
Smoothing the Ride:
Providing a Seamless Upgrade Path from Established Cross-Border eID

Workflows Towards eID Wallet Systems

Roland Czerny1,2 a, Christian Kollmann3,
Blaž Podgorelec1,2 b, Bernd Prünster3 c and Thomas Zefferer3

1Institute of Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria
2Secure Information Technology Center Austria (A-SIT), Austria

3A-SIT Plus GmbH, Austria
{roland.czerny, blaz.podgorelec}@iaik.tugraz.at, {christian.kollmann, bernd.pruenster, thomas.zefferer}@a-sit.at

Keywords: eIDAS, Wallet, eID, eGovernment, European Digital Identity Wallet, Attestation.

Abstract: The eIDAS regulation and its technical implementation successfully enabled cross-border eID use cases within
the European Union. Established in 2014 as part of an EU regulation, its technological foundation is starting
to show its age, particularly on smartphones. The European Commission (EC) is well aware of this fact, and
large-scale pilots for the wallet-based, next-generation pan-European eID framework are on their way. This
work fills the gap between both approaches and enables member states to provide wallet-based authentication
to established service providers right now. Our prototypical implementation effectively demonstrates that
cross-border, wallet-based eID workflows can be rolled out already, while catering towards the constraints of
already operational infrastructure. We achieve this by introducing an eIDAS app, which supports both existing
eIDAS-based cross-border authentication as well as interaction with wallet apps.

1 INTRODUCTION

Member states of the European Union (EU) oper-
ate national identity management systems and issue
their citizens national electronic identification (eID)
means, which allow for secure and reliable authen-
tication at national public-sector online services. In a
converging European society, it is crucial that national
eID means cannot only be used in the issuing member
state but also allow for secure authentication at online
services provided in other EU member states. Using
national eID means issued by member state A to se-
curely log in to an online service provided in mem-
ber state B has become known under the term cross-
border authentication.

In the EU, Regulation (EU) No 910/2014 (the so-
called eIDAS Regulation) is the legal basis for secure
and legally binding electronic cross-border authen-
tication. On a technical level, cross-border authen-
tication is achieved by federating existing national
identity management systems. For this purpose, each

a https://orcid.org/0009-0000-9230-0833
b https://orcid.org/0000-0002-6322-746X
c https://orcid.org/0000-0001-7902-0087

member state operates a so-called eIDAS Node that is
connected to the respective national identity manage-
ment system. eIDAS Nodes from different member
states form a circle of trust and can delegate user au-
thentication to each other.

Cross-border authentication, as defined by the
eIDAS Regulation, has been in productive operation
in the EU for many years. The underlying technical
framework has hence proven to be well suited for the
intended use cases. However, these use cases still
mainly cover web-based scenarios where users access
online services from other member states using web
browsers on desktop-type devices. When the eIDAS
Regulation was enacted, such use cases had been pre-
dominating, and the choice of technologies for the
Regulation’s technical implementation seemed reas-
onable. In the meantime, mobile end-user devices
such as smartphones have emancipated from desktop
computers and laptops, and the use of dedicated mo-
bile apps to consume online services has become the
far more common usage scenario. Unfortunately, the
current technical implementation of European cross-
border authentication is not fully ready for these scen-
arios.



To prepare cross-border authentication in Europe
for future challenges, the EC has recently published a
proposal1 for a successor of the current eIDAS Reg-
ulation. The core concept of the EC’s proposal is the
so-called European Digital Identity Wallet (EUDIW).
The EUDIW is supposed to be a technical compon-
ent under full control of the user and enables secure
storage and presentation of asserted identity informa-
tion. The fundamental idea is that this information is
no longer provided by central national identity man-
agement systems but in a decentralized way by the
user and the user’s wallet. The EUDIW not only im-
proves privacy by putting the users in full control of
their data, but it will also enable mobile usage scen-
arios involving mobile end-user devices.

