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Abstract

Modern computing systems rely on error-correcting codes
to ensure the integrity of DRAM data. Linear checksums al-
low for fast detection and correction of specific error patterns.
However, they do not offer sufficient protection against com-
plex errors distributed over multiple data words and chips.
Depending on the code and the error pattern, linear codes may
fail to detect or even miscorrect errors, thus leading to silent
data corruption.

In this work, we show how compact error-correcting codes
based on low-latency hashing functions allow for strong prob-
abilistic error detection and correction while facilitating ECC
bit repurposing. Our proposed design drastically lowers the
expected rate of undetected errors, regardless of the underly-
ing error patterns.

By tailoring the size of our codes to the required level of
integrity protection, we are able to free bits that would oth-
erwise be required to store ECC data. We showcase how our
design facilitates the efficient implementation of tagged mem-
ory architectures such as CHERI, ARM MTE, and SPARC
ADI by repurposing the freed bits in commodity ECC DRAM.

Thus, we harden systems against data corruption due to
DRAM faults while simultaneously allowing for memory tag-
ging without introducing additional memory accesses. We
present a systematic analysis of schemes that allow memory
tagging on a cache line granularity while maintaining error
detection and correction capabilities, even in multi-bit fault
scenarios. We evaluate our integrity protection with tagging
for different use cases and show that we can store 32 bits of
additional tags per cache line, twice the amount needed to
implement ARM’s MTE, without significantly affecting error
correction capabilities. We also show how up to 51 bits can be
made available while maintaining single-bit error correction.

1 Introduction

DRAM modules hold a variety of system-critical and sensi-
tive data during runtime. Clearly, the integrity of this data is

essential, and integrity violations threaten the overall security
of computing systems. Unfortunately, data stored in DRAM
memory is subject to faults. Naturally ocurring leakage or
the impact of charged particles may spontaneously alter the
data stored in memory. Error-correcting codes (ECC) aim to
provide integrity in the presence of errors through additional
redundancy, thus allowing for error detection and correction.
In ECC DRAM modules, redundant information is stored in
a dedicated chip and fetched in parallel with the associated
data. Each memory read validates the data integrity and cor-
rects errors if needed. In commodity solutions, linear codes
deterministically protect data against a fixed upper limit of
erroneous bits. Errors that exceed the capabilities of the de-
ployed code, however, may remain undetected or even cause
miscorrection, thus violating data integrity.

In addition to naturally ocurring DRAM errors, memory
safety issues are a prevalent threat to all computing systems.
Microsoft [49] and Google [34] independently claim that
memory safety errors account for approximately 70 % of all
bugs in their products. Adversaries exploiting memory errors
can mount a variety of attacks like privilege escalation, infor-
mation disclosure, or denial of service. Security has become a
key ingredient of software systems and is deeply anchored into
the system’s hardware architecture. Novel hardware-software
co-designs introduce strong hardware-backed security proper-
ties, ensuring reliable protection for the deployed software.

Memory tagging is a versatile tool utilizing single- or
multi-bit tags to enforce fine-grained security policies.
Various research proposals [10, 11, 28, 41, 46, 50] uti-
lize tagged memory architectures for dynamic information
flow tracking (DIFT). Capability-based architectures (e.g.,
CHERI [54], M-Machine [6]) utilize single-bit memory tag-
ging to distinguish between data and capabilities in mem-
ory. Commercial products, like the ARM memory tagging
extension (MTE) [26] and SPARC application data in-
tegrity (ADI) [1], utilize memory tagging to provide prob-
abilistic memory safety on an object granularity. Besides
memory safety, mechanisms like Mondrian [53] and Loki [57]
utilize memory tagging for memory isolation.



Tagged memory architectures enforce security policies to
target a diverse set of threat models.However, all tagged mem-
ory architectures share one common drawback: Memory tag-
ging requires additional DRAM requests to fetch the tags
from the main memory. This imposes additional pressure on
the memory bus, thus decreasing system performance. The
overhead is simultaneously the bottleneck of tagged architec-
tures and an obstacle that needs to be overcome to facilitate
widespread adoption. For example, the HDFI [41] prototype
introduces DRAM access overheads ranging from 37.9 %
up to 373 %. Previous work [8,20, 54] on memory tagging
highlights that ECC memory could be deployed to reduce
the overhead of tagged architectures. Precisely, tags could
be stored in ECC bits to eliminate the impact on the system
performance due to the additional tag fetches. Utilizing ECC
DRAM allows reading the data and tags in parallel, effectively
avoiding multiple memory accesses. However, it is currently
unknown how repurposing ECC bits for memory tagging in-
fluences error detection and correction capabilities.

In this paper, we introduce a compact, hash-based integrity
protection scheme that allows the implementation of memory
tagging without additional tag fetches on commodity ECC
DRAM modules. We combine hash functions and parity bits
for error detection and correction, repurposing the remaining
bits to co-locate the memory tags with the corresponding
data. Contrary to existing combinations of tagging and linear
codes [14,15,31], our approach performs significantly better
for multi-bit errors.

Our results show that we can implement tagging schemes
using up to 16 bits per cache line while increasing error de-
tection and correction capabilities. This tag space is large
enough to implement various tagged memory architectures
(e.g., CHERI, ARM MTE, and SPARC ADI) without generat-
ing any additional memory traffic. In addition, we introduce
evaluation models for architectures focussing on large tag
sizes. Precisely, we show that tagged architectures utilizing
32,46, and 51 bits are implementable and discuss their trade-
offs regarding error detection and correction. Our findings
underline that our method of eliminating bandwidth overheads
due to tag fetches is feasible, even for architectures that use
large tags. We implement our design in the gem5 simula-
tor and evaluate the performance compared to an MTE-like
tagged memory architecture. The evaluation shows that we
can dramatically reduce the performance overheads that are
typical for tagged memory applications.

Contributions. We make the following contributions:

* We are first to show how compact hash-based integrity
protection codes can be combined with memory tagging
utilizing commodity ECC DRAM modules.

* We investigate hash-based error detection and correction
under real-world DRAM failure models. Our results al-
low us to provide up to 16-bit memory tags on a cache
line granularity while supporting more robust integrity
protection than commodity devices.

* We systematically analyze tagged architectures like
CHERI, ARM MTE, and SPARC ADI, showing that they
can be implemented without introducing additional pres-
sure on the memory bus. We evaluate our approach and
show an average reduction of overheads by a factor of
approximately 20.

* We highlight the potential of novel tagged architectures
facilitating larger tag sizes (up to 51 bits per cache line)
and discuss the impacts on error correction and detection
capabilities.

Outline. The paper is outlined as follows. Section 2 pro-
vides the necessary background. Section 3 defines fault mod-
els based on DRAM fault behavior. Section 4 describes hash-
based designs, shows how hash sizes influence error detection
and correction capabilities, and investigates different hash-
based designs. Section 5 analyzes possible instantiations of
our hash-based design. Section 6 elaborates on the overheads
of our scheme with regard to performance, correction times,
and area. Section 7 discusses related work, and Section
concludes this work.

2 Background

This section introduces the concept of memory tagging and
tagged memory architectures. We discuss how tagged memory
can be used to enforce memory safety or to isolate protection
domains. Furthermore, we give an overview of the organi-
zation of modern DRAM devices. We discuss how faults in
DRAM cells can influence the stored data and how protection
mechanisms aim to detect and correct errors in DRAM.

2.1 Tagged Memory Architectures

Various modern secure hardware architectures use tagged
memory as a fundamental building block [39]. Tagged archi-
tectures augment the memory stored in DRAM with addi-
tional metadata to enforce policies. While memory tagging
allows for arbitrary policies, it is especially relevant for sys-
tem security. Depending on the tagging scheme, different
security concerns, e.g., memory safety, are addressed.

Researchers proposed various hardware architectures im-
plementing fixed, partly configurable, and freely configurable
policies through single- or multi-bit tags. A common type
of memory tagging is dynamic information flow track-
ing (DIFT) [46], which analyzes the propagation of user input
throughout the execution of the program. Architectures apply
DIFT [10, 11,28,50] to track potential malicious user input
and mitigate exploitation techniques like ROP [5, 40] and
JOP [7].

Commercial solutions like ARM MTE [26] and SPARC
ADI [1] focus on memory safety policies at object granularity.
These architectures target different classes of memory access
violations, e.g., temporal and spatial violations. On object



allocation, the corresponding memory locations are associ-
ated with a dedicated memory tag. Additionally, this tag is
encoded in the unused upper bits of the referencing pointer. At
each memory access, the tagged memory architecture checks
whether the tag of the pointer and the corresponding tag in
memory match. This procedure allows the detection of tem-
poral and spatial memory violations on a probabilistic basis.

Capability-based architectures use tagging to enforce the
integrity of capabilities in memory. Precisely, CHERI [54]
and the M-Machine [6] utilize a single-bit tag per granule.
This fine-granular memory protection only permits memory
accesses executed from capability instructions, providing the
desired integrity.

Tagged memory architectures require additional DRAM
requests to fetch the tags from memory. This introduces a
significant performance overhead due to the additional pres-
sure on the memory bus [20]. To counteract this performance
penalty, efficient tagged memory architectures utilize a tag
store [20] serving as a separate cache for memory tags.

