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Abstract: Reliable recovery of transmission parameters is of paramount importance not only for radio
frequency receivers, but also for optical wireless communication solutions. This paper discusses a
feedback algorithm for recovering the symbol timing in the context of a bandlimited optical intensity
link. The link is determined by a PAM scheme and pulse shaping with squared raised cosine or
double jump functions. When preambles or pilot sequences are not available to the receiver, non-
data-aided (blind) recovery concepts are useful for tracking smaller variations of the timing error
affecting the payload data. The current state-of-the-art solution uses a Gardner detector with two
samples per symbol, although this introduces a non-negligible amount of inter-symbol interference
resulting in an error floor. To avoid this drawback, the authors propose a dual-filter approach
which includes an appropriately designed filter operated in parallel to the receiver filter. Despite the
additional complexity of the dual-filter architecture, the recovery loop is very simple and requires
only one sample per symbol, representing the lowest degree of complexity in this respect. Open-
loop characteristic, jitter performance, and acquisition behavior of the suggested recovery loop are
investigated.

Keywords: symbol timing recovery; optical wireless communications; intensity modulation; pulse
shaping

1. Introduction

Comparing radio frequency (RF) to optical wireless communication (OWC) techniques,
the benefits of the latter are well known: no regulatory and license issues, rather inexpensive
and easy to deploy, extremely high throughput, and no problems with data security, just
to mention the most significant aspects in this context [1–4]. A nice overview in this
respect is also given by the authors in [5,6], both from a historical as well as a technical
point of view. Moreover, unlimited bandwidth is frequently mentioned as an important
feature, but this is not true in the strict sense due to inevitable hardware constraints of
opto-electronic components in transmitter and receiver units [7]. A strong argument for
a bandlimited approach is also that powerful algorithms for parameter estimation and
synchronization normally used in RF receivers [8,9] would become applicable to OWC
systems as well. Further reasons, beyond OWC, for bandwidth constraints are related to
multipath distortions in diffuse optical indoor systems or dispersion effects in optical fiber
networks [10,11].

Focusing in the following on intensity modulation, it is to be noticed that the optical
domain tolerates no negative signal components. For a bandlimited approach with pulse
shapes used for RF solutions, this is simply achieved by a suitably selected bias or offset
signal, with respect to a subcarrier system discussed in [12–15] or via an M-ary PAM scheme
investigated in [10,11]. However, such concepts are not very efficient in terms of power
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and energy in case that no harvesting is implemented. Therefore, a unipolar pulse design
satisfying the Nyquist criterion has been suggested in [7]. It could be demonstrated by the
author that the squared impulse response derived from a raised cosine function defined in
the frequency domain, simply denoted as the squared raised cosine (SRC) method, fulfills
this requirement.

Unfortunately, there exists no simple real-valued root-Nyquist solution for SRC shapes
satisfying the non-negativity constraint, although this would be necessary to maximize the
signal-to-noise ratio (SNR) at the output of a receiver-matched filter. Instead, a rectangular
filter performing a flat behavior in the frequency domain of interest is frequently imple-
mented in practice. An alternative would be the approach introduced in [16] to obtain a
non-negative impulse response, but this results in an unconstrained min-max optimization
procedure, which has to be solved by numerical means whenever a new design is required.

Not only for RF but also for OWC solutions, the most important transmission parame-
ters must be successfully recovered by powerful algorithms [8,9]. Otherwise, subsequent
receiver stages, such as symbol detection and error correction units, cannot be operated
reliably. Certainly, in case of optical intensity links, carrier frequency and phase need not
be considered, whereas estimation and synchronization of symbol timing and clocking is
of paramount importance. Screening the open literature in this context, not much material
is available. To the best of the authors’ knowledge, it is the first time that this problem
has been addressed for SRC shapes in [17]. Under the assumption that the user data
are known to the receiver unit in the form of preambles or pilot sequences, a data-aided
(DA) feedforward algorithm could be derived from the maximum likelihood principle and
compared to the modified Cramer-Rao lower bound (MCRLB) as the major figure of merit,
when it comes to the estimation of a transmission parameter, in general [18].