The concept of identity wallets has existed already
before it has been picked up by the EC. However, its
integration into the proposal for a new eIDAS Reg-
ulation has boosted the concept’s popularity. This is
also reflected by work published published by Gaeht-
gens (2022). Although currently hyped, it is expec-
ted, e.g. by Buchanan et al. (2022); Schwalm et al.
(2022); Sharif et al. (2022), that with the introduction
of the EUDIW the concept of identity wallets will re-
main relevant and play an important role in the future.
However, at this stage, various technical aspects are
still open, and no fully-fledged implementation of the
EUDIW is available yet. This makes it difficult for
online service to experiment with and use this new
authentication method.

To tackle this issue, we propose a solution for on-
line services to integrate, experiment with, and use
identity wallets for authentication. While the EUDIW
is still under development, we provide an implement-
ation, which can be used to gain first hands-on exper-
iences with this technology. The proposed solution
is aimed at smoothing technical integration into ex-
isting online services. Thus, it does not require any
fundamental changes for existing online services but
introduces an app-based middleware component to
emulate a standard eIDAS-based authentication pro-
cess. Required trust in this additional component
is achieved by augmenting the current eIDAS-based
trust assumption using remote-attestation techniques.
This distinguishes our proposal from other wallet-
related trust models and solutions like European Self-
Sovereign Identity Framework (eSSIF)) that rely on
blockchains (Kubach and Roßnagel, 2021).

This paper introduces our identity-wallet solution
and demonstrates a proof-of-concept, which has been
designed, implemented, and operated in the scope of
the H2020 project mGov4EU. The remainder of this

1https://eur-lex.europa.eu/legal-content/EN/TXT/
HTML/?uri=CELEX:52021PC0281&from=EN

paper elaborates on our proposed solution: Section 2
briefly surveys related scientific work and puts our
proposal into the context of existing wallet solutions.
In Section 3, relevant background information on se-
lected aspects of the proposed solution is presented.
The proposed solution is then introduced in detail in
Section 4. Section 5 reports on the evaluation of the
proposed solution, before the paper is finally con-
cluded in Section 6.

2 RELATED WORK

Although identity wallets have gained attraction only
recently, they have already been touched by several
scientific publications. While, to the best of our
knowledge, no solution has been proposed yet that
supports cross-border wallet-based authentication in
the scope of eIDAS, at least the publications discussed
below can be considered relevant also for our own
work.

(Abraham et al., 2021) presented a concept to
achieve strong authentication (reaching Level of As-
surance (LoA) high as defined by the eIDAS Regu-
lation) using a mobile-based identity wallet. The au-
thor’s proposed concept utilizes verifiable credential
(VC) and decentralized identifier (DID); the concept
has been validated using a proof-of-concept imple-
mentation. In contrast to our own work, the solution
proposed by (Abraham et al., 2021) requires online
services to integrate support for dedicated protocols
(e.g., for resolving DID). (Jacobino and Pouwelse,
2022) presented a similar concept using eSSIF and
European Blockchain Services Infrastructure (EBSI).
In contrast to our solution, this wallet concept has the
same requirements as the solution cited before: to en-
able wallet-based authentication, major modifications
of the online service are required.

Relevant related work has also been published by
(Ali et al., 2010), who have combined trusted comput-
ing concepts using remote attestations with the Fed-
erated Identity Management System (FIDMS) model.
The authors have introduced an extended FIDMS,
where the identity provider (IdP) attests to identity at-
tributes and vouches for its platform integrity.

To summarize, the design and implementation of
identity wallets have already been discussed in the lit-
erature, and some implementations of identity wallets
have already been introduced. However, none of the
proposed solutions has so far focused on easing integ-
ration with existing online services.

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0281&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0281&from=EN


3 BACKGROUND

Our solution relies on a variety of concepts and tech-
nologies and is intended to be embedded into a well-
defined environment. This section therefore provides
all required background information before discuss-
ing our contribution in Section 4. First, a generic
model for digital identity wallets is introduced. Next,
relevant technical details on implementing secure
and reliable communication between mobile apps on
smartphones are discussed. A brief survey on remote-
attestation features of current mobile platforms then
concludes this section, as these features underpin the
security backbone of our solution.