2.2 DRAM Organization

Commodity DRAM devices store information in memory
cells consisting of a transistor and a capacitor. Multiple cells
are grouped in rows and columns, thus forming a memory ar-
ray. On a single DRAM chip, multiple memory arrays operate
in parallel, and the number of arrays determines the bus width
of the chip. Independent DRAM channels allow the memory
controller to communicate with sets of DRAM chips in paral-
lel, thus increasing the performance. In commodity devices,
the bus width of a single DRAM chip is usually 4 or 8 bits.
Depending on the bus width of the individual chips, we speak
of x4 or x8 DRAM. Transmitting large amounts of data over
such a small bus would be infeasible and slow. Hence, multi-
ple DRAM chips are grouped, forming a rank. One channel
can access multiple ranks, depending on the actual hardware
configuration. In modern system architectures, accesses to
DRAM are burst-oriented [45]. A single read from a DRAM
channel usually yields 512 bits of data which is the typical
size of a cache line. Given the bus size of a DDR4 device,
we see eight beats of 64 bits each. Reading in bursts is more
efficient than performing single word-granular accesses, as
the 512 bits burst size matches the size of a cache line in most
modern systems.

2.3 DRAM Errors

When discussing errors in DRAM cells, we distinguish be-
tween faults and errors. A fault is the underlying cause of
memory corruption. An error occurs when reading from a
faulty location and can be considered the manifestation of a
fault. The charges stored in DRAM cells leak over time, thus
reducing the voltage level of the capacitor. Cell contents must
be refreshed periodically to avoid data loss. The retention

time denotes the duration that a cell can hold a stored charge
such that the value read from the cell equals the value that
was previously stored. The JEDEC standard [45] specifies
that the retention time of DRAM cells must be at least 64 ms.
Even if all cells fulfill the specification, it can happen that
too much charge leaks from a capacitor. Excessive leakage
prevents the sense amplifiers from correctly measuring the
stored charge and, thus, the logical value read from the cell
changes. Research shows that different external influences,
such as radiation [3] or temperature [27], can alter the stored
contents of memory cells by accelerating the leakage speed.

An error in which a stored bit erroneously changes its value
is called a bit flip. While bit flips occur due to charge leakage,
logical bits may also flip from ’0’ to ’1’ depending on the
interpretation of the cell’s content.

A cell that experiences a transient fault is not necessarily
broken. Instead, the fault is fixed as the cell content is over-
written. Reading from a memory location that had a transient
fault in the past will, in general, not result in an error unless
the location experiences another fault. Thus, transient faults
are usually observed once but do not necessarily reoccur at
the same location.

Hard faults are not fixable without replacing the complete
DRAM module, as they occur due to physical damage in the
component. Reading from a location that has experienced
a hard fault will always cause an error unless the affected
component is replaced.

Studies indicate that the absolute values of transient and
hard errors strongly depend on the DRAM manufacturer [25,
38,43].

2.4 DRAM Integrity Protection

In order to protect against data corruption, error-correcting
codes (ECC) are deployed. Usually, these codes are linear
codes that are implemented in hardware in the memory con-
troller. When using ECC, redundant information is stored in
additional memory next to the actual data. The storage holding
the redundant information is only accessible by the memory
controller. On each memory access, the memory controller
uses redundant information to check for data corruption. In
commodity systems, single-error correction double-error de-
tection (SEC-DED) codes with 64-bit granularity are used.
For DDR4 DRAM, each 64-bit data word is extended by 8
checksum bits, thus resulting in a code word size of 72 bits.
Expanding the bus size and reading the parity bits in parallel
with the data allows for fast checking and avoids additional
fetches from memory. When a data word is read, the ECC
logic computes a so-called syndrome over the current data
and the stored parity information. In SEC-DED codes, the
syndrome indicates the location of the erroneous bit in the
case that an error occurred. Thus, it is possible to directly
correct the faulty bits. When detecting double-bit errors, SEC-
DED codes are not able to correct the error, and the memory



controller raises a machine check exception. If more than two
errors per 64-bit word occur, SEC-DED codes cannot guar-
antee that the error is detected. Depending on the location of
the flipped bits, it is possible that the error is not detected or
wrongfully interpreted as a single-bit error. Thus, SEC-DED
codes may miscorrect errors that exceed the capabilities of
the code. We call such cases silent data corruption (SDC).
Chipkill [12] distributes the bits from one DRAM chip over
multiple ECC words. Even if a full chip fails, only one bit per
ECC word is affected. Thus, a complete chip failure can be de-
tected and corrected. Contrary to SEC-DED codes, Chipkill is
a symbol-based correction mechanism. As the symbol size in-
fluences the capabilities of the code, the overhead of Chipkill
directly correlates to the bus width of the used DRAM chips.
For x4 devices, the overhead is equal to that of SEC-DED
codes, and for x8 devices, the overhead would be doubled.
Systems that use ECC may also use a technique called
memory scrubbing. When this is enabled, the system will pe-
riodically perform read operations over the DRAM. The main
goal of scrubbing is to reduce the number of uncorrectable
errors by avoiding the accumulation of localized errors.

3 Defining the Fault Model

In order to compare the error detection and correction capabil-
ities of existing and novel schemes, it is imperative to define
a realistic fault model. In this section, we define the fault
patterns that we consider during our analysis. We base our
model on previous research on DRAM faults in large-scale
systems [25,38,43]. While available data is limited, we iden-
tify five failure modes that range from simple single-bit errors
to complex multi-bit error patterns. While there is a multitude
of ways that failures can manifest in DRAM, we limit our
analysis to failure modes that can actually be corrected by
rank-level ECC, such as SEC-DED or Chipkill codes.

We define our failure modes depending on the way that the
errors manifest at cache line granularity. Our analysis targets
systems with a cache line width of 512 and a burst size of 64
bits, thus resulting in 8 beats per burst. For multi-bit failure
modes, we differ between x4 and x8 configurations due to
different error patterns in the case of partial or complete chip
failures. Table | gives a concise overview of the failure modes
in our fault model.

3.1 Single-bit Failure Modes

Single-bit errors are the prevalent error type in modern
DRAM devices [25,38,43]. A single-bit error can have mul-
tiple causes. When a DRAM cell experiences a hard fault,
it becomes stuck at a fixed value. Such a cell will always
return the same value when accessed. Contrarily, a cell can
experience a transient error due to excessive leakage, particle
strikes, or other influences. In such cases, the cell will regain
functionality after the subsequent write access. If an entire

Table 1: The failure modes that we include in our fault model.

Failure Bits

Mode  Affected Description
Fl1 1 Single faulty bit
F2 8 Single stuck pin

F3S up to 56
F3M up to 56
F4 up to 64
F5S up to 57
F5M up to 57

Multiple stuck pins in a single chip
Multiple stuck pins in multiple chips
Broken chip (all pins stuck)

F3S + transient fault

F3M + transient fault

column in a DRAM device fails, we still see a single-bit error
on access, as only one bit per column is accessed during a
burst. Only reads to different rows will trigger multiple errors
in the case of a column failure. Each single-bit fault, no matter
the underlying cause, will manifest itself as a single erroneous
bit in a cache line. SEC-DED and Chipkill codes both guar-
antee to detect and correct single-bit errors. We denote the
single-bit failure mode as F1.

3.2 Multi-bit Failure Modes

While faults that affect multiple bits are rare, we must consider
them when analyzing error detection and correction mecha-
nisms. The least complex multi-bit error pattern is observed
when a single pin of one DRAM chip becomes stuck at a fixed
value. Contrary to the single-bit fault mode in which a single
cell is stuck, a compromised pin will affect every word read
from the stuck DRAM chip. The number of corrupted bits is
equal to the number of beats per burst. In each beat, a single
word with a stuck bit is read from the faulty chip. Thus, a
stuck pin will cause 8 bits in the cache line to equal the stuck
value for both x4 and x8 chips. With a 64-bit burst size, all
corrupted bits are expected to be exactly 64 bits apart. This
failure mode is detectable and correctable by SEC-DED and
Chipkill codes, as the single erroneous bit per 64-bit word
stems from a single chip. We refer to this failure mode as F2.

A more complex failure mode occurs when multiple pins
are stuck. We distinguish between the case that multiple pins
from the same chip are stuck (F3S) and the case in which
pins from multiple chips are stuck (F3M). In both cases, the
number of corrupted bits per cache line equals the number of
stuck bits multiplied by the number of beats per burst. This
failure mode is similar to the single stuck pin mode in the
aspect that all bits in the cache line that originate from a stuck
pin have the same value. As the number of corrupted bits
per 64-bit word exceeds the correction capability of SEC-
DED codes, correction becomes impossible. Depending on
the number of affected pins, a SEC-DED code might be un-
able to correctly identify a multi-pin failure, thus resulting in
silent data corruption or miscorrection. While the F3S failure
mode is correctable by Chipkill codes, F3M is, in general, not
correctable. When discussing F3S and F3M failure modes,



we must consider the chip size and the number of stuck pins.
We use the notation F3S(s, f) and F3M(f) to denote F3 failure
modes with an s-bit chip size and up to f stuck pins.

