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Abstract. Creating a formal specification for a design
is an error-prone process. At the same time, debugging
incorrect specifications is difficult and time-consuming.
In this work, we propose a debugging method for formal
specifications that does not require an implementation.

We handle conflicts between a formal specification
and the informal design intent using a simulation-based
refinement loop, where we reduce the problem of debug-
ging overconstrained specifications to that of debugging
unrealizability. We show how model-based diagnosis can
be applied to locate an error in an unrealizable spec-
ification. The diagnosis algorithm computes properties
and signals that can be modified in such a way that the
specification becomes realizable, thus pointing out po-
tential error locations. In order to fix the specification,
the user must understand the problem. We use counter-
strategies to explain conflicts in the specification. Since
counterstrategies may be large, we propose several ways
to simplify them. First, we compute the counterstrategy
not for the original specification but only for an unre-
alizable core. Second, we use a heuristic to search for
a countertrace, i.e., a single input trace which necessar-
ily leads to a specification violation. Finally, we present
the countertrace or the counterstrategy as an interac-
tive game against the user, and as a graph summarizing
possible plays of this game. We introduce a user-friendly
implementation of our debugging method and present
experimental results for GR(1) specifications.

1 Introduction

Ideally, a formal specification for a design is written be-
fore the design is implemented. This establishes an un-
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ambiguous notion of correctness, which can be used as
an objective during the implementation phase. It also
makes the informal design intent precise, thus prevent-
ing misunderstandings between collaborating designers.
Clearly, the specification must have the highest possi-
ble quality when used as correctness objective for the
implementation. The process of deriving an implemen-
tation from the formal specification can also be auto-
mated using property synthesis techniques [40,31,24,39,
17,36]. This yields implementations which are correct by
construction with respect to the formal specification. In
such a synthesis-based design flow, a high quality spec-
ification is even more crucial since the synthesized im-
plementation can only be as correct as its specification.

Formal specifications are also created and sold as in-
tellectual property for verification [15]. In this scenario,
too, a specification has to be created that reflects exactly
the informal design intent without a corresponding im-
plementation being available.

Like other engineering processes, constructing a high
quality formal specification is a difficult task [25,38,12,
22,11], especially if no implementation is present. Mis-
takes can lead to various flaws. First, a specification may
be incomplete. This means that the specification allows
implementations that do not conform to the informal de-
sign intent. Second, the specification may be unsound.
This is the case if it disallows implementations that are
valid with respect to the design intent. As a special case,
the specification may be unrealizable. An unrealizable
specification does not allow any implementation. In this
article we introduce debugging techniques for unrealiz-
ability and unsoundness.

It is possible to turn an unsound specification into
an unrealizable one by adding properties to enforce the
desired behavior that is forbidden by the specification.
We use this idea to reduce the problem of debugging
unsound specifications to the problem of debugging un-
realizable specifications. However, unrealizability is also
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Fig. 1: Refining a specification.

a serious problem of its own. Our experience in writing
complete formal specifications (e.g., [3,4]) for property
synthesis tools shows that many mistakes during speci-
fication development lead to unrealizability. Debugging
an unrealizable specification is difficult. Even an enor-
mous piece of software can be executed to track down
the error, but this is not possible for an unrealizable
specification. It is important to note that, for systems
with inputs and outputs, there is a difference between
the realizability and the satisfiability of a specification.
A specification is satisfiable if one trace of input val-
ues and output values fulfilling the specification exists.
This is a necessary but not a sufficient condition for re-
alizability. A specification is only realizable if there is
a valid output trace for every possible input trace. Ad-
ditionally, the outputs in any particular time step may
depend on past and present inputs only. Tools such as
RAT [38] explain why a single trace does not conform to
the specification. However, this does not suffice to ex-
plain unrealizability.

Context

In this work, we address the debugging of specifications
for reactive systems. A reactive system is a system which
interacts with its environment via inputs and outputs in
an infinite execution. Our debugging method is based
on the synthesis of reactive systems conforming to a
given specification, and on the synthesis of correspond-
ing counterstrategies. We assume specifications to con-
sist of environment assumptions and system guarantees:
If the environment fulfills all assumptions, then the spec-
ification requires the system to fulfill all guarantees. Our
debugging approach can deal with a wide range of such
specifications. In addition to a general description, we
also explain how it can be applied to Generalized Reac-
tivity(1) [39]. For the latter, synthesis is performed us-
ing fixpoint computations over states in a game graph,
implemented symbolically using BDDs [6]. Our debug-
ging technique analyzes specifications stand-alone, i.e.,
it does not require a corresponding implementation.

Outline of our Debugging Approach

This article is based on [27], [29], [2], and [28]. We pro-
pose the flow depicted in Fig. 1 to create a high quality

Fig. 2: Our approach to debug unrealizability.

specification. The user creates an initial formal specifi-
cation of the design. If the specification is unrealizable,
it needs to be debugged. If the specification is realizable,
it can be simulated. If undesired behavior (with respect
to the informal design intent) is observed during simula-
tion, the specification is refined to exclude this undesired
behavior. The refined specification can be realizable or
unrealizable again. This is repeated until the user is sat-
isfied with the behavior of the design.

Unrealizability is debugged as illustrated in Fig. 2.
First, we check for satisfiability. If the specification is un-
satisfiable, existing trace-based debugging methods [38]
can be applied. However, since unsatisfiability is a spe-
cial case of unrealizability, our debugging method works
in any case. Next, we use model-based diagnosis [41,26]
(MBD) to identify possible error locations in the specifi-
cation. In order to apply MBD, we take the unrealizable
specification as an inherently conflicting model. As diag-
noses we get sets of guarantees and outputs that can be
weakened in order to make the specification realizable.
The computation of diagnoses relies on the computation
of minimal conflicts in the specification. Minimal con-
flicts are unrealizable cores, i.e., minimal subsets of the
specification which are unrealizable on their own. Diag-
noses indicate possible error locations. However, in order
to be able to find the best repair for unrealizability, the
user additionally has to understand the problem.

Explaining unrealizability means to explain why no
implementation can fulfill the specification. We cannot
explain for every possible implementation why it does
not conform to the specification. However, the user must
have an implementation in his mind when creating the
formal specification. We show that this imagined imple-
mentation does not conform to the formal specification
by swapping the roles between the tool and the user as
illustrated in Fig. 3. The tool takes on the role of the en-
vironment and the user takes the role of the system. The
two parties play a diagnostic game: The tool provides in-
puts and the user tries to provide outputs that conform
to the specification. Since the specification is unrealiz-
able, there exists a so-called counterstrategy for the en-
vironment, which makes the user fail for sure. However,
while trying, she will understand why there is no way to
fulfill the specification, i.e., why the specification is un-
realizable. This knowledge can then be used to correct
the specification.

In general, a counterstrategy cannot be presented as
a single trace of inputs, since inputs may depend on
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(a) Simulating the System (b) Debugging Unrealizability

Fig. 3: Explaining unrealizability by swapping the roles.

previous outputs. Our experience shows that these de-
pendencies can become quite complex, especially for a
large unrealizable specification. This makes it difficult
for the user to comprehend which environment behavior
leads to problems and why the specification is unrealiz-
able. We therefore propose several techniques to simplify
counterstrategies. First, we compute the counterstrategy
not for the original specification, but for an unrealizable
core. Every unrealizable core contains one root cause of
unrealizability. Explaining unrealizable cores instead of
the entire unrealizable specification allows the user to
focus on one problem at a time. When computing un-
realizable cores, we not only remove properties but also
signals from the specification. This allows the user to
focus on those signals that are relevant for the conflict
when playing the diagnostic game. Second, we attempt
to compute what we call a countertrace. A countertrace
is a single trace of inputs such that no behavior of the
system can fulfill the specification. A countertrace does
not always exist. Even if one exists, its computation is
often expensive. Hence, we present a heuristic.

This article is organized as follows. Section 2 dis-
cusses related work. Section 3 gives definitions and estab-
lishes notation. In Section 4, we describe our debugging
approach in a generic way; we elaborate it for Gener-
alized Reactivity(1) [39] specifications in Section 5. An
implementation in the requirements analysis and synthe-
sis tool RATSY [2] is presented in Section 6. Section 7
presents experimental results and Section 8 concludes.

2 Related Work

Incomplete specifications and coverage metrics have al-
ready been addressed before in various ways. There is
existing work on completeness checking with respect to
a given implementation. This includes the definition of
different comparison criteria between the tableau of the
specification and the implementation [25], identification
of parts of the state space of the implementation which
are covered by the specification [23], and checking if
modifications introduced into the model of the imple-
mentation are detected by the specification [8,9]. On
the other hand, there are methods for coverage analy-
sis that do not rely on a particular implementation. A
notion of “forgotten cases”, which are situations where a

certain output in a certain time step is not constrained,
is introduced in [12]. Another concept is that of inherent
vacuity [18]. A specification is inherently vacuous if it
can be mutated into a simpler but equivalent specifica-
tion. Other work checks the specification with respect to
a high-level fault model by testing if an implementation
which contains stuck-at faults can still conform to the
specification [14]. Our debugging approach allows the
user to eliminate incompleteness that shows up in sim-
ulation. Apart from that, we do not specifically address
incomplete specifications. Rather, we focus on specifica-
tions which are unsound.