3.1 A Model for Digital Identity Wallets

The basic concept of a mobile wallet is well estab-
lished. It has, for instance, emerged in the payment
sector. In this context, app-based wallets on smart-
phones are used to store credit-card data and to au-
thorize payments at points of sale. Such solutions are
already widely used.

Wallet solutions such as the EUDIW rely on sim-
ilar concepts and technologies but pursue different ob-
jectives and store identity information of their user
(wallet holder). Instead of authorizing payments,
users use their wallet and the data stored therein to se-
curely authenticate at online services. From this basic
functionality, a generic model for digital identity wal-
lets inspired by World Wide Web Consortium (W3C)
VC data model, described in (Sporny et al., 2021) can
be defined. This model is shown in Figure 1.

Figure 1: Generic Model for Digital Identity Wallets.

This model comprises the user (wallet holder) and
three entities: the wallet, the credential issuer, and the
service provider. The service provider is the entity
providing an online service to the user. To access and
use the provided service, the user needs to authentic-
ate first. Authentication is carried out by means of
the wallet, which transfers attested identity informa-
tion (credentials) to the service provider. This needs
to be authorized by the user, who therefore interacts
with the wallet.

Before identity information can be transferred
from the wallet to the service provider, this informa-
tion must be stored in the wallet first. This is done by
the credential issuer. The credential issuer retrieves
the user’s identity information from the respective
sources (e.g., national registers), attests the inform-
ation (typically by signing it), and stores the attested
information in the wallet.

Note that the credential-issuing process, through
which attested identity information is stored in the
wallet, is typically carried out only once. Once avail-
able in the wallet, attested identity information (cre-
dentials) can be used repeatedly to authenticate at the
service provider.

3.2 App-to-App Communication

A key feature of the wallet solution proposed in this
paper is its fully mobile nature. Transitioning from
browser-based workflows to mobile-app-centric ones
demands thorough consideration of each involved
app’s responsibilities, since individual apps being re-
sponsible for strictly-scoped tasks enforces a clear
separation of concerns. At the same time, it should
be possible to fall back to a mechanism that works
even in the absence of a specific app. Luckily, both
iOS and Android support claiming of URLs by apps
in a way that works similarly.

As the name suggests, app-to-app communication
through claimed URLs works by passing information
between apps encoded into URLs. For an app to claim
an URL of a web service, a so-called asset links file
needs to be hosted on the web server, which effect-
ively authenticates the app that wants to claim this
URL to the operating system on installation time. In
practice, this works as follows: Any mobile app (in-
cluding the browser) can issue an HTTP GET request
to a claimed URL and the target app (the one which
claimed the URL) opens up automatically. In case no
app has claimed the URL, the web browser handles
the request, thus providing a fallback mechanism.

In conclusion, a unified mechanism for app-to-app
communication is available, which automatically falls
back to a browser-based workflow if a particular app
is not installed. If a procedure cannot be carried out
in the browser, it is at least possible to guide the user
towards installing an appropriate app. This can be ne-
cessary for security-critical procedures requiring re-
motely establishing trust in client software, which is
not possible for mobile browsers.

The following section picks up on the topic of es-
tablishing trust in mobile applications through attest-
ation. It covers Android and iOS and discusses the
commonalities and differences of both platforms.



3.3 Remote Attestation

Current versions of iOS and Android natively support
remote attestation, i.e., remotely establishing trust
in a device, its operating system and specific apps.
However, the capabilities and technical details of the
approaches followed by each mobile platform dif-
fer significantly. Android natively supports attesting
hardware-backed cryptographic key material. iOS,
on the other hand, does not directly support attest-
ing cryptographic material, but rather aims to establis
trust in apps.

Platform specifics aside, a general requirement for
any kind of meaningful and reliable remote attestation
concept is the presence of cryptographic hardware
modules and their tight integration with the operating
system. Our use case heavily relies on assurance with
respect to key material, which is stored in hardware,
such that it can neither be extracted nor illegitimately
used. As such, establishing trust in keys is a baseline
requirement, even though remotely establishing trust
in unmodified apps is also critical. Hence, we require
a combination of the features natively supported by
iOS and Android.