In the case that a complete chip failure occurs, we must
also distinguish between x4 and x8 configurations. When
using x4 DRAM chips, the complete failure of one chip re-
sults in 32 corrupted bits in the worst case. Systems that use
Chipkill codes can correct such chip failures in the case of x4
chips [16]. As x8 chips contribute more bits per cache line,
complete chip failures become more severe. When an x8 chip
fails, up to 64 bits per cache line are corrupted. Thus, error
correction becomes more complicated and is not supported
by all Chipkill codes. We denote the case of a complete chip
failure as F4. Note that F4 is an edge-case of the F3S failure
mode in which all pins are considered stuck. As we need
to differ between x4 and x8 configurations, we denote F4
failures as F4(s) to include the chip size in our notation.

3.3 Combined Failure Modes

In theory, it is possible that multiple failure modes occur at
the same time, thus causing the corruption of many bits at
once. Complex combinations of failure modes are, however,
rare [4].

We only consider cases in which a single transient fault oc-
curs in parallel with a hard fault. A single additional transient
fault will cause most Chipkill schemes to fail if it occurs in
a device that is different from the one that experiences the
stuck bit. In cases where the transient fault is co-located to the
hard fault, i.e., occurring in the same chip, Chipkill codes can
detect and correct the fault. For SEC-DED codes, this fault
pattern poses a problem. A combination of a single-pin hard
fault and a single transient fault will be detected but not cor-
rected. Should a transient fault occur next to a multi-pin fault,
the SEC-DED error detection will fail, and an undetected
error will occur.

As an F3M fault will not be corrected by Chipkill, the
combination of a transient fault with an F3S fault will also
be uncorrectable. We denote the combination of transient
failures with F3 failures as F'5. The F5 failure mode inherits
the notation from the F3 mode. For the combination of F3S
and a transient fault, we assume that the transient fault occurs
in a different chip from the one with the stuck pins.

We do not include transient multi-bit faults in our analysis
as they are unlikely to occur [4]. We do not consider glitches
and faults of the command and address signals in our fault
model as they are assumed to be protected by an orthogonal
measure. Furthermore, we do not consider faults induced by
Rowhammer attacks in our model. Such faults imply the pres-
ence of an active attacker and are best thwarted by dedicated
Rowhammer mitigations [18,32,55,56].

3.4 Fault Rate

When discussing fault rates, it is practical to use failures in
time (FIT). One FIT equals one failure event per 10° hours of
operation. To accurately model real-world fault behavior, we
use the fault rates reported by large-scale studies on DRAM
fault behavior [42—44]. Unfortunately, DRAM fault rates vary
strongly across different memory modules and vendors. The
reported overall fault rates range from 73.6 FIT/DRAM to
18.8 FIT/DRAM in [42]. Furthermore, Sridharan et al. [43]
find the largest rate of SEC-DED undetectable faults to be
21.7 FIT/DRAM, while the lowest rate is given with 0.2 FIT/-
DRAM.

We estimate the expected fault rate based on the empir-
ical fault rates reported in [42—44]. In their work, they list
the overall rate of faults per DRAM as well as the rate of
undetected faults per DRAM. We compute the overall ex-
pected rate of faults by averaging the reported overall fault
rates per DRAM device. Likewise, we compute the expected
rate of undetectable faults by averaging the given numbers of
undetectable faults per DRAM. Thus, we reach an expected
fault rate of 45.32 FIT/DRAM and an expected rate of unde-
tectable faults of 7.9 FIT/DRAM. We denote the expected
undetectable fault rate as Ryp and the expected overall fault
rate as R.

4 Error Detection and Correction for
Hash-based Integrity Protection

This section provides an in-depth analysis of hash-based in-
tegrity protection schemes and their error detection and cor-
rection capabilities. First, we identify the fundamental metrics
that shape each of our hash-based schemes. Then, we discuss
the principles of hash-based error detection and correction.
We elaborate on the problems and pitfalls of error correction
that we face when moving away from linear codes. Then,
we show how additional parity bits and information about
common fault patterns can be leveraged to greatly increase
the correction performance of hash-based schemes. Conclud-
ing this section, we discuss the case in which the hash itself
becomes corrupted.

We identify three metrics that require special consideration
when designing a hash-based integrity protection scheme.

Detection and Correction Capabilities. While it would
be trivial to repurpose ECC bits as tag bits, doing so with-
out losing the ability to detect and correct errors is not a
straightforward task. Balancing the number of tag bits and the
number of hash bits such that an optimum between tag size
and integrity protection capabilities is obtained is crucial. The
failure modes and fault rates defined in Section 3 constitute
the basis of our analysis. The expected rate of undetected
faults plays a vital role as it allows us to compare hash-based
schemes against linear codes. Guaranteeing the detection of



common failure modes is important for systems that require
high availability.

Latency and Overheads. When using a hash-based ap-
proach, the latency that the hash circuitry introduces can lead
to performance degradation. We thus look for designs that al-
low for efficient hardware implementations and, subsequently,
lower latencies. The goal is to keep the performance loss due
to additional computation time low. This is especially impor-
tant when considering hashes based on block ciphers that take
multiple cycles for each computation to complete. While the
hash latency influences each memory request, the correction
latency influences system performance only when failures oc-
cur. Thus, frequently occurring fault patterns must be handled
efficiently. Long correction latencies for rare failure modes,
however, are not as problematic.

Tag Size and Granularity. The possible tag sizes and gran-
ularities are the limiting factors for the tagged memory archi-
tectures that a hash-based scheme can implement. We search
for fine-granular tagging with the largest achievable tag size
while still providing sufficient detection and correction capa-
bilities. This metric directly opposes the detection and correc-
tion capabilities. Large tag sizes allow for powerful tagging
policies but reduce the number of available redundancy bits,
thus influencing integrity protection negatively.

4.1 Hash-based Integrity Protection

In general, hashes allow us to calculate a fixed-size fingerprint
of a variably sized input. Changing a single bit in the input
will lead to a large difference between the resulting outputs.
Thus, hash functions are a feasible way of detecting data
manipulation.

Settings in which an active attacker tries to force a collision
of the checksum values by introducing targeted errors in the
input data require the use of a message authentication code
(MAC) or a cryptographic hash function. Juffinger et al. [21]
and Fakhrzadehgan et al. [13], for example, show how MAC
functions protect against an adversary performing Rowham-
mer attacks. According to the fault model defined in Section 3,
we only consider naturally occurring DRAM faults. Under
this model, the distribution of errors is not targeted but ran-
dom. Thus, it is sufficient to select a function that generates
checksums such that the probability of two inputs having the
same checksum is low. It is not required to use a function that
offers cryptographic security. Furthermore, our use case does
not require a function that can calculate a hash over an arbi-
trarily sized input. Instead, the input size is known and equal
to the size of the data over which we compute the checksum.
Detecting errors. Assume a function # that maps n input
bits to k output bits such that the output is drawn uniformly
from the {0, 1}* output space. The probability that an input
D’ maps to the same checksum as a different input D is then
equal to 27, An error detection scheme using such a func-
tion misses an error only if the erroneous input maps to the
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Figure 1: A hash that is computed from parallel block cipher
invocations that are XOR-ed together. To fit additional data,
the final output is truncated.

same output as the original input. Thus, each occurring error,
independent of the error pattern and the number of faulty bits,
has a probability of P(undetected) = 27 to be undetected.
Correcting errors. While such a function allows for error
detection, it poses a problem for error correction. Unlike with
linear codes, it is not possible to directly compute the location
of erroneous bits from the difference between two checksums.
Thus, probabilistic integrity protection schemes usually rely
on brute-force search for error correction [13,17,21]. Given
the function H, a faulty input D/, and the correct input D, the
error correction mechanism aims to find a binary vector E
such that # (D' @ E) = # (D). Without additional knowledge
of the location and distribution of bit errors in D, the best
possible approach is to try all values of E in a brute-force
search.
Constructing a suitable function. Our design allows the
use of any function that fulfills the properties described above.
In our analysis, we investigate two functions based on the
tweakable block cipher QARMA [2] and the low-latency block
cipher SPEEDY [24]. A block cipher maps an n-bit input, a K-
bit key to an n-bit output. A tweakable block cipher processes
a T-bit tweak in addition to the input. The output of both
variants is uniformly distributed. When summing the outputs
of multiple independent block cipher instances using the XOR
operation, the resulting value is, again, uniformly distributed.

Figure | shows a completely parallelizable structure that
fulfills the previously described properties. As each 512-bit
fetch from DRAM is divided into 8 64-bit messages, we use
the same structure for our construct. Each cipher instance
(e.g., QARMA) processes a 64-bit input (M, to M7) and gener-
ates a corresponding 64-bit output. The tweaks are chosen
such that they are unique for each instance, i.e. T; # T} holds.
By doing so, we ensure that the cipher texts of two equivalent
message blocks do not cancel each other out in the XOR op-
eration. Note that this construct does not yield cryptographic
security against an attacker [51]. The presented structure is,
thus, not a cryptographic hash function. However, our setting
only considers naturally ocurring DRAM errors. Thus, it is
sufficient to focus solely on the probability of two checksums
colliding.

Figure 2 illustrates a PMAC design built from tweak-
able block ciphers [36]. Contrary to the design in Figure |,
the PMAC offers cryptographic security against an attacker.