Model-based diagnosis [26,41], which was originally
invented to automate debugging of misbehaving phys-
ical systems, has already been applied for diagnosis in
various settings such as logic programs [13], functional
programs [46], VHDL designs [20], Java programs [35],
knowledge bases [16], and ontologies [19]. We use model-
based diagnosis to perform error localization in unreal-
izable specifications of reactive systems. This deviates
from the standard setting in that there is no observation
contradicting a system description, but only an inher-
ently conflicting system description. Our method is sim-
ilar to [34], where hitting sets are used to compute all
unsatisfiable cores in an unsatisfiable constraint system.

Yoshiura [49] addresses the problem of debugging un-
realizable specifications by defining several bug local-
ization heuristics based on a classification (into strong
satisfiable, stepwise satisfiable, and stepwise strong sat-
isfiable) and the tableau of the specification. Their ob-
jective is similar to ours, but there are few similarities
in methodology. Cimatti et al. [11] propose to present
an unrealizable core as diagnostic aid for unrealizabil-
ity. Our work extends theirs: We use unrealizable cores
for diagnoses computation and to obtain more focused
counterstrategies. As an improvement, we not only re-
move properties but also signals from the specification.
Furthermore, we use Delta Debugging [50] as a more ad-
vanced and often faster algorithm for unrealizable core
computation. While single unrealizable cores help to un-
derstand problems in the specification, they are less use-
ful for suggesting locations to fix them. The reason is
that many unrealizable cores may exist, and that a re-
pair has to resolve them all. We address this problem
with the model-based diagnosis step, which takes all un-
realizable cores into account.

Counterstrategies have been used or at least men-
tioned as debugging aids for unrealizability in various
settings such as game graphs with controllable and un-
controllable edges [48], Live Sequence Charts [5], timed
automata [1], and for model-checking of the modal µ-
calculus [45,44] with more efficient algorithms and im-
plementations presented in [32,33,47]. None of these pa-
pers mention the simplification of counterstrategies in
order to provide the user with helpful diagnostic infor-
mation. This is one of the main contributions of our
work. In particular, we are not aware of any previous



4 Robert Könighofer et al.: Debugging Formal Specifications

work on countertraces. Also, we do not know of any ex-
isting publication showing how unsound specifications
can be debugged with counterstrategies.

3 Preliminaries

3.1 Model-Based Diagnosis

Model-based diagnosis (MBD) [26,41] is a method to
identify possible error locations in a system. In this work,
we follow the definitions and notation of [41]. Let SD
be a description of the correct behavior of a system,
and let OBS be an observation of an erroneous behav-
ior. Both SD and OBS are sets of logical sentences. The
system is assumed to consist of a set COMP of compo-
nents. Every component c ∈ COMP can behave abnor-
mally (denoted AB(c)) or normally (denoted ¬AB(c)).
The behavior of a component c is described with a log-
ical sentence of the form ¬AB(c) ⇒ Nc, where Nc de-
fines the normal behavior of c. That is, if the component
behaves abnormally, it can exhibit any behavior. The
system description SD consists of component descrip-
tions and a definition of their interconnections or inter-
play, again in terms of logical sentences. The observa-
tion OBS is in contradiction with the system description.
That is, if all components behaved normally, it would
be impossible to observe OBS. More formally, the set
SD∪OBS∪{¬AB(c) | c ∈ COMP} of logical sentences
is inconsistent, i.e., contains a logical contradiction. We
write ¬ consistent(SD∪OBS∪{¬AB(c) | c ∈ COMP}) to
express this.

MBD identifies sets of components that may have
caused the erroneous behavior OBS. Such sets are called
diagnoses. Formally, a set ∆ ⊆ COMP is a diagnosis iff
it is a minimal set of components such that

consistent(SD∪OBS∪{¬AB(c) | c ∈ COMP \∆}) (1)

holds. Minimality means that Eq. 1 must not hold for
any subset ∆′ ⊂ ∆. Thus, the observation would be
possible under the assumption that all components in
a diagnosis behaved abnormally. Hence, every diagnosis
represents a fault candidate. A diagnosis ∆ with |∆| = 1
is called a single-fault diagnosis.

Diagnoses can be computed using conflicts. A conflict
is a set C ⊆ COMP such that

¬ consistent(SD∪OBS∪{¬AB(c) | c ∈ C}) (2)

holds. Informally speaking, a conflict is a set of compo-
nents that cannot all behave normally. If all components
of a conflict behaved normally, the observation would be
impossible. Again, a conflict C is minimal if no subset
C ′ ⊂ C is a conflict. A diagnosis must explain all con-
flicts, so it must share at least one element with every
conflict. This relation can be formalized using hitting
sets. A hitting set for a collection K of sets is a set H

such that ∀K ∈ K . H ∩ K 6= ∅ holds. A hitting set H
is minimal if no subset H ′ ⊂ H is a hitting set for that
collection. A set ∆ ⊆ COMP is a diagnosis iff ∆ is a
minimal hitting set for the collection of all minimal con-
flicts. Hence, computing diagnoses reduces to computing
minimal hitting sets for the collection of minimal conflict
sets. Reiter [41] presents an algorithm for minimal hit-
ting set computation which computes conflicts on-the-fly
and produces diagnoses in order of increasing cardinality.
Diagnoses with a lower cardinality are in general consid-
ered as more likely fault candidates than diagnoses with
higher cardinality. Thus, if the algorithm is aborted be-
fore all diagnoses have been computed (which is often
the case), only less likely fault candidates are missed.

3.2 Automata and Machines

A deterministic and complete Büchi word automaton (a
DBW) is a tuple A = (Q,Σ, T, q0, F ), where Q is a finite
set of states, Σ is a finite alphabet, T : Q×Σ → Q is a
deterministic and complete transition function, q0 ∈ Q
is the initial state, and F ⊆ Q is a set of accepting
states. A run of the automaton A on an (infinite) word
σ = σ0σ1σ2 . . . ∈ Σω is an infinite sequence of states
r = q0q1q2 . . . ∈ Qω such that qi+1 = T (qi, σi) for all
i ≥ 0. The run is accepting iff inf(r) ∩ F 6= ∅, where
inf(r) denotes the states occurring infinitely often in r.
Given two disjoint sets of Boolean inputs and outputs
X and Y , we assume that Σ = X × Y is composed
of an input alphabet X = 2X and an output alphabet
Y = 2Y . Moreover, we assume that Q = 2V for a set
V of state bits. This allows for symbolic representations
using BDDs [6]. For an input trace x = x0x1 . . . ∈ Xω
and an output trace y = y0y1 . . . ∈ Yω, we write x||y to
denote the composition (x0, y0)(x1, y1) . . . ∈ Σω.

A Mealy machine is a tuple Me = (Q,X ,Y, δ, q0, λ),
where Q, X , Y, and q0 are defined as for DBWs, δ :
Q×X → Q is a complete transition function, and λ : Q×
X → Y is a complete output function. Given the input
trace x = x0x1 . . . ∈ Xω, Me produces the output trace
Me(x) = λ(q0, x0)λ(q1, x1) . . . ∈ Yω, where q0q1 . . . ∈
Qω is a sequence of states with qi+1 = δ(qi, xi) for all
i ≥ 0. We denote the set of words that can be produced
by Me by L(Me) = {x||y ∈ (X × Y)ω |Me(x) = y}.

A Moore machine is a tuple Mo = (Q,Y,X , ε, q0, κ)
with ε : Q × Y → Q and κ : Q → X . Given the trace
y = y0y1 . . . ∈ Yω, Mo produces the trace Mo(y) =
κ(q0)κ(q1) . . . ∈ Xω, where qi+1 = ε(qi, yi) for all i ≥ 0.
We have that L(Mo) = {x||y ∈ (X ×Y)ω |Mo(y) = x}.
Refer to [21] for a more gentle introduction to automata.

3.3 Games

A (finite state, two player) game is a five-tuple G =
(Q,Σ, T, q0,Win), where Q, Σ = X × Y, T , and q0 are
defined as for DBWs, and Win : Qω → {false, true} is
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the winning condition. The game is played by two play-
ers, the environment and the system. A play π of G is
an infinite sequence π = q0q1q2 . . . ∈ Qω of states with
qi+1 = T (qi, σi) for all i ≥ 0. In each step, the letter
σi = (xi, yi) is chosen by the two players in such a way
that the environment first chooses an xi ∈ X , after which
the system chooses some yi ∈ Y. A play is won by the
system iff Win(π) = true. Otherwise, it is lost for the
system and won for the environment. A (finite mem-
ory) strategy for the environment in game G is a tuple
S = (Γ, γ0, ρ), where Γ is some (finite) set represent-
ing the memory, γ0 ∈ Γ is the initial memory content,
and ρ ⊆ (Q× Γ × X × Γ ) is a relation mapping a state
of G and the memory content to a set of possible next
inputs and an updated memory content. A strategy is
deterministic iff ∀q, γ . |{(q, γ, x, γ′) ∈ ρ}| ≤ 1.

A play π conforms to a strategy S iff there exist
sequences (x0, y0)(x1, y1) . . . ∈ Σω and γ0γ1 . . . ∈ Γω

such that, for all i ≥ 0, (qi, γi, xi, γi+1) ∈ ρ and qi+1 =
T (qi, (xi, yi)). Strategy S is winning for the environment
from a state qs if all plays starting in qs and conforming
to S are won by the environment. The set W env ⊆ Q
of states from which such a winning strategy exists is
called the winning region of the environment. A coun-
terstrategy is a winning strategy for the environment
from q0. A counterstrategy exists if q0 ∈ W env. A trace
(x0, y0)(x1, y1) . . . ∈ Σω conforms to a strategy S in
G iff there exists a play π = q0q1 . . . and a sequence
γ0γ1 . . . ∈ Γω such that (qi, γi, xi, γi+1) ∈ ρ and qi+1 =
T (qi, (xi, yi)) for all i ≥ 0. The set of traces that con-
form to S in G is denoted L(G,S). A Moore machine Mo

implements a deterministic strategy S in G iff L(Mo) =
L(G,S). A construction of Mo is straightforward. A non-
deterministic strategy has to be determinized before-
hand. See [21] for a more comprehensive introduction.

