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ABSTRACT

Misuse of cryptographic APIs remains one of the most common
flaws in Android applications. The complexity of cryptographic
APIs frequently overwhelms developers. This can lead to mistakes
that leak sensitive user data to trivial attacks. Despite herculean
efforts by platform provider Google, countermeasures introduced
so far were not successful in preventing these flaws. Users remain
at risk until an effective systemic mitigation has been found.

In this paper, we propose a practical solution that mitigates
crypto API misuse in compiled Android applications. It enables
users to protect themselves against misuse exploitation until the
research community has identified an effective long-term solution.
CryptoShield consists of generic mitigation procedures for the
most critical crypto API misuse scenarios and an implementation
that autonomously extends protection onto all applications on an
unrooted Android device. Our on-device CryptoShield Agent in-
jects an instrumentation module into application packages, where
it can intercept crypto API calls for detecting misuse and applying
mitigations. Our solution was designed for real-world applicability.
It retains the update flow through Google Play and can be integrated
into existing MDM infrastructure.

As a demonstration of CryptoShield’s efficiency and efficacy,
we conduct automated (1604 apps) and manual (99 apps) analy-
ses on the most popular applications from Google Play, as well as
measurements on synthetic benchmarks. Our solution mitigates
crypto API misuse in 96 % of all vulnerable apps, while retaining full
functionality for 92 % of all apps. On-device instrumentation takes
roughly 11 seconds per application package on average, with mini-
mal impact on package size (5 %) and negligible runtime overhead
(571 ms on average app launches, 101 ms worst-case mitigation
overhead per crypto API call).

CCS CONCEPTS

• Security and privacy→Mobile and wireless security; Soft-
ware and application security.
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1 INTRODUCTION

Several publications over the last years have uncovered that crypto
API misuse causes severe vulnerabilities in a large number of mobile
applications. Android, the most popular mobile operating system,
was shown to be particularly affected. Most recently, Oltrogge et
al. [12] found that 37 % of 15,000 statically analyzed applications
contained mistakes in their code for validating TLS certificates. For a
broader definition of crypto API misuse that considers framework-
provided TLS and crypto primitives1, Rahaman et al. [15] even
reported a misuse prevalence of 91 %.

As a reaction to the first alarming reports a decade ago, platform
provider Google started multiple initiatives to eliminate TLS misuse
and insecure parametrization of cryptographic APIs in general. The
Android platform saw the introduction of improved APIs, reworked
documentation, detailed linter rules, and automated checks for
software uploaded to the Google Play Store. Still, researchers keep
showing that all efforts so far were largely ineffective.

Despite the consequences of widespread crypto API misuse on
data security and the ineffectiveness of official countermeasures,
very few publications have so far attempted to mitigate crypto
API misuse in compiled applications. However, until an effective
long-term solution has been identified and implemented by Google,
third-party solutions are user’s only option for protecting against
the severe security repercussions of crypto API misuse.

Buhov et al. [3] proposed a dynamic approach in the form of a
Cydia Substrate module. However, their exclusive focus on retroac-
tively adding TLS pinning to applications did not acknowledge
the full scope of the problem, which affects a far broader range of
cryptographic APIs. Additionally, the presented module utilized the
obsolete Cydia Substrate hooking framework and required a rooted
device, thereby considerably limiting its real-world applicability. An
important first step towards mitigating other classes of crypto API
misuse was made by Ma et al. [10]. They suggested an approach
based on static analysis and static rewriting of Dalvik Executable
(DEX) files. However, the reliance on static analysis of the control
flow graph limited the practicality of their solution (19 seconds
patch generation per misuse; only the first misuse per method could
be mitigated).

We therefore propose CryptoShield as the first practical on-
device method that mitigates both TLS and crypto primitive misuse
on unmodified Android systems.

Our key contributions are:
• We devise application-agnostic mitigation procedures for 10
common classes of crypto API misuse, including flaws in

1We use the term cryptographic APIs to refer to Java APIs for TLS or crypto primitives.
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the integration of TLS, Ciphers, Password-Based Encryp-
tion (PBE), Key Storage and Cryptographically Secure Ran-
dom Number Generators (CSRNG). Our mitigations operate
transparently to application code and require only runtime
information. Thus, our method does not suffer from the im-
precisions and resource-intensiveness of traditional patching
approaches that employ static analysis of the control flow
graph.

• We propose a self-contained on-device component named
CryptoShield Agent (CSA) for deploying our mitigations
to all applications on a target Android device. An instrumen-
tation module intercepts crypto API calls to detect misuse
and employ our mitigation procedures. Our implementation
works on unrooted Android devices and does not require
any interaction from the user. Application updating through
Google Play remains fully functional. 2

• We demonstrate the efficiency and efficacy of CryptoShield
through automated and manual analyses on the 1604 and
99 most popular free applications, respectively, from the
Google Play store. Additionally, we evaluate CryptoShield’s
detection precision on a synthetic benchmark, provide exact
per-API runtime overheads and carry out a case study that
illustrates how our solution can mitigate critical security
vulnerabilities in two widely-used Android applications.

The remainder of this paper is organized as follows. Section 2
gives an overview of the Android OS and its cryptographic APIs.
Section 3 outlines the addressed problem and the assumed attacker
model. Section 4 describes ourmitigation procedures, before Section
5 covers our prototype implementation, which is subsequently
evaluated in Section 6. We discuss limitations of our system and
plans for future work in Section 7, highlight related publications in
Section 8, and conclude this paper in Section 9.

2 BACKGROUND

In this section, we provide a short overview of cryptographic APIs
in the Android framework, introduce the Android package format,
and outline the OS’s application runtime.

2.1 Android Crypto APIs & Common Misuse

Android applications can take advantage of Java Cryptography
Architecture (JCA) APIs for cryptographic functionality. The most
common pitfalls with JCA APIs are that some default to insecure
configurations, while others completely rely on developers’ choice
of secure parameters. Together with a lack of clarity in the official
documentation, this has led to developers making serious mistakes
in protecting their application’s data. Since the exact ramifications
of the particular misuse classes have already been thoroughly dis-
cussed in previous publications [4, 5, 10], we only provide a very
condensed overview of the relevant points here.

For SSL/TLS (provided by the SSLSocket class), applications
often implement TrustManagers that fail to properly verify the
certificate chain presented by the server or HostnameVerifiers
that don’t confirm correspondence between a server’s hostname
and its presented TLS certificate. Both issues leave applications

2Source code is available at https://extgit.iaik.tugraz.at/fdraschbacher/cryptoshield

vulnerable to Man-In-The-Middle (MITM) attacks that can compro-
mise all transmitted data. In Android 7.0, Google introduced the
Network Security Configuration (NSC) system that allows develop-
ers to conveniently set up certificate pinning and trusted self-signed
certificates. Although this possibility eliminated most needs for cus-
tom TrustManagers or HostnameVerifiers, many applications
remained vulnerable in some form [12]. Additionally, a consider-
able portion of Android applications still use the unprotected HTTP
protocol in their communication with servers [16].

Applications that utilize the Cipher API for data encryption and
decryption were found to commonly use hardcoded or predictable
initialization vectors, which breaks the indistinguishability against
chosen plaintext attacks (IND-CPA) property of symmetric ciphers.
Two ciphertexts can reveal similarities between their original plain
texts. Electronic Code Book (ECB) mode for symmetric block ci-
phers exhibits the same vulnerability to chosen plaintext attacks.
Since ECB is the JCA’s default mode of operation, it can still be
found in a considerable amount of applications.

Password-Based Encryption (PBE) in the JCA can be accessed
through the SecretKeyFactory API. If it is supplied with hardcoded
passwords or reused or predictable salt values, derived keys can
either be compromised immediately or with considerably less effort
than in bruteforce attacks against properly parameterized PBE.

Hardcoded passwords pose a problem to the KeyStore API for
generating and storing cryptographic keys as well. They may lead
to compromitation of all stored keys and thus any related encrypted
data.

