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A B S T R A C T

Context: More automated and autonomous systems are becoming daily use that implements safety–critical
functions, e.g., autonomous driving or mobile robots. Testing such systems people depend on is challenging
because some environmental interactions may not be expected during development but occur when those
systems are in operation. Deciding when to stop testing or answering how to ensure sufficient testing is
challenging and very expensive.
Objectives: For generating critical environmental interactions, i.e., critical scenarios, we present and compare
two testing solutions focusing on generating critical scenarios utilizing combinatorial and search-based testing,
respectively.
Methods: For combinatorial testing, we suggest using ontologies that describe the environment of an
autonomous or highly automated system. For search-based testing, we rely on genetic algorithms. We
experimentally compared the two testing approaches using two implementations of an industrial emergency
braking function and random testing as the baseline. Furthermore, we compared the approaches qualitatively
using several categories.
Results: From the experiments, we see that the combinatorial testing approach can find all different types
of faults listed in Table 5 considering a combinatorial strength of 3. This is not the case for search-based
and random testing in all experiments. Combinatorial testing comes with the highest combinatorial coverage.
However, all approaches can reveal faulty behavior utilizing appropriate environmental models.
Conclusion: We present the results of an in-depth comparison of combinatorial and search-based testing. The
be as fair as possible, the comparison relied on the same environmental model and other parameters like the
number of generated test cases. The results show that combinatorial testing comes with the highest coverage
and can find all different kinds of failures summarized in Table 5 providing a certain strength. Meanwhile,
search-based testing is also capable of finding different failures depending on the coverage it can reach. Both
approaches seem complementary and of use for the application domain of autonomous and automated driving
functions.
. Introduction

High-quality driving automation holds out the prospect of improved
oad safety and driving comfort but relies on complex software-based
ystems that are challenging to develop and test. Furthermore, Ad-
anced Driver Assistant Systems (ADAS) and Automated Driving (AD)
ystems are considered safety–critical, meaning that failure or unin-
ended system behavior might cause severe accidents. Ensuring quality
nd safety are highly important for such dependable systems, but the
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amount of software-based functionality built into modern vehicles is
progressing, and automotive systems have become increasingly inter-
connected and complex [1]. While testing software and systems has
always been challenging and resource-intensive, ensuring that a driving
automation system shows correct behavior in any imaginable situation
poses novel challenges. For instance, the role testing automobiles in the
real world based on mileage accumulation is becoming less significant
for these systems’ quality and safety assurance. Accumulating hundreds
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of millions of accident-free test kilometers to statistically demonstrate
that a self-driving vehicle is safer compared to a car steered by a
human [2], is not only practically infeasible because of the huge
number of potential interactions between a car and its environment but
also dangerous and has led to fatal accidents [3], which should have
been avoided. Hence, we see an urgent demand for verification and
testing techniques for AD and ADAS.

Moreover, mileage-based testing may only provide limited quality
assurance since driving on public roads mainly covers everyday traffic
situations. In contrast, critical situations that challenge the system
might only occur rarely. In any case, it is essential to reveal po-
tential systematic failures already during development, long before
vehicles are deployed on the public road, to avoid unnecessary risks
and unscheduled repair efforts.

According to Koopman and Wagner [4], testing in simulation is a
suitable approach, alongside other techniques such as error injection
and formal proofs. In virtual testing, already at an early development
stage, we can evaluate the complete driving system against diverse
test data under realistic conditions. In addition, test results can be
obtained much faster in simulation than in physical testing and at
significantly lower costs. However, despite these advantages, there are
also numerous challenges to performing virtual tests. First, the correct
setup of an industry-scale simulation framework that provides realistic
test conditions and reproducible simulation results is not trivial and
highly error-prone [5]. Second, no general guideline prescribes how we
shall perform virtual ADAS/AD testing. While we can generate virtual
test scenarios automatically at relatively low costs, test execution and
evaluation are much more expensive, demanding a certain quality of
the generated test scenarios. Third, testing is an essential quality assur-
ance task that aims to reveal the presence of errors in the ADAS/AD
system instead of even attempting to prove the absence of failure,
which is impossible in such complex systems, even in simulation.

In scenario-based testing, revealing the presence of an error cor-
responds to executing a test scenario that results in an unintended
behavior of the ADAS/AD system under test or crash. However, since
the number of relevant test parameters required for driving scenario
definition is enormous, executing all possible parameter combinations
(i.e., full factorial testing) is practically infeasible. Moreover, it may
not be oriented towards a target, as most resulting test scenarios are
not likely to reveal any unknown faults during execution. Especially
with the increasing maturity of ADAS/AD functions, relevant areas
in the input space are expected to become smaller and less frequent,
thus, harder to identify. Therefore, more focused testing methods are
required, such as combinatorial testing (CT) and search-based testing
(SBT).

In previous research, e.g., [6–9], the authors already discussed
the use of CT and SBT for ADAS/AD system testing based on exper-
imental results obtained when using these techniques for testing an
Automated Emergency Braking (AEB) function. While both methods
aim to identify critical scenarios, their unique properties might be
particularly suitable to address specific ADAS/AD testing challenges.
However, an empirical method comparison is missing in the literature
in the context of ADAS/AD testing. It is still being determined whether
one method has a clear advantage over the other. Furthermore, it
needs to be better understood for which exact purpose and at which
ADAS/AD development stage each method’s application would be most
beneficial in the industrial context, considering limited time budgets for
testing, development sprints, and potential simulator requirements. For
example, since CT aims to identify all interaction failures and provides
input space coverage, it might be most suitable for the final assessment
and certification of high-quality driving features. In contrast, SBT might
be ideal for identifying failures fast accompanying ADAS/AD feature
development. Low system maturity at an early development stage
may not require an elaborate testing strategy to reveal failure, and
random testing may already be sufficient to reveal a failure at an early
2

development stage.
The present work addresses these open questions by comparing the
fault detection performance of CT and SBT in an industry-scale sim-
ulation framework, considering random testing (RT) as a comparison
baseline. For the empirical study, we use an industry-scale simulation
framework comprising a realistic 3D environment, vehicle, and physics
simulation to test two prototypes of an Automatic Emergency Brak-
ing (AEB) system. Each AEB system includes a front object detection
module and a brake control function. While it would be desirable to
consider different ADAS/AD systems in this comparison, real indus-
trial driving features for evaluation using such a framework are only
available to a limited extent for research.