3.4 µ-Calculus

The (propositional) µ-calculus [30] extends propositional
logic with a least fixpoint operator µ and a greatest fix-
point operator ν. We further extend it by two preim-
age operators MXs and MXe and use it to describe fix-
point computations over sets Q′ ⊆ Q of states in a game
G = (Q,Σ, T, q0,Win).

Let Var be a set of variables ranging over subsets
of Q. The syntax of µ-calculus formulas can be defined
inductively as follows: Every variable Z ∈ Var and every
set Q′ ⊆ Q of states is a µ-calculus formula. Given that
R and S are µ-calculus formulas, then so are ¬R, R∪S,
and R∩S, with the expected semantics. Finally, for Z ∈
Var, we have that µZ .R(Z), νZ .R(Z), MXs(R), and
MXe(R) are µ-calculus formulas. These are defined as

µZ.R(Z) =
⋃
i

Zi, with Z0 = ∅ and Zi+1 = R(Zi), (3)

νZ.R(Z) =
⋂
i

Zi, with Z0 = Q and Zi+1 = R(Zi),

MXs(R) = {q ∈ Q | ∀x ∈ X .∃y ∈ Y . T (q, (x, y)) ∈ R} ,
MXe(R) = {q ∈ Q | ∃x ∈ X .∀y ∈ Y . T (q, (x, y)) ∈ R} .
We will refer to the sets Zi as the iterates of the fixpoint.
The operation MXs(R) gives all states from which the
system is able to force the play into a state of R in one
step. Analogously, MXe(R) gives all states from which
the environment can enforce a visit to R in one step.

3.5 Specifications for Reactive Systems

A reactive system is a Mealy machine that continuously
interacts with its environment via inputs X and out-
puts Y . The specifications we consider are of the form
ϕ = (A,G), where A is a set of environment assumptions
and G is a set of system guarantees. Let σ |= p denote
that a trace σ ∈ Σω fulfills an assumption or guarantee
p ∈ A∪G. Then σ fulfills ϕ = (A,G), written σ |= ϕ, iff(

∀a ∈ A . σ |= a
)

implies
(
∀g ∈ G . σ |= g

)
. (4)

We assume that properties > and ⊥ can be formulated
with σ |= > and σ 6|= ⊥ for any σ ∈ Σω. A Mealy
machine Me implements a specification ϕ iff σ |= ϕ holds
for all σ ∈ L(Me). A specification ϕ is unrealizable, iff
no Mealy machine implements it.

A Generalized Reactivity(1) specification [39] (we will
write GR(1)) is an instance of a specification of the form
(A,G). It consists of m DBWs Aei = (Qei , Σ, T

e
i , q

e
0,i, F

e
i )

representing the environment assumptions, and n DBWs
Asj = (Qsj , Σ, T

s
j , q

s
0,j , F

s
j ) representing the system guar-

antees. A trace σ ∈ Σω fulfills assumption or guarantee
A if the corresponding run is accepting in A. A game
GGR1 = (Q,Σ, T, q0,Win) can be built with state space
Q = Qe1 × · · · ×Qem ×Qs1 × · · · ×Qsn, transition function
T ((qe1, . . . , q

s
n) , σ) = (T e1 (qe1, σ) , . . . , T sn (qsn, σ)), and ini-

tial state q0 = (qe0,1, . . . , q
s
0,n). Let Jei = {(qe1, . . . , qsn) |

qei ∈ F ei } be the set of all states of GGR1 that are ac-
cepting in Aei . Similarly, let Jsj be the set of all states of

GGR1 that are accepting in Asj . Then Win(π) is true iff

(∀i . inf(π) ∩ Jei 6= ∅) implies (∀j . inf(π) ∩ Jsj 6= ∅). (5)

The winning region WGR1
sys of the system is [39]

WGR1
sys = νZ .

n⋂
j=1

µY .

m⋃
i=1

νX .(
Jsj ∩MXs(Z)

)
∪MXs(Y ) ∪ (¬Jei ∩MXs(X)) . (6)

The result of the greatest fixpoint inX contains all states
from which the system can enforce that the play either
stays in ¬Jei for some i or eventually reaches the set
Jsj ∩MXs(Z) ∪MXs(Y ). Both cases are winning for the
system. The former means that an assumption is vio-
lated. The latter is winning because the fixpoints in Y
and Z ensure that all sets Jsj of accepting states of the
system can be visited infinitely often, thus fulfilling all
guarantees. The winning region for the environment is
WGR1

env = Q \WGR1
sys . A GR(1) specification is realizable

iff q0 ∈WGR1
sys in the corresponding game.
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3.6 Failure Preserving Minimization Algorithms

We will use two different algorithms to compute minimal
unrealizable cores.

Delta Debugging [50] is an algorithm to isolate the
trigger of a failure. Given a procedure test and some
input C that makes test fail (denoted test(C) = 8), the
algorithm computes a minimal input Ĉ = ddmintest(C)
with Ĉ ⊆ C such that test still fails on Ĉ. We assume
that test is monotonic, i.e., that for all C ′′ ⊆ C ′ ⊆ C
we have that test(C ′′) = 8 implies test(C ′) = 8. The
Delta Debugging algorithm is defined as ddmintest(C) =
ddmintest

2 (C, 2), with ddmintest
2 (C ′, n) =

ddmintest
2 (C ′i, 2) if ∃i . test(C ′i) = 8

ddmintest
2 (C ′i,max(n− 1, 2)) else if ∃i . test(C ′i) = 8

ddmintest
2 (C ′,min(|C ′|, 2n)) else if n < |C ′|

C ′ otherwise.

The sets C ′1, . . . , C
′
n form a partition of C ′ into n (ap-

proximately) equally sized parts, and C ′i = C ′ \C ′i. The
procedure ddmin2 first tries to find a subset C ′i which
still fails the test. If such a subset is found, it is reduced
further by a recursive call. If not, the complements C ′i
are tried. If this does not work either, the granularity n
for the search is doubled. If n cannot be increased any
further, the current set must be minimal. In the best
case, the number of calls to test is logarithmic in |C|. In
the worst case, it is quadratic in |C|.

The second failure preserving input minimization al-
gorithm we will use is simpler. It is defined as Ĉ =
linMintest(C) = linMintest

2 (C,C) with linMintest
2 (T,R) =

R if T = ∅
linMintest

2 (T \ t, R \ t) else if test(R \ t) = 8

linMintest
2 (T \ t, R) otherwise,

where t is a randomly chosen element of T . This algo-
rithm, used in [11], attempts to remove one element after
the other, thus requiring exactly |C| checks.

4 Debugging Approach

In this section, we introduce our debugging technique in
a generic way. We assume that the specification consists
of a (possibly empty) set of environment assumptions A
and a set of system guarantees G, and that it is possible
to add and remove guarantees. Furthermore, procedures
realizable and sat deciding realizability and satisfiability
of a specification are required. We also assume that the
specification can be turned into a game G and that a
finite memory counterstrategy can be computed in the
case of unrealizability. Moreover, we assume that output
signals can be existentially quantified in guarantees. All
these are rather loose restrictions that apply to many
common logics such as LTL, PSL, CTL, or S1S, to name
only a few.

Fig. 4: Our method to fix mismatches with the design
intent.

4.1 Debugging Undesired Behavior

Deviations of the formal specification from the informal
design intent often show up when a system correctly im-
plementing the specification is simulated. If undesired
behavior, i.e., behavior that should be forbidden accord-
ing to the design intent, is observed, then this means that
the specification is incorrect and needs to be refined.

Fig. 4 illustrates our method to tackle this prob-
lem. Suppose that undesired behavior is observed during
the simulation of an implementation of the specification
(Fig. 4a-4c). The tool first checks whether the trace ful-
fills the assumptions. If not, a warning is issued because
the system does not need to fulfill any guarantee in this
case. Otherwise, the user is asked to specify the desired
response to the input trace that was used in simulation.
The specification is then augmented with a guarantee
enforcing this desired behavior (Fig. 4d). Two cases can
be distinguished (Fig. 4e).

1. The augmented specification is realizable. That is,
the original specification leaves enough freedom to
choose either the observed or the desired behavior.
It is incomplete and needs to be refined.

2. The augmented specification is unrealizable. That is,
the original specification disallows the desired behav-
ior because no system can fulfill both. Hence, the
original specification is not sound.1 We debug un-
soundness by debugging the unrealizability of the
augmented specification (Fig. 4f).

We propose that the user defines the desired behav-
ior simply by modifying the obtained simulation trace.
Traces are infinite in our setting, so we assume some
finite representation such as a finite stem followed by a
loop. We allow the user to change any signal value in any
time step to 0, 1, or ?, where ? represents “don’t care”.
Due to the “don’t cares”, we obtain a trace template t,
consisting of an input part tx and an output part ty. The
user expresses the desired behavior as follows: Whenever
the sequence of inputs matches the input part tx of the
template, the outputs have to follow ty. The use of “don’t
cares” in tx and ty allows the definition of rather general
requirements. The tool converts t into a guarantee gnew
enforcing ty if the inputs conform to tx.