Lastly, Java offers a Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG) through the SecureRandom API. An-
droid’s default implementation of the API has had a history of
severe flaws caused by the reuse of seed material that led to the
generation of a predictable sequence of numbers. Although these
flaws have been mitigated at the framework level in recent versions
of the Android OS, vulnerable legacy devices remain in use.

2.2 Android Application Package Format

Android applications are deployed in a special file format called
Android Package (APK). On the outmost layer, it consists of a ZIP
container signed by the application developer to ensure that only
updates from the same author can replace an original installation.
The content of the container follows a particular structure that is
unique to the APK format. One or more Dalvik Executable (DEX)
files store the class structure and program byte code of the applica-
tion. The AndroidManifest.xml file encodes the contract between
the OS and the application, declaring the supported functionality
and required permissions or device capabilities. Native libraries
are organized in dedicated folders within the APK archive. When
obtained from Google Play, an app commonly is installed as a set of
multiple Split APK files. The set comprises a base APK file storing
DEX files, and several additional splits for device-specific resources
or native code. As a key observation for the functionality of our
solution, we point out that APK files reside in public storage on the
Android device after their installation. PackageManager APIs can
be used for locating all APK files for a given package. On Android
versions up to 10, even completely unprivileged applications can ac-
cess installed APK files, i.e. no permission is needed at all. Starting
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from Android 11, a suitable <queries> element in the application
manifest or the QUERY_ALL_PACKAGES permission is required.

2.3 Android Runtime

Android applications are typically written in Java or Kotlin and
compiled into architecture-independent Dalvik bytecode. In cur-
rent Android versions, the Android Runtime (ART) takes over the
responsibility of executing this bytecode on the device. Applica-
tions may additionally implement parts of their functionality in
native shared libraries that are dynamically linked into the runtime
process. It is worth noting that shared libraries are in a position
that allows them to manipulate the internal data structures of the
ART runtime.

3 PROBLEM STATEMENT, CHALLENGES, AND

THREAT MODEL

In this section, we state the problem that needs to be addressed,
derive a set of core goals, highlight the challenges involved in
finding a solution and show how CryptoShield was designed to
overcome them.

3.1 Problem Statement

We seek to provide a mitigation for crypto API misuse that enables
users to protect themselves until the research community has iden-
tified an effective long-term solution for this widespread problem.
Our goal is to cover as many classes of critical crypto misuse as fea-
sible without breaking the functionality of target applications. We
envision deployment by security-conscious individuals, as well as
corporate organizations that wish to ensure data confidentiality on
their complete fleet of Android devices no matter what applications
employees utilize.

The core design goals of our solution are thus:

3.1.1 Practicality. We strive to propose a design that seamlessly
integrates into the everyday workflows of real-world Android users.

3.1.2 User-Centricity. Our solution is intended to put users in con-
trol of application security. They no longer have to rely on devel-
opers properly securing their applications.

3.1.3 Compatibility. We consider compatibility with as many third-
party applications as possible a crucial feature of a workable solu-
tion.

3.2 Attacker Model & Crypto Rules

Our attacker model assumes a malicious party that tries to gain
access to a vulnerable application’s stored or transmitted data. To
this end, the attacker attempts to take advantage of vulnerabilities
caused by the target application’smisuse of cryptographic APIs. The
modeled mode of attack depends on the specific crypto API misuse
that is being exploited. For vulnerabilities in TLS host authentica-
tion or unprotected HTTP connections, the attacker is assumed to
hold a Man-In-The-Middle (MITM) position somewhere between
the client and server that enables the interception and modification
of network traffic. Attacks against improper parametrization of
cryptographic primitives are assumed to be carried out through a
malicious application on the same device. It is worth noting that

vulnerabilities in the implementations of the cryptographic APIs
that can be exploited irrespective of their proper employment are
considered out of scope. Additionally, we assume vulnerable appli-
cations to be benign in general, i.e. not actively trying to evade the
mitigations put in place by our solution.

3.2.1 Crypto Rules. We define the vulnerabilities addressed in this
paper as violations of well-established rules that consumers have
to respect for ensuring the security of specific cryptographic APIs.
As the basis for our rules, we use the comprehensive and recent
set collected by Rahaman et al. [15], which we further refine for
the scenario of vulnerability mitigation. We start this refinement
process by ensuring the high level of precision needed for mitigat-
ing detected vulnerabilities while keeping negative side effects as
rare as possible. Specifically, we modify our rules to only disallow
non-cryptographic random number generators when their output
is used in cryptographic operations. Similarly, we believe there
are legitimate use cases for specifying custom TLS TrustManagers
and HostnameVerifiers, so we strive to only mitigate cases where
the custom implementations introduce vulnerabilities. Lastly, our
experiments indicated that insecure cryptographic hash functions
and hardcoded keys are so frequently used in communication with
servers that mitigating them breaks most affected apps. Consequen-
tially, we remove these two rules from our set. In their place, we
introduce new rules concerned with reuse of nonce values, which
has the same security repercussions as hardcoded values. The rules
addressed by our mitigations are thus:

R01: Don’t use unprotected HTTP connections.
R02: Don’t verify TLS connections in insecure ways.
R03: Don’t use predictable passwords for key stores.
R04: Don’t use predictable passwords for key derivations.
R05: Don’t use ECB mode for symmetric ciphers.
R06: Don’t use predictable IVs for symmetric ciphers.
R07: Don’t reuse IVs for symmetric ciphers.
R08: Don’t use predictable salt values for key derivations.
R09: Don’t reuse salt values for key derivations.
R10: Don’t use predictable CSRNG seeds.

We use the term predictable to refer to values that were hardcoded
or derived from an improper source of randomness. Reused values
may have been securely generated but are used as a nonce multiple
times, violating their uniqueness requirement.

3.2.2 Severity of Vulnerabilities. Ourmitigations only address crypto
misuse vulnerabilities of high or medium severity. For vulnerabili-
ties that are hard to exploit or only offer limited gain for attackers,
we argue that the potential of side effects introduced by mitigations
(cf. Subsection 4.1) voids the small gain in security.

Severity ratings follow the reasoning by Rahaman et al. [15]
that is guided by the difficulty and gain of exploitation. HTTP con-
nections (R01) lack any form of protection for transferred data,
so are trivially rated highly severe. Vulnerabilities in TLS connec-
tions (R02) immediately void all security properties of the protocol,
so must be considered highly severe as well. Similarly, using pre-
dictable passwords (R03, R04) voids the confidentiality property
of all operations the derived or stored keys are used for. ECB mode
(R05) and predictable (R06, R08) or reused nonces (R07, R09)
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considerably weaken the confidentiality properties of cipher oper-
ations, so are rated medium severity. Lastly, predictable CSPRNG
seeds (R10) have a history of causing critical vulnerabilities in ap-
plications running on legacy Android systems [8]. Because recent
Android versions are not affected, we assign medium severity.

3.3 Challenges

We identify the following key challenges to accomplishing the goals
stated above.

3.3.1 Precision. Before a certain API misuse can be mitigated, it
has to be detected in the first place. The precision of this detection
is of utmost importance to the mitigation, since we do not want to
modify proper use of crypto APIs by forcefully applying our miti-
gation, nor can we tolerate missing legitimate misuse and leaving
it unmitigated. Most established methods for crypto API detection
rely on static analysis of the control flow graph of an application.
However, this method has proven to be imprecise in real-world
scenarios [7, 13, 14], suffering from a high degree of false positives
due to unreachable code and false negatives due to dynamically
loaded code, complex data dependencies or obfuscation. To satisfy
the requirements on precision, our solution employs dynamic run-
time instrumentation. This approach enables us to guarantee that
every crypto API call executed at runtime is detected and can be
analyzed based on the concrete parameters passed from application
code. In case of a detected misuse, parameters can be corrected
at runtime, with no noticeable performance penalty. Additionally,
relying on runtime instrumentation allows our solution to operate
on-device in a self-contained manner, improving availability and
privacy by not relying on any external server component.