The work in [17] has been extended in [19,20] by a non-data-aided (NDA) feedforward
(FF) as well as a feedback (FB) architecture that do not need any knowledge about data such
that payload symbols must be used for this purpose. Specifically, the FB synchronizer in [20]
is realized with a single receiver filter and a Gardner detector (TED), which necessitates
two samples per symbol period. Nevertheless, this moderate form of oversampling causes
a jitter variance ending up in an error floor at higher SNR values. This drawback is avoided
by the approach introduced in the current contribution, where a second filter is operated in
parallel to the receiver filter so that no oversampling is required for the recovery loop.

The remainder of the paper is organized as follows: Section 2 focuses on the signal and
channel model used for analytical and simulation work. In Section 3, the dual-filter solution
is developed. This is discussed in Sections 4 and 5 in terms of open-loop characteristics,
jitter performance, and acquisition behavior. Finally, conclusions are drawn in Section 6.

2. Signal and Channel Model

Since the current paper is a follow-up activity of the results achieved in [17] and [19,20],
the applicable signal and channel model is essentially the same. From this point of view, it
makes sense to recapitulate this model for clarity and readability reasons. This gives us
also the chance to introduce some basic notations used throughout the paper.

First, it is assumed that the real-valued data symbols ak, k ∈ Z, are independent and
identically distributed (i.i.d.) elements of an M-ary PAM alphabet A. For convenience,
the alphabet is organized such that the symbols are normalized to unit energy, i.e., ηa =
E[a2

k ] = 1, where E[·] denotes the expectation operator. With ηM = 1
6 (M− 1)(2M− 1) the

PAM symbols are now given as ak ∈ A = 1√
ηM
{ 0, 1, . . . , M− 1 }. This means that the

average value is determined by

µa = E[ak] =
1
√

ηM

M− 1
2

=

√
3 (M− 1)
2 (2M− 1)

(1)



Electronics 2023, 12, 1411 3 of 12

Furthermore, it is assumed that the pulses in the transmitter station are either shaped
by a squared raised cosine (SRC) or a squared double jump (SDJ) function [7] expressed as

h(t) =
1√
T


(

sinc(t/T) cos(π αt/T)
1−(2αt/T)2

)2
. . . SRC(

1−α
2 sinc[(1− α)t/T] + 1+α

2 sinc[(1 + α)t/T]
)2

. . . SDJ
(2)

where sinc(x) = sin(πx)/(πx), 0 ≤ α ≤ 1 is the excess bandwidth (roll-off factor), and T
stands for the symbol period the OWC link is operated which. Note that SRC and SDJ
shapes satisfy both the non-negativity and the Nyquist criterion, exemplified in Figure 1
for α ∈ {0.0, 0.5, 1.0}.
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Figure 1. Evolution of non-negative pulse shapes used for bandlimited OWC. 
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It has been proved in [7] that SDJ pulses are optimal insofar as the average optical
power achieves a minimum for a given value of α, which is a major motivation to compare
this kind of pulses to SRC shapes. Note also that SRC and SDJ are equivalent for α = 0,
which represents the minimum bandwidth (MBW) case with h(t) = 1√

T
sinc2(t/T), whereas

for α = 1, with h(t) = 1√
T

(
sinc(2t/T)
1−(2t/T)2

)2
for SRC and h(t) = 1√

T
sinc2(2t/T) for SDJ, the

required bandwidth achieves a maximum. By detailed inspection of Figure 1, it can also be
observed that the width of the main lobe shrinks when α increases and that this effect is
more pronounced for SDJ.