Hence, one could use this construct to protect DRAM integrity,
even in the presence of an adversary [21]. The additional se-
curity, however, comes with a cost. Due to the structure of
the PMAC the latency is increased as the resulting output can
only be computed once all other intermediate computations
have finished. Assuming that the inputs My to M7 arrive in
sequence, this effectively doubles the latency, as the last block
cipher invocation cannot be computed in parallel.

Figure 3 shows a similar PMAC design but built from the
SPEEDY block cipher. SPEEDY uses 192-bit inputs and outputs
but does not support additional tweaks as inputs. Hence, to
ensure different ciphertexts for same messages, we have to
use different keys K; for each cipher instance. The final cipher
instance E; takes two messages as input, which leaves 64
bits for additional data (AD). A completely parallelizable
(non-PMAC) structure can also be built with three SPEEDY
instances analogous to Figure

My To My T\ Mo Th Mz Tz Mg To M7 Tp

N A S A R A V.

Ey E, Ey E3 Es l
il
Figure 2: A PMAC construction as used by Juffin-

ger et al. [21]. It provides cryptographical security but im-
poses additional latency.
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We investigate the performance implications for both mod-
els in Section 6. Note that the presented structures are not
exhaustive. Our proposed design allows for a wide variety
of functions, such as cryptographic hashes, general-purpose
hash functions, or any other function that offers a uniformly
distributed output.

4.2 Reliability and Error Correction

When comparing hash-based integrity protection to commod-
ity ECC implementations, we need a metric that allows us to
argue about the quality of the protection scheme. Undetected
errors threaten system integrity as corrupted data is unknow-
ingly processed. We decide on the rate of undetected errors
as the metric with which we compare our scheme to existing
implementations.
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Figure 3: A PMAC construction using the 192-bit SPEEDY
block cipher [24].

For a hash-based code to perform better than a commodity

implementation, the hash-based variant has to experience a
lower rate of undetected errors. Note, however, that comparing
the raw collision probability (27 for a k-bit checksum) with
the rate of undetectable errors would be an oversimplification
and bias the result. Instead, we have to account for the fact
that a collision only leads to an undetected error if the input of
the hash function is corrupted. Arbitrary collisions between
unrelated inputs can be ignored as they do not compromise
the detection capabilities in the error case.
Finding the expected rate of undetected errors. Let R
denote the overall DRAM fault rate and Ry p the rate of un-
detected faults as defined in Section 3. With a hash-based
approach, each access to data causes the computation of a
checksum. The probability that the checksum of a faulted data
block coincides with the checksum of the original error-free
data is equal to 27, given a k-bit hash output. Thus, the ex-
pected rate of undetectable faults for a hash-based approach,
denoted by Ryp #, is equal to R - 2~*_If a hash function with
k output bits fulfills the condition,

R-ZﬁkSRUD (1)

then the hash-based approach has an expected undetected
error rate that is at most Ryp.

We can use this observation combined with the fault rates
given in Section 3 to compute a numerical lower bound of the
output size k. By solving for k, we reach the condition

R
k>1d| — ). 2
210 (o) @

The number of bits needed to provide a similar undetected
error rate as the state-of-the-art can be calculated as

453227 <79 3)

and yields a required output size of k > 2 bits.

Accounting for error correction. Given the relatively high
number of faults that occur in commodity DRAM devices,
the ability to correct errors is essential for system availability.
Thus, a hash-based integrity protection scheme must support
error correction as well. When using a correction method-
ology like the one presented by Saileshwar et al. [37], the
number of trial computations acts as a scaling factor for the
reliability. With an increasing number of trial computations,
the probability of a checksum collision and, thus, of a miscor-
rection, increases as well.

Assume the occurrence of an f-bit error. Finding f erro-
neous bits in a cache line is equal to selecting f bits out of all
512 available bits. For each selection of f bits, one applies the
selected error pattern to the data by XORing the mask onto
the data. Thus, the worst-case number of trial computations
for exactly f errors is (5}2). We will denote the worst-case
number of computations as C.



Table 2: The number of correctable bits f strongly influences
the needed hash size k. C denotes the worst-case number of
computations for a cumulative error correction as shown in
Equation (4).

F 1 2 3 4 5 6 71 8 9
C 29 218 225 232 239 245 25 1 257 263
k 12 20 27 34 41 48 54 60 65

When considering error correction for up to f errors, a
cumulative number of trial computations can be given as
Z{;l (5 12) In our analysis, we assume that each fault causes
the worst-case number of trial computations during correction.
We modify Inequality 3 to reflect the additional computations,
yielding Inequality
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Solving Inequality 4 for k allows us to compute the minimal
checksum size needed to correct up to f bits on a cache line
granularity.

Table 2 shows how the number of correctable bits and the
needed hash size correlate. Note that we give C as a power-
of-two, as this format is more intuitive when estimating the
correction latency. The given values represent the iteration
count for correcting up to f bits in a 512-bit cache line.

In commodity DDR4 ECC memory modules, the number of
available ECC bits per cache line is fixed to 64. Thus, we have
to balance the number of correctable bits influences against
the maximum available tag bits. Limiting the correction to
fewer bits per cache line allows the usage of a smaller hash
and, thus, increases the number of tag bits.

The number of trial computations is an important metric
for the error correction procedure. It allows us to estimate
the feasibility of each configuration as it directly influences
the correction latency. While it is possible to correct up to
eight randomly distributed errors per cache line using a 60-bit
hash, performing almost 2°7 computations is not realistic. The
estimated correction time can be computed as the product of
the hash latency and C. Even if each hash computation and
check only takes 0.3 ns, which equals the minimum latency of
the SPEEDY block cipher, correcting an 8-bit error would take
approximately 500 days. Table 2 lists the cumulative iteration
count C for the correction of up to f faults. Gray cells indicate
that the correction latency would exceed 1 s, assuming that a
single hash computation takes 0.3 ns. Thus, up to three errors
are correctable within a reasonable amount of time using a
naive brute-force approach.

4.3 Improving Error Correction

Clearly, it is necessary to improve the number of realistically
correctable bits to reach a correction performance comparable

to commodity SEC-DED or Chipkill solutions. A straightfor-
ward approach for reducing the correction latency is to reduce
the latency of the hash computation. Unfortunately, this ap-
proach does not scale well, as the hash latency is just a linear
factor in the correction latency. Each additional correctable
bit will increase C, and, thus, the correction latency, approxi-
mately exponentially.

The superior approach is to reduce the number of trial com-

putations by reducing the growth rate of C. We investigate
two solutions with which C can be effectively reduced. First,
we show how additional parity bits influence the error correc-
tion behavior. Then we discuss how common fault patterns
play a role when performing error correction in hash-based
systems.
Improving error correction through parity bits. As the
number of required hash bits is fairly low, one can use the
free bits to implement additional parity checks over the data.
Parity bits improve the correction capabilities as they allow
to estimate the location of erroneous bits in certain cases.
We call schemes that add parity bits to hash-based integrity
protection parity-assisted schemes.

One has to decide on the number of parity bits and on the
granularity over which the parity is computed. The most prim-
itive form of parity-assisted integrity protection introduces
one additional parity bit that is calculated over the 512 data
bits. With one additional bit, the error correction can distin-
guish between even and odd numbers of bit flips. Through this
simple modification, single-bit error detection is guaranteed.

Increasing the number of parity bits allows us to further
improve the error detection and correction capabilities. As-
sume, for example, a system in which the hash is assisted
by 8 parity bits. Each parity bit is computed over a 64-bit
word, thus dividing the cache line into eight blocks. With this
modification, all single-bit errors and all multi-bit errors that
are limited to one error per 64-bit word are detected. As each
64-bit block has its own parity bit, the brute-force correction
only needs to consider blocks with a parity mismatch. Thus,
the correction complexity is reduced by narrowing down the
search space to the blocks that actually show an error.

As the number of parity bits increases, they each cover a

smaller block size. It is reasonable to assume that each parity
bit covers the same number of bits. Thus, the number of blocks
is equal to the number of parity bits.
Fault pattern dependency. For multi-bit fault modes, the
feasibility of the additional parity bits greatly depends on the
fault pattern. Parity bits can only detect an odd number of
errors per block, as an even number will cancel out due to lin-
earity. Thus, the effect of additional parity bits is maximized
if only a single error per block occurs. In our analysis, we
pay special consideration to the worst-case number of trial
computations as it is decisive when determining the number
of correctable bits. We thus search for fault patterns that cause
no parity mismatch and maximize the needed number of trial
computations.



Two simple observations form the basis of our analysis.
(i) A block can only be corrupted without causing a parity
mismatch if the number of corrupted bits in the block is even.
(ii) In the case of an odd-numbered error, at least one block
will experience a parity mismatch.

For even-numbered errors, the parity bits cannot indicate
the error location. The only additional information that they
contribute is the fact that the number of errors must be a
multiple of two. When searching for even-numbered error
patterns, the correction algorithm can skip all odd-numbered
patterns. The number of trial computations will ultimately
depend on the order in which the correction algorithm tries
different error masks. A reasonable approach would be to start
by applying all 2-bit error masks to each block subsequently.
Should the error still persist, the algorithm can increase the
mask size to the next even number of errors. For error masks
that include more than two bits, the correction procedure
must also test distributions in which two or more blocks are
erroneous. Thus, the correction will only perform slightly
better than the naive brute-force approach.