We have released a library as free and open-
source software, which hides the technical intricacies,
providing a uniform interface for remotely establish-
ing this required trust to make all features available
on both major mobile platforms2. More details on
platform specifics are provided in the following two
subsections.

3.3.1 Android Key Attestation

Android supports key attestation3, i.e. trust can be
remotely established in cryptographic material man-
aged by secure hardware. More concretely, a pub-
lic/private key pair is generated in hardware and an
X.509 certificate containing the public key can be ex-
ported. This certificate contains a set of paramet-
ers, indicating whether the bootloader or the operat-
ing system have been tampered with. In addition, this
so-called attestation certificate also contains inform-
ation about the operating system version, the patch
level and information about the application, which
was used to generate the key pair. The app-related
information comprises the package name and inform-
ation on which signing certificate was used during
the application’s publishing process. Evaluating this
compound information allows for remotely establish-
ing whether an unmodified application was used to

2https://github.com/a-sit-plus/attestation-service
3https://developer.android.com/training/articles/security-

key-attestation

generate hardware-backed key material on an uncom-
promised device, running an untampered operating
system. A more in-depth explanation can be found
in the paper on this matter by Prunster et al. (2019)

Apple devices, in contrast, do not natively support
key attestation and rely on an Apple-operated service
to establish trust in apps. As a consequence, establish-
ing the trust in cryptographic material is not directly
possible.

3.3.2 Apple App Attestation

Apple directly approaches remotely establishing trust
in smartphone apps. The DeviceCheck4/AppAttest5

framework has apps contact Apple servers using
WebAuthn6 flows to establish whether a device has
been jailbroken (i.e. compromised) and/or an app has
been tampered with. Such an attestation is supposed
to happen once.

The attestation procedure also involves the cre-
ation of a hardware-backed public/private key pair
and the creation of a signature using this key pair.
In contrast to Android, however, this key cannot be
used for anything else, hence preventing key attest-
ation. During app usage, however, the correct ex-
ecution of certain critical procedures can be asser-
ted. A so-called assertion is then created, which in-
cludes (amongst others) the return value of an oper-
ation. This assertion is signed by the very same key
created for the initial attestation. Section 4.2.3 elab-
orates on how we used these properties to enable key
attestation on iOS as part of our trust concept.

4 A SMOOTH UPGRADE PATH
TOWARDS WALLET-BASED
AUTHENTICATION

This section introduces the proposed identity wallet
solution in detail, especially focusing on two aspects.
The first aspect concerns the fact that our concept en-
ables legacy OpenID Connect (OIDC) relying partys
(RPs) (also called service providers (SPs)) to util-
ize next-generation wallet-based authentication in ac-
cordance with Figure 2. As a prerequisite to mak-
ing our vision a reality, eIDAS-based cross-border au-
thentication first needs to be made more user-friendly
on mobile devices. Hence, this section also puts a
special focus on this aspect.

4https://developer.apple.com/documentation/
devicecheck

5https://developer.apple.com/documentation/
devicecheck/validating apps that connect to your server

6https://webauthn.io/

https://github.com/a-sit-plus/attestation-service
https://developer.apple.com/documentation/devicecheck
https://developer.apple.com/documentation/devicecheck
https://developer.apple.com/documentation/devicecheck/validating_apps_that_connect_to_your_server
https://developer.apple.com/documentation/devicecheck/validating_apps_that_connect_to_your_server
https://webauthn.io/


Figure 2: High-level view of components interacting to
provide legacy SPs with wallet authentication

4.1 High-Level Concept

First and foremost, we introduce a dedicated eIDAS
app to interface with service providers and eIDAS
nodes. By itself, this already provides added value,
since using dedicated apps for different tasks feels
more native on mobile platforms. Far more import-
antly, however, this respects the security model of
modern mobile operating systems, isolating apps op-
erating on different data.

