Multi-Tag: A Hardware-Software Co-Design for Memory Safety
based on Multi-Granular Memory Tagging

Martin Unterguggenberger”

Graz University of Technology
Graz, Austria

Robert Schilling
robert.schilling@iaik.tugraz.at
Graz University of Technology

Graz, Austria

ABSTRACT

Memory safety vulnerabilities are a severe threat to modern com-
puter systems allowing adversaries to leak or modify security-
critical data. To protect systems from this attack vector, full memory
safety is required. As software-based countermeasures tend to in-
duce significant runtime overheads, which is not acceptable for
production code, hardware assistance is needed. Tagged memory
architectures, e.g., already offered by the ARM MTE and SPARC
ADI extensions, assign meta-information to memory objects, thus
allowing to implement memory safety policies. However, due to
the high tag collision probability caused by the small tag sizes, the
protection guarantees of these schemes are limited.

This paper presents Multi-Tag, the first hardware-software co-
design utilizing a multi-granular tagging structure that provides
strong protection against spatial and temporal memory safety vi-
olations. By combining object-granular memory tags with page-
granular tags stored in the page table entries, Multi-Tag overcomes
the limitation of small tag sizes. Introducing page-granular tags
significantly enhances the probabilistic protection capabilities of
memory tagging without increasing the memory overhead or the
system’s complexity. We develop a prototype implementation com-
prising a gem5 model of the tagged architecture, a Linux kernel
extension, and an LLVM-based compiler toolchain. The simulated
performance overhead for the SPEC CPU2017 and nbench-byte
benchmarks highlights the practicability of our design.

CCS CONCEPTS

« Security and privacy — Software and application security;
Security in hardware; - Computer systems organization —
Architectures.
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1 INTRODUCTION

According to Microsoft [38] and Google [21], 70 % of all security
bug fixes in Windows and Chrome are related to memory safety
vulnerabilities. Such vulnerabilities are exploited to leak [18] or
modify [24, 49] security-critical data or even to gain remote code
execution [4]. Memory safety violations are generally categorized
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into spatial violations, e.g., accessing an array index out of bounds,
and temporal violations like use-after-free (UAF) or double-free er-
rors [55]. Memory corruption allows an adversary to perform pow-
erful exploitation techniques like ROP [49], JOP [7], or DOP [24]
attacks. To mitigate these attacks, it is necessary to prevent the
exploitation of spatial and temporal memory safety bugs, i.e., full
memory safety is required.

Existing research shows that implementing memory safety coun-
termeasures using software-based approaches is expensive in terms
of performance. Software-based memory safety schemes (such as
SoftBound+CETS [40, 39]) lead to 116 % and more in runtime over-
head. Thus, they are impractical to use. To cope with the perfor-
mance overhead, hardware support for memory safety schemes is
needed. ISA extensions [15, 16, 30, 41, 42, 45, 50, 58-60] relying on
custom hardware changes provide memory safety with a reasonable
performance overhead. However, many of these countermeasures
require intrusive hardware and ABI changes (e.g., fat pointers) to
enforce their security policies. In contrast, commercial products
like the ARM memory tagging extension (MTE) [34, 48] and SPARC
application data integrity (ADI) [1] are promising hardware fea-
tures based on tagged memory. Both protection mechanisms utilize
additional metadata (so-called memory tags) to provide hardware-
enforced detection of memory safety violations. However, tagged
memory architectures, including ARM MTE and SPARC AD], suf-
fer from significant limitations. Memory tagging is a probabilistic
approach, and its protection is limited by the available tag size (i.e.,
4 bits for MTE and ADI) of the underlying architecture. Due to the
small tag sizes, tag collisions likely occur as the same tag must be
re-assigned for several memory objects (e.g., MTE and ADI provide
only 16 distinct tags). When the tags of the exploited object and the
target objects coincide, i.e., a tag collision occurs, an attack cannot
be mitigated or even detected.

Contributions. In this paper, we present Multi-Tag, a novel
mechanism that combines object-granular memory tagging with
page-granular tags for memory safety. Multi-Tag differs from con-
ventional tagged memory schemes that associate each memory ob-
ject with a single tag. By introducing a multi-granular tagging struc-
ture, we significantly increase the detection probability of memory
safety violations, thus fortifying the system against memory-based
attacks. Instead of storing the page-granular tags separately in
memory, we utilize the page table entries (PTE) for this purpose.
Using free bits in the PTEs allows us to extend the tag space without



incurring any additional memory overhead or increased system
complexity.

Furthermore, we showcase that Multi-Tag’s design methodol-
ogy can be integrated into existing tagged memory architectures.
More specifically, we demonstrate how Multi-Tag can be used with
ARM MTE, a feature of upcoming ARMv8.5-A systems [34]. Here,
our evaluation shows that using Multi-Tag on ARM MTE systems
considerably increases the memory safety guarantees. Finally, we
discuss how security properties can be improved by leveraging a
platform-specific hardware feature, i.e., ARM pointer authentica-
tion (PA) [56]. We highlight ARM PA-based defense mechanisms
which further enhance the detection probabilities of memory safety
issues.

We implement a functional prototype of Multi-Tag’s hardware
mechanism consisting of a modified gem5 [6] system simulator, a
custom Linux kernel, and a toolchain containing an LLVM-based [29]
compiler and an instrumented heap allocator. Moreover, we provide
an in-depth security analysis of Multi-Tag. Highlighting the practi-
cability of our approach, we extensively evaluate our prototype in
terms of performance and memory overhead, yielding a geometric
mean performance overhead of 11.7 % for the SPEC CPU2017 [9]
benchmarks and 1.7 % for the nbench-byte [36] benchmarks. For
both settings, we maintain a constant memory overhead of 6.25 %.

Summarized, we make the following key contributions:

e We present Multi-Tag, the first hardware-software co-design
utilizing object- and page-granular tags for memory safety.
Multi-Tag applies memory tagging to enforce fine-grained
security policies on the object level in combination with
page-granular tags stored in the page table entries. Our
multi-granular tagging approach significantly improves the
probabilistic detection of memory safety violations without
incurring additional memory overhead.

e We adapt our design for ARM MTE, which will be broadly
available on upcoming ARMv8.5-A systems. Combining Multi-
Tag with MTE increases the security guarantees significantly
while requiring minimal hardware changes. Moreover, we
showcase how to exploit a platform-specific hardware fea-
ture (i.e., ARM PA) to further enhance system security.

e We provide an in-depth security analysis of Multi-Tag and
evaluate our design regarding runtime overhead and memory
usage, highlighting a low performance impact.

e We implement a prototype, including a gem5-based tagged
memory architecture, a modified Linux kernel, and a com-
piler toolchain based on the Clang/LLVM framework.

Outline. The paper is structured as follows. Section 2 provides
the background on memory safety, pointer encoding, and mem-
ory tagging. Section 3 specifies the threat model and requirements.
Section 4 and Section 5 describe the design and implementation of
Multi-Tag. Section 6 provides the security and performance evalu-
ation of our design. Section 7 adapts Multi-Tag’s design for ARM
platforms and discusses synergies with ARM PA. Section 8 com-
pares related work, and Section 9 concludes this work.

2 BACKGROUND

In this section, we discuss memory safety and the required back-
ground on pointer encoding and memory tagging.

2.1 Memory Safety

Programs written in unsafe programming languages like C and C++
are prone to memory safety errors. An attacker can exploit memory
safety issues in order to corrupt security-critical data in memory
or even take over the system. This security-critical data comprises
return addresses, function pointers, and even non-control data
allowing the adversary to perform ROP [49], JOP [7], or DOP [24]
attacks to hijack the control flow.

