∑
t=0

Dt
0i

)
dx. (5)

In practice we use a straightforward spatial discretization of
ED, which is amenable to standard gradient methods.

To increase robustness against occlusions, we remove
those constraints from consideration, which according to
the current estimate involve occluded pixels, as detected by
straight-forward z-buffering. For instance, if a pixel p0

1 in
camera K1 is occluded, we suppress all three energy terms
involving I0

1 (p0
1).

4. Spatial Term
It was shown in [19], that the aperture problem is a prop-

erty of the scene, therefore scene flow computation remains
ill-posed for an arbitrary number of views. In our case
the brightness constancy equation system Eqs. (2)–(4) pos-
sesses four unknowns per pixel and except for image noise,
it only has rank 3 and constrains the set of admissible flow
vectors to a 1D subspace. In addition, image gradients are
only valid in a small neighborhood of a pixel and are es-
pecially susceptible to image noise. Hence some form of
regularization is needed.

In general our spatial term consists of two parts, one
dealing with the 3D surface and the second being respon-
sible for preserving the regularity of the motion. Since we
are dealing with scenes containing discontinuities, we as-
sume the scene to be only piecewise smooth.

4.1. Standard total variation prior

A standard way to define the spatial term is to penalize
strong gradients in the motion and depth field. In particular,
many optical and scene flow algorithms advocate using the
total variation or some relaxation:

ETV
S (d,w)=

∫
Ω

ρ(∇d)+ρ(∇wx)+ρ(∇wy)+ρ(∇wz)dx . (6)

Discussion: Total variation was found to work very well
for 2D optical flow [e.g. 24]. However, in our experience it
is not a good regularizer for 3D flow. To see why, consider
the following: in a narrow-baseline setting the data term
contributes very little information about the scene flow in
z-direction (depth change) – large changes of wz can be
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Figure 2. (left) For realistic baselines TV cannot correctly handle
motion discontinuities in z-direction. Two cameras (blue and pur-
ple) observe a dynamic scene with two motions (black). Fitting an
incorrect motion field (red) avoids the smoothness penalty at the
motion boundary (green). The incorrect motion can be propagated
far into both moving objects without incurring data penalty.
(right) The weighting function η visualized for two patches. White
pixels denote large and black pixels small weights.

compensated by very small changes of wx and wy to yield
the same projected flow vectors in the images, and thus the
same ED (see Fig. 2, left). As a consequence, the TV regu-
larizer has a built-in tendency against motion discontinuities
in z-direction; taking∇wz → 0 will reduce the spatial term
ES with negligible effect on the data term. The effect can-
not be countered by simply tuning the weight of∇wz , since
its strength would need to depend on the local scene depth.

4.2. Rigidity prior

Many scenes of practical importance consist mostly
of rigid objects. For such scenes, piecewise rigidity is
expected to be a significantly better prior than isotropic
smoothness. To that end, we define the spatial term as

ES(d,w) = ETV
S (d) + µERS (w), (7)

where we replaced the total variation term for the 3D flow
with the rigidity prior

ERS (w) =

∫
Ω

ψ
(
vR(x;w)

)
dx. (8)

Here, vR(x;w) denotes the non-rigid motion residual of
flow w at point x in the reference frame, and ψ(·) is a robust
function to reduce the influence of outliers.

In contrast to rigid motion priors that have been used in
optical flow, which assume a globally rigid scene [16, 20],
we here propose to use a local rigidity constraint, namely
that the motion of small neighborhoods in the scene can be
described by a locally (rather than globally) rigid motion.
To that end, let C(x) denote a local region centered at a
point x ∈ Ω, and r(·;w|C(x)) the rigid motion component
of the 3D flow w in that region. We then define the non-
rigid motion residual at x as the squared deviation from the
rigid motion component, integrated over the region:

vR(x;w) =

∫
C(x)

‖r(y;w|C(x))−w(y)‖22η(x,y) dy. (9)