We are particularly interested in comparing each method’s fault
detection performance. As previously mentioned, in this work although
the quality of generated tests is crucial as test generation is cheap,
test execution is much more expensive. Therefore, even though a fair
comparison is challenging because the working principles of CT, SBT,
and RT are substantially different, we use the same sources for scenario
generation (i.e., one shared combinatorial input model) and aim for
similar test suite sizes to evaluate each method’s performance as fair as
possible.

We structure the paper as follows: First, we discuss related research
in Section 2 and introduce the preliminaries behind the automatic test
generation approaches in Section 3. Then, in Section 4, we discuss the
AEB case study and the experimental setup for data collection. Next,
in Section 5, we analyze the empirical result data in detail regarding
the coverage of different crash events, failure detection probability,
and input space coverage achieved by the respective CT, SBT, and RT
test suites. Afterward, in Section 6, we discuss the obtained results
and guidelines for selecting the appropriate testing method for a given
task in the context of automated and autonomous driving validation.
Finally, we conclude the paper and provide an outlook on future
research in Section 7.

2. Related work

Of various advanced approaches used for software test generation,
combinatorial testing and search-based testing would always be the
first ones to pop into mind. On the one hand, CT has been successfully
applied in different kinds of studies and could detect faults for different
ordinary systems [10–17]. Wu et al. [18] report that CT has a better
failure detection rate than random and adaptive random testing in 98
percent of 1,683 real test scenarios with available constraint informa-
tion. Similarly, Arcuri and Briand [19] find that when constraints are
present among features, random testing can fare arbitrarily worse than
CT.

On the other hand, Zeller [20] argues that search-based techniques
are best suited for testing at the system level. Bajaj and Sangwan [21]
conclude that genetic algorithms have great potential in solving test
case prioritization problems. Soltani et al. [22] observe that using a
guided genetic algorithm can uncover failures that are undetected by
classical coverage-based unit test generation tools.

Almansour et al. [23] find that GA algorithms are more effective
than standard random search and adaptive random testing techniques
in data-flow testing. When comparing CT and SBT, Petke et al. [24]
report that GA is competitive only for pairwise testing for subjects with
a few constraints. However, Henard et al. [15] find that compared
to search-based approaches, existing t-wise tools fail to handle large
software product lines. It is not hard to see that there is no conclusive
judgment regarding the superiority between CT and SBT. Moreover,
with the fast development of driving automation systems, CT [6,8,25–
30] and SBT [31–39] have been increasingly used to test automated and
autonomous systems that are complex and intelligent. Therefore, we
intend to contribute to this research direction and present an in-depth
analysis regarding the testing performance of CT and SBT in the ADAS

and AD domain, substantially extending previous similar comparisons.
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Fig. 1. AEB scenarios in EuroNcap protocol [40,41].
3. Preliminaries

In this section, we first discuss the desired properties of testing
methods in the context of ADAS/AD and compare four state-of-the-art
testing strategies. Next, we construct an ontology for AEB system test-
ing considering relevant domain ranges according to European New Car
Assessment Program (Euro NCAP) test protocols. Finally, we describe
an automatic test generation process using the generated ontology as
input for CT and SBT.

3.1. Desired properties of an ADAS/AD system testing method

An ideal testing method in the context of ADAS/AD system testing
fulfills two basic requirements:

RQ1: The testing method can visit all relevant regions in the p-
dimensional input space, where p refers to the number of test parame-
ters. A relevant region describes an area in the input space where the
driving function has the probability of failing, i.e., 𝑝𝑟𝑜𝑏(𝑓𝑎𝑖𝑙) > 0. The
parameter combinations that describe such relevant areas are unknown
in advance and vary for different systems under test.

RQ2: The method can identify all relevant regions within a feasible
time, allowing this method’s practical application.

FFT: A conservative testing strategy such as full factorial testing
(FFT) [42] guarantees to visit the whole input space and therefore
fulfills RQ1. However, many parameters 𝑝 need to be considered for
testing in the context of automated driving. Depending on the mag-
nitude of 𝑝, the combinatorial explosion leads to a test suite size that
cannot be executed and evaluated within feasible time anymore, which
violates RQ2.

RT: The same holds for random testing (RT) that would eventually
visit all relevant regions, fulfilling RQ1. However, even for a moderate
number of 𝑝, the time needed will be too large for practical application,
which violates RQ2. Anyhow, visiting the whole input space is not
target-oriented in general since many areas bear no risk for failure,
i.e., 𝑝𝑟𝑜𝑏(𝑓𝑎𝑖𝑙) = 0. Especially with the increasing maturity of the
ADAS functions, relevant areas in the input space will become smaller
and less frequent, thus harder to identify. Therefore, more focused
testing methods are needed to meet the two requirements above. Hence
approaches like CT and SBT are required.
3

CT: The CT (= partial factorial) approach overcomes the combinato-
rial explosion in the number of parameter combinations by considering
only parameter combination subsets of strength 𝑡 for testing, where t
is sufficiently small to generate a test suite under given test resource.
Therefore, CT performs better concerning RQ2 compared to RT and
FFT. For other applications such as servers and databases, empirical
studies showed that testing parameter combinations of strength 4 ≤ 𝑡 ≤
6 is sufficient to reveal all faults (see [10]), suggesting that CT fulfills
RQ1 if the combinatorial strength is selected high enough. However,
the upper bound of 𝑡 still needs to be identified in the context of
ADAS/AD system testing.

SBT: The SBT approach uses a problem-specific cost function to
guide the search towards areas in the input space with high failure
probability. In the context of ADAS/AD, Key Performance Indicators
(KPIs) are defined based on system requirements that specify desired
properties of the driving function. An exemplary KPI for an Automatic
Emergency Braking (AEB) system specifies the latest point in time
where the system must initiate a braking maneuver to avoid a potential
collision. This KPI is firmly based on an AEB internal measurement, the
Time-to-Collision (TTC). Areas in the input space that result in low TTC
can be seen as relevant, and a KPI violation or crash indicates failure. In
favor of SBT and from a more general perspective, the various driving
functions need to keep minimum distance towards other objects, show
certain reaction times or fulfill other metric properties. These properties
can easily be considered in a problem-specific cost function to guide the
search towards failure. In addition, the SBT approach uses a random
step to generate individuals in the initial population, ensuring that any
area in the input space has an equal chance of getting visited. However,
we cannot be sure that SBT covers all relevant areas; moreover, it is
unknown how long it would take SBT to do so.