Memory safety vulnerabilities can be categorized into spatial
and temporal memory issues. Spatial violations are introduced by
out-of-bounds memory accesses, e.g., a buffer overflowing into an
adjacent memory object. Furthermore, temporal violations are in-
troduced by so-called dangling pointers, which are pointers that
refer to an already freed memory object. An adversary can misuse
dangling pointers to perform use-after-free (UAF) attacks. In ad-
dition, uninitialized memory accesses and double-free attacks are
also considered temporal violations.

Different countermeasures have been developed to mitigate
memory safety violations in unsafe program languages. Software-
based approaches [39, 43] utilize compile-time transformations to
instrument bounds checks before dereferencing a pointer to detect
and counteract spatial violations. The required metadata informa-
tion is stored in a table managed during the program’s runtime.
Temporal memory safety issues can be handled by using a garbage
collector [8] or by tracking the liveness of memory objects [40].
The major drawback of software-based memory safety, i.e., bounds-
checking and liveness tracking, is the significant performance
overhead they introduce which is unacceptable for production
code. To achieve better performance results, countermeasures uti-
lizing architectural features are required. Hardware-assisted mech-
anisms [16, 44, 58] implement the bounds-checking and metadata
handling in hardware, thus keeping the introduced runtime over-
head relatively low. However, hardware-enforced bounds-checking
schemes require intrusive hardware and ABI changes (e.g., in-
creased pointer size), thus limiting their applicability for commodity
systems.

2.2 Pointer Encoding and Memory Tagging

Defense mechanisms based on tagged pointers repurpose the upper
bits of the pointers by reducing the virtual address space on 64-bit
architectures. These upper bits of pointers can then be utilized
to encode meta-information efficiently without the need for fat
pointers. Intel linear address masking (LAM) [14] and ARM top-
byte ignore (TBI) [34] provide this functionality by reducing the
available virtual address space, thus freeing a number of bits in each
pointer. This allows the programmer to embed arbitrary metadata,
e.g., to track object information in managed runtimes.

ARM pointer authentication (PA) [56] was introduced with the
ARMvVS8.3-A architecture and was gradually updated with newer
instruction set architectures (ISA). The idea of ARM PA is to cryp-
tographically sign a pointer and store the truncated MAC, i.e., the
pointer authentication code (PAC), within the unused upper bits of
the pointer. This pointer signing mechanism uses a static key k, a
64-bit modifier, and the virtual address to seal a pointer. Depending
on the virtual addressing mode, the PAC size can range from 3 up to
31 bits [56]. For Linux, using the 39-bit virtual addressing mode, the
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Figure 1: ARM memory tagging extension enforces proba-
bilistic memory safety by comparing memory tags during
every memory access.

size of the PAC can range up to 24 bits. ARM PA provides the ability
to authenticate the pointer by verifying the integrity of previously
PAC-ed pointers. Suppose the pointer is corrupted, e.g., due to a
memory vulnerability. In that case, the authentication instruction
of ARM PA detects the corruption and sets a dedicated error bit
such that subsequent memory accesses using the corrupted pointer
lead to an exception. Pointer authentication is currently used by the
LLVM compiler to protect return addresses by signing them during
the function prologue and verifying their integrity in the epilogue.
Moreover, PARTS [32] uses ARMv8.3-A pointer authentication to
protect the integrity of code and data pointers.

Memory Tagging. Another promising hardware mechanism for
memory safety is memory tagging. Memory tagging is a versatile
building block utilized by various countermeasures to enforce mem-
ory safety [47, 52, 54, 58]. For tagged memory architectures, two
properties are essential; The tag size specifies the available tag space
in memory, while the tag granularity specifies the granule of the
tagged memory architecture. The choice of tag size and granularity
strongly influences the possible policies and the introduced stor-
age overhead of tagged memory architectures. Memory tagging is
implemented on different architectures tailored toward specific use
cases. Several dynamic information flow tracking (DIFT) [51, 54]
schemes use a single-bit memory tag to implement taint tracking.
Capability-based architectures [19] like CHERI [57, 58] and the M-
Machine [12] use a single-bit tag to protect capabilities in memory.
Additionally, the lowRISC tagged memory architecture [52] uses
a 4-bit tag per 8 bytes of memory which is partly configurable,
enforcing different security policies.

The ARM memory tagging extension (MTE) [34, 48] is a hard-
ware feature for the ARMv8.5-A architecture, which assigns a 4-bit
tag to every 16 bytes of memory. MTE utilizes a lock-and-key ap-
proach, where the key, i.e., the tag, is also stored in the upper byte of
the pointer (enabled by TBI), pointing to that location in the mem-
ory. A memory access only succeeds when the tag stored in the
pointer (the key) matches with the one in memory (the lock). Other-
wise, an exception is raised, and the program aborts. Figure 1 depicts
two memory allocations aligned to the 16-byte granularity followed
by two memory accesses. The memory access within the bounds
succeeds, while an out-of-bounds memory access to a memory ob-
ject using a different memory tag fails. Similarly, the SPARC M7 [1]
processor series includes the application data integrity (ADI) fea-
ture, which offers tagged memory with a tag granularity of 64 bytes
and a tag size of 4 bits. HWASan [47] uses ARM’s TBI feature to
provide memory tagging in software utilizing shadow memory.
Similar to ARM MTE and SPARC ADI, HWASan also assigns a tag

for the corresponding memory object but checks the tag for every
memory access in software.

3 THREAT MODEL AND REQUIREMENTS

In this section, we define our threat model and derive our require-
ments for the introduced system.

Threat Model. Our threat model is consistent with related
work [28, 30, 35, 42, 55], where an attacker has arbitrary read and
write capabilities and knows the address space layout. We assume
Write-XOR-Execute is enabled, thus, the attacker cannot write code.
We assume the operating system is trusted and free of exploitable
bugs. Furthermore, we assume the absence of logical vulnerabilities,
i.e., programming errors, that would allow an attacker to bypass
the heap allocator. In addition, side-channel and fault attacks are
out of the scope of this work.

Requirements. We derive the following requirements for our
system. Our goal is to mitigate the exploitation of memory safety
vulnerabilities. This includes the prevention of spatial safety issues
such as adjacent and non-adjacent memory access violations. Fur-
thermore, we aim to mitigate use-after-free (UAF), uninitialized
memory, and double-free vulnerabilities to achieve temporal safety.
To minimize the performance overhead, we leverage architectural
hardware features. We aim to maximize the security guarantees of
the underlying hardware building blocks, i.e., probabilistic spatial
and temporal security guarantees. Our solution must be compatible
with existing source code, i.e., allow existing C code to be used
without source code modifications.

4 DESIGN

In this section, we present Multi-Tag, the first scheme leveraging
a multi-granular tagging strategy to provide strong security guar-
antees against spatial and temporal memory safety vulnerabilities.
Multi-Tag provides probabilistic protection and withstands vari-
ous software attacks defined in our threat model by introducing
a hardware-software co-design based on object-granular memory
tagging combined with page-granular tags. This combination al-
lows Multi-Tag to overcome the limitations of commercial tagged
memory architectures like ARM MTE and SPARC ADI incurred by
small tag sizes while maintaining a moderate memory overhead.

4.1 System Architecture

We introduce a hardware-software co-design based on multi-granular
tags. Here, we utilize fine-grained object-granular memory tags
in combination with coarse-grained page-granular tags to enforce
access policies.

Overview. In Multi-Tag, we embed the multi-granular tag, con-
sisting of the object- and page-granular tag, into the upper virtual
address bits of a pointer. Figure 2 illustrates the pointer encoding
of our design. While the object-granular tag is stored in memory,
we store the page-granular tag in the PTE, thus avoiding additional
memory pressure and memory storage overhead. Thereby Multi-
Tag is capable of assigning a unique tag for each object on a 4kB
page without inducing infeasibly large memory overheads.