However, irrespective of the pulse shape finally selected, the generated transmitter
signal can be generically written as

s(t) = ∑
k

ak h(t− kT) (3)

It is clear that the observation window for the estimation procedure is usually much
smaller than the coherence time of a fading process the channel might suffer from, i.e.,
the channel state does not change significantly over this period of time, so that fading
effects need not be taken into account. Related to this observation interval, this means also
that the optical signal at the receiver side is only affected by some propagation loss and a
delay in time, henceforth denoted by Kl and τ, respectively. Then, by introduction of the
electro-optical conversion factor K0 and the detector responsivity Rd in the transmitter and
receiver units, we have a gain factor A = Rd Kl K0 characterizing the OWC link. Assuming
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also that the signal part x(t) = A · s(t− τ) is distorted by zero-mean white Gaussian noise
w(t) with variance σ2

w, the receiver signal can be expressed as

r(t) = x(t) + w(t) = A · s(t− τ) + w(t) (4)

Certainly, before being treated in further stages of operation, the signal in (4) has to
pass the receiver filter q(t), whose output z(t) is appropriately sampled to avoid alias effects.
For convenience, the signal and channel model used for analytical and simulation work is
summarized in Figure 2.
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In addition, the average optical power is defined as P0 = µa h, where

h =
1√
T

∞∫
−∞

h(t) dt =
{

1− α
4 . . . SRC

1− α
2 . . . SDJ

(5)

and the average electrical SNR at the receiver is introduced as

γs =
A2P2

0
σ2

w
(6)

3. Dual-Filter Architecture

Regarding the maximum likelihood algorithm developed for symbol timing estimation
in [17], it could be verified that the receiver filter with impulse response q(t) must be
proportional to the signal shape given by (2). However, this violates the Nyquist criterion
guaranteeing a rather simple detection of symbols. As an alternative, it is frequently
suggested to employ a direct-sampling receiver. Specifically, this means that q(t) exhibits a
flat behavior in the frequency domain occupying the same bandwidth as the user signal in
(3), i.e., Q( f ) = F [q(t)] =

√
T for | f | ≤ (1 + α)/T and zero elsewhere. Applying the rules

for Fourier transforms [21] simply yields

q(t) = F−1[Q( f )] =
2(1 + α)√

T
sinc[2(1 + α)t/T] (7)

The output of the filter is then determined by

z(t) = r(t)⊗ q(t) = x(t) + n(t) (8)

with ⊗ as the convolutional operator. Hence, the signal component is furnished as

x(t) = A∑
i

ai g(t− iT − τ) (9)

where g(t) = h(t) ⊗ q(t) =
√

Th(t) and n(t) = w(t) ⊗ q(t) is the corresponding noise
component. Some remarks are most helpful in this respect:

• g(t) is proportional to h(t), which means that the Nyquist criterion is satisfied.
• For SRC and SDJ shapes given by (2), the Fourier transform G( f ) = F [g(t)] is strictly

bandlimited by ±(1 + α)/T.
• n(t) is a zero-mean non-white Gaussian process.
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As already mentioned in the introductory section, it is desirable to explore a FB
structure for symbol timing recovery, which employs a second filter with impulse response
.
q(t) operated in parallel to q(t), as shown in Figure 3.
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In the context of RF systems using a square-root raised cosine (SRRC) filter for pulse
shaping, it has been demonstrated in [22] that a data-blind symbol synchronizer can be
realized with a couple of benefits if this parallel filter is designed by considering the
extended zero-crossing property. Applying this concept also to our optical link introduced
previously, this would mean that

.
g(t) = h(t)⊗ .

q(t) must vanish at all integer multiples
of T, i.e.,

.
g(kT) = 0, k ∈ Z. This goal is easily achieved with the first-order derivative of

q(t) so that
.