3.2. Sources for AEB ontology construction

Ontologies [43] are formal, explicit specifications of shared concep-
tualizations characterized by high semantic expressiveness required for
increased complexity, which captures concepts and their relationships.
An ontology2 is a tuple (𝐶,𝐴,𝐷, 𝜔,𝑅, 𝜏, 𝜓) where 𝐶 is a finite set of

2 Please refer to [6] for complete definitions of the ontology and the later
introduced conversion algorithm.
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Fig. 2. Constructed AEB ontology based on EuroNCAP scenarios using UML.
Table 1
Euro NCAP Car-to-Car and Vulnerable Road Users Test Protocols.

Scenario Class Description

Car-to-Car Rear Stationary (CCRs) Stationary vehicle in front
Car-to-Car Rear Moving (CCRm) Leading vehicle traveling at constant speed
Car-to-Car Rear Braking (CCRb) Leading vehicle traveling at constant speed then decelerates
Car-to-Pedestrian Farside Adult (CPFA) Adult pedestrian crossing Ego path from the farside
Car-to-Pedestrian Nearside Adult (CPNA) Adult pedestrian crossing Ego path from the nearside
Car-to-Pedestrian Nearside Child (CPNC) Child pedestrian crossing Ego path from behind an obstruction from the nearside
Car-to-Pedestrian Longitudinal Adult (CPLA) Adult pedestrian walking in the same direction in front of the vehicle
concepts, 𝐴 is a finite set of attributes which characterize concepts,
𝐷 is a finite set of domain elements. Function 𝜔 maps concepts to a
set of tuples specifying the attribute and its domain elements. 𝑅 is
a finite set of tuples stating that two concepts are related. Function
𝜏 assigns a type (i.e., composition or inheritance) to each relation.
Function 𝜓 maps composition relations to its minimum and maximum
arity, specifying how many composer concepts a composer concept may
comprise, ranging from 0 to any natural number.

Two prototypes of an AEB system will be later used in our case
study. AEB is a vehicle safety function that uses sensor information to
detect hazardous situations that potentially result in collisions. In an
emergency, the system will take action instead of the driver to mitigate
the impact or prevent a collision. As a well-known vehicle safety
assessment organization, the Euro NCAP provides a safety performance
assessment through rating. Regarding the AEB system, Euro NCAP
introduced a test protocol for AEB Car-to-Car (C2C) and AEB Vulnerable
road users (VRU) scenarios that describe scenario classes depicting
frequent accident situations. The different test scenario classes defined
by the protocols are summarized in Table 1. As shown in Fig. 1, the
set-up for these scenario classes is provided in detail, together with
relevant parameter value ranges, to define concrete test scenarios that
are executable on proving ground or, as in our case, in simulation.

Based on the gathered information, we construct an ontology for the
AEB3 to cover all prescribed C2C and VRU scenario classes, as shown
in Fig. 2.

Now, the ontology model consists of four concepts and three com-
positional relations, describing all the scenario participants. In the
top concept 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑃 𝑙𝑎𝑦𝑒𝑟 and 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑒𝑑𝑒 are defined.

3 In the AEB ontology we convert all the inheritance relations to
composition relations in order to reduce the input model size and complexity.
4

These parameters define the number of participants in our generated
test scenario, where 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑃 𝑙𝑎𝑦𝑒𝑟 can vary from 1 to 3
vehicles and 𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑃 𝑒𝑑𝑒 can vary from 0 to 2 pedestrians. Zero
pedestrians are considered because C2C scenarios do not include pedes-
trians. The three composer concepts in our ontology define the objects:
𝐸𝑔𝑜𝑉 𝑒ℎ𝑖𝑐𝑙𝑒, 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒_𝑃 𝑙𝑎𝑦𝑒𝑟𝑠, and the 𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠. Each concept con-
tains all necessary parameters and factors defined by the test protocols
to describe object types and their dynamic and positional properties.

3.3. Combining ontology and combinatorial testing

In this section, we describe the four steps to implement test gener-
ation that combines ontology with CT:

The first step is the ontology conversion. Specifically, given an
ontology as input, the output will be the corresponding CT input model,
which comprises a set of variables, their domains, and constraints
restricting certain value combinations. For the conversion, we have
to map the concepts and given attributes of ontology to variables.
The domains of the CT input models come from the domains of the
concepts’ attributes. We assume that ontologies always have only one
root concept, i.e., a unique concept from which we start conversion
and that the arity of the relations is always fixed to a particular finite
value. Next, we will briefly outline the basic ideas behind an ontology
to CT input model algorithm (onto2ctim) [6]. Generally speaking,
in the onto2ctim algorithm, the domains, variables, and constraints
of a lower level (or composer) concept cumulatively form that of its
direct related higher level (or composer) concept. We must extract
variables from the given concepts to develop a CT input model. The
idea is to map concepts’ instances into variables considering their
relationships. An instance of a concept has particular values for its
attributes. Moreover, we have to consider the relationships between
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Fig. 3. Generated input model of AEB use case.
concepts. Together with their domains, these variables are the input
model for CT.

In the second step, we take the generated input model and use a
CT algorithm for computing a combinatorial test suite. In CT [10],
we are interested in generating a test suite comprising values for the
given input variables so that for any subset of input variables of size
𝑡, all value combinations are considered in the test suite. Therefore,
pair-wise testing considers all combinations of values but only for two
input variables.

In concretization as the third step, abstract test cases generated
from CT will be covered into concrete test cases using scripts or
program mapping for test execution.

In the last step, we use the concrete test cases for executing the
SUT. We rely on 3D and physical simulation in application areas like
autonomous driving. In addition, we have to define a test oracle that
allows for characterizing a test case to be passing or failing. In the
case of the AEB function, we are using time-to-collision (TTC), a safety
indicator introduced in the following subsection, to check whether a
crash occurred during execution or not.