During memory load and store operations, different hardware
primitives use the multi-granular tag to perform access permission
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Figure 2: The encoded pointer layout. Multi-Tag utilizes a
combination of an object-granular and a page-granular tag to
perform memory access checks. The tagged memory archi-
tecture provides the object-granular tag. The page-granular
tag is stored in the PTE of the corresponding page.

checks. As shown in Figure 3, the hardware compares the fine-
granular part of the multi-granular tag encoded into the pointer
with the object-granular tag stored in memory during every mem-
ory access. Moreover, the coarse-granular part of the multi-granular
tag is compared to the page-granular tag embedded in the PTE. Ac-
cess to a distinct memory location is only granted if both checks
succeed.

Multi-Granular Tag Sizes and Tag Granularities. Similar to
related work [1, 48], we encode the tag metadata into the upper bits
of the pointer. Depending on the size of the virtual address space,
e.g., 39- or 48-bit, the topmost 25 or 16 bits in the virtual address
are unused by default. Hence, different sizes for the multi-granular
tag are possible. In a 39-bit virtual address space configuration,
Multi-Tag utilizes 24 of the topmost bits, which are ignored during
the address translation, for the multi-granular tag and a single
bit for the sign extension. Here, our tagged memory architecture
could use 8 of these 24 bits as an object-granular tag and 16 bits
for the page-granular tag. By tagging every 16 bytes of memory
stored in DRAM with an 8-bit tag, we can tag each of the 256
possible memory objects in a 4kB page uniquely, thus preventing
tag collisions within a page. We tag each page with a 16-bit tag,
hence the probability of a tag collision for data objects located on
distinct pages is 278 - 2716 = 2724, A the page-granular tag is
only stored in the unused bits in the PTE, the memory overhead
introduced by Multi-Tag is determined by the 8-bit tag per 16 bytes,
which equals an overhead of 6.25 %. For a 48-bit configuration, the
number of available bits Multi-Tag can utilize in the PTE decreases
from 24 to 15 bits. By using an 8-bit object-granular tag, all 256
16-byte memory objects in a 4kB can still be uniquely tagged.
However, the probability of having a tag collision over different
pages increases to 278.277 =271,

Note that the tag sizes can be chosen according to the security
and memory overhead requirements. For instance, Multi-Tag can be
instantiated with 4-bit object-granular tags, similar to ARM MTE,
which halves the introduced memory overhead. Moreover, the size
of the page-granular tags can be chosen to reduce the required
amount of PTE bits. The BIOS or the operating system can set both
tag sizes at boot time.

System Requirements. To enable multi-granular tagging, we
only require minimally-intrusive system changes: First, an instruc-
tion set extension (ISE) is needed to set the tag bits for memory
objects in the pointer. Furthermore, a new system call is added to
configure the page-granular tag in the PTE. Moreover, the TLB is
modified to perform the page granular tag comparison. Finally, the
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Figure 3: Memory access checks in hardware. The tag compar-
ison of the object- and page-granular tags enforced during
every memory operation consists of two parts. First, a com-
parison between the object-granular tag and the tagged mem-
ory architecture. Second, a comparison of the page-granular
tag and the PTE.

memory system needs to be aware of the object-granular memory
tags and needs to check them on each memory access.

Tag Integrity Protection. Pointer arithmetic poses a threat to
schemes that encode metadata into the upper bits of the pointer.
Precisely, pointer arithmetic operations overflowing into the tag
bits of the encoded pointer can lead to tag forgery attacks. To
overcome this problem, there exist different approaches. First, tag-
aware pointer arithmetic instructions or an instruction sequence
that provides integrity for the tag bits prohibit or detect an overflow.
Second, a single-bit memory tag (similar to CHERI [58]) could be
utilized to mark all pointers in the register file and in memory.
Subsequently, the ALU uses this type-information to avoid writing
into the tag bits. In this work, we provide tag integrity for encoded
pointers by introducing separate instructions for pointer arithmetic
that do not overflow into the tagged upper bits.

4.2 Enforcing Memory Safety with Multi-Tag

By assigning and managing tags in the memory allocator, memory
safety can be enforced with Multi-Tag. In general, the memory
allocator implements the following procedure: On allocation, the
allocator aligns the size of the memory object to the tag granular-
ity, e.g., 16 bytes. Additionally, the allocator tags the pointer to a
memory object by generating and storing the tag in the upper bits
of the pointer. The same tag gets assigned to the memory location
as associated metadata information utilizing the ISA extension of
the tagged memory architecture. By zeroing the initialized memory
during this tag assignment, uninitialized memory accesses attacks
are mitigated. Similarly, the page-granular tag gets encoded into
the upper bits of the pointer. The memory allocator manages the
page-granular tag using system calls. Depending on the tag assign-
ment policy, different memory safety guarantees can be enforced.
Precisely, we introduce two policies. The first policy enforces spatial
memory safety, while the second policy enforces both spatial and
temporal safety. Implementing two policies allows us to evaluate
their performance overhead separately.

Spatial Memory Safety. In this tag assignment policy, we assign
each memory object within a page a unique object-granular tag



by tracking already assigned tag values. To ensure this property,
a tag granularity of 16 bytes and an object-granular tag of 8 bits
are one possible tag size and tag granularity selection. With this
combination of parameters, all 256 16-byte memory objects on
a 4kB page can be tagged with a distinct tag. This prevents any
adjacent or non-adjacent spatial memory safety violations, e.g.,
buffer overflows, within the same page.

For the page-granular tag, we assign a pseudorandom tag to
every page. To prevent adjacent spatial memory safety violations
over page boundaries, neighboring pages are assigned different
page-granular tags. For objects larger than a single page, an identi-
cal page-granular tag is used for the pages containing the object.
Through the use of pseudorandom tags, non-adjacent memory
safety violations over page boundaries are prevented on a proba-
bilistic basis.

Spatial and Temporal Memory Safety. The page-granular
tag can be utilized to counteract spatial and temporal memory
safety vulnerabilities at the same time. Similar to the previous
tag assignment policy, we assign unique tags for every object co-
located on the same page enforcing spatial security. We prevent
the misuse of dangling pointers using two separate techniques.
First, we make the memory location inaccessible by tagging it
with the reserved zero object-granular memory tag. And second, to
prevent future allocations in that area from having the same object-
granular memory tag, we exclude this value for future allocations
on that page until it has a new page-granular tag. We also prevent
double-free attacks by checking if the tags of the corresponding
memory location are valid before freeing. Memory reallocation is
immediately possible if unused tags within the page are available.
Otherwise, the page needs to be re-tagged. For this, we keep track
of the quarantined memory and wait until all objects within that
page are freed. Once that is the case, the page gets re-tagged using
a different pseudorandom page-granular tag, ensuring that future
memory allocations have a different tag.

5 IMPLEMENTATION

Our prototype implementation consists of a tagged memory archi-
tecture integrated into the gem5 [6] simulator, a kernel extension to
provide page-granular tagging, and an LLVM-based [29] toolchain
for instrumenting heap allocations. Multi-Tag is a scheme utilizing
memory tagging in combination with page-granular tags stored in
the PTEs. While our design is ISA-agnostic, we provide a prototype
implementation for the x86-64 instruction set architecture (ISA)
since the gem5 model for this architecture is the most mature.