An odd-numbered error will cause a parity mismatch in at

least one block. Thus, the correction procedure can start the
correction by testing all single-bit errors in the faulty block.
If no correct error pattern is found, the mask size is increased
to the next odd number. As with even errors, odd-numbered
error correction must also consider error distributions that
affect two or more blocks.
Finding the worst-case number of trial computations. Let
p € {4,8,16} denote the number of parity bits. Assume a con-
figuration in which p parity bits are computed over p blocks
where each block contains n = 512/p bits. Let f denote the
number of faulty bits in the cache line.

First, we consider the case that f is even and that the faulty
bits are distributed such that no parity mismatch occurs. The
correction algorithm will initially apply all 2-bit error masks
to each block subsequently, resulting in (;) - p computations.
If no matching error pattern is found, the algorithm will in-
crease the mask size to 4. The algorithm will have to check
all combinations that distribute 4 errors over p blocks such
that each block experiences an even number of errors. Testing
all 4-bit error masks results in (Z) - p additional computations.
Furthermore, all pairwise combinations of 2-bit errors are

checked as well, resulting in (5) 2. (5) computations. The
overall worst-case computation count for 4-bit errors equals
the sum of both variants.

The reasoning for odd-numbered errors follows a similar
pattern. For a single erroneous bit, C equals n. Increasing the
number of errors allows for more possible distributions where
one block experiences a parity mismatch. For three errors, the
correction algorithm will initially try all 3-bit error masks in
the block with the parity mismatch. Then, all distributions
where the mismatching block experiences one error and the
two remaining errors affect a different block have to be tested.

Thus, C can be givenas (3) + () - (p—1)-n.

Table 3: The formula for the number of parity-assisted trial
computations for even-numbered errors (f).
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As the number of erroneous bits increases, so does the
number of ways to distribute them over the available blocks.
Even with additional parity bits, the growth rate of C is high.

Let B(f, p,n) be the formula that computes C for a certain
set of parameters. For even-numbered errors, we give the
explicit formula as listed in Table

For odd-numbered errors, the formula can be given recur-
sively as

L£/2)
B(f,p,n) = (;)+ Y (fn2i) -B(2i,p—1,n). (5)

i=1

Table 4 shows the resulting cumulative values of C for dif-
ferent configurations of parity bits and faults. We reach these
values by summing up the number of iterations for correcting
up to f errors. While parity bits significantly help to reduce
the computation count, the worst-case number of computa-
tions is still high. For odd-numbered errors, the performance
gain is slightly more significant than for the even-numbered
case. The values that are depicted in gray indicate that the
correction takes longer than 1 s, even when using a state-of-
the-art low-latency block cipher like SPEEDY [24].

4.4 Common Fault Patterns

While parity bits help to increase the feasibility of certain
fault patterns, the error correction procedure can still take a
long time. Also, the requirements for the size of the hash limit
the possible combinations with memory tagging approaches.
Decreasing C further by adding additional parity bits is in-
feasible as the number of bits for hash and memory tags will
become too small. However, we suggest a different approach

Table 4: The worst-case cumulative trial computations C,
shown as power of twos, needed for error correction in the
parity-assisted scheme. f denotes the number of faults, while
the rows show the required number of parity bits p.

f1 2 3 4 5 6 7 8

pP

4 27 215 219 229 233 242 247 254
8 26 214 216 227 230 239 242 251
16 25 213 213 225 226 237 237 247




to further reduce the complexity of error correction. Studies
of DRAM errors and their distribution indicate that some error
patterns are more likely than others [4,43,44]. As discussed
in Section 3, the observed errors depend on the underlying
fault in the DRAM chips. We can use this knowledge to im-
prove the performance of hash-based correction significantly.
Considering the established error patterns reduces the number
of possible error distributions greatly. Thus, we extend the
analysis of the error correction behavior with regard to the
failure modes defined in Section 3. For each failure mode,
we give the worst-case number of trial computations. Further-
more, we investigate if parity bits are suited to increase the
correction performance even further.

Error correction for F1 failures. Errors of type F1 are the
most common errors in modern DRAM devices [44]. Thus, it
is essential that their detection is guaranteed and that the cor-
rection procedure is efficient. In a purely hash-based design,
we cannot guarantee that all single-bit errors are detected. As
the location of the flipped bit is unknown, C is equal to 512, as
each bit needs to be flipped and tested. When using additional
parity bits, error detection is guaranteed, and the correction
efficiency is increased. Given that we add p parity bits, the
worst-case number C for F1 failures is C(F1) = 512/p. This
failure mode strongly profits from a parity-assisted approach
as each parity bit linearly reduces the required correction time.

Error correction for F2 failures. Failures of type F2 affect
each 64-bit word in DRAM. In each word, exactly one bit at
the same offset is stuck at either O or 1. All bits are stuck at the
same value. Thus, up to 8 bits per cache line are potentially
faulty. Table 2 shows that C and, thus, the correction latency
for random 8-bit errors is infeasibly high. Hence, a naive
brute-force approach would not be able to correct a failure of
type F2 within reasonable time boundaries.

The correction behavior can be improved by the fact that
the location of erroneous bits follows a certain pattern for F2
failures. Each pin contributes exactly 1 bit per 64-bit word.
Hence, errors that stem from the same stuck pin are at least 64
bits apart. Thus follows that the faulty bits can be located at 64
different positions, depending on which pin of which DRAM
chip has failed. With this consideration, we can limit the brute-
force search to error masks that follow the failure pattern.
Using a pattern-based approach decreases the complexity
from (521;2) to 64 -28 = 214 trial computations. This simple
modification of the search reduces the worst-case number of
trial computations by a factor of 242,

Parity bits can capture or partially capture F2 failures, de-
pending on the parity granularity and the original bit values.
Configurations in which each parity block experiences one
erroneous bit due to the stuck pin will detect the failure. Note
that an F2 failure does not necessarily produce a parity mis-
match. If a bit at the location of the stuck pin is equal to the
stuck value, it will not influence the parity computation. As-
suming that each bit is equally probable to hold a 1 or 0, we
expect that approximately half of all blocks will experience

a parity mismatch. Given that there is no other parallel fail-
ure mode, the parity bits can help to reduce the number of
trial computations if at least 8 parity bits are used. For such
configurations, a parity match for a block suggests that the
original bit value equals the stuck value. Thus, it is not nec-
essary to include the block when calculating the error mask.
Each block that does not experience a parity mismatch will
halve the number of trial computations. In the worst case,
however, none of the blocks can be skipped.

When using 16 parity bits, the localization of the stuck
pin is simplified. As each parity block includes only 32 bits,
parity mismatches can be used to determine in which half of
the 64-bit word the stuck pin is located. This reduces C to
32.28 =213,

We can further improve the performance of the correction.
Given that the fault pattern is due to a stuck pin, we know
that each bit read from the pin will have the same value. The
correction algorithm can search the data for locations where
all potentially affected bits are equal. Thus, the algorithm
can limit the correction to parts of the cache line that follow
the failure pattern. Given that we do not know the content
of the cache line, it is possible that benign data also shows
a pattern that is equal to the pattern of an F2 failure. We
denote such cases as a pattern collision. Assuming that the
data is uniformly distributed, i.e., each bit has a probability of
0.5 to be either 1 or 0, we can calculate the probability that
non-erroneous data causes a pattern collision.

A pattern collision can only occur if 8 bits at the same
offset in each beat of the burst are equal. As we consider each
bit to be independent of all other bits, the probability that 8
bits are equal is the joint probability of each bit holding a cer-
tain value. Hence, the probability that 8 bits are equal is 0.58.
Assuming a single stuck pin, the probability that no pattern
collision occurs is (1 —0.5%)%3 a 78%. Thus, in most cases,
the stuck pin will be correctly identified. In such cases, the
computational complexity reduces to 2% trial computations.
Additional parity bits can further decrease C, as they allow the
algorithm to ignore blocks without parity mismatches. If one
or more pattern collisions occur, the number of trial computa-
tions increases as each collision requires 28 trial computations
to be identified as such.

Clearly, using the available information on fault patterns
helps to reduce the number of trial computations by a sig-
nificant margin. While F2 failures would not be correctable
by a naive brute-force approach, they are easily corrected in
the modified approach. Parity bits can further help to refine
the localization of the erroneous bits, but their contribution is
rather limited.

Error correction for F3 failures. The error correction for
the F3 failure mode is very similar to the one for the F2
failure pattern. Even the simplest F3 failure, i.e., 2 stuck pins,
generates up to 16 erroneous bits in a cache line. Extrapolating
from the results in Table 2, we can assume that a brute-force
correction of 16 bits is highly infeasible as the number of



possible 16-bit error masks distributed over a cache line is
approximately 2!, However, using the same approach as
with the F2 failure mode allows us to correct F3 failures.
The number of trial computations for f stuck pins is given
by the formula 16 (‘;) 28/ for x4 chips and by 8 (?) 28/ for
x8 chips. For the F3M failure mode, we can give the worst-
case number of trial computations for f stuck pins as (6;‘) 287,
Compared to F3S, the computational complexity for F3M
increases drastically with each additional stuck bit. Parity bits
do not necessarily lead to better worst-case behavior as they
may not be able to capture the errors. Unlike in the case of F2
failures, blocks without a parity mismatch do not indicate that
the block is error-free. A block that suffers two errors will still
cause a parity match. Thus, it is not possible to skip blocks
without parity mismatches during the correction procedure.
Error correction for F4 failures. Complete chip failures
are computationally expensive to correct. For x4 chips, a
cache line experiences up to 32 erroneous bits. In the case of
x8 chips, this number increases to 64 bits. Thus, the worst-case
number of trial computations is 16-23? and 8-2%, respectively.
Unfortunately, it is not possible to decrease the worst-case
number of computations for both cases, as all possible patterns
have to be tested. Correcting a faulty x4 chip is feasible, albeit
the correction latency is non-trivial. In the case of an x8 chip
fault, error correction is not possible as the computational
complexity is too high.