3.3.2 Transparency to application code. All mitigations have to
operate largely transparently to application code so that side effects
on the functionality of affected programs can be avoided as much
as possible. This is a particularly difficult task for cases where an
additional parameter has to be transported between two separate
API calls from code that has not provisioned for this possibility
originally. CryptoShield solves this problem by taking advantage
of a series of general observations about the JCA and its typical use
in Android applications.

3.3.3 Practicality. We introduce our design as an emergency aid
against the security vulnerabilities resulting from crypto API mis-
use. As such, we want it to be accessible and deployable to as large
an audience as possible. Since maintaining a custom OS for the
fragmented Android device landscape is not realistic and average
Android users cannot be expected to be willing to flash a custom
operating system, our concept needs to operate on stock firmware.
Additionally, we consider rooting a device for deploying crypto
API mitigation detrimental to the overall security. To surmount
this challenge, our implementation employs a novel combination
of performant package-level instrumentation and the Android De-
vicePolicyManager API.

4 MITIGATING CRYPTO API MISUSE

Conceptually, cryptoAPImisuse can be described as amisparametriza-
tion of crypto APIs. For the crypto-savvy developer of a new appli-
cation, avoiding crypto API misuse is usually as simple as choosing

Mitigation Shim

Change URL to https://insecure.com

Android Framework

Establish HTTPS connection to insecure.com

Application Code

URL.openConnection("http://insecure.com")

Figure 1: Our mitigations operate as shims between applica-

tion code and the Android framework

appropriate parameters for all employed crypto APIs. However,
once such a misparametrization has found its way into a compiled
application, its mitigation is a much more complex task. Retrofitted
mitigations have to operate transparently to existing application
code, so that the offending application’s functionality remains in-
tact. To this end, all our mitigations operate as transparent shims
between application code and the Android framework, as illustrated
in Figure 1. It is also worth noting that modern applications are
usually not solitary pieces of software, but part of a much larger
ecosystem consisting of web services and client applications that
operate together. Our mitigations must fit into this bigger picture
as seamlessly as possible, i.e. fix crypto API misuse in all parts of
code executed by the client locally, while retaining web service
interaction functionality.

4.1 General Observations and Strategies

Before we describe our mitigations for specific crypto API misuse
cases, we highlight a series of general observations and strategies
that guide the design of our mitigation procedures.

4.1.1 Correspondence of Operations. First, we highlight the basic
observation that many cryptographic operations are carried out
in ordered pairs, where the second operation either reverses, repli-
cates or validates the first operation. This correspondence of two
operations within the distributed ecosystem of a modern applica-
tion yields three possible scenarios. It is worth pointing out that
neither dynamic nor static analysis methods are capable of reli-
ably foreseeing which of these scenarios will occur during further
program execution.

In scenario I , both of the corresponding operations are carried
out locally in the application that is subject to the mitigations. In
this case, we can trivially ensure that the mitigations applied during
the first operation are correctly reversed or replicated in the second.
An example would be changing a cipher mode of operation for
both encryption and decryption of a local file. In scenario II , the
first of the corresponding operations is carried out in an external
part of the ecosystem, while the second is carried out locally in
the application that is subject to our mitigations. For covering this
scenario, the second operation needs a way to know the origin
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of the data that is to be processed, so that the mitigation is only
applied if local data is processed. This can be accomplished e.g. by
introducing an additional communication channel between local
corresponding operations. Alternatively, for operations that have
clearly defined failure cases, we can try applying our mitigations
and fall back to an unmitigated operation if a failure is detected.
In scenario III , the first operation is carried out locally, while the
second is not. This case is problematic, since the external processing
entity will not have any knowledge about the mitigations applied
in the first, local operation. Still, due to the inability to foresee the
later destination of the output from the local operation, mitigations
have to be carried out unconditionally in the first operation. In
Subsection 6.2, we demonstrate that this scenario is reasonably rare
in popular real-world applications for us to consider it an acceptable
failure case of our solution in line with our goal of establishing an
emergency aid.

4.1.2 Operation Context & Context Transfer. Even for purely lo-
cally corresponding operations, a communication channel between
two corresponding operations is required. It has to supply the sec-
ond operation with the context needed for reversing or replicating
the mitigations applied in the first operation. For some mitigations,
this context is specific to a particular execution, so it cannot be
stored e.g. in a global variable. As an example, consider initializa-
tion vector reuse in a symmetric cipher encryption operation. As
part of the mitigation, a fresh IV has to be generated to replace
the insecure value supplied from application code. The same gen-
erated value later also has to be made available to the decryption
operation of the resulting ciphertext. For our mitigations, we solve
this problem by leveraging the output of the first operation as a
communication channel to the corresponding second operation. In
the IV reuse case described above, the IV generated by our miti-
gations is prepended to the resulting ciphertext and extracted at
the corresponding decryption mitigation. Although this procedure
changes the output size of the first operation, it still is transparent
to most applications. This is because the Java Cryptography Archi-
tecture exposes functions for application code to query the output
size of cryptographic operations. Due to the general opaqueness of
cryptographic operations to the average application developer, the
vast majority of Android applications uses these functions instead
of hardcoding buffer sizes.

4.1.3 Introducing Fresh Entropy. Mitigations for misuse scenarios
that involve an insecure key or password require the introduction
of fresh entropy. To this end, our mitigations take advantage of the
Android Keystore for generating and storing a fresh key we call
key derivation key (KDK). Because the Android Keystore is limited
to asymmetric cryptography on some devices, we use the KDK and
the insecure key for deriving a fresh key that can be used for any
cipher. This solution ensures that different installations of the same
application always use unique keys.

4.1.4 Reuse Across Launches. Multiple covered vulnerabilities are
concernedwith reuse of nonces. For efficiently tracking used nonces,
our mitigations maintain a simple nonce database.

4.1.5 Hardcoded Keys or Passwords. Our solution extracts hard-
coded strings, character arrays and byte arrays from the target
application package during instrumentation. This procedure can

be implemented as a lightweight extraction algorithm that simply
parses DEX data structures. It does not need any control flow infor-
mation. For further reducing the runtime and memory overheads,
the procedure is restricted to values that follow the allowed or typ-
ical format of passwords or keys. For DEX files dynamically loaded
during execution, data extraction is performed at runtime.

4.1.6 Predictability. In addition to values that are hardcoded, pre-
dictability can also be caused by employing randomness sources
other than those that are cryptographically secure (SecureRandom,
/dev/(u)random) for cryptographic operations. For identifying this
problem, our mitigations maintain a cache of the most recent out-
put of the Java Random API, which is particularly convenient to use,
but not cryptographically secure.

4.2 Specific mitigations

In the following, we describe the detailed procedures for mitigat-
ing misuse of specific cryptographic APIs. For all mitigations, we
assume the ability to instrument (or intercept) Java methods of our
choice.

4.2.1 SSL/TLS. For mitigating flaws in TLS use (R02), we focus
on the SSLSocket interface. While only a minority of applications
directly access this low-level API, it forms the backbone of the vast
majority of HTTPS networking libraries, which means they can all
be covered through this single point of interception. Our mitigation
intercepts the creation of SSLSocket instances and returns a wrap-
per around the originally created object. When the application code
signals the beginning of application-level data transfer through
calls to the getInputStream() or getOutputStream() methods,
our mitigation queries a configurable certificate trust policy for de-
termining the trustworthiness of the connection. In the event of a
negative assessment, we immediately abort the connection, without
ever having sent any application-level data over the compromised
channel.

By performing the certificate check immediately before the tar-
get program starts sending application data, we know that the
former considers the connection secure. Combined with the infor-
mation about the legitimacy of the connection, we can take this
knowledge as a basis for deducing whether an application uses
insecure certificate validation logic.