1 It is also not complete since it allows the undesired behavior
that has been observed, but this incompleteness is eliminated by
the augmentation.
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(a) Example (b) Simulation (c) Design Intent

Fig. 5: Example: Debugging undesired behavior.

More formally, tx can be seen as a sequence tx0t
x
1t
x
2 . . .

of functions txi : X → {0, 1, ?} for all i ≥ 0. Analogously,
ty is a sequence of functions tyi : Y → {0, 1, ?}. A trace
σ = (x0, y0)(x1, y1) . . . ∈ (X × Y) conforms to tx, writ-
ten σ v tx, iff for all i ≥ 0 and v ∈ X it is true that
txi (v) = 0 implies v 6∈ xi and txi (v) = 1 implies v ∈ xi.
Conformance σ v ty with the output part of the tem-
plate is defined analogously. The guarantee gnew must be
defined in such a way that it accepts a trace σ iff σ v tx
implies σ v ty.2 How gnew is actually constructed de-
pends on the specification language.

Guarantee gnew is added to specification ϕ = (A,G)
to obtain ϕ′ = (A,G ∪ gnew). If ϕ′ is realizable, then
ϕ is incomplete and ϕ′ is a refinement which makes it
more complete. If ϕ′ is unrealizable, then this means that
ϕ is so restrictive that no system can fulfill ϕ and the
desired behavior formalized in gnew at the same time.
Resolving this conflict between ϕ and gnew is equivalent
to resolving unrealizability of ϕ′. The next sections will
explain how unrealizable specifications are debugged.

Example 1. We use a specification of a controller for two
dining philosophers P0 and P1 to illustrate our debug-
ging method throughout this article. The system is illus-
trated in Fig. 5a. The inputs h0 and h1 signal to the con-
troller that P0 or P1 is hungry. Input p indicates whether
the food is poisoned. The outputs e0 and e1 are set if the
respective philosopher is allowed to eat. A first version of
the specification could be ϕ1 = ({a1}, {g1, g2, g3}) with

a1 = always(p) or always(not p)

g1 = always(not(e0) or not(e1))

g2 = always(eventually(not(h0) or e0))

g3 = always(eventually(not(h1) or e1))

Assumption a1 states that food is either always poisoned
or never. Guarantee g1 requires that P0 and P1 do not

2 Note that having gnew contain an implication does not break
the splitting into assumptions and guarantees. It just reflects the
fact that a trace is fulfilled by gnew if it either violates the input
part or fulfills the output part of the user-given trace template.

eat simultaneously. The guarantees g2 and g3 ensure that
no philosopher starves forever. Specification ϕ1 is realiz-
able and Fig. 5b depicts a possible simulation run. The
gray background marks the part of the trace that repeats
infinitely often. In this run, P1 is allowed to eat although
the food is poisoned. In order to exclude this undesired
behavior, the user corrects the trace as shown in Fig. 5c.
The tool transforms this trace into a guarantee

g4 = always(p) implies always(not(e0) and not(e1))

and refines ϕ1 to ϕ2 = ({a1}, {g1, g2, g3, g4}), which is
unrealizable. That is, ϕ1 is in conflict with the desired
behavior specified in Fig. 5c. Debugging this conflict,
carried out by debugging the unrealizability of ϕ2, will
be explained in the next sections.

4.2 Model-Based Diagnosis for Unrealizability

This section shows how model-based diagnosis (MBD)
can be applied to locate the error in an unrealizable spec-
ification. In contrast to the standard MBD setting, we
do not diagnose a conflict between a system description
and an observation but an inherently conflicting system
description, namely the unrealizable specification.

4.2.1 Diagnosis of Guarantees

Let ϕ = (A,G) be an unrealizable specification over in-
puts X and outputs Y . Our goal for this section is to
identify sets of components in ϕ that can be modified
in such a way that the specification becomes realizable.
The first question that naturally arises is how to de-
fine a component in this setting. A first idea could be
to make all assumptions and guarantees components,
i.e., COMPA,G = A ∪ G, because they typically define
relatively self contained and independent aspects of the
system behavior. However, the following problem arises
with this definition.

Proposition 1. If a diagnosis is defined to be a mini-
mal set ∆A,G ⊆ (A ∪G) of assumptions and guarantees
which can be modified in such a way that the specifica-
tion becomes realizable, then every set {a} for a ∈ A is
a diagnosis.

This is a direct consequence of Eq. 4, since replacing
any assumption with ⊥ gives a realizable specification.
In other words, it does not make sense to search for as-
sumptions that can be modified to obtain a realizable
specification, because every assumption can be modi-
fied in such a way. However, not every guarantee can
be changed to fix unrealizability. Therefore, we use the
component definition COMPG = G, implicitly assuming
that all assumptions are as intended by the designer. A
complementary approach, which deals with how to find
suitable environment assumptions, has been presented
by Chatterjee et al. [7].
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We define the system description SD to be the tu-
ple (A,G,X, Y ). There is no observation in our setting.
While standard MBD attempts to explain logical incon-
sistencies, we need to explain the unrealizability of a
specification. As a notion of consistency we therefore
define a function consistentSDG : 2COMPG → {true, false}
as consistentSDG (G′) = realizable((A,G′)). Intuitively, this
function consistentSDG maps a set G′ ⊆ COMPG of com-
ponents to true iff (A,G′) is a realizable specification.

In order to bridge the gap between our definition of
consistency and that of Section 3.1, which is based on
normally and abnormally behaving components, we can
transform ϕ to ϕ̃ such that for every trace σ ∈ Σω we
have that σ |= ϕ̃ iff(
∀a ∈ A . σ |= a

)
implies

(
∀g ∈ G .AB(g) ∨ (σ |= g)

)
.

That is, abnormal guarantees do not have to be fulfilled
in ϕ̃ (cf. Eq. 4). Consequently, consistentSDG (G′) = true iff
ϕ̃ is realizable with ¬AB(g′) for all g′ ∈ G′. Since guar-
antees that do not have to be fulfilled can be thought of
being removed from the specification, this is equivalent
to the simpler definition given above.

Lemma 1. Function consistentSDG is monotonic, i.e.,
for all G′′ ⊆ G′ ⊆ G we have that ¬ consistentSDG (G′′)
implies ¬ consistentSDG (G′).

This is obvious since adding guarantees to an unreal-
izable specification preserves unrealizability. Similar to
Eq. 2, a conflict is now a set CG ⊆ COMPG such that
consistentSDG (CG) = false, i.e., realizable((A,CG)) = false.
In analogy to Eq. 1, a diagnosis is finally a minimal set
∆G ⊆ COMPG for which consistentSDG (COMPG \∆G) =
true holds.

Observation 1 Given that CG is a conflict in an un-
realizable specification ϕ, at least one guarantee g ∈ CG
must be modified in order to render ϕ realizable.

If none of the guarantees in a conflict are modified, then
the specification is unrealizable, independent of all other
guarantees. The reason is that the guarantees in CG
already induce an unrealizable specification, additional
guarantees can only make it worse (see Lemma 1).

Observation 2 A diagnosis ∆G ⊆ G is a minimal set
of guarantees that can be modified in such a way that the
specification becomes realizable.

The guarantees g ∈ ∆G can be modified to >, which
gives a realizable specification. By definition, ∆G is a
minimal set for which this is possible.

Example 2. Specification ϕ2 = ({a1}, {g1, g2, g3, g4}) is
unrealizable (see Example 1). It contains the minimal
conflicts CG,1 = {g2, g4} and CG,2 = {g3, g4}. CG,1 is a
conflict because ({a1}, {g2, g4}) is unrealizable, i.e., no
system can implement both

g2 = always(eventually(not(h0) or e0)) and

g4 = always(p) implies always(not(e0) and not(e1)).

If h0 and p are always set, the system must either violate
g4 (if it ever sets e0) or g2 (otherwise). CG,1 is minimal
because ({a1}, {g2}) and ({a1}, {g4}) are both trivially
realizable. Analogously for CG,2. There are more con-
flicts (any superset of CG,1 or CG,2), but no more mini-
mal ones. The diagnoses for ϕ2 are {g4} and {g2, g3}. The
set {g2, g3} is a diagnosis because ({a1}, {g1,>,>, g4}),
which is equivalent to ({a1}, {g1, g4}), is realizable: An
implementation could forbid P0 and P1 to ever eat. This
also means that g2 and g3 can be modified in such a way
that the specification becomes realizable, because modi-
fying g2 and g3 to> certainly resolves the unrealizability.
There are other, more desirable ways to weaken g2 and
g3, for instance to always(eventually(p or not(h0) or e0))
and always(eventually(p or not(h1) or e1)). The set {g4}
is a diagnosis because ({a1}, {g1, g2, g3}) = ϕ1 is realiz-
able (see Example 1). MBD also tells the user that, for
instance, modifying g1 alone cannot resolve the unreal-
izability because {g1} is not a diagnosis.

4.2.2 Diagnosis of Output Signals

In the previous section we defined diagnoses to be (sets
of) guarantees that can be weakened in order to fix the
unrealizability of a specification. In this section we de-
fine a formalism to identify output signals that may be
overconstrained. We also show how the two approaches
can be combined.

Let ϕ = (A,G) be an unrealizable specification of
a system with inputs X and outputs Y , and let σ =
(x0, y0)(x1, y1) . . . ∈ (X × Y)ω be a trace. We define
an existential quantification (A,∃Y ′ . G) of the outputs
Y ′ ⊆ Y in the guarantees G of ϕ in such a way that
σ |= (A,∃Y ′ . G) iff(

∀a ∈ A . σ |= a
)

implies
(
∀g ∈ G . σ |= ∃Y ′ . g

)
.