Here, η(x,y) is a weighting function to allow spatially
varying weights within C(x). The key difference to global
rigidity priors is twofold: (1) The rigidity assumption is less
global, since the rigid motion r(·;w|C(x)) is assumed to be
valid only for a small area, and moreover estimated from
the flow itself – see below; (2) at the same time the for-
mulation is also less local, since it aggregates motion resid-
uals over larger neighborhoods in a way loosely related to
non-local total variation [8]1. Note that by defining the non-
rigid motion residual over an entire region, the constraint is
propagated more vigorously over larger distances, because
neighboring regions strongly overlap. The weights η(x,y)
as well as the robust function ψ(·) reduce this propagation
at motion discontinuities to allow for a piecewise rigid 3D
flow field. The challenge in employing this regularizer is
that one needs to at the same time estimate the rigid motion
r(·;w|C(x)) and measure the deviation from that motion.

Discretization. To simplify the following treatment, we
spatially discretize the rigidity prior from Eq. (8) as

ERS (w) =
∑
c∈C

ψ
(
vRdsc(c;w)

)
, (10)

where c ∈ C denote the overlapping regions (overlapping
n×n patches) in the reference frame. The non-rigid motion
residual itself is discretized as

vRdsc(c;w) =
∥∥r(c;w(c))−w(c))

∥∥2

Nc
, (11)

where w(c) is the concatenation of all flow vectors in c,
and r(c;w(c)) is the rigid motion component of the flow
patch w(c). The term ‖v‖Nc =

√
vTNcv denotes a Ma-

halanobis distance with the diagonal matrix Nc performing
local weighting analogous to η above. In the following, we
will show how for small motions we can express the rigid
motion component as a projection onto the closest rigid mo-
tion subspace, such that r(c;w(c)) = Acw(c). This leads to
the final definition of our non-rigid motion residual as

vRdsc(c;w) =
∥∥Acw(c) −w(c)

∥∥2

Nc
. (12)

The key property of this proposed rigidity prior is that it al-
lows measuring deviations from locally rigid motion with-
out any explicit representation of rigid motion (in contrast
to [11]). In the following we derive the projection Ac.

Rigid motion subspace. It is well known [6] that a small
rigid motion can be represented well by a translation t and
a linear approximation of a rotation:

R = I+sinα[r]×+(1−cosα)(I−rrT ) ≈ I+α[r]× . (13)

1The most closely related non-local TV regularizer [8] is given as∫
Ω ψ

(∫
Ω ‖w(x)−w(y)‖22η(x,y) dy

)
dx.



Here r represents the rotation axis, [r]× is the cross-product
matrix, α the rotation angle, and I the identity matrix. We
can thus approximate Eq. (11) as

vRdsc =
∑
x∈c

∥∥∥∥([P0(x)]×
∣∣I)(αr

t

)
−w(x)

∥∥∥∥2

η(c,x), (14)

where P0(x) is the 3D surface point at pixel x, which is
computed from the current depth estimate (see Sec. 3.1),
and η(c,x) is the local weight. By concatenating the matri-
ces ([P0(x)]×|I) ∈ R3×6 for all x ∈ c into Mc ∈ R3n2×6,
we can rewrite the non-rigid motion residual as

vRdsc(c;w) =

∥∥∥∥Mc

(
αr
t

)
−w(c)

∥∥∥∥2

Nc

. (15)

By solving this weighted least squares problem, we obtain
the projection onto the closest rigid motion subspace:2(

αr
t

)
=
(
MT
c NcMc

)−1
MT
c Ncw(c) (16)

Ac =Mc(M
T
c NcMc)

−1MT
c Nc. (17)

The matrix that needs to be inverted to construct the projec-
tion operator Ac is small, (MT

c NcMc) ∈ R6×6, so that the
construction process can be done efficiently.