The default certificate trust policy of our prototype implemen-
tation is based on the Trust-On-First-Use (TOFU) principle. When
the first connection to a new host is made, its TLS certificate is
cached by our policy code. Subsequent connections are then only
allowed if the certificate presented by the TLS host is identical to
the one encountered previously. Our prototype additionally sup-
ports a more complex certificate policy that builds on a notary web
service. This web service takes the position of a certificate oracle,
serving the legitimate TLS certificate for any host it is queried for.
The certificate trust policy contacts the notary web service for any
new host or certificate mismatch to determine whether its own
connection to the target host is subject to an ongoing MITM attack.
It is worth pointing out that both currently implemented certificate
trust policies are only prototypes that illustrate the flexible nature
of supported policies. Development of a more sophisticated policy
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that fully considers privacy and reliability aspects is deemed out of
scope for this work.

4.2.2 Ciphers. We intercept the creation of Cipher instances to
return a wrapper object backed by a custom security provider. Once
the wrapper has received all required parameters from application
code, it enforces the rules established in Subsection 3.2. Implicit
or explicit uses of ECB mode for symmetric block ciphers (R05)
are automatically upgraded to CBC mode. Whenever a predictable
(R06) or reused IV (R07) is identified, a fresh value is automati-
cally generated and passed to the wrapped primitive instead. All
parameters changed as part of our mitigations are encoded in a
ciphertext prefix so they are later available in the corresponding
decryption operation. Figure 4 in Appendix A displays a simplified
mitigation flow for implicit ECBmode using a ciphertext prefix. Our
mitigation also overrides the Cipher.getOutputSize() method
so that applications that pre-allocate their buffers can correctly
accommodate the prefix.

4.2.3 Password-Based Encryption. Mitigations for PBE are inte-
grated into the custom security provider described above.Whenever
a PBE key is passed to the Cipher API, its parametrization is checked
for rule violations. For PBE keys that are passed to the Cipher API in
serialized form, our mitigation code keeps a map between recently
serialized PBE keys and the corresponding parameters that were
used in their creation. If a predictable password (R04) is detected,
a replacement password is derived from a key generated in the
Android Keystore. Salt reuses (R09) detected through the nonce
database or predictable salt values (R08) are mitigated by gener-
ating a fresh replacement value. All modified PBE parameters are
encoded in the prefix of any ciphertext generated using the affected
PBE key. While replacement salt values are completely embedded
in the prefix, mitigations on other parameters are only encoded as
flags interpreted in the corresponding decryption operation.

4.2.4 Random Number Generation. Our mitigation code installs
a custom CSPRNG provider when an instrumented application
launches. In the event of a predictable seed value (R10) passed from
application code, we replace the explicit seeding with randomness
obtained from the default system-provided entropy source.

4.2.5 HTTP. Most applications establish HTTP connections us-
ing either the HttpUrlConnection API or the open-source OkHttp
library. Our mitigation intercepts calls to both of these implemen-
tations to check if a target server is contacted via the plain HTTP
protocol (R01). If this is the case, the connection is automatically
upgraded to HTTPS, i.e. an attempt is made to perform a TLS hand-
shake with port 443 of the target host. If this handshake fails, our
mitigation code falls back to the original unprotected HTTP url.
We maintain a cache of hosts that were reachable over HTTPS in
the past to thwart downgrade attacks that mask the availability
of HTTPS on a server. A more sophisticated implementation may
employ a pre-compiled list such as the one offered by DuckDuckGo
Smarter Encryption 3.

4.2.6 KeyStore. When a predictable password is used for key stor-
age (R03), a replacement password is derived by adding entropy
3DuckDuckGo Smarter Encryption: https://help.duckduckgo.com/duckduckgo-help-
pages/privacy/smarter-encryption/

from a key generated in the Android Keystore. For all load opera-
tions on key stores, our mitigation code tries the replacement key
(derived in the same way as for store creation) and falls back to the
key supplied from application code upon failure.

5 PROTOTYPE IMPLEMENTATION

The CryptoShield prototype demonstrates how our mitigations
can augment the existing security architecture and user experience
of the unmodified Android platform. The implementation consists
of two core modules, described in the following and illustrated in
Figure 2. In total, our prototype implementation consists of over
25.000 custom lines of code.

The first part of our prototype is comprised of an instrumenta-
tion module that implements the individual mitigations described
in Subsection 4.2. Once injected into a target application, the instru-
mentation module sits as a mitigation shim between application
code and framework calls. Parameters passed from application code
are inspected and collected for monitoring purposes. If any of the
rules established in Subsubsection 3.2.1 is violated, parametriza-
tions are upgraded transparently to application code following the
procedures put forth in Subsection 4.2.

The second part of our prototype is an Android application
we call CryptoShield Agent (CSA). The CSA offers a convenient
solution for automatically injecting our instrumentation module
into all applications installed on an unrooted Android device. It
consists of a daemon service that starts immediately after booting
the OS and a user interface that allows managing instrumented
applications, as well as inspecting detailed crypto API usage reports.
By listening for installation events broadcast by the system, the
background service can automatically generate an instrumented
version of every application the user installs or updates on the
device.

In the following, we highlight key aspects of our prototype im-
plementation.

5.1 Instrumenting Applications on Unrooted

Android Devices

Instrumenting running application processes on Android requires
root privileges, which counteracts the goals established in Subsec-
tion 3.1. Instead of directly manipulating processes, our prototype
instruments application packages. It takes advantage of the ob-
servation that the APK files of any installed application remain
stored on the device and can be accessed by other processes. This
opens the possibility for the CSA to generate modified copies of
arbitrary installed application packages. Our instrumentation rou-
tine unpacks the APK files to add a DEX file and a native library.
The modified APK files are then compressed and signed using a
freshly generated signing certificate. A cache ensures that applica-
tions originally signed with the same signing certificate will retain
this property across instrumentation. Once the instrumented APK
files are installed and the app is launched on a device, the injected
native library manipulates data structures in the ART runtime to
reroute crypto API calls to the injected DEX file. Our mitigation
code in the injected DEX file can analyze and modify all passed
parameters before it invokes the original implementation of the
intercepted method. At a high level, this instrumentation approach
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Figure 2: The two main components of our prototype implementation: Instrumentation Module and CryptoShield Agent

was first presented by Styp-Rekowsky et al. [20]. Our prototype
uses a custom implementation on top of low-level primitives from
the open-source SandHook library 4 that lazily instruments meth-
ods on demand as their defining classes are loaded into runtime. It
supports modern APK features such as Multi DEX or Split APKs,
and all existing APK signature schemes.

5.2 Updating Instrumented Applications

through Google Play

Modifying an APK package and resigning it with a different cer-
tificate usually breaks the common update route through Google
Play. This is because all updates will still be signed with the orig-
inal signing certificate and thus cannot be installed on top of the
instrumented variant. As a remedy to this problem, our prototype
changes the package name of every instrumented application, so
that it can be installed alongside the original version. The orig-
inal version is then disabled, so that it remains installed on the
device but can no longer be launched. Whenever an update to an
application is available, the user can install it from Google Play.
The CSA will then automatically pick up the new version of the
original application and produce a corresponding update for the
instrumented variant.

5.3 Changing Package Names of Instrumented

Applications

Manipulating the package name of a compiled Android application
requires additional changes to the application package. Crypto-
Shield intercepts all framework methods where the package name
is passed between application code and the outside world (e.g. in
Intents or HTTP headers, even when accessed through Reflection
APIs). Beyond the package name itself, all authorities of Content-
Providers, custom permissions and account type identifiers are
changed as well, so that they do not interfere with the respective

4SandHook Android ART Hook: https://github.com/asLody/SandHook

components of the original version. Although our implementation
goes to great lengths to cover as many scenarios as possible, a few
issues remain in cases where it is unclear whether the original or
modified package name yields correct behavior. For example, the
original package name is sometimes used for fetching data from
a proprietary configuration table in app resources. However, as
detailed in Subsection 6.2, only a small number of real-world ap-
plications are affected by these issues. It is also worth pointing out
that any issues caused by this tradeoff between practicality and
application compatibility only affect our prototype implementation
and are unrelated to the crypto API misuse mitigations themselves.