3.4. Combining ontology and search-based testing

For the search-based test case generation, we rely on a genetic
algorithm as described in our previous work [9,31] and used the DEAP
Python library [44], which provides a good starting point for imple-
mentation of evolutionary algorithms. However, this study generates
the seed population directly from the ontology input model. Therefore,
the seed population shares the same parameter and value sequences
used for combinatorial test case generation. The algorithm that guides
the automatic seed population generation is designed to consider the
same constraints as combinatorial testing, and a dedicated function
checks if every parameter and parameter value in the input model was
5

used at least once. If not, the seed population is discarded, and the
generation process is repeated. Therefore, the algorithm ensures that
only valid individuals are included in the seed and guarantees full one-
way parameter coverage, required for later computation of the test
suite’s combinatorial coverage, as described in Section 5.

In general, the seed population is a set of individuals with specific
properties (genes) that comprise concrete scenario parameter values
or, in other words, a set of candidate solutions to an optimization
problem. The seed population forms the initial starting point for the
genetic algorithm to optimize the underlying parameters, considering a
predefined evaluation criterion. Each individual in the seed population
represents a separate test case and comprises six genes, one for the
Ego vehicle, three for the additional vehicle players, and two for the
pedestrian players. The possible scenario types an individual can take
have been described in Section 3 in Table 1 and are selected at random.
The scenario type determines if a gene describes a concrete player
instantiation or contains a NULL. Table 2 shows how the scenario
players are represented as genes in the seed population concerning the
selected scenario type.

Each gene furthermore comprises one concrete parameter value,
specifying the positional or dynamical properties of the player. Table 3
provides an exemplary overview on how the chromosomes of individual
1 from Table 2 could be filled, considering parameter values from the
input model.

In generation zero, individuals in the starting population are ex-
ecuted in simulation to evaluate their fitness score using predefined
evaluation criteria. To assess an individual’s fitness score, we consider
the TTC value, a well-known and often used safety indicator in the
ADAS domain. The TTC value at an instance 𝑥 is defined as the
remaining time for two objects to collide, given that they proceed
on their trajectories and maintain their current velocities. Individuals
with a higher fitness score (i.e., those which result in a low TTC
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Table 2
Representation of scenario players as genes in the seed population.

Individual Gene 0 Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Scenario Type

Player Ego Vehicle I Vehicle II Vehicle III Pedestrian I Pedestrian II

Indv 0 E 0 VI 0 VII 0 VIII 0 PI 0 PII 0 E-3V-2P
Indv 1 E 1 VI 1 VII 1 𝑁𝑈𝐿𝐿 PI 1 𝑁𝑈𝐿𝐿 E-2V-1P
Indv 2 E 2 VI 2 VII 2 VIII 2 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 E-3V-0P
Indv n E n VI n 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 E-1V-0P
Table 3
Genes represent concrete player instantiations and comprise scenario parameters with values from the input model.

Gene Scenario P0 Scenario P1 Scenario P2 Scenario P3 Scenario P4 Scenario P5 Scenario P6

Indv 1 StartSpeed TargetSpeed OffsetS OffsetT Rate PlayerType DriverType

E 1 11.11 28 0 0 5 v-model 1 n/a
VI 1 10 2 0 120 6 v-model 2 default driver
VII 1 0 0 4.5 175 0 v-model 1 no driver
VIII 1 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿
PI 1 0.56 n/a 13 200 3 p-model n/a
PII 1 𝑁𝑈𝐿𝐿 n/a 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿
Table 4
Exemplary gene crossing between individual 1 and individual 2.

Individual Gene 0 Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Scenario
Player Ego Vehicle I Vehicle II Vehicle III Pedestrian I Pedestrian II Type

Indv 1 E 1 VI 1 VII 1 𝑁𝑈𝐿𝐿 PI 1 𝑁𝑈𝐿𝐿 E-2V-1P
Indv 2 E 2 VI 2 VII 2 VIII 2 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 E-3V-0P
Indv 1 crossed E 2 VI 1 VII 1 VIII 2 𝑁𝑈𝐿𝐿 𝑁𝑈𝐿𝐿 E-3V-0P
Indv 2 crossed E 1 VI 2 VII 2 𝑁𝑈𝐿𝐿 PI 1 𝑁𝑈𝐿𝐿 E-2V-1P
value) have a better chance of being part of the new population. For
selection, we follow a best-of-three strategy, where we randomly pick
three individuals and choose the one with the best score to be part of
the next generation. With a certain probability, some individuals are
selected for crossing and mutation to produce new offspring for the
next generation. Since there is no general rule for defining the crossing
and mutation probabilities, we set 𝑝crossing = 0.9 and 𝑝mutation = 0.2
based on our experience from initial experimental test runs. When two
individuals are selected for crossing, they exchange genes to form two
new individuals for the next generation.

For every gene in the individual, it is decided based on an inde-
pendent crossing probability 𝑖𝑛𝑑𝑝crossing = 0.4 if the gene is swapped
or not. In Table 4, an example is given for crossing individual 1, and
individual 2, where the genes zero, three, and four are exchanged.
When an individual is selected for mutation, it is decided for each gene,
based on an independent mutation probability 𝑖𝑛𝑑𝑝mutation = 0.2 if the
old parameter value in the gene is replaced with a randomly selected
new parameter value. Offspring resulting from crossing or mutation is
again checked against the constraints before it is included in the new
population.

4. The AEB case study

This section discusses the experiment design, set-up, and execution
of our AEB case study. In the case study, we apply two focused test gen-
eration methods, CT and SBT, to two different AEB implementations,
considering RT as a reference method for comparison.

4.1. AEB ontology to input model conversion

As an initial preparation step for our case study, the AEB ontology
(domain model) we described in Section 3, is converted into a test input
model. The input model is shared by all three test scenario genera-
tion methods (CT, SBT, RT). For conversion, we apply the presented
𝑜𝑛𝑡𝑜2𝑐𝑡𝑖𝑚 [6] algorithm to convert the AEB ontology into a correspond-
ing combinatorial input model. The resulting test input model contains
all test relevant parameters and value ranges as shown in Fig. 3.
6

In addition, our algorithm automatically generates constraints to
exclude invalid parameter combinations in the subsequent scenario
generation process, as described in [25]. Invalid parameter combina-
tions are, for instance, overlapping pedestrian or vehicle positions, or
if the number of pedestrians in a scenario is 1, the other pedestrian’s
parameters must be ‘‘NULL’’. For the latter example, the generated
constraint may look like this:

(𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 = ‘‘1’’) =>
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝑆𝑡𝑎𝑟𝑡_𝑠𝑝𝑒𝑒𝑑 = ‘‘𝑁𝑈𝐿𝐿’’∧
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝑂𝑓𝑓𝑠𝑒𝑡_𝑠 = ‘‘𝑁𝑈𝐿𝐿’’∧
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝑂𝑓𝑓𝑠𝑒𝑡_𝑡 = ‘‘𝑁𝑈𝐿𝐿’’∧
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝑃𝑒𝑑𝑒𝑇 𝑦𝑝𝑒 = ‘‘𝑁𝑈𝐿𝐿’’∧
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝑅𝑎𝑡𝑒 = ‘‘𝑁𝑈𝐿𝐿’’∧
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝑇 𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑_𝑠𝑝𝑒𝑒𝑑 = ‘‘𝑁𝑈𝐿𝐿’’∧
𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_2_𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = ‘‘𝑁𝑈𝐿𝐿’’
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4.2. AEB systems under test and experimental setup

Both AEB implementations (i.e., AEB1 and AEB2) used in this
study were compiled into the FMU (functional mockup unit) for the
co-simulation, aiming to automatically detect an imminent forward
collision and activate braking to avoid or mitigate a collision. However,
the calibration parameters of these two systems, as well as their setup,
are different, making their responses to the same driving scenario vary
from one another. As explained in the following, for CT, SBT, and RT,
we aim to generate a comparable set of test scenarios executed against
the two AEB implementations.

CT-based Scenario Generation: We created the test suite using
the CT tool from AVL, ‘‘Load Matrix for Software’’, which is based
on the IPOG algorithm. The working environment we used to perform
all the experiments was a Dell Precision Laptop with 2.8 GHz, Intel
Core i7, and 32 GB memory running under Windows 7. Using the CT
input model, the tool generated 978 test cases total for a combinatorial
strength of 𝑡 = 2 (CT2) and 21,418 for a combinatorial strength of 𝑡 = 3
(CT3).

SBT-based Scenario Generation: For search-based test case gener-
ation, we aim for a test suite of similar size compared to combinatorial
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testing with strength two (CT2). SBT utilizes the same input model and
set of constraints to be comparable to CT. For strength two, the com-
binatorial test generation method computes a test suite that contains
970 unique test cases. For one search-based test run, we create a seed
population with 40 individuals from the input model and terminate
the genetic algorithm after five generations. Finally, we combine six
independent test runs to obtain one test run set of similar size compared
to combinatorial testing. We repeated this procedure to obtain ten test
run sets ranging in size from 963 to 1,024 for AEB1 and ten test run
sets ranging from 837 to 1,006 test cases for AEB2. Regarding the odd
numbers between test run sets, we only count test cases executed in
the simulation. The genetic algorithm does not re-simulate test cases
selected for the next generation, which were not affected by crossing
or mutation (i.e., stayed unchanged and already have a fitness score
assigned). Only in the case when an identical test case results from
crossing and mutation it needs to be re-evaluated since it has no fitness
score assigned.

RT-based Scenario Generation: We conduct ten additional exper-
ments using a random test generation approach for the same AEB
unction. The same simulation setup and configurations are used. For a
lear comparison, each random generation experiment consists of the
ame number of test cases as the CT approach, i.e., 978 test cases.
he test cases are generated randomly for random test generation,
here we often rely on a uniform distribution. We conduct two steps

n generating the random test cases to have a comparable test case set.
irstly, we take the parameters from the same input model from the CT
pproach. The value for each parameter is selected randomly from its
omain defined in the CT input model. Initial random test cases without
ny combination constraints were then generated. Secondly, we applied
onstraints of the CT generation to remove invalid combinations. These
onstraints are also applied to the generated initial test cases, and the
nvalid ones, including the constrained parameter combinations, are
emoved. Finally, the random test cases with the same number of test
ases and constraints are fed to the simulation execution.

.3. Framework for automated test case generation, execution and evalua-
ion

Our case study follows a comprehensible path for testing, from
arameter selection to test scenario generation, execution, and final
ssessment. The ontology as a formal representation of scenario sources
s converted into a CT input model that specifies parameters and
alue ranges for each test generation method. The resulting cases are
onverted into an XML format according to the OpenScenario specifi-
ation,4 to form executable test scenarios. Those scenarios are finally
ed to the automated test execution and evaluation framework. An
verview of the method for empirical data collection is shown in Fig. 4.

The framework comprises both AEB systems and co-simulation
i.e., 3D environment, traffic simulation, vehicle dynamic, sensor model,
nd so on). The software we use in our test environment is AVL VSM
or vehicle dynamic simulation, VTD from VIRES5 as a virtual driving
nvironment platform and AVL Model.CONNECT is the co-simulation
ool to connect all the software with the AEB function. The AEB systems
re tested and assessed in the virtual test environment against the
arious generated test scenarios. For evaluation, we monitor the TTC,
here the minimum TTC reveals how close a scenario came to a crash

ituation during execution. A TTC close to zero seconds represents a
ollision with a vehicle or pedestrian (i.e., AEB failure). In case of
ollision, we distinguish five different crash events, as shown in Table 5.
ere, FCV refers to a crash where the Ego vehicle strikes the rear part
f the leading vehicle. FCP1 and SCP1 refer to a front, respectively,
ide collision with the pedestrian one, depending on which side of the

4 See http://www.openscenario.org/.
5 See https://vires.com/vtd-vires-virtual-test-drive/.
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Table 5
Defined crash flags.

Crash flags Description

FCV Collision with front vehicle
FCP1 Front Collision with pedestrian 1
FCP2 Front Collision with pedestrian 2
SCP1 Side Collision with pedestrian 1
SCP2 Side Collision with pedestrian 2

Table 6
SBT, RT and CT test generation and crash summary for AEB1.