Error correction for F5 failures. In the combined failure
mode, F3 failures are extended by a single, additional transient
fault. We assume that the transient fault occurs in a location
that is not affected by the stuck pins. Otherwise, the transient
fault would never manifest itself as an error. For F3S and F3M
errors with f stuck pins, the additional single-bit error means
that C is multiplied by 512 — 8f.

Adding parity bits does not improve the worst-case number
of computations. While the block that experiences the addi-
tional error will change its parity, it is not possible to deduce
the location of the flipped bit.

From the above results, we can conclude that the addi-
tional information on common fault patterns greatly improves
the correction capabilities of hash-based integrity protection.
Also, it seems that x4 configurations are favorable as the cor-
rection complexity does not increase as fast as with x8 devices
in the case of F3 and F4 failures. Furthermore, it is possible
to correct complete chip failures in x4 configurations.

4.5 Hash Corruption

As the hash is also stored in memory it is, like data, suscepti-
ble to corruption. We have to account for this possibility by
explicitly checking for a hash corruption. For that, we follow
the approach described in [21]. By comparing the stored to
the computed hash before initiating error correction, we can
determine whether the corruption occured in the hash or the
data. If the hamming distance between the two values is low,

it is likely that the difference stems from a hash corruption.
Contrary to that, a large hamming distance indicates a data
corruption.

In the case of a hash corruption, the erroneous hash can
be fixed by overwriting it with the hash calculated over the
data. Unlike the iterative correction for data errors, this case
introduces no additional correction latency. The updated hash
value will be stored during the next writeback of the affected
cache line.

To identify hash corruption, we have to select the maxi-
mum allowed hamming distance d between two hashes. It
is reasonable to adjust this distance according to the size of
the hash. A larger hash is more likely to experience multi-
ple faults than a small hash. Allowing for d erroneous bits
between two k-bit hashes weakens the hash by a factor of
Yy (Il‘) [21]. This is, however, only relevant if the checksum
of some erroneous data has a distance of d or less to the cor-
rect checksum. Once we decided that an error occurred in
data, we do not consider d during the correction procedure.
Thus, allowing for hash correction only affects the error de-
tection capability. By balancing d and k, we can offer strong
probabilistic error detection while allowing for d-bit errors in
the hash.

5 Combining Tagged Memory & Integrity

In this section, we demonstrate that parity-assisted hash-based
integrity protection offers the flexibility of implementing
memory tagging schemes at near-zero cost. Based on the
insights of our analysis in Section 4, we give a concrete in-
stantiation of a scheme that provides integrity protection while
allowing for additional bits usable for other purposes. We an-
alyze established tagged memory architectures and show how
they can be implemented and combined with a hash-based
integrity protection scheme.

5.1 Design of the Integrity Protection

Based on the results of Section 4, we select an integrity pro-
tection scheme that uses 8 parity bits in combination with a
low-latency hash function for integrity protection. By using
8 parity bits, we ensure that all F1 failures are detected and
efficiently corrected. We do not limit our design to a fixed
hash size. Instead, we select the hash size according to the
requirements of the tagging scheme that we want to imple-
ment. Tagging schemes that permit a large hash size allow
stronger reliability and correction capabilities when compared
to schemes with smaller hashes.

Protecting tag bits. When adding memory tags, we must
ensure that bit errors in the tag are also detected. How we
include the tags in the hash depends on the structure of the
hash function. When using the structure given in Figure |, we
distribute the tag bits over the tweaks of the QARMA instances.
For the construct shown in Figure 3, we include the tag bits



Table 5: Table showing how a hash-based integrity protection scheme can be instantiated for existing tagged memory architectures
and which security guarantees, in terms of error correctability, it provides.

Architecture Tag Granularity Bit Distribution Faulty Bits  Reliability Correctable Failure Modes
Size Parity Hash Tag in Hash (d) F1 F2 F3S(84) F3S44) F3M F554,4) F55@8,) FM

E;Z(rﬁ[j%}?[;ilw[:caine (61 1 bit 8 bytes 8§ +48 +8 4 p2d O/ 7 v 3 v/ (8,3) 2
SPARC ADI [1] 4 bits 64 bytes 8 +52 +4 5 234 R v 3 v 8.3) 3
CHERI 128 [52,54] 1 bit 16 bytes 8 +52 +4 5 R 7 A T v 3 v/ (8,3) 3
CHERI 256 [52,54] 1 bit 32 bytes 8 +54 42 5 236 R v 3 v/ (8.4) 3
ARM MTE [26] 4 bits 16 bytes 8 +40 +16 4 e Jo/ 0 (83) 7 2 4.2) 8.2) 2
lowRISC [30] 4 bits 8 bytes 8 +24 +32 2 215 o/ X X X X X X
Model A 32 bits 64 bytes 1 +31 +32 3 2L /S /82 42) 2 I3 X X
Model B 46 bits 64 bytes 1 417  +46 1 211 v o/ oX X X X X X
Model C 51 bits 64 bytes 1 +12 451 1 20 X X X X X X X
No Tagging, SEC-DED - 64 - - - 1 o/ X X X X X X
No Tagging, Chipkill 64 1 AN v/ X X X X

in the additional data bits. Thus, the hash protects not only
the data, but the tag as well. Detecting and correcting errors
in the tag bits works the same as with data errors. On a hash
mismatch, we can incrementally apply error masks on the tag
bits and check the resulting hash. As the tag space is small,
correcting errors in the tag bits is far more efficient than data
correction. The correction latency depends on the actual size
of the tag space and, thus, on the implemented tagged memory
architecture. Given that we have, at most, 63 bits for the tag,
the expected number of iterations is small compared to the
results provided in Section

Figure 4 shows the principle design of our approach. The
memory controller is augmented with an instance of the hash-
ing function. On write requests, the checksum over the data
and the corresponding tags is computed. This checksum is
then stored next data and tag in the chips usually reserved for
ECC. When reading from memory, the checksum is recom-
puted and compared to the stored checksum. If both values
match, the data is forwarded to the CPU. Depending on the
implemented tagged memory architecture, the tag may be for-

ECC Bits I ECC Bits

1
I

DRAM ‘ Data ‘Tag Checksum : ‘ Data ‘Tag Checksum
1
|
I
i
I
I
H l
Memory |
Controller I
I
Data Tag |
I
I
I
i
I
!

From CPU

To CPU

Figure 4: A high-level overview of hash-based integrity pro-
tection with tagging. When writing to memory (left), a check-
sum is computed over the provided tag and the data, and stored
in DRAM. On read accesses (right), the stored checksum is
compared with a freshly computed checksum, thus detecting
errors in the data and tag bits. This initiates error correction.

warded or compared to a reference tag directly in the memory
controller. On a checksum mismatch, the memory controller
generates a machine check exception (MCE) and commences
the correction procedure.

5.2 Tagged Memory Applications

Various tagged architectures [19] introduce fine-grained se-
curity policies tailored toward different threat models and
applications. These architectures require memory tagging
with different tag sizes and different granularities. As our de-
sign is flexible regarding the hash size, implementing most of
the tagged memory schemes is feasible. Table 5 analyzes how
our protection scheme can be instantiated to facilitate the dif-
ferent requirements of existing tagged memory architectures.
It shows that schemes are feasible to implement using the
available redundancy bits without losing error correction or
detection capabilities. The bit distribution is derived from the
utilized tag size and granularity of the implemented tagged
architecture. We compute the reliability as the ratio between
the rate of undetectable faults in commodity codes and the
expected rate of undetected faults in our scheme. This yields
the formula
Rup  Rup
Rypy R-2°F

(6)

for a k-bit hash. Essentially, the reliability is the factor by
which the rate of undetectable faults (Ryp) is decreased. A
value of 1 would mean an equal reliability as commodity so-
lutions using linear codes. As we need to account for d errors
in the hash, we adjust the listed reliability according to Sec-
tion 4.5. This only affects the initial error detection step but
has no effect on the error correction. We select d according
to the size of the hash. For larger hashes, we allow for more
erroneous bits, while smaller hashes may not differ in as many
bits. We give the next-lower power-of-two instead of the exact
reliability value to allow for a more intuitive representation.
For each possible configuration, we show which of the failure
modes defined in Section 3 can be corrected. We only con-
sider a failure mode to be correctable if the number of trial
computations does not exceed the unmodified reliability. We



do not list F4 as a separate failure mode. F4 correction is only
possible if the scheme can correct F3S failures where all pins
are stuck. As a reference, we list the correctable failure modes
for commodity SEC-DED and Chipkill codes that utilize 64
parity bits.