5.4 Installing and Disabling Applications

without User Interaction

To install instrumented applications without user interaction, the
CSA takes advantage of Android’s DevicePolicyManager API. By
implementing a DeviceAdminReceiver that is configured as the
device owner, the CSA is granted access to the PackageInstaller
API. Via this interface, it can install and uninstall applications, both
in the form of a single APK file or multiple Split APKs supplied to a
single installation session. Additionally, the DevicePolicyManager
API permits the disabling of installed applications. It is crucial to
note that the device owner role grants CryptoShield precisely the
privileges it needs for autonomous operation, while allowing it to
seamlessly integrate into the security architecture of the Android
OS. This represents a key advantage over solutions that require root
access on the device, which effectively circumvents the system’s
security foundations, with potentially disastrous consequences for
inexperienced users. In order to streamline the process of installing
and configuring the CSA application as a device owner, our proto-
type includes an easy-to-use companion tool for desktop computers.
Once the Android device is connected to the computer via a USB
cable, our software asks the user for explicit consent to the start
of the setup procedure. A single button click then automatically
installs and configures the CryptoShield system.
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5.5 Support for MDM Deployment

As the CryptoShield Agent is built upon Android’s DevicePoli-
cyManager APIs, it can easily be integrated into corporate Mobile
Device Management (MDM) solutions. CryptoShield thus repre-
sents a novel device management policy that can be rolled out to
all devices in a company’s device fleet for offering full application
choice to users without significantly compromising data security.
We envision a system that can be fully configured by the MDM
administrator. Configuration options could include the enforced
crypto rules and additional rule-specific adjustments. For example,
it would be possible to deploy custom certificate validation policies
for TLS or configure a custom HTTPS upgrade host list.

5.6 Crypto API Call Monitoring

In addition to mitigating crypto API misuse, our prototype also
implements functionality for monitoring crypto API invocations
from third-party applications. This functionality covers the same
crypto APIs as our mitigations, i.e. TLS, Cipher, PBE, CSPRNG,
HTTP and KeyStore APIs. We elect to restrict monitoring to this
set of APIs for consistency with our mitigations (which are the
main focus of CryptoShield), but further expansion is feasible.
Monitoring is designed to provide users with real-time feedback
on the vulnerabilities that CryptoShield protects them from. The
instrumentation module inside instrumented applications collects
relevant calls and the respective parametrizations. It then commu-
nicates all findings to the CSA. Through a monitor UI, the user can
inspect all reported crypto API use and misuse.

5.7 Fallback Mechanism

As described in 4.1, although our mitigations are designed to retain
functionality as much as possible, we anticipate that they might
lead to malfunction in a small number of instrumented apps. To
accommodate for this possibility, our prototype implements a fall-
back mechanism: Upon noticing malfunction, a user may manually
toggle CryptoShield’s mitigations for a specific application. We
have deliberately made disabling mitigations an explicit user choice,
because it means that users will be susceptible to attacks exploiting
crypto misuse in affected applications. Still, CryptoShield’s moni-
toring functionality allows users to track crypto API invocations
while mitigations are disabled, and issues alerts of concrete misuses
that have been uncovered.

6 EVALUATION

The evaluation in this section is comprised of five parts. In an au-
tomated large-scale analysis, we first demonstrate our prototype’s
efficacy on 1604 applications. Secondly, through a manual exami-
nation on the 99 most popular free applications from Google Play,
we validate that applications are still functional and usable after in-
stalling CryptoShield’s mitigations. Moreover, we provide per-API
call runtime overhead measurements and complement the analyses
on real-world applications with results from a synthetic benchmark
that enables comparison to static detection-only tools. Lastly, we
present a detailed case study on how our mitigations fix critical
security vulnerabilities in two widely-used applications.

6.1 Automated analysis

To obtain a quantitative measure for the effectiveness of our mitiga-
tions, we ran an automated security analysis on 1604 applications
before and after injecting our instrumentation module. We based
our automated analysis testbed on the CryLogger crypto API mis-
use detector by Piccolboni et al. [13], which we adapted to our
crypto rules and augmented with concepts from Sounthiraraj et
al. [18] for improved detection of TLS issues. CryLogger runs ap-
plications in an Android emulator driven by random user input
(here: 10k input events ≈ 23 % line, 33 % class coverage). Its custom
emulator image logs calls to various crypto APIs. In our testbed,
network connections were additionally subjected to a MITM attack
by rerouting the emulator’s network traffic through a MITM proxy
server that logs all successful TLS connections 5. All collected logs
were then scanned for violations of the rules stated in Subsection
3.2. If a particular misuse was logged while running an original
application, but not in the instrumented version, we consider this
a successful mitigation. Building our automated evaluation on the
CryLogger tool by Piccolboni et al. enables comparison to an inde-
pendent baseline for the vulnerable applications in our sample set
and their respective violations of our crypto API rules.

For executing this analysis, we used a bare-metal-virtualized
Ubuntu 20.04 LTS system with 128 CPU cores and 128 GB of RAM,
backed by a Dual AMD EPYC 7502 CPU with 1 TB of RAM. This
setup allowed us to run our analyses on 6 virtual devices in parallel.
Since the SandHook library utilized in our prototype implementa-
tion does not support the x86 instruction set, we ran the automated
analysis on a slightly modified version that intercepts method calls
by rerouting invocations inside the DEX code ahead of execution.
The mitigation procedures inside the instrumentation module were
not changed, so that the effectiveness measured here directly trans-
lates to that of the implementation described in Section 5. The set
of 1604 tested applications consists of the free top-100 for 33 cat-
egories on Google Play as of January 2022, cleared from entries
incompatible with either the x86 instruction set or the Android
emulator. All 1604 applications in our set use some cryptographic
API, while 388 applications violate some of our crypto rules.

In total, CryptoShield was able to mitigate all vulnerabilities
induced by rule violations (as identified by our testbed) in 348 appli-
cations, which corresponds to 89.7 % of the vulnerable subset. Some
vulnerabilities were mitigated in 372 applications (95.9 % of the
vulnerable subset). The most commonly mitigated vulnerabilities
concerned violations of R02 (164 apps), R01 (75 apps) and R06 (66
apps). Violations against multiple rules were detected and mitigated
in 94 apps. Although CryptoShield was able to produce installable
packages for all tested samples, 105 of all instrumented applications
(6.5 %) crashed at some point during execution.

40 applications were still vulnerable after instrumentation due
to plain HTTP communication or insecure TLS connections from
native code. As discussed in Subsection 7.5, our prototype does not
cover native code, although obfuscated code or invocations of Java
code through Reflection APIs or JNI are supported.

Detailed statistics for individual application categories can be
obtained from Figure 3.

5CryptoShield’s notary web service certificate trust policy (see Section 4.2.1) was
used in the automated analysis
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Figure 3: Automated analysis: Portions of vulnerable apps per category that could be partly or fully fixed

6.2 Manual analysis

Automated analysis is incapable of ensuring that applications re-
tain their original functionality across our instrumentations and
mitigations. Therefore, we manually collected additional compati-
bility and performance statistics for a smaller set of 99 applications
on a physical Google Pixel 3 device running Android 11 (Build
RQ3A.210605.005). As part of this analysis, every application was
executed for two runs of 3 minutes, once in the original version and
once in the instrumented version. In each run, a human operator
navigated the application UI, simulating a typical end user exploring
the software’s functionality. The test set of 99 applications was ob-
tained from Google Play in April 2022. It consists of the three most
popular free packages for 33 different categories. For applications
that required a paid membership or particular hardware peripheral,
we picked a replacement application that immediately followed in
the ranking. If a free user account was required, registration was
completed before the timer was started.

6.2.1 Deployment Speed. Our prototype completed instrumenta-
tion of an application package in 10.7 seconds on average. Over
all data collected, we can observe a strong correlation between the
original APK size and the instrumentation duration (𝜌 = 0.70). This
observation aligns well with the fact that the most computationally
demanding task for our instrumentation routine is the compression
and signing of the APK file. The distribution of instrumentation
time across our test set is documented in Appendix B.