The existential quantification ∃Y ′ . g in one single guar-
antee g ∈ G is defined as σ |= ∃Y ′ . g iff

∃y′0y′1y′2 . . . ∈
(

2Y
′
)ω

.(x0, y
E
0 )(x1, y

E
1 )(x2, y

E
2 ) . . . |= g,

where yEi = (yi \ Y ′) ∪ y′i for all i ≥ 0.
Informally speaking, a quantification ∃Y ′ . G of out-

puts Y ′ ⊆ Y in guarantees G removes all restrictions on
these outputs. The specification (A,∃Y ′ . G′) allows ar-
bitrary values for all signals y ∈ Y ′ in all time steps. Also
note that the quantification is performed on every single
guarantee in isolation, and not for all guarantees simul-
taneously. With SD = (A,G,X, Y ), COMPY = Y and
Y ′ ⊆ Y , we define consistentSDY (Y ′) = realizable((A,∃Y \
Y ′ . G)). Consequently, a conflict is a set CY ⊆ Y of
outputs for which realizable((A,∃Y \CY . G)) = false ap-
plies. Finally, a diagnosis is a minimal set ∆Y ⊆ Y such
that realizable((A,∃∆Y . G)) = true. Hence, every diag-
nosis ∆Y represents a minimal set of signals that may be
overconstrained, because removing restrictions on these
signals resolves unrealizability.
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An alternative version ∃̃ of the quantification can be
defined in such a way that σ |= (A, ∃̃Y ′ . G) iff(

∀a ∈ A . σ |= a
)

implies σ |= ∃̃Y ′ . G,

where σ |= ∃̃Y ′ . G iff

∃y′0y′1 . . . ∈
(

2Y
′
)ω

.∀g ∈ G .(x0, yE0 )(x1, y
E
1 ) . . . |= g,

and yEi is again (yi \ Y ′) ∪ y′i for all i ≥ 0.
The difference is that ∃ is performed on every guar-

antee separately, while ∃̃ requires the existence of one
trace of the quantified signals fulfilling all guarantees.

Example 3. As an illustration, consider the specification
(A,G) = (∅, {always(O), always(notO)}), where O is the
only output. The specification (A,∃{O} . G) is realizable
(it allows all traces), but (A, ∃̃{O} . G) is not. Conse-
quently, {O} is a diagnosis when using ∃ but not when
using ∃̃.

Our approach works for both definitions. However, we
decided for ∃ because we think that {O} should be a
diagnosis for the example. After all, if there was no out-
put O, there would also be no conflict. Furthermore, the
user can often comprehend what a quantification in one
guarantee means. Understanding what a simultaneous
quantification in all guarantees means is typically much
more difficult, because complex dependencies between
the guarantees may exist.

4.2.3 Diagnosis of Guarantees and Outputs

The approaches of diagnosing guarantees and outputs
can also be combined by defining COMPG,Y = G ∪ Y .

For B ⊆ COMPG,Y we have that consistentSDG,Y (B) =
realizable((A,∃Y \B .(G∩B))). Moreover, CG,Y ⊆ (Y ∪
G) is a conflict iff realizable((A,∃Y \CG,Y .(G∩CG,Y ))) =
false. A diagnosis is finally a minimal set ∆G,Y ⊆ (Y ∪G)
such that realizable((A,∃(Y ∩∆G,Y ) .(G\∆G,Y ))) = true.
The properties stated in Section 4.2.1 still hold:

Lemma 2. Function consistentSDG,Y is monotonic in the
sense that, for all B′′ ⊆ B′ ⊆ G ∪ Y , we have that
¬ consistentSDG,Y (B′′) implies ¬ consistentSDG,Y (B′).

In analogy to the Observations 1 and 2, one has to
weaken at least one guarantee or output signal out of
every conflict CG,Y in order to obtain a realizable speci-
fication. A diagnosis ∆G,Y is a minimal set of guarantees
and output signal definitions that can be modified to ob-
tain a realizable specification.

Theorem 1. Every diagnosis ∆G and every diagnosis
∆Y for an unrealizable specification ϕ = (A,G) is also
a diagnosis with respect to the definition of ∆G,Y .

Proof. If realizable((A,G \ ∆G)) holds, then so does
realizable((A,∃(Y ∩∆G) .(G\∆G))) because Y ∩∆G = ∅.
Moreover, ∀∆′G ⊂ ∆G .¬ realizable((A,G \∆′G)) implies

∀∆′G ⊂ ∆G .¬ realizable((A,∃(Y ∩∆′G) .(G \∆′G))) since
Y ∩∆′G = ∅. Hence, any ∆G is also a diagnosis ∆G,Y .
Analogously, since Y ∩ ∆′′Y = ∆′′Y and G \ ∆′′Y = G
for all ∆′′Y ⊆ ∆Y , we have that realizable((A,∃∆Y . G))
implies that realizable((A,∃(Y ∩ ∆Y ) .(G \ ∆Y ))) and
∀∆′Y ⊂ ∆Y .¬ realizable((A,∃∆′Y . G)) implies ∀∆′Y ⊂
∆Y .¬ realizable((A,∃(Y ∩∆′Y ) .(G \∆′Y ))) . Therefore,
every diagnosis ∆Y is also a diagnosis ∆G,Y . ut

Theorem 1 states that the definition of ∆G,Y subsumes
∆G and ∆Y . Having all diagnoses ∆G,Y , one would not
gain further diagnoses by computing ∆Y and ∆G. Thus,
we will stick to the definition of ∆G,Y in the following.

Example 4. The minimal conflicts for the unrealizable
specification ϕ2 = ({a1}, {g1, g2, g3, g4}) from Example 1
are {g2, g4, e0} and {g3, g4, e1}. Recall that

g2 = always(eventually(not(h0) or e0)) and

g4 = always(p) implies always(not(e0) and not(e1)).

The set {g2, g4, e0} is a conflict because the specification
({a1},∃e1 .{g2, g4}) is equivalent to

({a1}, {always(eventually(not(h0) or e0)),

always(p) implies always(not e0)})

and thus unrealizable. Similar for {g3, g4, e1}. The diag-
noses are {g4}, {g2, g3}, {g2, e1}, {e0, g3}, and {e0, e1}.
Note that the diagnoses are exactly the minimal hitting
sets for the minimal conflicts, i.e., every diagnosis shares
at least one element with every minimal conflict.

4.2.4 Computation of Diagnoses

So far, we have only defined what diagnoses are. This
section addresses their computation. We use the algo-
rithm presented by Reiter [41] for the computation of
diagnoses. It computes all minimal hitting sets for the
collection of conflicts via a hitting set tree. Theorem 2,
which is a reformulation of Theorem 4.4 in [41], ensures
that this procedure correctly yields all diagnoses.

Theorem 2. A set ∆G,Y ⊆ G∪Y is a diagnosis for an
unrealizable specification ϕ = (A,G) iff it is a minimal
hitting set for the collection K of conflicts in ϕ = (A,G).

Proof. (⇒) Let ∆G,Y be a diagnosis. We have that

consistentSDG,Y ((G∪ Y ) \∆G,Y ) holds. Consequently, due
to Lemma 2, there is no conflict not containing an ele-
ment of ∆G,Y . Hence, ∆G,Y is a hitting set for K. It is
a minimal hitting set because for all ∆′G,Y ⊂ ∆G,Y we

have that ¬ consistentSDG,Y ((G∪ Y ) \∆′G,Y ) holds by def-
inition. That is, for all real subsets ∆′G,Y of ∆G,Y there
exists at least one conflict which does not contain any
element of ∆′G,Y . Hence, ∆G,Y is a minimal hitting set.

(⇐) Let ∆G,Y be a minimal hitting set for K. By

definition, ∆G,Y is also a diagnosis iff consistentSDG,Y ((G∪
Y )\∆G,Y ) and ¬ consistentSDG,Y ((G∪Y )\∆′G,Y ) hold for
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all ∆′G,Y ⊂ ∆G,Y . Both properties are shown by con-
tradiction. If the former would not hold, there would be
a conflict not containing any element of ∆G,Y , so ∆G,Y

would not be a hitting set for K. If the latter would not
hold, then ∆′G,Y ⊂ ∆G,Y would a hitting set for K (see
(⇒)), so ∆G,Y could not be a minimal hitting set. ut

Since understanding the hitting set tree algorithm
is not vital for the purpose of this article, we refer the
reader to [41] for details. Basically, the algorithm only
requires a procedure to compute a conflict not containing
a certain set of components, if such a conflict exists. This
can be implemented with one single realizability check.
However, the algorithm performs better if the computed
conflicts are minimal. Such a procedure can be defined
as cNotSD(B) ={

None if consistentSDG,Y (COMPG,Y \B)

minSD(COMPG,Y \B) otherwise

for B ⊆ COMPG,Y . The function minSD computes the
minimal conflict. That is, given a set M ⊆ COMPG,Y
such that consistentSDG,Y (M) = false, it computes a set

M̂ = minSD(M) such that consistentSDG,Y (M̂) = false, and

for all M ′ ⊂ M̂ it holds that consistentSDG,Y (M ′) = true.

Function minSD can be implemented as minSD(M) =

ddmintestSD(M) or minSD(M) = linMintestSD(M), in which
testSD(M ′) = 8 iff ¬ consistentSDG,Y (M ′).

4.2.5 Performance Optimizations

Model-based diagnosis for unrealizability requires the
computation of many unrealizable cores, which in turn
requires many realizability checks. Hence, it is important
that these operations are implemented efficiently.