Q( f ) = F [ .
q(t)] = j2π f T Q( f ). As a consequence, the corresponding impulse

response is obtained as

.
q(t) = F−1[

.
Q( f )] =

1
π
√

T

{
2π(1 + α) cos[2π(1 + α)t/T]

t/T
− sin[2π(1 + α)t/T]

(t/T)2

}
(10)

Consequently, the output of the parallel filter is given by

.
z(t) = r(t)⊗ .

q(t) =
.
x(t) +

.
n(t) (11)

with the signal part specified as

.
x(t) = A∑

i
ai

.
g(t− iT − τ) (12)

and the noise part determined by
.
n(t) = w(t)⊗ .

q(t). Similar to the noise component n(t)
in (8),

.
n(t) is a zero-mean non-white Gaussian process. Furthermore, it is to be noticed that

E[ .
n(t) n(t)] = 0, which is due to the orthogonal characteristics of q(t) and

.
q(t). Finally, it is

clear that the Fourier transform of
.
g(t) is furnished by

.
G( f ) = F [ .

g(t)] = j2π f T G( f ).
By detailed inspection of Figure 3, it can be observed that the filter outputs, sampled

at integer multiples of the symbol period, i.e., zk = z(kT) and
.
zk =

.
z(kT), are processed in

the timing error detector (TED). According to the approach in [22], it is proposed that the
error signal is simply computed as

ek =
.
zkzk (13)

This error signal is then fed to the loop filter determined by its z-transform Fe(z).
Since it is assumed that the fluctuations of the timing offset τ are much slower than the
settling period of the FB loop, a first-order structure is sufficient to follow these variations
so that the loop filter reduces to a pure constant. The integrator–mandatory for an analog
implementation—is in the digital domain replaced by a running sum, which controls the
sampling process, as depicted in Figure 3. It is to be observed that the recovery loop requires
no oversampling, i.e., only the absolute minimum of one sample per symbol period is
needed to operate the structure in Figure 3.

4. Open-Loop Characteristic

The open-loop characteristic or S-curve is a major figure of merit when it comes to the
recovery of a transmission parameter by means of a tracking loop. Given that the loop is
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open, the S-curve is defined as the average output of the corresponding detector module [8].
Related to the timing synchronizer shown in Figure 3, this can be generically expressed as

S(τ) = E[ek|τ̂k = 0] (14)

Recalling that zk = xk + nk and
.
zk =

.
xk +

.
nk, (13) is substituted into (14), which

yields
S(τ) = E[ .

zkzk] = E[ .
xkxk] (15)

after having taken into account that the noise samples nk and
.
nk are zero-mean Gaussian

and orthogonal, i.e., E[nk] = E[ .
nk] = E[nk

.
nk] = 0. Furthermore, by introduction of the

normalized timing error ε = τ/T, the signal samples are given by

xk = x(kT) = A∑
i

ai g[(k− i− ε)T] (16)

and
.
xk =

.
x(kT) = A∑

i
ai

.
g[(k− i− ε)T] (17)

Plugging in the next steps (16) and (17) into (15), one obtains for the i.i.d. symbols
ai ∈ A after a re-arrangement of indexes,

E[ .
xkxk] = E

[
A2∑

i
∑
l

ai al
.
g[(k− i− ε)T] g[(k− l − ε)T]

]
= A2ηa∑

k

.
g[(k− ε)T] g[(k− ε)T]

+A2µ2
a∑

k
∑

i 6=0

.
g[(k− ε)T] g[(k− i− ε)T]

(18)

As shown in Appendix A, the infinite sums in (18) may be rewritten by means of the
Fourier transforms for g(t) and

.
g(t). Since G( f ) =

√
TF [h(t)] and

.
G( f ) = j2π f T G( f ) are

strictly bandlimited by ±(1 + α)/T for SRC and SDJ shapes, the first sum in (18) can be
reformulated according to (A6):

Φ0(α, ε) = ∑
k

.
g[(k− ε)T] g[(k− ε)T]

= 1
T

(1+α)/T∫
−(1+α)/T

.
G( f )

3
∑

m=−3
G
(m

T − f
)

e−j2πm εd f
(19)

Doing the same with the double sum in (18) yields

Φ1(α, ε) = ∑
k

∑
i 6=0

.
g[(k− ε)T] g[(k− i− ε)T]

= ∑
i 6=0

1
T

(1+α)/T∫
−(1+α)/T

.
G( f ) ej2πi f T

3
∑

m=−3
G
(m

T − f
)

e−j2πm εd f
(20)