6.2.2 Package Size. The relative package size change caused by
CryptoShield’s instrumentation averaged at 5 %. It is worth point-
ing out that the size of the instrumentation module injected into all
APK files was identical. The variance in instrumented APK size over-
head results from our instrumentation routine’s ZIP compression
implementation that differs from the one found in official Android
build tools. For several applications, the overall APK size even de-
creased during instrumentation. The distribution of absolute APK
size changes across the test set is detailed in Appendix B.

6.2.3 Compatibility. From manually exploring the user interfaces
of instrumented applications, we can report that 91.9 % of applica-
tions in our test set retained their original functionality. Although
the instrumentation routine produced valid APK files for all tested

applications, some showed signs of malfunction during execution.
Through additional reverse engineering, we were able to trace back
most of these cases to issues with package name modifications (3
applications), or signature checks that were intended to prevent ma-
licious manipulation of the APK (3 applications). Two instrumented
programs were no longer functional due to incompatibilities with
CryptoShield’s mitigation procedures (cipher mitigations broke
server communication).

Given the non-exhaustive nature of manual UI exploration, the
compatibility rate discussed here represents an upper bound. Still,
we believe that manual exploration is the most accurate method for
obtaining a representative compatibility measure in the absence of
validation models that could be used for automated exploration.

6.2.4 Launch Overhead. CryptoShield’s instrumentation module
and mitigations are initialised during application launch. As the
single most significant addition of instructions, this procedure has
the potential to harm the user experience of instrumented appli-
cations. For our manual analysis, we therefore timed application
launch time before and after instrumentation. We found the average
launch time overhead of instrumented applications to be 571 ms,
which is hardly noticeable to end-users. Appendix B documents the
distribution of absolute launch time overhead across the test set.

6.3 Per-API Runtime Overhead

Intercepting crypto API methods, inspecting arguments and ap-
plying mitigations inevitably has some impact on their runtime
performance. To obtain a measure for the concrete overhead for
each affected crypto API method, we timed their execution (1) in
an uninstrumented app, (2) while only monitoring is enabled and
(3) while only mitigations are enabled. For each API, measurements
were collected for the most expensive use case and mitigation. For
each measurement, we calculated the average from at least 1000
samples.

Our measurements indicate that the worst-case runtime over-
head of our mitigations is about 101 ms (Cipher API calls where a
key has to be derived via the hardware-backed AndroidKeyStore).
Measurement details can be found in Appendix C.

Please note that an average per-app runtime overhead cannot
sensibly be provided for CryptoShield. Any such value calculated
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Cases C.Shield C.Guard
Category TP TN FP FN FP FN

InsecureTrustManager (R02) 8 0 0 0 0 8
InsecureHostnameVerifier (R02) 4 1 0 0 1 1
EcbCrypto (R05) 7 2 0 0 1 1
Http (R01) 7 3 0 0 0 1
NoHostnameVerifier (R02) 2 0 0 0 0 1
PredictableIV (R06) 10 2 0 0 1 1
PredictableKeyStorePW (R03) 9 3 0 0 1 1
PredictablePBEPW (R04) 11 2 0 0 1 2
PredictableSeed (R10) 16 3 0 7 2 6
ReusedIV (R07) 9 2 0 0 0 9
ReusedSalt (R09) 8 2 0 0 0 8
PredictableSalt (R08) 11 3 0 6 1 1

Total 102 23 0 13 8 40
Table 1: Synthetic Benchmark test cases and results per mis-

use category. True Positive and True Negative indicate test

case ground truth. False Positive and False Negative indi-

cate errors in CryptoShield’s and CryptoGuard’s detections.

Corresponding crypto rules in braces.

over the entire app lifecycle is entirely dependant on user behavior
(how often intercepted methods are triggered).

6.4 Synthetic Benchmark and Comparison to

Static Detectors

Although our manual and automated analyses use large datasets
of popular real-world applications, they do not cover all our ad-
dressed crypto misuses. To provide a more complete picture of
CryptoShield’s mitigation robustness and to facilitate comparing
its detection precision with state-of-the-art detection-only tools, we
ran CryptoShield against a comprehensive synthetic benchmark.
To the best of our knowledge, all existing crypto API benchmarks
are designed for traditional static misuse detectors. In their original
form, they are thus unsuitable for evaluating CryptoShield’s dy-
namic mitigation capabilities. We therefore selected the CryptoAPI-
Bench [1] benchmark as the best match for our misuse rules, and
adapted it to our setting. Adaptations ensure executability of all test
cases, and introduce checks for retained functionality. For example,
one of these checks asserts that encryption followed by decryp-
tion yields the original plaintext even if CryptoShield replaces
the key to mitigate its predictability. Furthermore, we added 29
test cases that closely follow the structure of existing cases, but
fill CryptoAPI-Bench’s gaps in coverage of misuse rules R07 and
R09. Lastly, we introduced new test cases for covering Crypto API
invocations through Java Reflection APIs (13) and complex TLS
certificate validation issues (3). Test cases not related to Crypto-
Shield’s rules were removed. In total, our benchmark comprises
125 test cases, of which 102 contain misuse and 23 were designed to
catch false positives. For quantitatively evaluating CryptoShield’s
detection capabilities against a state-of-the-art static detection-only
tool, we also analysed the same benchmark with CryptoGuard [15].

Benchmark details and results for both CryptoShield and Cryp-
toGuard can be found in Table 1. CryptoShield’s detection cor-
rectly identified 89 of the misuse cases (false negative rate: 13 %)

and did not produce any false positives. All missed misuses were
caused by hardcoded CSPRNG seeds (7) or PBE salts (6). Most is-
sues can be traced back to a limitation in our prototype, which for
efficiency reasons only considers hardcoded byte arrays of at least
4 bytes. This may be addressed in future work. For all test cases
where CryptoShield detected a misuse, the consistency checks
indicated that mitigation procedures retained existing functionality.

While CryptoGuard performed slightly better than Crypto-
Shield on hardcoded values, it had higher false positive (9 cases ≈
36 %) and false negative (41 cases ≈ 37 %) rates overall. The static
detector was unable to identify insecure TLS certificate validation
or nonce reuse at all. It is worth noting that CryptoAPI-Bench
was designed for evaluating static misuse detectors, so some of its
test case variations specifically challenge static detectors, but look
identical to CryptoShield. A benchmark for objectively compar-
ing static and dynamic crypto API misuse detectors has not been
proposed yet. Dynamic detectors usually suffer from poor code cov-
erage. However, for dynamicmitigation, code coverage is irrelevant,
as long as we can ensure that all executed misuse is mitigated (see
Section 6.1). CryptoShield is designed for preventing exploitation
of crypto API misuse, not for generating an extensive list of misuse
hidden in code bases.

Additional benchmark implementation details can be found in
Appendix D.

6.5 Case Studies

To demonstrate how CryptoShield prevents leakage of sensitive
user data in real-world scenarios, we conduct case studies on two
popular applications that contain critical vulnerabilities caused by
crypto API misuse. Case study samples were chosen based on 1)
number of installations, hence real-world representativeness, 2)
illustrative quality, i.e. suitability for demonstrating causes and
consequences of crypto API misuse, and 3) sensitivity of processed
data. Displayed vulnerabilities were responsibly disclosed to the
respective vendors.

6.5.1 Banggood. Banggood is a Chinese online retailer whose
Android app has been downloaded more than 10 million times
from Google Play as of August 2022. The application uses insecure
TrustManager and HostnameVerifier implementations, allowing
a MITM attacker to intercept the data exchanged between the Bang-
good client program and server. Although many of the application’s
requests are protected by a proprietary RSA scheme on top of TLS,
the customer registration endpoint is not, meaning that complete
user accounts can be compromised.

When installing the application on a system protected byCrypto-
Shield, the data disclosure is successfully prevented. From the CSA
monitor interface, we can confirm that the network request for reg-
istration fails during an ongoing MITM attack because our system
aborts the connection after it detects the MITM attack.