In the following, we highlight the bit distribution for dif-
ferent schemes, divided into parity, hash, and tag bits. Our
design suggests using 8 parity bits (cf. Section 4) in combi-
nation with the remaining hash bits for error detection and
correction.

Architectures utilizing a single-bit tag on a word granu-
larity, like DIFT [46], HDFI [41], Shakti-t [33], and the M-
Machine [6], reserve 8 bits per cache line for the tag value.
The remaining bits are used for parity and the hash, yielding
8 and 48 bits, respectively. Similarly, CHERI [52, 54] also
utilizes a single-bit tag. Depending on the configuration, how-
ever, the granularity of CHERI is either 16 or 32 bytes. The
16-byte capability model utilizes 4 bits per cache line, while
the 32-byte model requires only 2 bits. These schemes allow
for 52 and 54 hash bits, respectively. These large hashes mean
that almost all failure modes are correctable.

Multi-bit schemes like ARM MTE [26], SPARC ADI [1],
and lowRISC [30] require a larger tag size depending on the
tag granularity. Thus, they do not allow for as much reliability
and error correction as schemes with smaller tags. Precisely,
ARM MTE and SPARC ADI utilize a 4-bit memory tag per
16 and 64 bytes, respectively. This means that SPARC ADI
only requires 4 bits per cache line to store the tag information,
leaving 52 bits for the hash. In contrast, ARM MTE operates
on a 16-byte granularity which means that MTE requires 16
bits per cache line resulting in a 40-bit hash. The lowRISC
tagged memory architecture further increases the tag granular-
ity to 4-bits per 8 bytes, resulting in a 32-bit memory tag per
cache line. For lowRISC, the available hash size is reduced to
24 bits. While the most basic error correction is still possible,
complex failure modes are not correctable due to the large
number of trial computations they require.

We model three additional tagged memory schemes (Model
A/B/C) to show the possibilities and limits of hash-based in-
tegrity protection. To maximize the available tag bits, we
reduce the number of parity bits down to the smallest possible
value (1) that still guarantees single-bit error detection. This
allows storing up to 51 additional tag bits. Model A offers
the same number of tag bits per cache line as lowRISC [30].
However, due to the larger hash size, the range of correctable
failure modes is increased. Reducing the number of parity
bits, however, increases the error correction latency for F1
and F2 failures. Next, we define Model B, allowing 46 tag
bits per cache line. Due to the small hash size, only F1 and F2
failures can be corrected. Finally, Model C yields the maxi-
mum number of possible tag bits (51) while still guaranteeing
single-bit error detection. While this model does not allow for
complex error correction, correcting single-bit errors is still
possible.

Overall, we find that the hash-based approach is highly
feasible. Depending on the size of the hash, the correctable
failure modes differ. However, the detection ability outper-
forms both SEC-DED and Chipkill, given that the hash size
is selected accordingly.

6 Evaluation

The main advantage of co-locating memory tags and hashes is
that memory tags do not need to be loaded via additional fetch
operations. Our design completely eliminates the need for ad-
ditional tag fetches. However, computing the hash introduces
additional latencies in memory reads and writes.

In a naive tagged memory implementation that caches tags
in combination with the associated data, each cache miss will
result in an additional DRAM memory access. With our pro-
posed design, the additional latency that is added to every
memory read and write depends on the specific hash imple-
mentation and its latency. We investigate the performance
overhead for four different configurations using the hash func-
tions described in Section

6.1 Implementation in gem5S

We base our evaluation on the gem5 simulator [29]. We im-
plement a tagged memory architecture that resembles ARM
MTE [26] and caches tags in parallel to the respective data.
When accessing DRAM, we perform an additional read access
that fetches the associated tag from a reserved memory region.
Our model uses 4-bit tags for each 16 bytes of data. Accesses
to the dedicated tag memory region are always performed
with cacheline granularity.

Our novel scheme is simulated by introducing an additional
hashing module in the memory controller. This module stalls
every memory access as specified by the latency of the used
hash function and computes the hash over the data in the
memory transaction. The hash latency is imposed on down-
stream write requests and upstream read responses. Read
requests that are directly served by the memory controller’s
write queue do not experience additional latencies as no ad-
ditional DRAM fetch is performed. Once a memory packet
reaches its ready time, it is forwarded to the next component
in the memory hierarchy. Our changes are transparent to the
operating system and require no software changes or modi-
fications outside of the memory controller. Table 6 lists the
gem5 configuration that is used when measuring the perfor-
mance overheads. Due to limitations of the simulator, the
main memory is split into one 3GB and a second 8 GB mod-
ule. Each module resides in its own channel. For the tagged
memory architecture, we reserve a fraction of the DRAM as
a tag storage. We do the same for our scheme to allow for a
fair comparison, as differing DRAM capacities could lead to
performance impacts.
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Figure 5: Simulated performance overhead using the SPEC CPU2017 benchmark suite.

Table 6: The gem5 configuration used in our evaluation.

Core KVM CPU / Timing CPU at 3 GHz

L1D Cache 64 kB, 8-way, 1-cycle latency

L1I Cache 16 kB, 8-way, 1-cycle latency

L2 Cache 256 kB, 4-way, 10-cycle latency

DRAM | 3GB + 8GB, DDR4-2400

Hash Latenc SPEEDY | QARMA | SPEEDY-PMAC | QARMA-PMAC
S ney 03ns | 2.2ns 0.6ns 4.4ns

Kernel ‘ Linux 5.15.67

For our scheme, we evaluate four latency settings: SPEEDY

with a latency of 0.3 ns, QARMA with 2.2 ns additional latency,
SPEEDY-PMAC with a latency of 0.6 ns and QARMA-PMAC with
a latency of 4.4 ns.
Measuring performance overheads. We run the SPEC CPU
2017 benchmarks in three different system configurations. An
unmodified simulator configuration is used to establish base-
line performance values. The configuration that implements
the tagged memory architecture allows us to estimate the
performance overhead due to additional tag fetches. Finally,
the configuration implementing our scheme showcases the
overhead reduction. As described, we measure the perfor-
mance impact of our scheme for four different hash instances.
SPEEDY and QARMA refer to the implementation as shown in
Figure |. The PMAC variants refer to their cryptographically
secure counterparts as described in Section 4.1. Some of the
benchmarks caused compile errors or would not run in the
simulator and were, thus, not executed.

When booting the system, we use the KVM CPU to create
a checkpoint and reduce the overall simulation time. Upon
reaching the start of the benchmark run, we switch to the
accurate CPU model that implements the tagged memory
architecture and our scheme. As our main performance metric,
we measure the number of CPU cycles of each benchmark. We
execute each benchmark multiple times and average over the

results to get a stable result as well as the standard deviation.
Due to the precision of the simulator, we find that individual
benchmark runs for a fixed configuration show a negligible
spread in CPU cycles with a standard deviation that is two
to three orders of magnitude lower than the recorded cycle
count.

Figure 5 shows the relative performance overheads for all
SPEC CPU 2017 benchmarks executable in our simulator. For
all of the benchmarks, our hash-based approach outperforms
the tagged architecture. However, the combination of QARMA
and the PMAC design tends to impose non-trivial latencies,
sometimes causing overheads almost equal to the original
tagging implementation. This result underlines the importance
of using a hashing function with minimal latency, as stalling
memory packets has a strong impact on system performance
for traffic-intensive workloads. Interestingly, SPEEDY-PMAC
performs better than SPEEDY for 657.xz. We find that the
additional latency causes write requests to stay in the write
queue of the memory controller for a longer duration. This,
in turn, increases the number of read requests that are directly
serviced by the write queue and do not trigger a DRAM fetch.
Thus, in rare cases, stalling each write request for a short
amount of time can improve the read performance.

6.2 Correction Performance

We evaluate the error correction performance for two set-
tings. In the first setting, we look at arbitrarily distributed
f-bit errors. These errors are corrected using a brute-force
approach. The second setting discusses the error correction
using patterns as described in Section

Brute-force correction. When relying on a brute-force ap-
proach with additional parity bits, the correction time in-
creases with each additional faulty bit. As we do not know the
number of faulty bits beforehand, we must rely on an incre-
mental approach. This means that we increment the number
of assumed faulty bits after exhausting the search space. Fig-
ure 0 illustrates the correction time when using the SPEEDY
cipher and 4, 8 and 16 parity bits, respectively. The correc-
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Figure 6: The worst-case brute-force error correction time in
dependency of the number of corrected bits.

tion of single-bit errors, the most common type of fault, takes
between 9.6 ns and 38.4 ns, depending on the number of par-
ity bits. Kwong et al. find that in commodity ECC devices,
an access that triggers a correction shows a latency that is 5
orders of magnitude slower than a regular access [23]. For
an average DRAM access time of 90 ns [47], this translates
to a correction latency of approximately 9 ms. However, Co-
jocar et al. [9] find a correction overhead of 1% for certain
configurations. Thus, we assume a minimum correction la-
tency of 0.9 ns and a maximum latency of 9 ms for commodity
ECC. Clearly, the applicability of a brute-force approach is
limited by the available time budget. Due to the flexibility
of our design, it is possible to set a fixed time margin after
which an error is considered uncorrectable. While it would be
possible to correct an 8-bit error in approxmiately 11 h, it is
much more feasible to consider fault patterns for correction.
Pattern-based correction. Correction times drastically im-
prove when considering the error patterns described in Sec-
tion 4.4. Figure 7 shows the correction times for a configu-
ration with 8 parity bits and x4 DRAM chips. We give the
correction latencies for up to three stuck pins for F3S, F3M,
F5S, and F5SM. F2 faults cause up to 8 faulty bits in a cache
line. Our scheme corrects 8-bit F2 faults in 4.75 pus. Com-
pared to the brute-force approach, in which 8-bit faults are
not correctable within a reasonable time, this is a considerable
improvement. For F3S and F3M, the correction time strongly
depends on the number of stuck pins. While two stuck pins
(16 faulty bits) can be corrected in 1.84 ms, correcting three
stuck pins (24 faulty bits) already takes 311.4 ms for F3S.
Due to the larger search space for F3M, double-pin correc-
tion takes 38.31 ms and triple-pin correction takes over three
minutes. A F4 fault, i.e. a complete fault of an x4 chip, can
be corrected within 19.93 s. For F5S and F5M, the correction
time only depends on the underlying F3 fault type.