Introducing now, for simplification reasons, the terms

Ψm(α) = ψ0,m(α) + 2µ2
a ∑

i≥1
ψi,m(α) (21)

and

ψi,m(α) =
2π

T

(1+α)/T∫
−(1+α)/T

f T G( f ) G
(m

T
− f

)
cos(2πi f T) d f (22)
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the S-curve in (14) is, after some lengthy but straightforward algebra, most elegantly
expressed as

S(ε) = A2[Φ0(α, ε) + µ2
a Φ1(α, ε)] = 2A2

3

∑
m=1

Ψm(α) sin(2πmε) (23)

where it has already been taken into account that ηa = 1 and Ψ0(α) = 0; the latter is easily
explained by the fact that ψi,0(α) = 0 due to the even symmetry of G(f ).

Apart from α = 0, the finite integral in (22) must be evaluated by numerical means.
Luckily, G(f ) is for SRC and SDJ shapes given in closed form; since this is a rather bulky
relationship in piecewise form, it is not shown here for reasons of clarity and readability.
Moreover, it could be verified that |ψi,m(α)| decreases monotonically with increasing
indexes i ∈ N, irrespective of the chosen values of m and α. Therefore, the summation
in (21) will be executed until this term drops below a predefined threshold, such as 10−5,
to achieve the necessary accuracy. In Table 1 below, the numerical values of Ψm(α) have
been computed for different values of α; although the table describes a 4-PAM scheme, the
following observations are valid for other PAM constellations, as well:

• For α = 0, which indicates the MBW case, there is no overlap at all between G(f ) and
G(m/T − f ), m = 2 and 3, so that Ψ2(0) = Ψ3(0) = 0; hence, the S-curve performs a
pure sinusoidal shape determined by Ψ1(0), which is available in closed form, as
demonstrated in Appendix B;

• For 0 < α ≤ 0.5, Ψ3(α) = 0, because G(f ) and G(3/T − f ) do not overlap;
• For SRC shapes, Ψ2(α) and Ψ3(α) are much smaller than Ψ1(α) irrespective of α, which

means that the S-curves approximate a sinusoidal function; this does not hold true for
SDJ, where Ψ2(α) is in the order of Ψ1(α) for α > 0.5.

Table 1. Coefficients for dual-filter solutions (4-PAM).

SRC SDJ

α Ψ1(α) Ψ2(α) Ψ3(α) Ψ1(α) Ψ2(α) Ψ3(α)

0.0 0.187 0.0 0.0 0.187 0.0 0.0

0.1 0.237 0.001 0.0 0.291 0.003 0.0

0.2 0.287 0.003 0.0 0.390 0.013 0.0

0.3 0.335 0.006 0.0 0.478 0.031 0.0

0.4 0.383 0.012 0.0 0.565 0.059 0.0

0.5 0.428 0.019 0.0 0.639 0.099 0.0

0.6 0.472 0.028 1.66 × 10−10 0.693 0.152 0.0

0.7 0.514 0.039 9.38 × 10−8 0.735 0.215 0.002

0.8 0.554 0.053 2.62 × 10−6 0.762 0.286 0.008

0.9 0.590 0.069 1.04 × 10−5 0.775 0.362 0.018

1.0 0.624 0.087 3.95 × 10−5 0.773 0.442 0.036

For 4-PAM signals, A = 1 and α ∈ {0.0, 0.5, 1.0}, the open-loop characteristic in (23)
has been verified for SRC and SDJ scenarios by Monte Carlo simulations in Figure 4. The
diagram confirms the observations drawn from Table 1: SRC shapes produce an S-curve
that differs only slightly from a pure sinusoidal function at larger values of α, whereas for
SDJ the corresponding S-curves begin to deviate.
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By detailed inspection of (23), it is easily ascertained that S(0) = 0. This means that
the TED module in Figure 3 exhibits no bias effect, which is of paramount importance for
reliable recovery of the symbol timing. Furthermore, one can immediately compute the
slope in the stable equilibrium point at ε = 0, which is needed for a linearized description
of the tracking loop, as it is usually applied for small deviations from the equilibrium point.
Regarding the S-curve in (23), this yields