Weights. The weighting matrix Nc plays a central role in
the robustness of the rigid motion fitting procedure. In gen-
eral, we can only expect points on the same surface, close
to each other to undergo the same rigid motion. Therefore
we use a spatially varying weight

η(c,x) ∝ e−1/λs(c,x) . (18)

Here, λs is a similarity measure that measures the likeli-
hood that the surface point P0 corresponding to x belongs
to the same surface as the center of region c. The sum of
the weights in a patch is normalized to one. To define the
similarity measure λs one could employ several different
features of the flow and depth field [c.f . 14, 23]. Currently
we consider the differences of the optical flow field and the
disparity between the pixel p0

0 = (x; 1) and the patch center
c0

0. The similarity λs,d penalizes disparity differences:

λs,d(c,x) = γ
max(γ,‖(c0

0−c0
1)−(p0

0−p0
1)‖) . (19)

The similarity λs,w for the optical flow is defined in the
same way. Finally, λs is given by the product of both in-
dividual similarities. The threshold γ is set such that the
weight stays within [0, 1]. An example weighting is shown
in Fig. 2. More sophisticated similarity measures, e.g. tak-
ing into account color differences, will remain future work.

2Note that the fit can be interpreted as a step of an alternating mini-
mization procedure for the 3D scene flow and the rigid motion parameters.

Even though the weights increase the robustness of the
rigid motion fitting procedure, errors and outliers may still
occur. The robust function ψ therefore ensures that fits with
a lower error have a higher smoothing effect on their neigh-
bors than patches in which no sensible rigid motion could
be found, for instance around motion discontinuities. We
use the Lorentzian ψ(s)=log(1+ s

2σ2 ) in all experiments.

5. Experimental Results

We have performed numerous experiments on synthetic
as well as real data in order to assess the performance of
our new rigidity prior. To demonstrate the benefits of the
proposed local rigidity prior, we compare to total variation
regularization, while using the identical data term and opti-
mization procedure.

Implementation details. To alleviate the negative influ-
ence of varying illumination on the data term, we prepro-
cess the input images using structure-texture decomposition
[2], which has been used successfully for 2D optical flow
estimation – for details see [21].

Since image gradients are only valid in a small neigh-
borhood, the energy minimization is embedded in a hierar-
chical coarse-to-fine scheme to better avoid local minima.
We use a downsampling factor of 0.9 throughout our exper-
iments. At each pyramid level we run 4 outer iterations of
our optimization framework to minimize the energy func-
tional from Eq. (1). The parameters are set to µ = 15,
σ = 0.003 and λ = 1/150. The regularization parame-
ter λ is increased linearly with the current image size. The
threshold γ is set to 0.85/512 times the length of the image
diagonal. The gradients of the warped images are computed
using bicubic interpolation. For computing the non-rigid
motion residual we use a neighborhood of 5×5 pixels and
place an overlapping region at every fourth pixel. For the
synthetic scenes the depth is initialized to a distant plane,
whereas for the real images we initialize the depth with a
dense stereo algorithm [9]. The similarities λs,d and λs,w
are computed from the current solution.

Error measures. Basha et al. [3] observed that the evalu-
ation methodology used for optical flow and stereo should
not be directly carried forward to the evaluation of scene
flow algorithms. We agree that the deviation between 2D
and 3D errors is an important issue – in particular, very dif-
ferent 3D flow fields can have almost identical 2D projec-
tions (see also Fig. 2). For completeness we measure both
the 3D error of the recovered surface and motion field, and
the errors of the projected 2D motion field in the image.

For the scene depth we follow [3] and report the nor-
malized root mean squared error NRMSd, where the nor-
malization is w.r.t. the difference between the maximal and
minimal point distances to the reference camera.
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Figure 3. Three scenes from the box dataset (one per scenario).
(left) Rot – pure rotation of the box, (middle) Txyz – translations
along all coordinate axes, (right) Tz – translation only in depth.

Similarly, for the 3D flow vectors we use the normalized
end point error NRMSw. However, other than [3] we pre-
fer to normalize the flow vectors’ endpoint errors with the
diameter of the smallest sphere enclosing the motion field.
The advantage of that definition is that vectors pointing in
different directions are treated correctly, whereas the origi-
nally proposed normalization based on minimal and max-
imal magnitudes disregards differences in flow direction.
Additionally, we also report the average angular error of
the 3D flow vectors, AAEw.