6.5.2 Amaze File Manager. Amaze File Manager is an open-source
file management application for the Android platform. Together
with its derivates, the program has reached an audience of more
than 10 million users according to Google Play. Beyond the basic
feature set common in this software category, Amaze also supports
encryption and decryption of sensitive files.
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CryptoShield detects that the same IV is used for AES-GCM
encryptions of multiple different files. Experiments with an unmod-
ified version of the file manager confirm that from two ciphertexts
𝐶1 and 𝐶2 encrypted using the same key and one of the plaintexts
𝑃1, we can calculate the other plaintext 𝑃2 as 𝑃2 = 𝐶1 ⊕ 𝐶2 ⊕ 𝑃1.
Since encrypted files are saved in public storage, this means that
any other application with appropriate read access may decrypt
files just by guessing one original plain text.

The flaw can also be confirmed from the source code of the
Amaze File Manager application, where the corresponding class
holds a comment about this exact problem. The example underlines
that developers are often overwhelmed by the security requirements
of modern applications, lacking the experience for ensuring proper
data protection

When the same experiment is conducted after applying Crypto-
Shield to the vulnerable app, fresh IVs are injected for every en-
cryption, so that no information about 𝑃2 is leaked.

7 DISCUSSION & FUTUREWORK

This section elaborates on the issues raised in Section 5 and high-
lights additional limitations. It also explores how our approach can
be extended to related research fields.

7.1 Robustness

Although our mitigations were designed to keep side-effects at a
minimum, some of them have the potential to lead to issues in an
app’s existing functionality. Example scenarios are applications
that use insecure ECB mode in server communication, or that pass
prefixed ciphertexts to fixed-size buffers in native code. However,
evaluation on real-world apps (Section 6.2) shows that these issues
combined only affect a very small number of applications (2 %), so
that CryptoShield’s security benefits far outweight its potential for
introducting side-effects. For affected applications, users can take
advantage of CryptoShield’s fallback mechanism (Section 5.7). It
is worth noting that our instrumentation may be incompatible with
advanced app packers that hook Android Runtime APIs. However,
to the best of our knowledge, these techniques are only used in
malicious apps that seek to evade analysis. As discussed in Section
3.2, malicious applications are out of scope for CryptoShield.

7.2 Implementation Security

By utilizing theDevicePolicyManager APIs, CryptoShield assumes
a security-sensitive role on the Android device. If an attacker was
to find and exploit a vulnerability in CryptoShield, they could
carry out operations on the device that might harm the user. For our
prototype, we took great care to follow security best practises for the
Android platform, and we publish our source code for examination
by fellow security researchers6. Before deploying our solution in
a real-world scenario, an independent code audit is advisable for
ascertaining the implementation’s security and trustworthiness.

7.3 Signature Checks

For instrumenting third-party applications on unrooted devices, our
prototype implementation modifies APK files, re-signing them with

6Source code is available at https://extgit.iaik.tugraz.at/fdraschbacher/cryptoshield

a new certificate in the process. Like any other solution that takes
advantage of this approach, it is affected by signature checks that
some developers integrate into their programs as protection against
maliciously modified redistributions. While it would be possible
to work around many implementations of signature checks using
our instrumentation technology, we respect the intention behind
these barriers and refrain from pursuing ideas for circumventions.
Only 3 % of applications in our manual evaluation test set were
affected by this problem. We argue that developers who are versed
enough to implement package signature checks are more likely to
be aware of and follow best practices for cryptography in general.
It is worth pointing out that this is a limitation of the prototype
implementation and not our mitigation procedures. Another imple-
mentation may choose a different trade-off between usability and
compatibility or take advantage of an entirely new instrumentation
technique.

7.4 Bookkeeping Costs

CryptoShield maintains runtime databases for detecting and mit-
igating nonce reuses. Inevitably, this bookkeeping incurs some
runtime overhead, e.g. when compared to the one-time cost of a
static approach that analyses the control flow graph of an applica-
tion. However, we argue that the bookkeeping runtime cost is not
critical here - it is not noticable to the user in our prototype (see
Section 6.3). Much more importantly, CryptoShield’s runtime in-
strumentation can take advantage of data that static analysis never
has access to. It enables mitigation of misuse cases that are not
noticable to static analysis, such as reuse of dynamically generated
nonces or non-trivial issues in TLS certificate validation.

7.5 API Coverage

Our prototype implementation only detects and mitigates mis-
use of cryptographic APIs provided by the system frameworks
or by known third-party libraries. Applications that integrate from-
scratch implementations of primitives or native third-party crypto
libraries are not covered by our protection measures. Still, it is
worth noting that our mitigation procedures can in principle be
extended to any implementation of the covered APIs. Obfuscated
code and invocations of Java code through Java Reflection APIs or
the Java Native Interface are already supported in our prototype
implementation.

7.6 Device Coverage

We implemented our prototype for the popular Google Pixel series
of devices and the three most popular iterations of the Android
OS (versions 9-11)7 as of August 2022. The system was extensively
tested on a Google Pixel 3 running Android 11. Given the slight
variations of ART behavior between different devices and Android
versions, we anticipate minor changes before support for other de-
vices can be guaranteed. We also have to point out that our current
implementation only works on the ARM instruction set, which
covers the vast majority of available Android devices. Extending
support to additional CPU platforms is feasible and only a matter
of resources.
7As indicated by Google’s official Android version distribution chart inside the Android
Studio IDE
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8 RELATEDWORK

In this section, we highlight previous publications in the domain of
crypto API misuse on the Android platform.

8.1 Mitigating Crypto API Misuse

The only previous works capable of mitigating crypto API misuse
in compiled Android applications are Pin It! by Buhov et al. [3]
and CDRep by Ma et al. [10]. The first requires root permissions
and only addresses issues with TLS misuse. CDRep follows simi-
lar high-level principles as our solution, but differs significantly
in its approach and practicality. In contrast to CDRep, Crypto-
Shield (1) can be directly deployed to protect a user’s device in
a self-contained manner, (2) addresses many more misuse cases,
among them particularly wide-spread and critical TLS issues, (3)
emphasizes retaining functionality, and (4) does not suffer from
the resource-intensiveness and imprecision of static CFG analysis
(CDRep only mitigates the first misuse per app method and takes
19 seconds per misuse for patch generation). Unfortunately, Ma et
al. were unable to share their source code or data set with us, so
we cannot provide quantitative comparisons.

Beyond these immediately related works, the closest publication
to CryptoShield in terms of the addressed security vulnerabilities
is FireBugs by Singleton et al. [17], which employs static analysis
and pattern-based patching for retrofitting security best practices
into applications that contain crypto API misuse. However, their
solution only produces source-level patches that can serve as a
guideline for application maintainers. It is not capable of protecting
end users. Newbury et al. [11] combine static analysis and the desk-
top JVM’s instrumentation API for hotpatching crypto API misuse
in enterprise Java applications. However, their trivial mitigation
strategies completely neglect the potential for side effects. Concep-
tually, our solution bears similarities to the work by Bates et al. [2],
which proposes a solution for fixing SSL certificate validation on
Ubuntu by dynamically linking a shim between third-party applica-
tions and SSL libraries. Some Android-specific publications suggest
source-level mitigations for crypto API misuse, e.g. by facilitating
the configuration of certificate pinning through XML files [6, 19].

8.2 Detecting Crypto API Misuse

Most previous works on crypto API misuse focus on detection in
compiled application packages. The most recent major publica-
tions in this field of research have been provided in Section 1. The
current state-of-the-art purpose-built tools ready for practice are
generally considered to be CryptoGuard by Rahaman et al. [15] and
CogniCrypt/CrySL by Krueger et al. [9].