5.1 Tagged Memory Architecture

We base the implementation of our tagged memory architecture
on the gem5 simulator to provide an accurate performance model.
Memory tagging incurs overhead by introducing additional DRAM
requests required to fetch the tag metadata from memory. While
Multi-Tag allows for a variety of combinations of tag sizes and
granularities, our prototype implements a variant that associates
an 8-bit tag with every 16 bytes of memory. We reserve a dedicated
memory region of the DRAM for storing the tags in memory. The
size of the reserved region is proportional to the overall system
memory size. In our prototype implementation, we select the size
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Figure 4: Page table entries on the Intel x86-64 architecture.
We utilize the unused 9 bits (bit 58:52 and bit 10:9) and repur-
pose the 4 Protection Key bits for our design. Moreover, we
could reduce the addressable physical memory leading up to
16 bits for the page-granular tag.

of the special memory region such that all of the remaining system
memory can be associated with a tag. Reading and writing the tags
is only possible by using special instructions, and the tag memory
region is inaccessible for regular memory load and store operations.
Our custom memory allocator uses these special instructions to
enforce our defined security policies. To access data and the corre-
sponding tags at every cache access, we increase the size of each
cache line to store the associated memory tags. Furthermore, access
checks are performed during every memory operation, preventing
memory accesses on a tag mismatch. In addition, tagged memory
architectures require additional DRAM fetches for every cache miss
to load the tag metadata from memory. For every cache miss, the
memory controller issues one additional DRAM request to load the
corresponding tag from memory.

A tag store operation can either result in a cache hit or a cache
miss. In the case of a cache hit, the cache line holding the data and
the corresponding tag is marked as dirty as a write to a tag has to be
handled identically to a write aimed at regular data. A cache miss
will cause a load that fetches the tag and the associated data from
DRAM, followed by a subsequent write to the cache line that now
contains the tag. When reading a tag using the dedicated tag read
instruction, a cache miss will cause a load from the main memory
that caches the tag and the corresponding data.

Our gem5 prototype implements this basic behavior without an
advanced tag cache design, providing a worst-case performance ap-
proximation using a basic tagged architecture. Note that advanced
designs [26] for tagged memory architectures can significantly
improve system performance. The memory tags for the tagged
memory architecture are encoded into the topmost byte of the
pointer. We utilize the remaining upper bits of the pointer as a page
tag, which is stored without memory overhead in the PTEs. These
upper bits are ignored by our system during the address translation
procedure. Our implementation utilizes a 39-bit virtual memory
configuration of the Linux system resulting in up to 24 bits that
can be used for metadata. Precisely, we split up the 24 bits into an
8-bit object-granular and 16-bit page-granular tag.

5.2 Kernel Extension

The operating system is responsible for managing the tags in the
PTEs and memory during allocation and for special system calls.
Page Table Entries. Figure 4 illustrates the layout of Intel x86-64
page table entries, highlighting 7 bits (bit 58-52) that are currently
unused. In combination with bits 9 and 10, which are also unused,
the total amount of unused bits in the PTE is 9. Furthermore, the bits



62 to 59 are used for the Intel memory protection keys (MPK) [46],
which we repurpose for our design. Additionally, we can use 3 of
the bits reserved for the physical page number, summing to up to
16 bits for the page-granular tag on a 39-bit virtual address Linux
system. While this reduces the physical address space to 49 bits,
which results in a total of 512 TB of addressable memory, this is
still enough for most applications. However, our design introduces
a dynamic trade-off between memory and security by reducing
the size of the page-granular tags, which allows larger ranges of
addressable DRAM.

System Calls. We extend the system calls mmap and mprotect
to tag requested pages accordingly by inserting the corresponding
tag into the PTE. In the case of Linux, like the other permission
bits, the kernel also stores the tag in the vm_area_struct. The
page-granular tag is stored in the PTE and checked in hardware
during the TLB access (cf. Figure 3). This approach does not increase
the memory overhead and does not introduce any performance
overhead as the tag comparison is done in hardware in parallel to
the other PTE permission (e.g., read, write, execute) checks.

5.3 Toolchain

In our paper, we focus on protecting spatial and temporal memory
safety on the heap. Hence, our toolchain consists of an LLVM-based
compiler and an instrumented musl-libc heap allocator.

Compiler Extension. We base our prototype on the LLVM 14
framework [29], which is extended to support tagging instruc-
tions to control the tagged memory architecture. Furthermore,
the compiler is responsible for using the tag-aware instructions
for pointer arithmetic operations. These instructions ensure the
integrity of the upper tag bits when performing arithmetic op-
erations on the pointer. To achieve this, the compiler lowers all
getelementptr (GEP) instructions to our newly introduced tag-
aware pointer arithmetic operations.

Our design requires dedicated instructions to perform opera-
tions on the object-granular tag value stored in memory. Precisely,
we utilize store tag instructions that set the dedicated memory
tag with and without initializing the corresponding memory loca-
tion. Additionally, we implement a load tag instruction to retrieve
the tag value from a dedicated memory location corresponding to
the tagged address. Finally, the instructions to perform tag-aware
pointer arithmetics, e.g., addition and subtraction, are added.

Heap Allocator. The instrumented heap allocator is responsible
for enforcing the previously defined security policies (cf. Section 4.2)
using multi-granular tagging. To provide spatial memory safety,
the allocator tags the corresponding memory locations using the
object- and page-granular tags. The allocator keeps track that tags
of adjacent memory locations are distinct, thus protecting against
linear overflows. Non-adjacent allocations are protected by the
object- and page-granular tag. Therefore, the allocator uses the fol-
lowing procedure: First, the heap allocator aligns allocations to the
tag granularity of 16 bytes. Second, the allocator tags the memory
location using our tagging instructions and encodes the tag into
the topmost byte of the pointer. The set tag instruction assigns
the tag and zeroes the data stored at this memory location, effec-
tively mitigating attacks based on uninitialized memory accesses.
Afterward, the memory allocator checks whether the current page

is already tagged. If the page is not tagged, the allocator requests
the operating system to tag the allocated page using our modified
mprotect system call. Once a page-granular tag is assigned, this
tag is set into the page-granular tag field in the pointer.

Besides spatial security, our allocator uses memory tagging to
enforce temporal memory safety for the system. Our heap allocator
utilizes per-page metadata in order to prevent the misuse of dan-
gling pointers. Such UAF attacks are mitigated by assigning every
object-granular memory tag within a page only once. After each
distinct tag (8 tag bits map to 256 unique tags) on a page is used,
the allocator starts to put freed memory objects within this page
into quarantine. Before allocating new memory on such a page, the
allocator waits until all objects within the quarantined page are
freed. Afterward, the allocator can re-tag the quarantined page and
reuse it for future memory allocations. Additionally, double-free
attacks are mitigated since we check if the tag is not zero before
freeing the memory. Precisely, we instrument the malloc, calloc,
realloc, and free functions to include this functionality.

6 EVALUATION

This section provides an in-depth security analysis of Multi-Tag.
Additionally, we analyze the overhead of our design in terms of
performance and memory usage.

6.1 Security Analysis

In this section, we analyze the security guarantees of Multi-Tag in
terms of spatial and temporal heap memory safety. In general, our
design provides probabilistic memory safety utilizing a hardware-
software co-design based on multi-granular tags. This means that
the exact detection probability depends on the implemented tag
size of the tagged memory architecture. Since our prototype only
instruments heap memory, we exclude globals and stack memory
vulnerabilities for this analysis. Stack memory is explicitly discussed
in Section 8.1.