The first factor which influences performance is the
minimization algorithm that is used for unrealizable core
computation. We propose to use Delta Debugging, as it
performs much better than linMin in our experiments.
(See Section 7.) Furthermore, it is important to exploit
the monotonicity of test (cf. Lemma 2) to speed up the
minimization as suggested in [50]: all sets M ′ for which
testSD(M ′) returned 8 are stored. Whenever a subset
M ′′ of a stored set M ′ is tested, testSD(M ′′) 6= 8 can
be concluded without actually invoking the realizability
check.

As a second performance optimization, we propose
to use approximations of realizability. We call a proce-
dure realizableO an over-approximation of realizability
iff for all specifications ϕ we have that realizable(ϕ) im-
plies realizableO(ϕ). Similarly, realizableU is an under-
approximation of realizability if realizableU (ϕ) implies
realizable(ϕ) for all ϕ. If the specification can be trans-
formed into a game G = (Q,Σ, T, q0,Win), then realiz-
ability can be decided by computing the winning region
Wsys ⊆ Q of the system and testing whether q0 ∈ Wsys.
An over-approximation for realizability can be defined

by computing an over-approximation WO of Wsys (such
that WO ⊇ Wsys), and checking whether q0 ∈ WO. An
under-approximation can be defined analogously. Sup-
pose that we are able to find approximations of realiz-
ability which are both fast to compute and close to the
exact definition of realizability. Then we can use them
to define

realizableE(ϕ) =

 true if realizableU (ϕ)
false else if ¬ realizableO(ϕ)
realizable(ϕ) otherwise

as an often faster decision procedure for realizability. Dif-
ferent approximations can be applied in different order.

An over-approximation of realizability can also be
used to compute unrealizable cores in a two step ap-
proach. First, the unrealizable specification is minimized
with realizableO. This gives an over-approximation of a
minimal unrealizable core. In a second step, the approx-
imate minimal core is further minimized with the exact
definition of realizability, resulting in an exact minimal
core. This two-step approach can be faster because ide-
ally the expensive exact checks are performed on rela-
tively small subsets of the specification only. More for-
mally, we suggest to compute

M̂ = minSD(M) = linMintestSD2
(

ddmintestSD1 (M)
)

with

testSD1 (M ′) = 8 iff ¬ realizableO((A,∃(Y \M ′) . G∩M ′)),
testSD2 (M ′) = 8 iff ¬ realizableE((A,∃(Y \M ′) . G∩M ′)),
and M ′ ⊆ M ⊆ G ∪ Y . We use linMin as minimization
algorithm for the second step, because ddmin does not
perform well when executed on an almost minimal set:
In the early phase, all attempts to remove big chunks
of the set fail, so a lot of checks are wasted until the
granularity is high enough. With high granularity, ddmin
behaves similarly to linMin.

4.3 Explaining Conflicts with Counterstrategies

In the previous section, we discussed how model-based
diagnosis can be used to identify possible error locations
by identifying output signals and guarantees that can be
weakened in order to make the specification unrealizable.
However, there may be many such diagnoses and there
are also many ways to weaken guarantees and restric-
tions on outputs. In order to find the best suitable fix,
the user has to understand the problem in the specifica-
tion. We assist the user in achieving this by explaining
conflicts, as computed by the diagnosis algorithm, with
counterstrategies.

4.3.1 Debugging Flow

Fig. 6 depicts the flow of our method to explain conflicts,
and thereby the root causes of unrealizability. The focus
is on obtaining simple explanations. Minimal conflicts
as computed by our diagnosis algorithm are unrealizable
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Fig. 6: Our procedure to explain conflicts in a specifica-
tion.

cores, i.e., parts of the specification which are unrealiz-
able on their own. First, a counterstrategy is computed
not for the original specification but for an unrealizable
core. Next, we use a heuristic algorithm to further sim-
plify the counterstrategy to a countertrace, i.e., a single
trace of inputs that suffices to illustrate unrealizability.
Finally, we use this countertrace (or the counterstrategy,
in case our heuristic fails) in an interactive diagnostic
game against the user, and to compute a graph which
summarizes all plays that are possible in this game. The
next subsections will detail these steps.

4.3.2 Unrealizable Cores

Understanding the contradiction in a large unrealizable
specification may be difficult, but often only a small part
of the specification is responsible for the contradiction.
Removing the rest gives a specification which still con-
tains the contradiction, but is much smaller and thus
easier to debug. A part of the specification which is
unrealizable on its own right is called an unrealizable
core [11]. For an unrealizable specification ϕ = (A,G)
with inputs X and outputs Y , a minimal conflict CG,Y ,
as computed in our diagnosis approach, represents the
unrealizable core (A,∃Y \CG,Y .(G ∩CG,Y )). There are
two important differences to unrealizable cores as defined
in [11].

First, we do not remove environment assumptions.
The reason is not only that Prop. 1 hinders us from
defining assumptions to be components. Removing en-
vironment assumptions would also confuse the user in
subsequent steps of our debugging process: the coun-
terstrategy, computed to explain the unrealizable core,
could exhibit behavior which the user originally forbade.
This would allow cheating by the environment in the di-
agnostic game, at least from the user’s point of view.

Second, using existential quantification, we not only
remove properties but also output signals from the spec-
ification. The meaning is that the core is still unreal-
izable, even though the system can set all existentially
quantified outputs arbitrarily. Again, the reason for re-
moving outputs is not only that we wanted to identify
overconstrained signals when doing diagnosis. Remov-
ing outputs also allows the user to focus on the remain-
ing signals, which makes the diagnostic game much sim-
pler. The quantified outputs are not even included in
the game, because they can be set arbitrarily. In fact,
we found that minimizing only guarantees often makes
the diagnostic game more difficult. This is due to the

fact that removing guarantees gives the system more
freedom. Thus, there are more possible moves and more
plays to explore in the diagnostic game. Removing out-
puts counteracts by providing the user with choices for
relevant signals only.

Theorem 3. Let ϕ = (A,G) be an unrealizable speci-
fication, and let ϕ′ = (A,∃Y ′ . G′), with Y ′ ⊆ Y and
G′ ⊆ G, be an unrealizable core thereof. Any implemen-
tation Mo of a counterstrategy for ϕ′ implements a coun-
terstrategy for ϕ as well.

Proof. Since Mo implements a counterstrategy for ϕ′,
σ 6|= ϕ′ holds for all σ ∈ L(Mo). Clearly, ϕ is stricter
than ϕ′, i.e., σ 6|= ϕ′ implies σ 6|= ϕ for all σ ∈ Σω.
Therefore, σ 6|= ϕ for all σ ∈ L(Mo), which means that
Mo implements a counterstrategy for ϕ. ut

Theorem 3 states that computing a counterstrategy for
an unrealizable core is indeed useful, because any im-
plementation of the counterstrategy can also explain the
unrealizability of the original specification.

Example 5. The minimal conflict {g2, g4, e0} (see Exam-
ple 4) in specification ϕ2 = ({a1}, {g1, g2, g3, g4}) rep-
resents the unrealizable core ϕ′ = ({a1},∃e1 .{g2, g4}).
This means that ϕ2 is unrealizable even if g1 and g3 do
not have to be fulfilled and e1 can be chosen completely
arbitrarily in all time steps. In the diagnostic game, the
user can focus on setting e0 in such a way that

ϕ′ = ({a1}, {always(eventually(not(h0) or e0)),

always(p) implies always(not e0)})

is fulfilled, i.e., she can focus on properties and signals
that actually contribute to the conflict. Nevertheless, she
will not win the game because a counterstrategy could
set p and h0 in all steps. This is also a valid counterstrat-
egy for ϕ2. The unrealizable core just makes the task of
the user easier.

4.3.3 Countertraces

One of the main sources for complexity in the diagnostic
game is that the environment behavior, defined by the
counterstrategy, depends on the previous behavior of the
system. The user would prefer one single trace τ ∈ Xω of
inputs such that no output trace y ∈ Yω can make (τ ||y)
fulfill the specification. We call such a trace τ a counter-
trace. A countertrace significantly reduces the effort of
understanding which environment behavior causes prob-
lems.

Unfortunately, a countertrace does not always ex-
ist. Consider the specification (∅, {always(y iff nextx)}),
where x and y are Boolean inputs and outputs, respec-
tively. The specification is unrealizable, because the sys-
tem would have to look into the future to comply with
it. However, for every input trace there is also an out-
put trace such that the specification is fulfilled (namely
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the input trace shifted by one step into the future) [42,
37]. As a second difficulty, computing countertraces is
expensive. In general, we can compute a countertrace by
existentially quantifying outputs from the game automa-
ton, and complementing the resulting automaton. Every
trace in the language of the complemented automaton is
a valid countertrace. However, complementation would
cause an exponential blow-up since the automaton may
be non-deterministic after quantification. We consider
this unacceptable, and therefore define a heuristic algo-
rithm. It does not always find a countertrace, even if one
exists. However, our experiments show that it is fast and
often successful.

Our heuristic takes a counterstrategy S = (Γ, γ0, ρ)
with ρ ⊆ (Q×Γ×X×Γ ) for game G = (Q,Σ, T, q0,Win),
constructed from an unrealizable specification ϕ. The
construction of these elements depends on the specifica-
tion language used. For every state q ∈ Q and memory
content γ ∈ Γ , the counterstrategy defines possible in-
puts x ∈ X and next memory contents γ′ ∈ Γ by enforc-
ing that (q, γ, x, γ′) ∈ ρ. After the selection of such an
input, the output is chosen by the system. The idea of
our heuristic is that we choose from the inputs allowed
by the counterstrategy in such a way that the next choice
of an input is independent of the choice of the output.