9 CONCLUSION

Official countermeasures and previous efforts by the research com-
munity were ineffective in eliminating the common security vulner-
abilities in popular Android applications that are induced by misuse
of cryptographic APIs. In this paper, we devised a set of generic mit-
igation procedures for the most severe crypto API misuse scenarios.
Based on prototype implementations of our mitigation procedures,
we provide a tool that can protect users against crypto API mis-
use vulnerabilities until a long-term solution has been found. Our

system’s on-device daemon service is capable of automatically in-
jecting an instrumentation module into all application packages
installed on a device. This module subsequently monitors crypto
API calls inside a target application and mitigates identified misuse
transparently to application code. We showed that CryptoShield
effectively mitigates vulnerabilities in real-world applications, is
compatible with the vast majority of Android applications, and
introduces minimal overhead.
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A MITIGATION PROCEDURES

Figure 4 illustrates the simplified mitigation procedure for implicit
ECB mode in the Cipher API. 1○ Cipher creation is intercepted to
return a wrapper object. 2○ In encryption mode, ECB mode is up-
graded to CBC upon initialization and a fresh salt is generated. 3○
The salt and an upgrade flag are prepended to the actual ciphertext
4○ The prepended ciphertext is returned to application code, which
later passes it to decryption. 5○ Cipher creation is intercepted to
return a wrapper object. 6○ In decryption mode, the wrapped ci-
pher is initialized with parameters from application code. 7○ If a
ciphertext prefix is found, the wrapped cipher is re-initialized with
the parameters extracted from the prefix. Extracting the prefix from
data streams fed through the cipher adds significant complexity to
the complete implementation.

B MANUAL ANALYSIS

Figure 5 shows the distribution of instrumentation time, APK size
overhead and launch time overhead across our manual analysis test
set.
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Figure 5: Manual analysis: Distribution of performance char-

acteristics across the test set

C PER-API RUNTIME OVERHEAD

This section provides details on our per-API runtime overhead
measurements. For each API, measurements were collected for
the most expensive use case. For example, Cipher.update() mit-
igation measurements are for the first decryption buffer in ECB
mode and use a PBE key with hardcoded password and salt, so
that it involves CryptoShield extracting the ciphertext prefix and
deriving a fixed PBE key. For each measurement, we calculated
the average from at least 1000 samples. Table 2 contains the exact
per-API runtime overheads of CryptoShield’s monitoring and
mitigation. It is worth noting that monitoring was disabled while
mitigation was measured and vice versa. The most significant over-
heads were observed for mitigations that involve deriving a key via
the hardware-backed AndroidKeyStore. We attribute the speedup of
SecretKeyFactory.generateSecret() in the instrumented app
to measurement variations. CryptoShield’s implementation of

this API is only a wrapper of the original method. PBE key issues
are mitigated once they are used in cipher operations.

API Orig. ò ✓

Cipher.getInstance() 0.01 0.02 0.02
Cipher.init() 0.01 1.54 101.00
Cipher.update() 0.03 1.20 95.12
Cipher.final() 0.00 1.19 95.42
Cipher.updateAAD() 0.00 0.00 0.00
KeyStore.store() 140.94 5.20 87.07
KeyStore.load() 140.60 3.85 86.99
SecretKeyFactory.getInstance() 0.00 0.01 0.01
SecretKeyFactory.generateSecret() 13.66 -0.08 -0.16
SecureRandom.getInstance() 0.00 0.02 0.02
SecureRandom.setSeed() 0.00 0.57 0.02
SSLSocketFactory.createSocket() 42.90 3.49 1.96
SSLSocket.getInputStream() 9.34 8.03 7.00
SSLSocket.getOutputStream() 10.09 9.04 5.60
URL.openConnection() 69.85 34.19 59.08
okhttp3.Request.Builder.url() 0.03 0.63 0.07

Table 2: Per-API runtime overheads in milliseconds. Orig.

displays the API runtime in an unmodified app, whileò and

✓ contain overheads (relative to Orig.) for monitoring and

mitigations, respectively.

D SYNTHETIC BENCHMARK DETAILS

In this section, we provide additional implementation details for
the synthetic benchmark employed in our evaluation (Section 6.4).

D.1 Functionality Checks

Where possible, we implemented functionality checks by extend-
ing CryptoAPI-Bench’s existing testcases to run a full sequence of
corresponding operations, so that we can compare the final output
to the original input. Listing 2 displays a simplified example of this
principle for using ECB mode with a symmetric cipher. For cases
involving TLS communication, we check for retained functionality
by establishing a connection with and without an ongoing MITM
attack, ensuring that the latter succeeds and the former is prevented
by CryptoShield’s mitigations. Test cases involving CSPRNG seed-
ing are assumed to always stay functional, since CryptoShield
never influences the structure of generated values.

D.2 Reflection Test Cases

We extended our benchmark to cover invocations of cryptographic
APIs through Java Reflection APIs. For cases that involve interfaces
implemented by application-level code, we utilize Java’s Dynamic
Proxy infrastructure to construct a proxy implementation that for-
wards all calls to a handler. A simplified example of this approach
can be found in Listing 1.
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Application Code

byte[] encrypt(byte[] pt, SecretKeySpec k) {

    Cipher c = Cipher.getInstance("AES");

    c.init(ENCRYPT_MODE, k);

    return c.doFinal(pt);

}

byte[] decrypt(byte[] ct, SecretKeySpec k) {

    Cipher c = Cipher.getInstance("AES");

    c.init(DECRYPT_MODE, k);

    return c.doFinal(ct);

}

3

6

Mitigation Shim

public Cipher CipherGetInstance(String algo) {

    Cipher c = JCA.CipherGetInstance(algo);

    return new CipherWrapper(c);

}

public class SimplifiedCipherWrapper extends CipherSpi {

    boolean upgradedCipher = false;
    Cipher wrapped;

    int mode;


    SimplifiedCipherWrapper(Cipher wrapped) {

        this.wrapped = wrapped;

    }

    void engineInit(int m, Key k) {
        mode = m;


        if (mode == ENCRYPT_MODE && isImplicitECB()) {

            wrapped = JCA.CipherGetInstance(AES_CBC);

            wrapped.init(m, k, generateRandomIv());

            upgradedCipher = true;

        } else {

            wrapped.init(m, k);

        }

    }

    byte[] engineDoFinal(byte[] data) {

        if (upgradedCipher) {

            byte[] ciphertext = wrapped.doFinal(data);

            ParamPrefix p = new Prefix(upgradedCipher, wrapped.getIV());

            return mergeArrays(p.encode(), ciphertext);

        } else if (mode == DECRYPT_MODE && hasParamPrefix(data)) {

            ParamPrefix p = parsePrefix(data);

            if (p.shouldUpgradeCipher()) {

                wrapped = JCA.CipherGetInstance(AES_CBC);

            }

            wrapped.init(mode, wrapped.getKey(), p.getIV());

            data = p.getRemainingData();

        }


        return wrapped.doFinal(data);

    }
}

2

5

1

1 ac742111ef680e42 920f15c16be2cd05...

Ciphertext

Actual CiphertextGenerated IV

Flag: Cipher Upgraded

MAGIC

4

4

7

Decryption

Encryption

Figure 4: Simplified mitigation procedure for implicit ECB mode.

public class Case1 implements InvocationHandler {
public static void main(String[] args) {

HostnameVerifier hv = (HostnameVerifier)

Proxy.newProxyInstance(...,↩→

new Class[] {HostnameVerifier.class},
new Case1());

// We're simulating a MITM attack here!
if (hv.verify("mitm.com", session)) {

ssl.getOutputStream().write(data);
}

}

@Override
public Object invoke(Object proxy, Method

method, Object[] args) throws Throwable {↩→

return true; // Insecure!
}

}

Listing 1: Example test case using java.lang.reflect.Proxy

public class EcbCase1 {
public static void main(String[] a) throws ... {

KeyGenerator keyGen =

KeyGenerator.getInstance("AES");↩→

SecretKey key = keyGen.generateKey();
Cipher c = Cipher. ⌋

getInstance("AES/ECB/PKCS5Padding");↩→

c.init(Cipher.ENCRYPT_MODE, key);

byte[] data = new byte[128];
byte[] cipherText = c.doFinal(data);
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] plainText = c.doFinal(cipherText);
if (Arrays.equals(plainText, data))

System.out.println("Still functional");
}

}

Listing 2: We adapted CryptoAPI-Bench to check retained

functionality (adaptations highlighted).
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