SBT AEB1 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 SBT01 1024 806 218 0 161 56 0 1
2 SBT02 983 857 126 0 31 94 1 0
3 SBT03 1002 802 200 0 120 79 0 1
4 SBT04 1010 743 267 0 216 50 0 1
5 SBT05 1005 807 198 3 149 41 4 1
6 SBT06 988 884 104 0 42 55 4 3
7 SBT07 971 743 228 0 199 24 0 5
8 SBT08 990 771 219 0 156 61 0 2
9 SBT09 963 764 199 0 165 34 0 0
10 SBT10 1021 801 220 2 134 82 0 2

RT AEB1 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 RT01 978 949 29 0 19 9 1 0
2 RT02 978 936 42 0 24 17 1 0
3 RT03 978 943 35 1 16 17 1 0
4 RT04 978 938 40 0 24 16 0 0
5 RT05 978 944 34 0 17 16 0 1
6 RT06 978 926 52 0 34 18 0 0
7 RT07 978 949 29 0 12 17 0 0
8 RT08 978 939 39 0 19 19 0 1
9 RT09 978 932 46 0 24 20 2 0
10 RT10 978 937 41 0 21 17 3 0

CT2 AEB1 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 CT2_01 978 942 36 0 12 18 4 2

CT3 AEB1 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 CT3_01 21418 19567 1851 2 604 999 159 87

pedestrian’s surrounding bounding box the Ego vehicle strikes. The
same applies to FCP1 and SCP2 for pedestrian two. In Practice, side
collisions are possible but may only occur rarely. Nevertheless, for
completeness, we included this crash event in the study.

5. Results

As part of the presented case study, we want to compare the
properties and capabilities of each method in detecting the relevant
areas in the input space within a feasible time. We considered relevant
areas as a set of concrete scenario parameters resulting in crashes with
the front vehicle, pedestrian 1, or pedestrian 2. We first summarize
the distribution of AEB1 and AEB2 crash events detected by each
method. Considering test coverage, we first discuss each method’s t-way
combinatorial test coverage.

5.1. AEB1 and AEB 2 crash event distribution

In Table 6, we summarize the evaluation result for each test genera-
tion technique applied on AEB1. If a crash event is observed during sce-
nario execution, we consider the scenario as failed, otherwise passed. In
the table presented, 𝑇 𝑜𝑡𝑎𝑙 refers to the number of test cases generated,
𝑃𝑎𝑠𝑠 summarizes the number of successful test cases, and 𝐹𝑎𝑖𝑙 refers to
the number of failed test cases. For failing test scenarios, we distinguish
between five different crash events, where for instance, 𝐹𝐶𝑉 refers
to the number of scenarios where a collision with the front vehicle
was observed. The same applies for 𝐹𝐶𝑃1, 𝑆𝐶𝑃 1, 𝐹𝐶𝑃 2, and 𝑆𝐶𝑃 2.
Due to their probabilistic elements, search-based test generation (SBT)

and random testing (RT) have each been executed ten times against

http://www.openscenario.org/
https://vires.com/vtd-vires-virtual-test-drive/
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Fig. 4. One CT input model derived from an AEB ontology was shared for search-based, combinatorial, and random test generation. The empirical results from executing the
corresponding test scenarios against two AEB systems were used for test coverage and efficiency analysis.
Table 7
SBT, RT and CT test generation and crash Summary AEB 2.

SBT AEB2 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 SBT01 976 867 109 95 3 11 0 0
2 SBT02 916 287 629 547 37 45 0 0
3 SBT03 897 309 588 455 51 65 0 17
4 SBT04 990 746 244 173 20 51 0 0
5 SBT05 923 285 638 514 68 55 0 1
6 SBT06 931 282 649 533 84 32 0 0
7 SBT07 925 264 661 548 69 28 0 16
8 SBT08 907 677 230 186 11 33 0 0
9 SBT09 1006 896 110 65 2 35 0 8
10 SBT10 946 837 109 97 2 10 0 0

RT AEB2 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 RT01 978 960 18 10 6 2 0 0
2 RT02 978 953 25 17 5 3 0 0
3 RT03 978 952 26 18 6 2 0 0
4 RT04 978 937 41 27 9 5 0 0
5 RT05 978 936 42 16 5 20 0 1
6 RT06 978 947 31 14 13 4 0 0
7 RT07 978 945 33 20 3 10 0 0
8 RT08 978 929 49 16 5 28 0 0
9 RT09 978 942 36 17 2 17 0 0
10 RT10 978 937 41 23 1 17 0 0

CT2 AEB2 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 CT2_01 978 901 77 57 3 12 1 4

CT3 AEB2 Total Pass Fail FCV FCP1 SCP1 FCP2 SCP2

1 CT3_01 21418 19520 1898 1356 122 96 286 38

AEB1 and AEB2, marked from SBT01 to SBT10 and RT01 to RT10,
respectively. The combinatorial test generation results with strengths
two (i.e., CT2_01) and three (i.e., CT3_01) are also presented in the
table.

As we observe from the summary table, FCV is the most challenging
crash type to detect for all three methods. SBT generated five FCV sce-
narios in two test runs (SBT05 and SBT10) and RT in just one test run
8

(RT03) out of ten. CT2 test scenarios did not cover an FCV crash event;
however, CT3 detected two FCV crash events. The remaining four crash
events are detected by each test generation method. However, some of
them are less frequent as FCP2, which SBT only identifies in three out
of ten test runs (SBT02, SBT05, and SBT06), or SCP2, which RT only
covers in two out of ten test runs (RT05 and RT08).

Furthermore, we observe that each technique can generate a sub-
stantial number of scenarios that result in FCP1 or SCP1 events, in-
dicating that AEB1 has noticeable defects in avoiding collision with
pedestrian 1. Moreover, all methods detect collisions with Pedestrian
2 (P2) less frequently than Pedestrian 1 (P1). P1 crosses the road from
the right side from the ego point of view. In some cases, P1 might be
‘‘occluded’’ by the parked vehicles or entering the road outside the
radar’s cone-shaped field of view. In contrast, P2 crossing from the
left is never occluded by parked vehicles and travels a longer distance
(i.e., across the oncoming lane), which is easier to detect and leaves
more reaction time for the system to initiate breaking. Since P1 crashes
are apparently ‘‘easier’’ to detect, SBT focuses on these regions in the
input space in the proceeding search, reducing the overall probability
of generating a scenario resulting in a crash with P2. As a result,
SBT generates approximately five times the number of failed test cases
compared to RT or CT2, where the average number of failed test cases
generated by RT is similar to CT2.

In contrast, CT3 seems the most reliable technique for crash type
coverage as all crash types categorized in Table 5 are guaranteed to be
covered by its test suite. However, the CT3 test suite is twice as large as
all executed SBT or RT test runs combined. Further, SBT and RT have
also demonstrated to detect all crash types in the table eventually, even
if not in every test run.