The eIDAS app supports two authentication
modes: In eIDAS mode, the eIDAS app is responsible
for orchestrating the communication between eIDAS
nodes, connectors, and proxy services to enable tra-
ditional cross-border authentication workflows in ac-
cordance with Figure 3. However, if the user chooses
to authenticate not via their home country’s iden-
tity management system through eIDAS, but through
their local mobile wallet, the eIDAS app does not for-
ward an authentication request to an eIDAS node. In
this legacy wallet mode of operation, it acts as an
OIDC Self-Issued OpenID Provider v2 (SIOPv2) ser-
vice provider towards a mobile wallet app instead.
The attributes received from the wallet app are then
transformed into a regular OIDC authentication re-
sponse and passed back to the service provider.

A precondition for this to work is obviously hav-
ing such an app installed and ready to serve VCs
through verifiable presentation (VP). Hence, we have
implemented a wallet app, which aligns with the EU-
DIW initiative, a corresponding provisioning service,
and connected it to a production eID system for eval-
uation purposes (see Section 5). The issue of estab-
lishing enough trust in the eIDAS app to permit an
on-device transformation of verifiable credentials to
a traditional OIDC authentication response is abso-
lutely crucial in this context and an integral prerequis-
ite to making our concept work in practice.

4.2 Building a Foundation of Trust in
Mobile Apps

Our solution to augment cross-border authentication
with local wallet-based authentication in a mobile-
first manner rests on a foundation of trust between a
variety of actors and components. This section delves
into each trust aspect individually, before providing
functional details of our solution in Section 5.

4.2.1 Trust Relationships Between SP and
Connector

From an SP’s point of view, the eIDAS node con-
nector (see also Figure 3) acts as an IdP. In accord-
ance to the eIDAS trust model, SP and connector trust
each other. When relying on OIDC as the authentica-
tion protocol, this is reflected by two facts: First and
foremost, the SP is registered at the connector as an
OIDC relying party. Secondly, the SP trusts the cer-
tificate the connector uses to sign authentication re-
sponses.

In the mobile setting we target, an SP app is as-
sumed, while the proposed eIDAS app needs to claim
the URL of the connector. From an SP app’s point
of view, it is not even possible to detect that an
eIDAS app was involved at all, since the connector
operates on authentication information received from
the eIDAS node and transforms it into an OIDC-
compliant authentication response. Hence, the service
provider does not need to establish trust in the eIDAS
app.

Our concept radically changes this trust relation-
ship, as soon as the eIDAS app acts as a com-
patibility layer to augment legacy service providers
with wallet-based authentication: The eIDAS app is
tasked with transformation operations – from regular
OIDC authentication requests to OIDC SIOPv2, and
from attributes received through VP to regular OIDC-
compliant authentication responses.

4.2.2 Establishing Trust in the eIDAS App

We have solved the issue of an SP trusting the eIDAS
app by extending the functionality of the SP country’s
eIDAS node connector. From a user’s point of view,
the eIDAS app needs to be enrolled at an eIDAS node

Figure 3: Cross-border authentication using the eIDAS
Node reference implementation.



Figure 4: Creating a binding for the eIDAS app.

connector during a one-time setup process. Under the
hood, the eIDAS node connector relies on key attest-
ation to establish trust in an eIDAS app instance in-
stalled on an unmodified device. This trust relation-
ship is expressed by the connector issuing a certific-
ate for an attested instance of the eIDAS app, signed
by the same key used to sign authentication responses
during regular authentication procedures.

The issued certificate references a hardware-
backed key, which, in turn, is used by the eIDAS
app to sign those authentication responses. Since the
SP trusts the signing certificate of the connector, and
this signing certificate was used to create a certific-
ate chain down to the eIDAS app’s certificate, the SP
also considers authentication responses signed by the
eIDAS app authentic and trustworthy. The sequence
diagram depicted in Figure 4 illustrates the technical
details of the binding process between connector and
eIDAS app:

1. The app initiates the binding process

2. The connector generates and responds with a chal-
lenge (a cryptographic nonce)

3. The eIDAS app creates a hardware-backed key
pair

4. This key pair is encoded into a certificate signing
request (CSR)

5. The CSR is sent back to the eIDAS node con-
nector (along attestation information)

6. The eIDAS node connector then verifies key ori-
gin, app and device integrity

7. If all checks succeed, the eIDAS node connector
issues a binding certificate for the eIDAS app

While key attestation, as provided on the Android
platform, supports this out of the box, iOS does not
directly support it. To address this issue, we have

managed to emulate this Android-specific concept on
iOS, as explained in the following section.