Ke =
∂S(ε)

∂ε

∣∣∣∣
ε=0

= 4A2π
3

∑
m=1

m Ψm(α) (24)

For 4-PAM and 16-PAM schemes, Figure 5 shows the evolution of (24) as a function of
the roll-off factor for SRC as well as SDJ pulses. It can be seen that the difference between
4-PAM and 16-PAM constellations is rather small. It can also be seen that Ke increases with
increasing values of α, although this behavior is more pronounced for SDJ. Certainly, for
α = 0 (MBW case), the slopes are the same for SRC and SDJ.
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5. Jitter Performance and Acquisition Behavior

Apart from the open-loop characteristic discussed previously, the jitter performance
is the second figure of merit regarding the synchronization of a transmission parameter.
Recovering the symbol timing, it can be assumed that the fluctuation of ε = τ/T is much
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slower than the settling period of the tracking loop. In this case, a first-order structure can
be used, in which the loop filter boils down to a simple constant given by KT. Focusing on
the tracking mode with only small deviations from the stable equilibrium point, the jitter
variance is determined by the one-sided noise bandwidth of the loop [8]; normalized by
the symbol period, the latter is determined by

BLTe =
Λe

2(2−Λe)
(25)

where Λe = KTKe denotes the loop gain for a first-order synchronizer. Conditioned on a
given value of BLTe, this means that the slope Ke of the S-curve in the stable equilibrium
point must be known so that the filter constant KT can be computed; usually, Λe � 1,
which means that BLTe ≈ Λe/4.

For a 4-PAM signal, BLTe = 10−3, and different values of α, Figure 6 illustrates the
evolution of the normalized jitter variance σ2

e = E[(ε− ε̂)2] as a function of the average
electrical SNR denoted by γs. For comparison purposes, the modified Cramer-Rao lower
bound (MCRLB) is shown as well [23,24]. This represents the theoretical limit of the jitter
variance, which has been derived in [17] for a bandlimited optical intensity link as follows:

MCRLB(ε) = −
2BLTe P2

0

T2γs

{
..
g(0) + 2µ2

a
L−1
∑

i=1
(1− i

L )
..
g(iT)

} (26)

with
..
g(t0) as the second-order derivative of g(t) =

√
Th(t) with respect to t evaluated at t0,

whereas L is equivalent to 1/(2BLTe) rounded to an integer number.
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It is observed that the jitter variance does not approach the bound, which is explained
by the fact that a direct-sampling receiver is used, i.e., more noise appears at the output of
the receiver filter compared to a matched filter solution. But it is also observed that the dual-
filter solution does not suffer from an error floor, which is mainly due to the fact that the
recovery loop does not require oversampling, i.e., problems with inter-symbol interference
(ISI) are elegantly avoided [20]. Finally, it is to be noticed that SDJ is significantly better
than SRC for larger values of the roll-off factor.

For larger values of the residual timing error ∆ε = ε− ε̂, the linearized loop model,
which was used previously to quantify the jitter performance, no longer applies. Instead of
the slope in the stable equilibrium point, one must take the whole S-curve as such, resulting
in a nonlinear-stochastic description of the tracking loop whose solution is out of this
paper’s scope. Instead, the evolution of ∆ε has been simulated as a function of the timing
index (integer multiples of the symbol period).
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Assuming a 4-PAM link operated at γs = 15 dB and BLTe = 10−3, Figure 7 depicts the
related trajectories for both SRC and SDJ shapes as well as different values of ε and α. It
can be seen that the settling period is in the order of 1/BLTe for ε = ±0.25. It can also be
seen that the SDJ behavior is somewhat smoother, because the larger detector slope (see
Figure 5) involves a smaller filter constant in the event the same loop bandwidth is selected
for SDJ and SRC. The diagram underlines also that extreme values of the initial timing
offset, embodied by ε = ±0.5, can be synchronized successfully; however, these are instable
operational points of the S-curve, which can be left only in case of some noise, i.e., finite
values of γs, and a non-negligible slope to generate the necessary pull effect. By detailed
inspection of Table 1 and Figure 4, it can be observed that the slopes at ε = ±0.5 increasingly
vanish for SDJ scenarios and α→ 1. Therefore, if initial acquisition is an issue, then SDJ
shapes should not be considered in case the optical link is operated at very large values of
the excess bandwidth.
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6. Conclusions