Similar to AEB1, Table 7 shows the evaluation results for each test
generation technique concerning AEB2 crash event distribution. As we
observe in Table 7, FCV is the most frequent crash type detected by all
techniques, which is quite different from the results observed for AEB1.
For SBT and RT, FCP2 becomes the most challenging crash type, which
both methods fail to detect, followed by SCP2. Still, CT2 and CT3 can
detect both crash types and all techniques have no difficulties detecting
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Fig. 5. AEB1 crash event probability distribution.
FCP1 and SCP1. Compared to AEB1, AEB2 seems more vulnerable, with
noticeable defects that lead to crash scenarios with the front vehicle and
pedestrian 1. Concerning the number of detected crash types, both CT2
and CT3 reliably detect all crash types in the table, followed by SBT,
which has slight advantages over RT in detecting SCP2.

5.2. AEB1 and AEB 2 failure probability distribution

Fig. 5 shows each method’s corresponding probabilities per crash
event. Here, 𝑃 (𝐹𝐶𝑉 ) refers to the probability that a generated test case
can detect FCV during execution. We calculate:

𝑃 (𝐹𝐶𝑉 ) = 𝐹𝐶𝑉
𝑇 𝑜𝑡𝑎𝑙

∗ 100[%]

The same applies to 𝑃 (𝐹𝐶𝑃 1), 𝑃 (𝑆𝐶𝑃 1), 𝑃 (𝐹𝐶𝑃 2), and 𝑃 (𝑆𝐶𝑃2).
On average, test cases generated by SBT have a higher possibility
of detecting a failure compared to RT, CT2, and CT3, especially for
FCV (0.05%), FCP1 (13.78%), and SCP1 (5.77%). However, test cases
generated by CT2 and CT3 show a higher probability of detecting FCP2
with (0.41%) and SCP2 (0.20%), respectively, compared to SBT and
RT. Considering the probabilities shown in Fig. 6, except for FCP2, SBT
always shows a higher crash detection possibility with FCV1 (34.71%),
FCP1 (3.75%), SCP1 (3.90%), and SCP2 (0.45%) than RT, CT2, and
CT3. CT3 and CT2 have the highest and second-highest possibility of
detecting FCP2 with (1.34%) and (0.10%), respectively. Notably, for
both AEB1 and AEB2, the probability distribution of crash events is
similar between SBT and RT, which we can explain, considering SBT’s
random element used for generating the initial seed population. In
contrast, the probability distribution of CT2 and CT3 is different, which
can be explained by the structural coverage of the entire input space
achieved by combinatorial testing.

5.3. T-way combinatorial coverage analysis

According to [11] most failures for ordinary systems are triggered
by the combined combinatorial effect or interaction of input parameters
(up to 6). In other words, testing all t-way combinations can provide
strong assurance for fault detection. Therefore, from this point of view,
we would like to see the performance of each test method by analyzing
the t-way test case coverage.

In Table 8, we present the CT coverage information from 2-way
to 5-way for SBT, RT, and CT2 for both AEB1 and AEB2. The given
9

Table 8
SBT, RT, and CT coverage results summary (2-way to 5-way). All values are average
values over the runs.

SUT Method 2-way
coverage

3-way
coverage

4-way
coverage

5-way
coverage

AEB1 𝑆𝐵𝑇 75,7% 30,2% 8,9% 2%

AEB2 𝑆𝐵𝑇 74,5% 29,2% 8,8% 2%

AEB1\AEB2 𝑅𝑇 79,9% 34,1% 10,8% 3%

AEB1\AEB2 CT2_01 100% 42% 13% 4%

coverage values are averages over all runs for SBT and RT where it
is worth noting that the value deviation over the runs is minor. SBT
has a slightly lower coverage than RT concerning the 2-way, 3-way,
4-way, and 5-way coverage. A possible explanation may be that the
search space was guided and thus focused more on specific regions.
CT2 has undoubtedly reached 100% of 2-way coverage, 42% for 3-
way, 13% for 4-way, and 4% for 5-way coverage, respectively. For
CT2, each coverage is higher than the corresponding 𝑛-way (𝑛=2,3,4,5)
coverage for SBT and RT. Again, CT is more effective for testing rare
events as it ensures coverage of all t-way interactions thus increasing
the confidence in detecting those extreme faults.

5.4. Threats to validity

A significant concern is the completeness of the input model (i.e., the
ontology). In the current study, the ontology model only considers
the dynamic part (i.e., all moving objects in the scenario), while the
static parts, which represent road and traffic infrastructures, are not
included in our model. As a result, our experiments’ failures and critical
scenarios detected and described may only work for the ontology with
dynamic parts. Possibly they will not manifest when static parts are
taken into consideration. In addition, the values used for fault detection
need to increase as well. To alleviate this, we will extend our current
ontology by integrating both static and dynamic parts and conduct
further investigations on the testing performance between CT, SBT, and
RT in the future. We believe our findings will be more comprehensive
and general.

Another threat is the simulator fidelity for results interpretation.
We did not validate the relationship between the simulated world
and the real world in the paper. Therefore, critical scenarios and
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Fig. 6. AEB2 crash event probability distribution.
behaviors identified/detected in the simulator may deviate from the
real world. However, this challenge applies to peer research as well.
Meanwhile, the simulation software used in our study is the-state-of-
art in the market today with the best accuracy, which can narrow the
gap between simulation and reality to the maximum extent.

Last but not least, our experiments were done only based on the
two AEB systems. To increase the functionality and system diversity,
we used two implementations of the AEB system to conduct experi-
ments, and these two systems also responded to different results and
characteristics. Hence, we used this to compensate for the lack of
diversity.

6. Discussion

As observed from the case studies of AEB1 and AEB2, all three
methods (i.e., RT, CT, and SBT) can find critical scenarios, i.e., situa-
tions where the two SUTs fail to work as expected, resulting in a crash
between the ego vehicle another car or a pedestrian. In general, CT
and SBT tend to be complementary to each other. On the one hand,
CT is more effective than SBT regarding the detected crash types. On
the other hand, SBT is likely to be more efficient than CT having a
higher crash detection probability (especially in case of specific crash
types). RT is mediocre and does not appear to have a clear advantage
over CT or SBT.6 Therefore, in the following discussion, we will focus
on the difference between SBT and CT to provide some guidance
for selecting the appropriate testing method for a given task in the
context of automated and autonomous driving validation. For viewing
convenience, the following discussion details are further summarized
in Table 9.