Finally, errors in the 2D projection of the motion field
are quantified using common error metrics from the optical
flow literature, namely the average angular error AAE and
the average end-point error AEP.

5.1. Total variation vs. rigid prior

To evaluate the benefit of the rigid motion prior quanti-
tatively, we have rendered 9 synthetic scenes with known
ground truth. Each scene consists of two nested boxes
that are textured with different images and undergo vari-
ous types of rigid motion. The scenes are observed by two
cameras. Fig. 3 shows a subset of the rendered scenes.

We note that with a TV motion prior our method be-
comes a re-implementation of [3] (up to minor differences),
thus corresponds to the state of the art in 3D scene flow.

Our experiments clearly show the advantages of the pro-
posed rigidity prior. It outperforms standard total variation
in all cases, on different types of motion, especially in terms
of 3D error – see Table 1.

When looking at the AEP, the gains in terms of projected
2D motion errors are relatively moderate, as predicted by
our discussion above. In contrast to that the numbers for
the AAE improve for two cases by roughly 25%, leading
to the conjecture that noticeable differences in the projected
flows mostly occur in areas with small or no motion.

Since both methods regularize depth using total vari-
ation, it is not surprising to see similar depth errors
(NRMSd). The true benefit of our approach becomes appar-
ent when considering the error of the estimated 3D motion

Table 1. Proposed local rigidity prior for the 3D motion field (Rig)
vs. standard total variation (TV). Each error is averaged over three
scene instances (per scenario); 2D errors are further averaged over
all four projections.

3D ERROR 2D ERROR

SCENE AAEw NRMSw NRMSd AAE AEP
Rot Rig 4.5° 7.3% 11.7 % 1.6° 0.36

TV 8.5° 9.8% 11.6% 1.7° 0.35
Txyz Rig 2.5° 11.9% 11.8 % 1.5° 0.39

TV 8.6° 25.6 % 11.7% 2.3° 0.42
Tz Rig 3.9° 14.0% 9.9% 1.8° 0.35

TV 7.8° 15.3% 10.7 % 2.4° 0.37

field: the rigid motion prior lowers the NRMSw by 8–53%.
The angular error AAEw is lowered by 47% for the rotation
examples, and even by 50–70% for the translation exam-
ples. Averaged over both 3D metrics and all scenarios, the
rigid motion prior reduces the 3D motion estimation error
by 42% (see Fig. 4 for a visual illustration.)

Table 2 shows the evaluation results if errors in occlu-
sion areas and around discontinuities are masked out, in the
spirit of the Middlebury benchmark. As expected, all meth-
ods are inaccurate especially around discontinuities. How-
ever, the TV regularizer propagates the errors far into the
smooth surfaces, hence masking occlusion and discontinu-
ity areas brings only small improvements. On the contrary,
the results for the rigid motion prior improve by a factor of
2–4, indicating that indeed the errors are mostly confined to
the occlusion areas and discontinuities.

Qualitative Results. In Fig. 4 (left) we show the scene flow
for one of the the Tz scenes – other cases are similar. While
the rigidity prior recovers the correct motion pattern (aside
from errors at the discontinuities), the result of TV regular-
ization exhibits a clear systematic error. The flow difference
of wz in viewing direction is under-estimated, whereas the
(wx, wy)-components show an incorrect expansion pattern
in order to compensate for the missing part of the observed
flow in the images. The Txyz scenario exhibits a similar,
even more irregular effect (see Fig. 4, right).

Table 2. As expected the error improves significantly if areas with
occlusions (OC) and discontinuities (DC) are omitted from the eval-
uation. In the remaining areas, the rigid motion prior exhibits an
even greater advantage over TV regularization.