Spatial Security Analysis. Multi-Tag prevents the exploita-
tion of spatial memory safety vulnerabilities by utilizing the un-
derlying tagged memory architecture in combination with page-
granular tags. For our analysis, we distinguish between adjacent,
non-adjacent, and intra-object memory accesses. Memory objects
are assigned both, an object- and a page-granular tag on allocation,
and accessing these tagged objects requires that the pointer used
for the access contains the correct tag. The memory allocator as-
signs a unique tag for every object within a page, thus eliminating
intra-page memory corruption. To deterministically protect against
linear overflows across page boundaries, the memory allocator
assigns different tags to adjacent memory objects. For arbitrary
memory accesses, e.g., non-linear buffer overflows, the protection
capabilities of Multi-Tag are only limited by the tag size of the under-
lying tagged memory architecture and the page-granular tag. The
page-granular tag improves the security guarantees of Multi-Tag
by increasing the available tag space. By combining a fine-granular
8-bit memory tag and a coarse-grain 16-bit page tag, the tag colli-
sion probability (i.e., the tags of two different objects coincide) is
278.2716 = 2724 Qur flexible design allows to dynamically select
the size of the page-granular tags. Thus, it is possible to permit a
larger addressable physical memory if needed.



We resize memory allocations to a multiple of the tag granu-
larity to ensure that the entire object can be protected using the
underlying tagged memory system. Hence, linear out-of-bounds
accesses within the borders of the resized object cannot be detected.
However, from a security point of view, this is uncritical since
there is no data stored, and new allocations start with the next tag
granular address. Currently, Multi-Tag cannot prevent intra-object
overflows, for example within C structs, as the struct is a single
memory object. Similar to related work [60], source-to-source trans-
formations could be used to promote C struct members to separate
allocations and provide tagging for them.

To prevent tag corruption due to arithmetic operations, the com-
piler instruments them using our tag-aware instructions. However,
code sequences where the type information is lost, e.g., due to casts,
cannot be instrumented. Such casts allow the attacker to guess
the tag encoded in the upper bits of the pointer. We argue that
such code sequences where the attacker could add arbitrary user
input to an integer-casted pointer are fairly uncommon, and the
attacker still needs to guess the correct page-granular tag to access
an arbitrary memory location.

Temporal Security Analysis. For our temporal security analy-
sis, we distinguish between uninitialized memory, double-free, and
use-after-free (UAF) attacks. Uninitialized memory vulnerabilities
are inherently prevented since every allocation is zero-initialized
during the tag assignment. The heap allocator checks the liveness of
every object before freeing the memory using the special memory
tag zero to protect against double-free attacks. If an object with
the memory tag zero gets freed, the double-free is detected and
handled accordingly.

For dangling pointers that may lead to UAF attacks, we differenti-
ate between three cases. In the first case, the dangling pointer points
to a previously freed memory location that is not currently used
by a subsequent allocation. As the freed memory location is tagged
with the special zero tag, we deterministically detect such cases.
The second case occurs if the dangling pointer points to a memory
location that has been reused by a following memory allocation. As
the allocator guarantees that all object-granular tags on the same
page are unique, the stale tag of the dangling pointer will always
cause a tag mismatch on access. Finally, a dangling pointer may
refer to a memory location on a page from which all allocations
have been freed. There, our allocator would then assign a new pseu-
dorandom page-granular tag, which means that all object-granular
tags can be reused. Thus, since the page-granular tag is chosen
pseudorandomly, subsequent allocations on this page can have the
same tag as the dangling pointer. The probability of such a collision
is 2724, This is significantly better than using only object-granular
tags, i.e, ARM MTE, which has a much higher collision probability
of 274,

Alternatively, our object-granular tagging strategy can also be
applied to pages: Instead of choosing the page-granular tags pseu-
dorandomly, they can be chosen systematically, such that each tag
is only assigned once. For this, a 16-bit maximum-length LFSR that
generates all possible 2'® —1 values for the page-granular tag can be
used. This guarantees that no collision between page-granular tags
will occur before the period of the LFSR is reached. By initializing
the state to a value that depends on the address of the page, we
can check if a page has used up all available unique tags. Once the

period of the LFSR is reached, the (virtual) page will be put into
quarantine and not be reused again. While this slightly decreases
the usable virtual address space over time, this strategy can be used
to deterministically prevent any UAF vulnerability using Multi-Tag.

Multi-threading. Concurrency-based attacks are particularly
hard to mitigate. Many software-based approaches accept a time
window where an attacker could mount a time-of-check to time-of-
use (TOCTTOU) attack. Tagged memory systems like Multi-Tag do
not have this flaw since the tags are always checked when accessing
the data. Since the operating system always ensures TLB coherency,
it automatically ensures coherency for our page-granular tags.

6.2 Performance Evaluation

To evaluate the performance of Multi-Tag, we utilize the SPEC
CPU2017 [9] and the nbench-byte [36] benchmark suite. Our gem5
model in full system mode provides an accurate simulation of the
memory subsystem (including memory access latencies based on
real-world DRAM timings). As the ref input of SPEC leads to in-
feasible simulation times, we use the smaller inputs to measure
the performance impact. Our toolchain currently does not support
C++, so we are limited to benchmarks that are written in C. Similar
to the methodology of related work [32], we run each test case of
nbench-byte using a fixed number of iterations. Furthermore, all
benchmarks of both benchmark suites are compiled with optimiza-
tion level -03.

Configuration. We configure our gem5 model in full system
mode to represent a commodity computing system. We use the
x86-64 ISA and set the clock frequency to 3 GHz. Our model uses
an 8-way set associative L1 instruction and data cache with 16 kB
and 64 kB, respectively. Moreover, we use a 16-way set associa-
tive L2 cache of 256 kB in combination with a single-channel 2 GB
2400 MHz DDR4 DRAM. We integrate a custom module generating
tag requests between the memory controller and the memory bus.
For our simulation, we use the timing CPU model of gem5.

Results. Figure 5 illustrates the simulated performance over-
heads for the SPEC CPU2017 and nbench-byte benchmarks. We
evaluate (i) the overhead incurred by the tagged memory archi-
tecture, (ii) the overhead of spatial memory safety, and (iii) the
overhead of spatial and temporal memory safety using Multi-Tag’s
design and compare the relative performance overhead. The over-
head of the tagged memory architecture largely depends on the
number of memory accesses that result in a cache miss in both, the
L1 and the L2 cache. As each access to DRAM that is not a tag load
or store causes an additional tag fetch, memory access patterns that
cause high cache pressure result in larger performance overheads.
Spatial and temporal memory safety incurs more overhead since
the allocator tags all memory at allocation time. This causes the
memory of the entire allocation to be fetched into the caches before
it is actually needed, leading to increased cache pressure.

For some SPEC benchmarks, the performance overhead of all
evaluated configurations is nearly equivalent. We suspect that in
such cases, the majority of tag load and store instructions result in
cache hits, thus causing only a small amount of additional fetches
from main memory. Note that the larger architectural overhead for
the 505.mcf benchmark is due to noise in the measurements.



® 3 B2
=] i :: Tagged Memory Architecture
'§ 40 »«: = El [ spatial Memory Safety
= 30 2 I Il Spatial and Temporal Memory Safety
o 7
> 7 Y
o Z . RN Y
9 20 e e 7 R << NS —
Q N 7 D —— =
=1 co 7 - r ——
< —— 7 S 7
/ # - 25 s <o < < /1 A RRT
= / S ooRs NN 255 SEE sunossp ossp sEp ius iis 55
o ’ 7’ 7’ /| oo =R oo =h=] oo oo oo oo oo /| 1/
EE C ‘ 5 1 ] X X b‘ ‘ 5 ‘ 5 ‘ ‘ X > C ‘ X
% C h > (O 2 o o> o\ XS & BN e 2> S a0 5
BNA & 8 5\980 R I RPN U I R RER g St A
ad® o o o™ W RO\ 7 o®
Q¢ S Y N e?
< N3 660 S
\)\) (€32

Figure 5: Simulated performance overhead of the SPEC CPU2017 and nbench-byte benchmarks.