Prerequisites & requirements
Combinatorial testing : The CT approach aims to find critical interac-

tions between parameters that lead to crashes or other fault scenarios.
To carry out this approach, first, we need an ontology to capture the
environmental information of the SUT. Second, we need a conver-
sion algorithm to convert the ontology into an input model to use a
combinatorial test case generation algorithm. Furthermore, we need
constraints, which are very important for avoiding impossible combi-
nations of parameters to create more reasonable scenarios and, in the

6 Nevertheless, RT may provide minimum guarantees on the probability of
fault detection when test budgets and constraint information are limited [18,
19].
10
end, an oracle to check the executions. For automated or autonomous
function testing, we constructed the ontology using the environment
of an ego-vehicle, like road construction, weather condition, traffic
participants, and other driving and environmental features. Regarding
combinatorial testing generation, algorithms are available for use. An
oracle in this application could use time-to-collision and other relevant
KPIs for the dedicated function.

Search-based testing : The objective of SBT is to find at least one set
of concrete parameter values that results in an optimal solution, in our
case, a critical driving situation. As a prerequisite, SBT requires formu-
lating test cases as candidate solutions to an optimization problem and
defining a cost function that guides the search for an optimal solution.
In the case of testing automated and autonomous driving functions
on the system level, the candidate solutions are virtual test scenarios
for the system under test, where the search algorithm optimizes the
underlying set of scenario parameters to result in faulty behavior
of the system under test, often as a consequence of critical driving
situations. Using a genetic algorithm to implement search-based testing
requires selecting suitable genetic operators (i.e., crossing, mutation,
and selection) and carefully fine-tuning the underlying parameters to
guide the search towards optimal solutions efficiently. The scenario
representation and configuration of genetic operators are described in
detail in Section 3. The input model defines the permissible parameter
and parameter value ranges, and the criticality of each scenario is
determined based on a cost function that assigns a high fitness score
to scenarios that result in a low time-to-collision value.

Additional effort:
Combinatorial testing : There is no additional effort when applying

CT besides choosing and deciding the right combinatorial strength7 for
the function faulty behavior detection. This paper uses a combinatorial
strength of 2 and later extends it to 3 for discussion purposes. Although
for an ordinary system, a strength of 6 is sufficient for detecting all
possible faults [10], for automated or autonomous driving functions,
the required strength remains an open question.

Search-based testing : Besides selecting and fine-tuning an appropri-
ate search algorithm, SBT requires defining an evaluation function
to optimize the overall search procedure. Since there is no general
procedure available on how to optimize search, additional effort is

7 The size of the set of arbitrary parameters where all combinations are
considered.
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Table 9
Qualitative comparison of CT and SBT.

CT GA RT

Prerequisites Construction of ontology
Conversion of input model
CT algorithm

Formulation of test cases to an
optimization problem
Definition of cost function and
search algorithm

RT generation algorithm

Efficiency Focus on finding parameter
interactions for critical scenario
More efficient in terms of
detecting crash types

Focus on finding set of concrete
parameter values
Faster search and detection of
critical scenario

A low-cost and quick solution
compared to CT and GA in
terms of quick system testing
focusing on finding critical
scenario according to oracle

Additional effort Choosing and deciding the right
combinatorial strength

Selection and fine tuning of
search algorithm
Definition an evaluation function

No further additional efforts

Guarantee Guarantee of correct results
based on the generated input
model and combinatorial
strength T-way test case
coverage

No specific quarantees can be
given from search-based testing
Lower t-way test case coverage
compared to CT

No specific quarantees can be
given from random test
generation
required for trial and error. In the case of using a genetic algorithm, this
also includes selecting and carefully parametrizing appropriate genetic
operators for crossing, mutation, and candidate selection. Guarantees:

Combinatorial testing : The approach’s results are correct based on
he underlying input model and CT strength. Therefore, the outcome
orrectness can also be interpreted as correct concerning the ontology
ased on the knowledge. Hence, if the quality of the ontology in terms
f engineering knowledge know-how and completeness can be ensured,
e can state the correctness of testing results based on the applied

ombinatorial strength.
Search-based testing : No specific guarantees can be given on the

test results obtained from SBT. Once a failing test case is observed,
we know that the system under test does not show the intended
functionality, hence is faulty. If no failing test case is observed, the
result is unspecified.

7. Conclusion and future work

In this paper, we conducted an in-depth comparison of the fault
detection performance of two test generation methods that combine
ontologies with CT, and SBT, respectively. An utterly fair comparison
of the CT, SBT, and RT fault detection capability is impossible due
to each testing strategy’s substantially different working principle. In
order to compare as fairly as possible, a unified comparison criterion
had to be set, which in our case, was the number of generated test
cases per method. The test suite size set by CT2, predefined by the
combinatorial strength 𝑡 = 2, has been used as a starting point for all
hree techniques. RT generated the exact and SBT approximately the
ame number of test cases after specific iterations. Originally it was only
ntended to consider a combinatorial strength 𝑡 = 2 for the comparison.

However, since CT2 did not trigger all failures, a combinatorial test
suite of strength 𝑡 = 3 was also considered to check if 3-way would
eventually detect all five crash events.

The results from an AEB case study comprising two different AEB
implementations indicate that CT and SBT are mutually complemen-
tary, where CT is more effective in detecting different crash types and
the degree of combinatorial coverage. SBT is more efficient, showing
a higher detection likelihood for specific crash scenarios. In addi-
tion, CT and SBT are generally superior to random testing concerning
crash type detection and crash detection probability. Furthermore, we
added a comprehensive discussion regarding the prerequisites, require-
ments, additional effort, and interpretation of outcome, as well as
obtained guarantees when applying CT and SBT to automated and
autonomous driving validation, which can be the basis for selecting
the most appropriate method for testing different ADAS functions or
11

AD systems.
Future work includes applying the CT, and SBT approaches to
more complex autonomous driving functions using more sophisticated
ontologies with more input parameters and testing values. In addition,
we plan to perform a more detailed analysis of all the simulated
results in terms of triggering parameter combinations and interactions.
With this further analysis, we intend to summarize and compare the
testing results of different automated driving functions to answer the
question about a suitable combinatorial strength for application in the
AD and ADAS domains. It is also worth investigating how to repeatedly
use lower combinational strength to achieve similar fault detection
performance compared to using a (much) higher strength directly.
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