AAEw [°] NRMSw [%]
SCENE — OC OC&DC — OC OC&DC

Rot Rig 4.5 4.1 3.3 7.3 6.7 4.5
TV 8.5 8.2 7.4 9.8 9.4 7.9

Txyz Rig 2.5 2.1 1.5 11.9 10.3 6.4
TV 8.6 8.0 7.7 25.6 24.4 23.6

Tz Rig 3.9 2.5 1.2 14.0 10.6 5.0
TV 7.8 6.5 4.9 15.3 13.3 8.2
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Figure 4. Results on two example scenes from scenarios Tz (left) and Txyz (right). The plots show (from top to bottom) the ground truth,
and the estimates with the rigidity and TV priors. 1st column: 3D flow field normalized per coordinate (red: wx, green: wy , blue: wz).
2nd column: depth, 3rd-5th column: individual components of the 3D flow as heatmaps. For Tz (left) one can clearly see the tendency of the
TV regularizer to underestimate the motion difference of wz in viewing direction and to compensate the resulting data error with wrong
(x, y)-motion. The Txyz scene (right) shows that although the error in the image plane is small (Table 1), the 3D motion is significantly
misjudged by TV regularization, whereas the rigid motion prior manages to reconstruct the correct scene flow.

5.2. Comparison with 2D scene flow

To compare our algorithm with other scene flow algo-
rithms [10, 17, 22] that have only been evaluated in 2D, we
run it on the synthetic sphere sequence of [10], consisting
of four images of two independently rotating hemispheres.
Table 3 shows the errors of the 2D flow vectors and the dis-
parity (3D flow errors are not available). Our method de-
livers comparable 2D errors. The tighter coupling between
depth and flow in the rigidity prior leads to some artifacts
at the extreme depth variations on the sphere’s silhouette,
which currently prevent it from achieving better results.

5.3. Real world data

To complement our quantitative experiments, we have
tested the algorithm on several real world scenarios. Unfor-
tunately, no real-world datasets with ground truth are avail-
able at present. We give three examples. The first and sec-
ond scene were captured with a stereo rig, while the third
was acquired by three cameras.

The first dataset (see Fig. 5, left) has three independently
moving objects on a static background. The book and the
box are rotated counter-clockwise, the toy cheetah is pushed
to the left and slightly rotated clockwise. Note that although
we use stereo for initialization, we did not rectify the im-
ages. As far as one can tell by visual inspection, both the
shape and the objects’ motions are recovered correctly.

In Fig. 5 (right) we show a reconstruction of a street
scene from [18]. The images show two rigidly moving

Table 3. 2D errors for the “sphere” sequence [10].

[17] [10] [22] Rig
RMSE 2D Flow 0.63 0.69 0.77 0.75
RMSE Disparity 3.8 3.8 10.9 5.6

cars and a non-rigidly moving pedestrian, and have large
textureless regions as well as complex occlusions. The
frames were acquired from a moving car, such that flow in
z-direction is observable everywhere except in the far dis-
tance. Our method is able to capture the non-rigid motion
of the pedestrian, including the feet, and the motion of both
cars (note, the left car is moving in the same direction as the
cameras, hence the motion vectors are not well visible).

Finally, we show results for the “Maria” sequence from
[3]. The scene shows a rotating face, and includes non-rigid
motion of the hair, as well as large occlusion areas. The
results displayed in (Fig. 6) visually appear to be correct.

6. Conclusion
We have shown that standard smoothness priors from

the 2D motion estimation literature lead to biases when ap-
plied to 3D scene flow estimation. To address this issue,
we presented a method for regularizing 3D scene flow com-
putation by penalizing deviations from the local rigidity of
the motion and integrated it into an energy minimization
framework. Our experiments on several different datasets
demonstrated significant reductions of the 3D motion esti-
mation error compared to standard total variation regular-
ization, and showed the applicability to real-world scenes
with articulated motion.

In future work we plan to improve the weighting scheme
for the rigidity constraint, and to extend the method to se-
quences of more than two frames, for which the rigidity
constraint is likely to be even more valuable.
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