4.2.3 Enabling Key Attestation on iOS

In addition to the required cryptographic material
used to create an app attestation (see Section 3.3.2),
we mandate the creation of a second public/private
key pair, which can be freely used by the application.
The creation of this key pair is asserted. Hence, we
obtain an assertion, which contains the public part of
this second key pair. We also mandate the counter
contained in this assertion to be equal to 1, meaning
that the very first asserted procedure carried out in the
application is precisely the creation of this second key
pair. This procedure, in effect, provides key attesta-
tion on iOS.

We have created prototypical implementations of
all components relevant to our concept, to evaluate its
feasibility, and integrated them with a production eID
system. More in-depth technical details of our overall
concept can be found in the following section.

5 EVALUATION THROUGH
IMPLEMENTATION

Implementing all building blocks relevant to our
concept, and subsequently connecting them to a pro-
duction eID system provided a setup mirroring a pro-
duction environment. This deployment was then used
to demonstrate the feasibility of our approach. The
implementation itself is designed to be modular and
hence consists of several parts based on the eIDAS
Node reference implementation from the EC.

5.1 eIDAS Node

As the setup for demonstrating our concepts is based
on the eIDAS node integration package provided by
the EC7, it consists of several components for the Java
platform.

Our modifications mainly target the connector,
since this component interacts with service providers
and therefore serves as the junction point between
eIDAS-based cross-border authentication and mobile-
wallet authentication. Hence, this section therefore
focuses on the modifications made to the connector.

Since the node connector acts as an IdP towards
the SP, it is the only component an SP is directly in-

7https://ec.europa.eu/digital-building-blocks/wikis/
display/DIGITAL/How+to+implement+or+operate+an+
eIDAS-Node

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/How+to+implement+or+operate+an+eIDAS-Node
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/How+to+implement+or+operate+an+eIDAS-Node
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/How+to+implement+or+operate+an+eIDAS-Node


terfacing with. As mentioned before, our implement-
ation relies on OIDC, as it is well established on mo-
bile platforms.

5.1.1 OIDC

In Section 5.2.1, we describe how legacy SP apps
are enabled to use wallet-based authentication. Since
OIDC Auth Code flow, which is an established de-
facto standard, requires identity information to be
communicated in a backchannel, the SPs backend
needs to be able to retrieve an identity token from
the eIDAS node connector’s endpoint. When us-
ing wallet-based authentication, however, the iden-
tity token is generated in the eIDAS app on the user’s
device. We, therefore, extended the eIDAS node con-
nector to accept identity tokens from the eIDAS app.
This identity token can then be retrieved by the SP
backend using the Auth Code from the OIDC re-
sponse like in a normal eIDAS authentication flow.

5.2 eIDAS App

We have implemented the app in Kotlin for the An-
droid platform. However, we designed the app using
only features for which equivalent ones exist on the
iOS platform.

The eIDAS app is a bridge between service pro-
vider and identity provider. The eIDAS app handles
OIDC Auth Code flow requests from the SP and
acts like an IdP. It provides the user with two op-
tions. First, the user can authenticate using the normal
eIDAS flow. This is described in Section 5.2.2. The
second option is to authenticate using a wallet app,
which is described in more detail in Section 5.2.1.

From the perspective of the IdP, the eIDAS app
acts like an SP. The eIDAS app sends an authentica-
tion request to the IdP and receives the response.

Handling Requests with the eIDAS App. Upon
installation, the eIDAS app claims the URL of the
eIDAS connector. This step enables opening an au-
thentication request in the eIDAS app instead of the
browser.

Usually, the SP app would send an authentication
request to the eIDAS node connector of the SPs home
country. If the eIDAS app wants to intercept such re-
quests, it would need to register every eIDAS node
connectors URL. Since app links need to be claimed
at compile time and it is not feasible to release a new
version of the eIDAS app whenever an eIDAS node
connector URL is added or changes, we introduce a
relay service. It has the simple task of redirecting the
user to a supplied query parameter. With the relay

service in place, the SP app sends the request not dir-
ectly to the eIDAS node connector, but puts its URL
in a query parameter to the relay service. This has
the advantage that the eIDAS app only needs to re-
gister the URL of the relay service to be opened upon
an authentication request, while retaining full browser
compatibility.