We compute the countertrace τ = τ0τ1 . . . ∈ Xω and
a sequence S0S1 . . . of sets Si ⊆ (Q × Γ ) in parallel.
Every Si contains all pairs of state and memory con-
tent which are possible after the finite input sequence
τ0 . . . τi−1. The computation starts with S0 = {(q0, γ0)}
and proceeds with

Si+1 =
{

(q′, γ′)
∣∣ ∃(q, γ) ∈ Si, y ∈ Y .
q′ = T (q, (τi, y)) ∧ (q, γ, τi, γ

′) ∈ ρ
}
,

where τi is chosen arbitrarily from the set Ti = {τ ∈
X | ∀(q, γ) ∈ Si .∃γ′ ∈ Γ .(q, γ, τ, γ′) ∈ ρ}. The set Ti
contains all inputs which conform to the counterstrategy,
independent of the current state and memory content
(q, γ) ∈ Si. We choose such an input τi ∈ Ti for the
countertrace, compute with Si+1 all state-memory pairs
in which we might end up in the next step, and repeat
the procedure. This gives an input trace τ = τ0τ1 . . .
which conforms to the counterstrategy, independent of
the outputs chosen by the system.

If Ti = ∅ for any i, our heuristic fails. We can stop the
computation successfully at index k if Sk ⊆ Sj for some
j < k. This is because Sk ⊆ Sj implies Tk ⊇ Tj , and
thus, τk can be set to τj . Since the definition of Si+1 is
monotonic in Si (when used with the same τi), we have
that Sk+1 ⊆ Sj+1, which implies Tk+1 ⊇ Tj+1 and allows
τk+1 = τj+1. This can be repeated. We obtain a lasso-
shaped countertrace with finite stem τ0 . . . τj−1 followed
by infinitely many repetitions of τj . . . τk−1. A symbolic
implementation (e.g., using BDDs) of the computation is
straightforward if G and S are represented symbolically.

The number of iterations is equal to the length (stem
plus loop) of the computed countertrace. In the worst

case, our heuristic requires 2|Q×Γ | − 1 iterations. How-
ever, in all our experiments the length of the counter-
trace was below 10. The intuitive explanation of the good
performance in practice is that existing synthesis algo-
rithms often yield strategies that respond within short
time, and the computed countertrace can only exhibit
behavior allowed by the counterstrategy.

Even if a countertrace exists, our algorithm may be
unable to find one. There are two reasons. First, it may
fail due to a bad choice of an input letter τi ∈ Ti. This
problem can be solved with backtracking. The second
reason is that the counterstrategy from which the coun-
tertrace is created may not contain all possible ways to
force the system to violate the specification.

A countertrace with finite stem τ0 . . . τj−1 and in-
finite loop τj . . . τk−1 can be interpreted as a strategy
Sτ = (Γτ , 0, ρτ ) with Γτ = {0, . . . , k − 1} and

ρτ =
{

(q, γ, τγ , next(γ)) ∈ (Q,Γτ ,X , Γτ )
}

, where

next(γ) =

{
j if γ = k − 1, and
γ + 1 otherwise.

Theorem 4. Every play π that conforms to the coun-
tertrace τ , i.e., which conforms to the strategy Sτ =
(Γτ , 0, ρτ ) is won by the environment.

Proof. The inputs τi dictated by countertrace τ and also
by ρτ are (singleton) subsets of the inputs that are al-
lowed by the counterstrategy S = (Γ, γ0, ρ). This follows
trivially from the construction of τ and Sτ . Since all
plays conforming to S are won by the environment, so
are all plays conforming to τ and Sτ . ut

Example 6. We apply our algorithm to compute a coun-
tertrace for the unrealizable core ({a1},∃e1 .{g2, g4}) =

({a1}, {always(eventually(not(h0) or e0)),

always(p) implies always(not e0)}),

which was introduced in Example 5. Due to space con-
straints, we neither provide a full game definition G nor
a full counterstrategy definition S. Instead, we present
parts of these elements in a way that best serves the ex-
planation. Our algorithm is illustrated in Fig. 7. It starts
with S0 = {(q0, γ0)}. From there, the counterstrategy
only allows the input letter (h0, h1, p) = (0, 0, 1). Hence,
T0 = {(0, 0, 1)} and τ0 can only be set to (0, 0, 1). With
input (h0, h1, p) = (0, 0, 1), the system has two possi-
bilities. If it sets e0 = 0, the play will get to state-
memory pair (q2, γ1). With e0 = 1 it goes to (q1, γ1).
After one step, the play is either in (q2, γ1) or (q1, γ1), so
S1 = {(q2, γ1), (q1, γ1)}. From (q2, γ1), the counterstrat-
egy allows two input letters, namely (h0, h1, p) = (1, 1, 1)
and (1, 0, 1). From (q1, γ1) only (1, 0, 1) is allowed. T1
consists of input letters that are allowed from all ele-
ments of S1, so T1 = {(1, 0, 1)}. Consequently, there is no
other possibility than setting τ1 = (1, 0, 1). With input
(1, 0, 1) in Step 1, (q1, γ1) and (q2, γ1) are the only pos-
sible successors. Hence, S2 = {(q1, γ1), (q2, γ1)}. Since
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Fig. 7: An example illustrating countertrace computa-
tion.

S2 = S1, the algorithm terminates successfully. This is
possible because all τi with i ≥ 2 could be set to τ1,
with the consequence that all encountered sets Si with
i > 2 would be equal to S1. Therefore, the countertrace
is τ0 followed by infinitely many repetitions of τ1. This
is depicted on the right-hand side of Fig. 7.

4.4 Interactive Diagnostic Games and Graphs

We allow the user to play an interactive diagnostic game
against the counterstrategy. In every step, the counter-
strategy provides inputs and the user responds with out-
puts. The user attempts to fulfill the specification but
fails for sure. Playing the game (and losing repeatedly)
will help the user understand why she cannot win, i.e.,
why the specification is unrealizable. If a countertrace is
found, the user plays against this trace. The entire trace
is shown right from the beginning to clearly set out the
problematic environment behavior.

In order to speed up the learning process, we also
provide the user with a graph G which summarizes all
plays that are possible against the counterstrategy. Ev-
ery node in the graph corresponds to a reachable state-
memory pair (q, γ) ∈ (Q,Γ ). There is a special start
node (q0, γ0). Directed edges between nodes are created
if the corresponding transition is possible. Edges are la-
beled with the inputs and outputs that enable the tran-
sition. The graph can serve as a “cheat sheet” for the
diagnostic game. The user can see already in advance
how the counterstrategy will react to her moves. Hence,
she might discard some moves without trying them in
the game. This reduces the time necessary to understand
the cause for unrealizability.

5 Debugging GR(1) Specifications

In this section, we instantiate our generic debugging ap-
proach for the class of Generalized Reactivity(1) [39]

(GR(1)) specifications. A GR(1) specification defines as-
sumptions and guarantees using DBWs. All the prereq-
uisites for applying our debugging approach are satisfied:
Guarantees can be added and removed by adding or re-
moving DBWs, realizability can be decided as shown
in [39], a GR(1) specification can be turned into a game
as described in Section 3.5, and outputs can be exis-
tentially quantified by quantifying them in the symbolic
representation of the DBWs. Our approach for debug-
ging undesired behavior furthermore requires that the
modified simulation trace representing the desired be-
havior can be turned into a guarantee. Creating a DBW
for such a trace is straightforward [29]. There is, to our
knowledge, no prior work on how to compute a counter-
strategy for an unrealizable GR(1) specification. Hence,
we will detail this below. Furthermore, we discuss some
GR(1) specific aspects of the interactive diagnostic game
as well as the performance optimizations using approxi-
mations of realizability.

5.1 Counterstrategies for GR(1) specifications

Piterman et al. [39] propose to transform a GR(1) spec-
ification into a game GGR1 = (Q,Σ, T, q0,Win). They
then show how to derive a winning strategy for the sys-
tem from intermediate results in the computation of the
winning region WGR1

sys . We follow this approach and de-
rive a counterstrategy from intermediate results in the
computation of WGR1

env = Q \ WGR1
sys . Complementing

Eq. 6, we obtain

WGR1
env = µZ .

n⋃
j=1

νY .

m⋂
i=1

µX .(
¬Jsj ∪MXe(Z)

)
∩MXe(Y ) ∩ (Jei ∪MXe(X)) . (7)

As intermediate results for counterstrategy construction
we define Za to be the a-th iterate (according to Eq. 3)
of the fixpoint in Z. Furthermore, we define Ya,j as

νY .

m⋂
i=1

µX .(
¬Jsj ∪MXe(Za−1)

)
∩MXe(Y ) ∩ (Jei ∪MXe(X)) .

Finally, Xa,j,i,c denotes the c-th iterate of X in

µX .
(
¬Jsj ∪MXe(Za−1)

)
∩MXe(Ya,j)∩ (Jei ∪MXe(X)) .

To simplify notation, we introduce Znew
a = Za \ Za−1,

Xnew
a,j,i,c = Xa,j,i,c \Xa,j,i,c−1, and i⊕1 = (i mod m)+1.

For x ∈ X and P ⊆ Q we also define MXex(P ) = {q ∈ Q |
∀y ∈ Y . T (q, (x, y)) ∈ P} to denote the set of all states
from which the environment can force the play into a
state of P with input x.