6.3 Hardware Overhead Estimation

In our design we propose adding multiple block cipher in-
stances. For optimal correction performance we use three
SPEEDY instances (cf. Figure 3) per DRAM channel to calcu-
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Figure 7: The worst-case correction time for different error
patterns for a configuration with x4 devices and 8§ parity bits.

late the hash for a cache-line at once. In the case of QARMA, 8
instances are required. This would require 104 or 119 kGE
for fully unrolled instances of SPEEDY and QARMA, respec-
tively [24] when using a 15 nm process . Avanzi [2] reports
22.6 kGE (1238.1 um?) for a latency optimized QARMA using
a 7nm process. Thus, for 8 QARMA instances, we would re-
quire 181 kGE (9905 um?). This is approximately 0.0038%
of a Raptor Lake CPU with a comparable feature size and an
area of 257 mm? [48]. This overhead can be optimized in two
ways. First, by using smaller (e.g., round-reduced) ciphers
(cf. Section 4.1). And second, when deprioritizing correction
performance, the number of block cipher instances can be
reduced to 1 or 2 for SPEEDY and QARMA, respectively. This
has no impact on performance when there are no errors, since
they can still saturate one full DRAM channel.

Leander et al. only provide estimated power requirements
for operation at 100 MHz [24]. Simulating power consump-
tion for a more realistic frequency of 3 GHz requires commer-
cial EDA tools with accurate power models. Thus, similar to
related work, we cannot provide concrete numbers for esti-
mating the power consumption.

7 Discussion

This section discusses related work and possible future work.

7.1 Related Work

The combination of memory tags and DRAM integrity pro-
tection codes is a well-studied topic. Gumpertz et al. [15] pro-
pose a method to integrate tags into ECC codes that slightly
weakens the error correction and detection capabilities of
ECC. In their approach, they do not actually store the tag bits
in memory. Instead, the tag has to be presented in a register
on each access. Their scheme implicitly encodes the tag into
the redundancy information. Thus, accessing data with an
incorrect tag will cause an error that is encoded similarly to a
double-bit error. While this approach allows for low-overhead
storage of tags, it has several drawbacks. Double-bit errors
that appear in combination with tag mismatches will either



be undetected or even miscorrected. Moving data to a differ-
ent physical location without knowing the tag is impossible.
As the tag is never explicitly stored next to the data, using
multiple tags requires complex tag management.

MUSE [31], a novel variant of multi-use ECC codes, pro-
poses to use a multiplicative encoding that detects errors as
invalid remainders during decoding. Their codes allow them
to encode additional tags into the redundancy information
such that the tags can be recovered when reading from mem-
ory as they are stored as part of the remainder. For a 64-bit
word, their code provides single-bit correction and probabilis-
tic double-bit detection. Contrary to commodity SEC-DED
codes, MUSE cannot detect all double-bit errors.

Our hash-based approach differs significantly from the
above. Storing the tag in memory allows copying and re-
locating tagged data without complex tag management. As
the tag is completely decoupled from the integrity verification,
it is possible to perform the hash validation while forwarding
the data to the CPU. This feature is similar to asynchronous
reporting in ARM MTE [26]. While the error detection of a
hash-based approach is probabilistic, it performs much better
than what is achievable by linear codes. Linear codes are in-
herently limited by their hamming distance, while hash-based
integrity protection is not. Especially for fault patterns that
combine transient and hard faults, reliable error detection is
hard to achieve using linear codes.

Protection of DRAM integrity through cryptographic build-
ing blocks is a relatively novel approach. It originally stems
from the need for better integrity protection in the wake of
Rowhammer attacks that induce bit flips in DRAM [22]. Co-
jocar et al. [9] show that the error detection capabilities of
linear codes are not fit to detect bit flips that are induced on
purpose. Thus, functions with strong diffusion, like MACs or
hashes, are more suitable for protecting DRAM integrity.

Saileshwar et al. [37] propose Synergy, a design that repur-
poses the additional ECC memory chips to hold a message
authentication code. The main goal of their approach is to
use MACs of integrity trees as a means of detecting DRAM
integrity violations. Synergy is based on the observation that,
in the common case, no such integrity violation occurs. An
additional chip holds parity data that, in the case of an in-
tegrity violation, is accessed to correct the faulty data. While
Synergy is able to correct a single chip fault, it has to do so
in an iterative approach. As Synergy uses the MACs from an
integrity tree and additional parity, it introduces an additional
12.5% memory overhead.

Qureshi et al. [35] propose to increase the granularity over
which a checksum is computed from 64 bits to 512 bits. Fur-
thermore, they use a MAC to protect data integrity. Building
upon the idea of replacing linear codes with MACs, they
then introduce integrity-protected ECC memory (IPEM) and
integrity-protected Chipkill memory (IPCM). In IPEM, each
cache line is protected by a 56-bit MAC and a 10-bit linear
code offering SEC. The MAC detects arbitrary bit faults with

high probability. The linear code corrects single-bit faults
efficiently. While commodity SEC-DED can correct up to
8 single-bit errors per cache line, IPEM can only correct a
single-bit fault. The authors argue that multi-bit faults in mul-
tiple words of a cache line occur with negligible probability.
Unfortunately, IPEM cannot protect against errors due to a
single stuck pin or large-granularity faults. To solve this is-
sue, the authors propose IPCM. In IPCM, the two chips that
hold parity data in Chipkill codes store a MAC and additional
parity information. The error correction in IPCM follows an
iterative approach, as the used code does not allow to deduce
the location of the failed chip.

Juffinger et al. [21] and Fakhrzadehgan et al. [13] both
propose to mitigate Rowhammer through the use of MACs
instead of linear codes. Their schemes detect errors that would
bypass the error detection in the case of linear codes. As
they reuse the existing ECC memory, the storage overhead is
equal to the 12.5% found in commodity ECC DRAM. Like
other hash- or MAC-based approaches, the error correction is
implemented as an iterative approach.

While related research explores error detection and correc-
tion through MACs, they do not explore the possibility of co-
locating metadata by reducing the output size. We eliminate
this blind spot and show that hash-based integrity protection is
not only feasible but allows us to efficiently integrate memory
tags into ECC DRAM, thus eliminating the need for explicit
tag fetches.

7.2 Future Work

With the introduction of DDRS memory, the possibility for fu-
ture hash-based schemes is manifold. In DDR5 ECC DRAM,
the available storage for ECC bits is doubled to 25%. Thus,
we can further increase the size of the hash or add more par-
ity bits to the design. Naturally, a larger storage space for
ECC bits allows for more powerful linear codes than the ones
that are used in commodity DDR4 ECC DRAM modules.
Most DDRS modules implement on-die ECC that corrects
single-bit errors. As the on-die ECC does not support double-
error detection, it will miscorrect errors that exceed one bit
per codeword. Thus, future error correction designs have to
account for the potentially increased number of errors due
to miscorrection. We expect failure modes that include stuck
pins to become even more important in this new DRAM gen-
eration. As DDRS increases the burst length while decreasing
the size of the single beats, each stuck pin will potentially
cause double the number of errors per cache line.

8 Conclusion

In this work, we analyzed the error detection and correction
capabilities achievable with hash-based designs under specific
fault models motivated by real-world data. Based on our re-
sults, we show that a variety of tagged memory architectures



can be implemented by utilizing free bits in ECC DRAM
modules. Co-locating bits for memory tagging and hashes for
integrity protection is a practical optimization to eliminate
the bandwidth overheads of tagged architectures. In contrast
to the integration of tags into linear codes [14, 15,31], the
combination of hash-based integrity protection and memory
tagging is a novel approach that has not been demonstrated
in a concrete scheme. Our approach allows us to utilize up to
16 tag bits on a granularity of 64 bytes while providing de-
tection and correction capabilities that exceed the capabilities
of commodity linear codes. This tag size allows for the im-
plementation of promising tagged architectures like CHERI,
ARM MTE, and SPARC ADI, while drastically reducing over-
heads due to tag fetches. Our evaluation shows that, for an
MTE-like architecture, we can reduce performance overheads
by an average factor of 20. Furthermore, we highlighted evalu-
ation models for tagged architectures based on large tag sizes
(32, 46, and 51 bits per cache line) to show the limitations of
our approach and to facilitate possible future work.
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