5.2.1 Legacy SP Wallet-Based Authentication

As argued before, we provide the user with the op-
tion to use wallet-based authentication with legacy
SPs. The protocols used for wallet-based authentic-
ation, however, differ from established ones used in
production.

The eIDAS app supports the OIDC SIOPv2 pro-
tocol ((Yasuda et al., 2023)), where identity attributes
are asserted using verifiable credentials.

From a high level perspective, the eIDAS app
translates VCs from the SIOPv2 response to an ordin-
ary OIDC response for legacy SP apps. After the user
selects wallet-based authentication, the eIDAS app
sends an OIDC SIOPv2 request to the Wallet app. The
response contains verifiable credentials in the form of
verifiable presentation. Next, the eIDAS app validates
and verifies the VCs. After a successful verification,
the eIDAS app generates and signs an identity token
from the information provided by the VCs. Since
OIDC Auth Code flow requires the identity inform-
ation to be communicated in a backchannel, the iden-
tity token is sent to the eIDAS node connector. The
response to the SP app is an OIDC Auth Code, which
is subsequently used by the SPs backend to retrieve
the identity token from the eIDAS node connector.

5.2.2 eIDAS Authentication

For regular cross-border authentication flows, the
eIDAS app handles communication between the
eIDAS node connector, the respective nodes of the SP
and IdP home countries, and the eIDAS proxy. The
eIDAS app follows redirects and forwards Security
Assertion Markup Language (SAML) and Light mes-
sages between the involved components.

When an eID app is installed and has claimed the
IdP URL, it will be opened for authentication. If no
such app is installed, a so-called custom tab is opened
in the eIDAS app to render a web UI of the IdP for the
user to enter their credentials.

In any of the two cases, the response of success-
ful authentication is handled by the eIDAS app again.
Like before, the eIDAS app passes messages between
the involved components. As a last step, the eIDAS
app opens the redirect URI specified by the SP app
with the OIDC Auth Code. This causes the SP app to



be opened and the eIDAS App is done at this point.
The SP app’s backend can now retrieve the identity
information using the OIDC Auth Code from the re-
sponse.

In summary, the eIDAS app pushes a mobile-first
incarnation of the established eIDAS cross-border au-
thentication flow. When used in conjunction with a
wallet app, however, it provides wallet-based authen-
tication also to established service providers. More
details on how attributes are added to such a wallet
app are provided in the following section.

5.3 Wallet and Provisioning Service

The basis for implementing remaining central parts
of our solution, the wallet app and the provisioning
service, is an open source multi-platform library im-
plementing the VC data model, which we have de-
veloped specifically to fill this gap8. This library is
used up by the native wallet apps (i.e. in Kotlin for
Android and Swift for iOS) as well as the provision-
ing service (in Kotlin for the JVM).

The wallet app and the provisioning service inter-
act using a well-defined protocol to load the identity
attributes of the user onto the mobile device. This
shared communication protocol is implemented along
the lines of the ARIES RFC 0453 for issuing creden-
tials9. During the provisioning, the provisioning ser-
vice acts as an SP towards the national eID system
and transforms the received identity attributes into a
format suitable for the wallet app. The attributes are
encoded as verifiable credentials, which is in line with
the technical specification of the EUDIW, and bound
to key material securely stored on the mobile device.
The authenticity of this key material is ensured using
key attestation, although this time, the procedure is
carried out between the wallet app and the provision-
ing service.

When receiving an authentication request from the
eIDAS app using OIDC SIOPv2, the user is presented
with a screen confirming the release of their identity
attributes. The wallet app creates a verifiable present-
ation wrapping the requested VCs which have been
signed by the provisioning service. The VP as well as
the SIOPv2 response are signed with the hardware-
bound key that was attested before by the provision-
ing service and sent back to the eIDAS app. The
eIDAS app has the responsibility to validate and trans-
form this response into a traditional OIDC response,
as described above.