In order to synchronize the symbol timing for a bandlimited optical intensity link,
a dual-filter architecture has been presented for a non-data-aided (blind) recovery loop.
Applied to PAM signals shaped by SRC and SDJ pulses, a suitably developed receiver filter
guarantees that the Nyquist criterion is not violated. However, the dual-filter framework
requires a second filter operated in parallel to the receiver filter. Designing the parallel
filter appropriately, it could be verified that this approach does not suffer from error floor
problems. The computational complexity of the second filter is, in part, compensated by
the fact that the timing error detector is very simple, and the loop, as such, needs only
one sample per symbol period as the absolute minimum in this respect. For tracking
purposes, it turned out that the dual-filter solution can be applied to all values of the excess
bandwidth, whereas for acquisition of SDJ signals, problems will arise for α→ 1.
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Appendix A

In the following, it is desirable to derive an alternative presentation of an infinite sum
of samples given by

ζ(τ) = ∑
k

yk(τ) (A1)

where k ∈ Z and
yk(τ) = p1[τ + (k− β)T]p2(τ + kT) (A2)

with p1(t) and p2(t) as arbitrary functions used for pulse shaping. If Yk( f ) = F [yk(τ)]
denotes the Fourier transform of (A2), then

Yk( f ) =
∞∫
−∞

p1[τ + (k− β)T] p2(τ + kT) e−j2π f τdτ (A3)

which yields, by taking into account the properties and rules of Fourier transforms and
their inverse [21], after some tedious but straightforward manipulations,

Yk( f ) = ej2π(k−β) f T
∞∫
−∞

P2(v)P1( f − v) ej2πβvTdv (A4)

where P1( f ) = F [p1(τ)] and P2( f ) = F [p2(τ)]. Applying, in the next step, the Poisson
identity

∞

∑
k=−∞

ej2πk f T ≡ 1
T

∞

∑
m=−∞

δ( f −m/T) (A5)

we obtain

ζ(τ) = ∑
k

yk(τ)

=
∞∫
−∞

P2(v) ej2πβvT

(
∞∫
−∞

P1( f − v) ej2π f τe−j2πβ f T∑
k

ej2πk f Td f

)
dv

= 1
T

∞∫
−∞

P2(v) ej2πβvT∑
m

P1
(m

T − v
)

ej2πmτ/Te−j2πβmdv

(A6)

Appendix B

For α = 0, which indicates the MBW case, it is obvious that G( f ) =
√

TF [h(t)] exhibits
a triangular shape, i.e., G( f ) = T∆( f T), where ∆( f T) = 1 −| f T| for | f | ≤ 1/T and zero
elsewhere. Hence, for dual-filter solutions, one obtains by means of [25] (2.635/2) and
(2.635/4)

ψi,1(0) = 2π
1∫
−1

v ∆(v− 1)∆(v) cos(2πiv) dv

= 2π
1∫

0
v2(1− v) cos(2πiv) dv =

{ π
6 , i = 0

− 1
2π i2 , i ≥ 1

(A7)

In the next step, by using the fact that ∑∞
i=1

1
i2 = π2

6 [26] (5.2.1), Ψ1(0) develops as

Ψ1(0) = ψ0,1(0) + 2µ2
a ∑

i≥1
ψi,1(0) =

π (1− µ2
a)

6
(A8)
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