For the nbench-byte benchmark suite, we see very low over-
heads that are close to zero most of the time. We accredit this good
performance to the fact that the allocations of most nbench-byte
benchmarks are small compared to SPEC. Small allocations do not
cause large amounts of tag store operations, and the cache miss
rate is lower.

6.3 Memory Usage and Overhead

Multi-Tag increases the memory usage of the program due to the
alignment to 16 bytes for every allocated object. However, the
increased memory usage is typically less than 0.1 % for the evaluated
benchmarks.

Our scheme co-locates the memory data as well as the tag meta-
data in the cache. Furthermore, the tag metadata is stored in a
dedicated DRAM region. We associate an 8-bit tag with every 16
bytes of memory, resulting in a memory overhead of 6.25 %. One
possible optimization to minimize the required memory overhead
is to increase the tag granularity. E.g., SPARC ADI uses 4-bit per
64 bytes. Similarly, we could utilize 6-bit per 64 bytes, which also
allows assigning a unique tag per page and results in a memory
overhead of 1.17 %. The memory overhead can be further reduced to
effectively 0 % by leveraging ECC DRAM modules [22, 26, 58]. This
also has another advantage since it eliminates the performance over-
head introduced for every cache miss by the extra DRAM requests
for fetching the tags.

7 CASE STUDY

In this section, we first (i) analyze how to implement Multi-Tag on
an existing tagged memory architecture. Here, we focus on ARM as
the upcoming memory tagging extension (MTE) for ARMv8.5-A sys-
tems will soon become broadly available. We showcase that Multi-
Tag only requires minimal hardware changes on systems already
featuring tagged memory. Then (ii), we discuss the security benefits
of integrating Multi-Tag into ARM MTE systems. Finally (iii), we
demonstrate and evaluate how these security guarantees can be
further enhanced by combining Multi-Tag with platform-specific
hardware features, i.e., ARM PA.

7.1 Multi-Tag on ARM MTE Platforms

ARM MTE introduces tagged memory for ARMv8.5-A systems.
There, 16 bytes of memory are tagged with a 4-bit memory tag,

which is also stored in the unused upper bits of the virtual address.
For our multi-granular tagging approach, we utilize these 4 bits
as the object-granular tag. As ARM systems have 4 unused bits in
the PTE, we can utilize them for page-granular tagging and also
include them in the upper bits of the virtual address. With the
ARM TBI feature, the hardware already ignores the topmost byte
during address translation. The only hardware change we need
is the comparison of the page-granular tag. Similar to our base
design, we instrument the heap allocator to apply the object- and
page-granular tag during allocation. Additionally, LLVM provides
the AArch64StackTagging pass, which is utilized to apply ARM
MTE on the stack. Mitigating tag forgery attacks introduced by
pointer arithmetic operations can either be tackled in hardware
or software. Introducing dedicated tag-aware pointer arithmetic
operation instructions prevents tag manipulation. Alternatively, a
special instruction sequence can ensure the tag integrity in soft-
ware during arithmetic operations. However, dedicated instructions
are usually a more favorable solution as they do not induce any
performance impact.

7.2 Security of Multi-Tag using ARM MTE

In this section, we compare the security guarantees of native ARM
MTE with Multi-Tag combined with ARM MTE.

Security of ARM MTE. MTE provides probabilistic protection
based on the size of the tag. Precisely, MTE utilizes a 4-bit memory
tag at the granularity of 16 bytes to tag the memory. While this
design choice of using 4-bit tags minimizes the overhead of storing
the tags in memory, it also limits security. First, the probability that
two memory objects receive the same tag is, with a probability of
1/16 = 6.25 %, high. The memory allocator could guarantee that
consecutive allocations are assigned a different tag, thus, linear
buffer overflows are prevented. However, non-linear buffer over-
flows, as well as temporal memory safety vulnerabilities, cannot
easily be prevented with such a small tag size. Second, an adver-
sary with access to a memory object containing a tagged pointer
can overwrite this pointer using pointer arithmetics and guess a
correct tag with a high probability. Due to these limitations, MTE
is currently primarily used as a debugging feature, e.g., as part of
the MemTagSanitizer.

Security of Multi-Tag combined with ARM MTE. Integrat-
ing Multi-Tag into a platform already featuring ARM MTE greatly



enhances security guarantees as the multi-granular tagging ap-
proach increases the available tag space. As the object-granular tag
size here is 4 bits, assigning a unique tag for each memory object on
a page (cf. Section 4) is not possible. Hence, the memory allocator
generates a pseudorandom tag and assigns it to the distinct memory
region. For spatial safety, assigning different tags to adjacent mem-
ory objects can prevent the exploitation of linear buffer overflows
deterministically. For non-linear buffer overflows, i.e., arbitrary
read-write vulnerabilities, the protection guarantees of Multi-Tag
are limited by the size of the object-granular tag determined by the
underlying tagged memory architecture. On ARM systems, the 4-bit
object-granular tag yields a collision probability of 274 when ac-
cessing arbitrary memory objects within the same page. For objects
allocated on different pages, the inter-page tag collision probability
for non-linear buffer overflows is 274 - 274 = 273 since the object-
and the page-granular tag need to coincide. In terms of temporal
safety, UAF attacks are prevented on a probabilistic basis due to the
pseudorandom memory tag. The limited tag space of MTE leads
to the problem that pages need to be re-tagged more frequently.
MTE can mitigate uninitialized memory accesses by assigning the
memory tags and zeroing the data of the memory location. Further-
more, a special memory tag for freed memory can be reserved on
ARM platforms. However, this might prove too costly since only 16
distinct memory tags are available on ARM.

7.3 Combination with ARM PA

Since temporal memory safety violations cannot be efficiently pre-
vented due to the limitations of the underlying ARM hardware,
we propose additional memory protection based on ARM pointer
authentication (PA). ARM PA is a compatible architectural feature
that can be used to sign and authenticate a pointer’s address and
tag (cf. Section 2). The TBI hardware feature uses the topmost byte
for metadata and allows up to 16-bit PAC for a 39-bit virtual address
system. In the following, we discuss possible combinations with
ARM PA used for pointer integrity and revocation. Depending on
the size of the authentication code, PA provides strong probabilistic
protection for code and data pointers.

ARM Pointer Authentication. We distinguish between two
applications for ARM PA. First, we provide pointer integrity by
utilizing static modifiers, and second, pointer revocation using
pseudorandom modifiers assigned at runtime and stored in shadow
memory. Similar to related work [32], we protect all data pointers
using a static modifier. Therefore data pointers get sealed before
storing them in memory, providing an additional layer of security
for pointers. Moreover, we use ARM PA for pointer revocation by
associating a modifier to track the object’s liveness. The memory
allocator assigns the object- and page-granular tags during allo-
cation for spatial memory protection. Furthermore, we mitigate
UAF and double-free attacks using ARM PA and shadow memory.
Pointer authentication uses a modifier as nonce input, a key, the
address, and the TBI metadata, to compute its PAC. Therefore, a
pseudorandom modifier is generated and stored in the shadow
memory during the allocation of stack and heap objects. Since the
PAC is truncated to 16 bits, we also use a 16-bit modifier (instead
of the maximum of 64 bits) stored in the shadow memory for our
evaluation. To access the modifier value, we derive the index of the

shadow memory using the address of the corresponding pointer.
On pointer authentication, first, the modifier is fetched from the
shadow memory. Then, the PAC is verified using the modifier, the
sealed pointer, and the key. On successful authentication, the plain
pointer is retrieved by striping the PAC from the pointer. When
an adversary manipulates a pointer, the authentication procedure
fails, which is detected by the system. On deallocation, we first
check whether the corresponding modifier in the table is valid. If
the modifier is valid, we invalidate the modifier, and the memory
gets freed by the allocator. We mitigate the exploitation of possi-
ble dangling pointers remaining in memory by invalidating the
modifier. If the modifier is already invalid, a double-free attack is
detected and handled accordingly.