8https://github.com/a-sit-plus/kmm-vc-library
9https://github.com/hyperledger/aries-

rfcs/tree/main/features/0453-issue-credential-v2

In summary, this results in a chain of trust, which
ensures that all identity information is authentic: The
SP trusts the eIDAS node connector. The connector
vouches for the eIDAS app. The eIDAS app verifies
the authenticity of VCs received from the wallet app.
The wallet app is trusted by the provisioning service.
The provisioning service providing attributes to the
wallet app is authorized by a national eID system to
do so, by acting as an SP towards it.

6 CONCLUSIONS

The sustained trend towards mobile usage scenarios
requires new concepts and solutions for secure and
reliable cross-border authentication based on national
electronic identities. The EC has recognized this need
and has proposed the concept of a EUDIW. Fully-
fledged and widely adopted implementations of this
concept can be expected to be available in a few years.

As a first step towards this ambitious goal, we
have proposed a first rudimentary implementation of
a digital-identity wallet that complies with the provi-
sions of the EC and their proposal. The contribution
of our solution described in this paper is threefold:
Proof of Concept: Our proposed wallet solution
demonstrates that the basic concept proposed by the
EC is feasible and can be realized with current techno-
logies. Integration Support: Our proposal provides
service providers, i.e., operators of online services,
with a working wallet solution, which they can integ-
rate and use for testing against their services. Integra-
tion tests are facilitated by supporting a legacy mode
of operation, which hides most wallet-related specif-
ics from the service provider. Enhanced Security:
The proposed solutions integrate remote-attestation
features and hence successfully evaluate the useful-
ness of this cutting-edge technology for secure wallet
solutions on current smartphone platforms.

To summarize, the proposed wallet solution offers
benefits for various stakeholders involved in the de-
velopments and use of the upcoming EUDIW. Our
wallet solution will be further developed and tested.
Results and findings will then support the implement-
ation of the EUDIW.

ACKNOWLEDGEMENTS

This paper is based on work conducted in the project
mGov4EU. This project has received funding from the
European Union’s Horizon 2020 research and innov-
ation programme under grant agreement No 959072.

https://github.com/a-sit-plus/kmm-vc-library


REFERENCES

Abraham, A., Schinnerl, C., and More, S. (2021). Ssi
strong authentication using a mobile-phone based
identity wallet reaching a high level of assurance. In
SECRYPT, pages 137–148.

Ali, T., Nauman, M., Amin, M., and Alam, M. (2010).
Scalable, privacy-preserving remote attestation in and
through federated identity management frameworks.
In 2010 International Conference on Information Sci-
ence and Applications, pages 1–8. IEEE.

Gaehtgens, F. (2022). Hype cycle for digital identity, 2022.
Technical Report ID G00770428, Gartner.

Jacobino, S. and Pouwelse, J. (2022). Trustvault: A privacy-
first data wallet for the european blockchain services
infrastructure. arXiv preprint arXiv:2210.02987.

Kubach, M. and Roßnagel, H. (2021). A lightweight trust
management infrastructure for self-sovereign identity.
Open Identity Summit 2021.

Prünster, B., Palfinger, G., and Kollmann, C. P. Fides –
Unleashing the Full Potential of Remote Attestation.
pages 314–321.

Schwalm, S., Albrecht, D., and Alamillo, I. (2022). eidas
2.0: Challenges, perspectives and proposals to avoid
contradictions between eidas 2.0 and ssi. Open Iden-
tity Summit 2022.

Sporny, M., Longley, D., Burnett, D., Kellogg, G., and Al-
len, C. (2021). Verifiable credentials data model 1.0.
W3C Recommendation 2021-06-08, World Wide Web
Consortium (W3C).

Yasuda, K., M., J., and T., L. (2023). Self-issued openid
provider v2. https://openid.net/specs/openid-connect-
self-issued-v2-1 0.html. Accessed: 2023-03-14.

https://openid.net/specs/openid-connect-self-issued-v2-1_0.html
https://openid.net/specs/openid-connect-self-issued-v2-1_0.html