We have different options to verify the integrity of the pointer,
which is associated with the liveness of the object. For example,
we can authenticate after loading the pointer from memory or
before the pointer dereference. Authentication after loading the
pointer from memory increases the system performance signifi-
cantly. However, the drawback is the introduced time window for
possible TOCTTOU attacks. Our prototype implementation verifies
data pointers after being fetched from memory to minimize the
performance penalty as much as possible.

Enhanced Temporal Safety using ARM PA. Multi-Tag on
ARM thwarts temporal memory safety vulnerabilities using the
combination of memory tagging, pointer authentication, and shadow
memory. When a memory object is deallocated, the modifier stored
in the table gets deleted and, thus, invalidated. Hence, if an ad-
versary tries to load a dangling pointer stored in memory, the
authentication with PA fails, as the corresponding modifier used
for sealing the pointer is not available anymore. The received modi-
fier is either zero if the corresponding memory was not reallocated
or is a new pseudorandom modifier if another memory object was
allocated using the referred memory. This decreases the probabil-
ity of a UAF vulnerability from 274, by using plain MTE, to the
combined probability of a collision of the modifiers and the MTE
tags, i.e., 272°. In addition, the heap allocator checks the liveness of
every object before freeing the memory to protect against double-
free attacks. Uninitialized memory vulnerabilities are prevented
since the memory locations get zeroed during the tag assignment.
Furthermore, we protect the shadow memory by reserving a ded-
icated page-granular tag for the shadow memory, making them
inaccessible to an attacker.

TOCTTOU. The ARM PA revocation introduces a time win-
dow for TOCTTOU attacks, depending on when data pointers are
checked. Authenticating the pointer after loading it from mem-
ory results in significant performance improvements compared to
authentication before every pointer dereference. Various other per-
formance optimizations are discussed in related work [23, 31, 39],
effectively removing redundant access checks. However, these per-
formance optimizations also increase the exploitable time window
for shared objects of multi-threaded programs, introducing a trade-
off between performance and security. Multi-Tag is a probabilistic
scheme and targets runtime protection. We accept this time window
since the performance overhead would make the countermeasure
impractical. Even if an attacker manages to mount a TOCTTOU
attack, we fall back to the security guarantees of ARM MTE.
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Figure 6: The relative runtime overhead of the ARM evalua-
tion using the SPEC CPU2017 and nbench-byte benchmarks.

We argue that access to shared resources is typically tied to
a locking mechanism, reducing the attack window if the pointer
check is within the lock. The compiler could enforce to re-load and
authenticate pointers, binding the authentication to the locking
mechanism. Thus, already authenticated pointers in the register
file only exist when the corresponding lock is held.

7.4 ARM Performance Evaluation

In this section, we evaluate the performance of Multi-Tag on ARM
platforms. We use SPEC CPU2017 and nbench-byte on an ARM-
based Apple M1 processor, which already implements the ARM PA
feature. For ARM MTE, we estimate the overhead of this feature (cf.
Appendix A). Figure 6 shows the performance results. We evaluate
our ARM prototype implementation for memory tagging in combi-
nation with Multi-Tag’s page-granular tags. The memory tagging
overhead depends on the number of objects and their size since ev-
ery allocated object must be tagged. The ARM MTE approximation
highlights a negligible performance overhead for tagging stack and
heap objects. Additionally, we evaluate combinations with pointer
integrity and pointer revocation using ARM PA. The overhead
strongly depends on the program’s pointer usage. For example, the
Fourier benchmark only uses a small number of data pointers re-
sulting in a minimal performance overhead. Contrary, benchmarks
like Numeric sort, FP emulation, and Huffman make extensive
use of data pointers, resulting in higher runtime overheads.

8 DISCUSSION

In this section, we discuss the limitations of our prototype imple-
mentation, possible future work, and existing related work.

8.1 Limitations and Future Work

Currently, our prototype only instruments C programs, but toolchain
support for C++ could be added in future work. Therefore, the C++
memory allocator (e.g., new, delete) needs to be instrumented
to apply the object- and page-granular tags. In this work, we fo-
cussed on the protection of heap objects since dynamic memory is
one of the most common attack targets [21, 38]. Additionally, our
prototype could be extended to protect stack and global data as
well. However, there are many different approaches to choose from,
which adds significant implementation complexity. For example,
a safe stack could be implemented by building on top of LLVM’s
SafeStackAnalysis, and we can protect the safe stack with a dis-
tinct tag and apply different tags for normal stacks. Alternatively,

each stack object could be tagged separately. However, these ob-
jects would also need to be aligned and padded to our minimum tag
granularity. Furthermore, this is complicated by the fact that these
allocations can have a dynamic size and need to be un-tagged at
function return. A third approach could be to only tag the return ad-
dresses. Due to the wide range of design decisions and implications,
we defer this stack analysis to future work. Nevertheless, Multi-Tag,
similar to other tagging schemes, could be used for stack protection.
Furthermore, our approach can also be used to protect global data.
Global memory behaves like a simplified heap, requiring tagging of
the global data during the program startup. Moreover, our design
is tailored towards 4 kB pages and currently does not support huge
pages. Different design and security trade-offs need to be explored
to support huge pages. However, current operating systems, like
Linux, use 4 kB pages by default. Moreover, virtual page aliasing
similar to xTag [5] in combination with our (virtual) page-granular
tags could be further explored for different tagging strategies.

8.2 Related Work

C and C++ memory safety issues are already well-studied research
topics. However, the previous solutions tend towards high over-
heads, which is often unacceptable for mass deployment. On the
other hand, hardware-assisted countermeasures solve this prob-
lem efficiently but require intrusive hardware and ABI changes.
Researchers have proposed various countermeasures over recent
years, considering the problem from different perspectives [2, 3, 10,
11, 13, 17, 25, 43, 54].

Bounds-checking in Software and Hardware. Many mem-
ory safety schemes are based on additional bound checks, enforced
either in software or hardware. For example, software solutions like
SoftBound+CETS [40, 39] achieve the goal of full memory safety by
performing compile-time transformations. The SoftBound compiler
instruments additional bounds checks for load and store operations
which might lead to out-of-bounds memory accesses. Therefore,
SoftBound utilizes a disjoint hash table to store the pointer base
address and the object bounds. For temporal safety, CETS extends
this concept and introduces a unique identifier associated with
the object’s liveness to mitigate dangling pointers for heap and
stack objects. The significant drawback of software solutions like
SoftBound+CETS is their tendency to introduce significant per-
formance overheads. Henceforth, Hardbound [16], Watchdog [41],
Intel MPX [44], and CHERI [58] enforce the bounds-checking mech-
anism in hardware. These countermeasures introduce different
types of data structures to store the additional metadata, e.g., inline,
adjacent, or disjoint metadata storage. While offering a reason-
able performance overhead, hardware-enforced bounds-checking
requires intrusive hardware and ABI changes, which are hard to
deploy on a large scale. At its core, the register file gets extended to
hold the pointer bounds information, which is additionally checked
during every memory access. AOS [27] enforces memory safety
for heap objects based on bounds metadata utilizing ARM PA. All
pointers are signed using the PA instruction, and the PAC is fur-
ther used to access the metadata efficiently. During every memory
access, the system additionally checks the object bounds in hard-
ware using the PAC to index the required bounds metadata. In con-
trast, Multi-Tag utilizes an efficient hardware-software co-design



based on multi-granular tags to enforce memory safety. Our design
enforces memory safety based on lightweight hardware changes,
transparent to the programmer.

Tagged Memory in Software and Hardware. HWASan [47]
uses memory tagging to detect memory safety errors. This scheme
assigns a memory tag during allocation and stores this tag in the
upper 8 bits of the pointer by utilizing ARM’s TBI feature. Upon
every memory operation, the tag of the pointer is checked against
the tag stored in the metadata table. Similarly, MemTagSanitizer
applies the same procedure as HWASan but uses ARM MTE to
perform the access check in hardware. Both schemes are primarily
used for debugging purposes since the schemes cannot withstand
the standard adversary model (cf. Section 3). An attacker could
simply overwrite the memory tag stored in the upper bits of the
pointer to forge the tag and address of the pointer. Compared to
HWASan and MemTagSanitizer, Multi-Tag utilizes memory tag-
ging for security by providing tag integrity and introducing a high
detection probability. Furthermore, HWASan introduces a high run-
time overhead, which makes it impractical for production code.
Color My World [33] utilizes ARM MTE to enforce memory safety
for objects that can be statically proven safe during compile time.
Moreover, CrypTag [42] uses memory tagging in combination with
memory encryption. Precisely, the tag encoded into the pointer is
used to tweak the encryption for the dedicated memory location.
The disadvantage of this approach is the substantial performance
penalty introduced by the authenticated memory encryption [53].

ARM PA-based Protection Mechanisms. PACSafe [23] pro-
vides memory safety by utilizing counter values stored in shadow
memory. PACSafe can be seen as a software-based tagging scheme
that uses ARM PA to authenticate the tags stored in shadow mem-
ory. During every memory access, the counter values are used to
authenticate the PAC value stored in the upper bits of the pointer.
For temporal safety, the counter value is checked and removed
on free to mitigate UAF and double-free attacks. Use-after-return
protection is achieved by an additional compiler pass, transforming
unsafely accessed stack variables into heap objects. PTAuth [20]
introduces temporal memory safety for heap objects by instrument-
ing an object identifier into the allocated memory. This identifier
is used for the PAC computation as the modifier, which mitigates
temporal memory issues like UAF and double-free attacks. Addi-
tionally, HAKC [37] introduces software compartmentalization for
code and data in the kernel using ARM PA and MTE.

9 CONCLUSION

In this paper, we presented Multi-Tag, a probabilistic memory safety
scheme preventing the exploitation of spatial and temporal memory
safety vulnerabilities. At its core, Multi-Tag is a hardware-software
co-design based on tagged memory utilizing multi-granular tags.
In particular, our design leverages a tagged memory architecture
for fine-grained access control on the object level. Combined with
page-granular tags stored in the PTEs, we provide flexible software-
controlled security policies for memory protection. In contrast to
conventional tagged architectures, page-granular tags increase the
available tag space without incurring additional memory overhead
or bus pressure. Additionally, page-granular tags do not increase
the system’s complexity.

To demonstrate the feasibility of our design, we create a proto-
type implementation of Multi-Tag, consisting of a modified gem5
simulator, an extension of the Linux kernel, and a compiler toolchain.
Our compiler toolchain can automatically protect C-programs with-
out user interaction. The security evaluation highlights Multi-Tag’s
strong security guarantees with a geometric mean performance
overhead of 11.7 % for the SPEC CPU2017 benchmark suite and
1.7 % for the nbench-byte benchmarks.
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A ARM EVALUATION METHODOLOGY

For the ARM evaluation, we distinguish between performance
and functional evaluation as there is currently no processor avail-
able that implements the ARMv8.5-A MTE feature. To validate the
functional correctness, we conducted the functional evaluation on
QEMU 6.2, natively supporting the ARM PA and MTE hardware
features. We compiled the benchmarks with our custom toolchain
and successfully executed the instrumented programs on QEMU.

A.1 M1 Performance Evaluation

To measure the performance impact of Multi-Tag on real hard-
ware, we executed several micro- and macrobenchmarks on a 2020
Apple Mac Mini (8 GB) with an ARM-based Apple M1 processor
supporting the PA hardware extension. We ported our toolchain
to compile the benchmarks to Apple macOS 11.2.3. Since the M1
processor only supports the PA instructions but not ARM MTE, we
approximated the performance impact of the MTE instructions. We
further could not integrate the tagging of pages in the kernel for
Multi-Tag, as macOS does not allow to modify the kernel. Hence,
we approximated this using the normal mprotect system call.

ARM MTE Approximation. For the performance evaluation,
we introduce a worst-case approximation of the memory tagging
overhead. Memory tagging requires several steps, for which MTE
uses dedicated instructions. First (i), the pointer needs to be tagged
with a pseudorandom tag. Here, ARM provides the IRG instruction
to create a pseudorandom tag and store it into the register. We esti-
mate this instruction by using a bit operation to add bits into the
TBI field of the pointer. Besides pointer tagging, the corresponding
memory location also needs to be tagged (ii). This is done using
the STG, STZG, ST2G, STZ2G, and STGP instructions. We model these
instructions as regular store instructions to the desired memory
location. Contrary, the LDG instruction used to load the tag (iii)
from a memory location gets estimated using a regular load opera-
tion. ADDG and SUBG are arithmetic instructions (iv) responsible for
pointer arithmetic operations. We approximate these instructions
using typical ALU instructions used for addition and subtraction.
The overhead introduced for the tag checks (v) on each memory
access cannot be reliably estimated. However, we expect that ARM
uses architectural optimizations, such as a dedicated tag cache, to
minimize this overhead. Furthermore, the RNDR system register
used by Multi-Tag to generate a pseudorandom modifier (vi) is not
available on the Apple M1 silicon. We estimate this overhead by
reading from another system register.

Microbenchmarks. To evaluate the performance impact of the
PA instructions and the instructions used for our MTE approxi-
mation, we benchmarked them on the M1 processor. To measure
the execution time of each instruction, we used the internal perfor-
mance counters of the CPU and averaged the timing over 100 M
execution runs. As shown in Table 1, the execution times for signing
and authenticating pointers using the PAC and AUT instructions on
the M1 are identical.

Macrobenchmarks. In addition to the microbenchmark, we
compiled the nbench-byte [36] and SPEC CPU2017 [9] benchmarks
with our custom toolchain and executed the instrumented binaries
on the M1 processor. As the current Multi-Tag prototype only sup-
ports C programs, we excluded all non-C-based SPEC benchmarks.

Table 1: Microbenchmarks of the used architectural security
features. Microbenchmarks measuring the execution time
of PA and estimated MTE instructions on the M1 processor.

Instruction ISA Execution time
PACIA PAC Generation ARMv8.3-A 2.19ns
< PACDA PAC Generation ARMv8.3-A 2.19ns
A~ AUTIA PAC Authentication ARMv38.3-A 2.19ns
AUTDA PAC Authentication ARMv8.3-A 2.19ns
IRG Estimated as ORR ARMv38.5-A 0.31ns
LEE STG Estimated as STR ARMv3.5-A 1.55ns
= LDG Estimated as LDR ARMv38.5-A 1.55ns
ADDG Estimated as ADD  ARMv38.5-A 0.31ns
RNDR Estimated as MRS ARMvS8.5-A 0.32ns

To execute the PA instruction on macOS, the binaries are compiled
for the arm64e ABI. Since we use the provided macOS libc imple-
mentation, the code of the C standard library remains unprotected
for the performance evaluation. We used the identical set of SPEC
benchmarks related work [23] also executed in their performance
measurement on macOS.
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