We use Γ = I×J as memory for the counterstrategy
(Γ, γ0, ρ). The set I = {1, . . . ,m} is used to store the
index of the set Jei of accepting states of the environment
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that the counterstrategy attempts to reach next. The set
J = {0, 1, . . . , n} is for storing the index of the set Jsj of
accepting states of the system that the counterstrategy
tries to evade. The special value 0 indicates that the
counterstrategy has not (yet) selected such a set. The
initial memory content is γ0 = (1, 0).

We compose the counterstrategy’s relation ρ of four
parts ρ1, ρ2, ρ3, ρ4 ⊆ (Q× Γ ×X × Γ ).
Sub-strategy ρ1 is defined as ρ1 ={

(q, (i, j), x, (i, 0))
∣∣ ∃a ≥ 2 . q ∈ Znew

a ∩MXex(Za−1)
}
.

It forces the play into a smaller iterate of Z. It can-
not know which Jsj can be evaded in the next step be-
cause the next move of the system can influence to which
Ya−1,j the play proceeds. Thus, the counterstrategy can-
not set the memory j ∈ J to a suitable value. In order
to remember to do so in the next step, j is set to 0.
Sub-strategy ρ2 is applied whenever j = 0 and ρ1 is
not applicable. It sets j to a suitable value:

ρ2 =
{

(q, (i, 0), x, (i, j′))
∣∣ ∃a ≥ 1 .

q ∈ Znew
a ∩MXex(Ya,j′) \MXe(Za−1)

}
Sub-strategy ρ3 is applied if the play is in a state of Jei .
The next goal is to reach a state of Jei⊕1, so the memory
content of i is updated:

ρ3 =
{

(q, (i, j), x, (i⊕ 1, j))
∣∣ j 6= 0 ∧ q ∈ Jei ∧

∃a ≥ 1 . q ∈ Znew
a ∩MXex(Ya,j) \MXe(Za−1)

}
Sub-strategy ρ4 is used when the set Jei is not yet
reached. It is an attractor strategy forcing the play ever
closer to Jei :

ρ4 =
{

(q, (i, j), x, (i, j))
∣∣ j 6= 0 ∧ ∃a ≥ 1, c ≥ 2 .

q ∈ Znew
a ∩Xnew

a,j,i,c ∩MXex(Xa,j,i,c−1) \MXe(Za−1)
}

Theorem 5. The tuple SGR1 =
(
I × J , (1, 0), ρGR1

)
,

where ρGR1 = ρ1 ∪ ρ2 ∪ ρ3 ∪ ρ4, is a counterstrategy in
the GR(1) game GGR1.

Proof. We need to shown that every play conforming
to SGR1 is won by the environment. This is done induc-
tively. As the base case, we show that any play conform-
ing to SGR1 is won if it ever reaches Z1. As inductive
step, we show that any play conforming to SGR1 is won
by the environment if it ever reaches a state of Za with
a > 1, assuming that it is won if it ever reaches Za−1.
Base Case: The set Z1 is the union of all Y1,j , so every
state of Z1 is also in some set Y1,j . We have that

Y1,j =

m⋂
i=1

⋃
c

X1,j,i,c.

Hence, for every i, every state of every set Y1,j is also in
some iterate X1,j,i,c. Since Z0 = ∅ we have that X1,j,i,c

is the c-th iterate of the fixpoint µX .¬Jsj ∩MXe(Y1,j)∩

(Jei ∪MXe(X)). That is, the iterates X1,j,i,c are con-
structed in such a way that a state of Jei can be reached
from a state of X1,j,i,c in at most c− 2 steps while never
visiting a state of Jsj . It is possible to choose inputs in
such a way that the play proceeds to the next lower it-
erate in every step, and this is exactly what ρ4 does by
requiring that q ∈ MXex(Xa,j,i,c−1). The prerequisite is
that memory j is set such that the play is always in
Y1,j . This is done by ρ2 initially. As explained below, ρ3
and ρ4 ensure that Y1,j is never left, so they keep j un-
changed. Eventually X1,j,i,1 = ¬Jsj ∩MXe(Y1,j) ∩ Jei is
reached. The term MXe(Y1,j) ensures that the environ-
ment can force the play into a state of Y1,j again. This
is done by ρ3, which also updates i to i⊕ 1. This update
ensures that ρ4 will be able to force the play into a state
of ¬Jsj ∩MXe(Y1,j)∩Jei⊕1 in a finite number of steps. As
time goes by, all sets Jei will be visited repeatedly, while
never visiting Jsj . Hence, ρ3 and ρ4 ensure that if a play

ever enters Z1, it is won.3

Inductive Step: Suppose the play has reached Za with
a > 1. The only difference to the base case is that
Za−1 6= ∅. Thus, in comparison to the iterates X1,j,i,c,
the iterates Xa,j,i,c may contain Jsj states, but only if
they are also in MXe(Za−1). Hence, it is either possible
to apply ρ3 and ρ4 forever, thereby avoiding one set Jsj
and visiting all sets Jei repeatedly as described for the
base case, or to take the play into Za−1 with ρ1 eventu-
ally. From Za−1, the play is won by induction hypothesis.
This concludes the proof. ut

5.2 Interactive Diagnostic Games and Graphs

The purpose of the diagnostic games and graphs is to
illustrate unrealizability to the user. In the case of a
GR(1) specification, in addition to signal values, we also
present the current memory content (i, j) ∈ (I × J ) of
the counterstrategy. This information allows the user to
play more effective against the counterstrategy, and to
gain additional insights. If the user knows the index i
of the set Jei which the environment tries to reach, she
can try to get around this set. Knowing the index j of
the set Jsj which the environment evades, the user can
focus on reaching this set. (The user might indeed reach
it. However, the counterstrategy will then force the play
into a smaller iterate of Z.) We also print the iterate
of Z in which the play currently is. Being in Znew

a , the
user knows that memory j will change at most a − 1
times (not counting changes to the special value 0) in
the future, and that she will be able to reach the set Jsj ,
which the environment evades, at most a − 1 times. In
particular, she cannot reach Jsj in Z1.

The memory content of the counterstrategy can be
presented even if the user plays against the countertrace:

3 Whatever happened in the finite period before entering Z1 is
irrelevant for the winning condition. In particular, every set Js

j
may have been visited a finite number of times.
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The entire countertrace is printed right from the be-
ginning. In every step, the counterstrategy is applied
to obtain its next memory content. From the different
moves allowed by the counterstrategy, the one following
the countertrace is selected. This is always possible since
the countertrace is constructed in such a way that the in-
puts dictated by the countertrace are (singleton) subsets
of the inputs that are allowed by the counterstrategy.

5.3 Performance Optimizations

In this section, we define approximations of realizabil-
ity in order to speed up model-based diagnosis as ex-
plained in Section 4.2.5. Recall that a GR(1) specifica-
tion is realizable iff q0 ∈ WGR1

sys in the corresponding

game GGR1 = (Q,Σ, T, q0,Win). In order to obtain ap-
proximations to this procedure, we define the following
subsets of WGR1

sys or WGR1
env :

AGR1
sys = µX .A′ ∪MXs(X) ⊆WGR1

sys with

A′ =

m⋃
i=1

νY .¬Jei ∩MXs(Y ),

BGR1
sys = µX .B′ ∪AGR1

sys ∪MXs(X) ⊆WGR1
sys with

B′ = νY .MXs(Y ) ∩
n⋂
j=1

Jsj , and

CGR1
env = µX .C ′ ∪MXe(X) ⊆WGR1

env with

C ′ =

n⋃
j=1

νY .MXe(Y ) ∩ ¬Jsj ∩
m⋂
i=1

Jei .

From all states of A′, the system can enforce that the
set Jei is never visited for some i. The set AGR1

sys ⊆
WGR1

sys contains all states from which a state of A′ can be
reached in a finite number of steps, i.e., all states from
which the system can enforce the violation of an envi-
ronment assumption. The set B′ consists of all states
from which the system can enforce to fulfill all guar-
antees by staying in the intersection of all Jsj forever.

BGR1
sys ⊆ WGR1

sys comprises all states from which the sys-

tem can ensure to reach a state of B′ ∪AGR1
sys in a finite

number of steps. With C ′ we compute all states from
which the environment can keep the play in the inter-
section of all Jei but outside one particular Jsj . This is
sufficient to enforce a violation of the specification. The
set CGR1

env ⊆WGR1
env contains the states from which the en-

vironment can enforce to reach C ′. We conducted exper-
iments with several more sets, but the listed ones turned
out to be both fast to compute and close to WGR1

sys or

WGR1
env .
With realizableGR1(ϕ) = true iff q0 ∈WGR1

sys in GGR1,
we define a more efficient implementation as

realizableGR1
E (ϕ) =


true if q0 ∈ AGR1

sys

true else if q0 ∈ BGR1
sys

false else if q0 ∈ CGR1
env

realizableGR1(ϕ) otherwise.

As an over-approximation we define

realizableGR1
O (ϕ) = true iff q0 6∈ CGR1

env .

This over-approximation as well as the more efficient im-
plementation of the realizability check can be used to
speed up computations as described in Section 4.2.5.

6 Implementation

We have implemented our debugging method for GR(1)
specifications in the Requirements Analysis Tool with
Synthesis RATSY [2], a successor of RAT [38]. RATSY is
available for download4 and use under the LGPL5 open
source license. This description refers to version 2.1.0.

The user can enter properties in PSL syntax or by
drawing DBWs. A DBW can contain template parame-
ters, allowing the user to instantiate it several times in
different form. We think that DBWs are often easier to
understand and maintain than PSL formulas, especially
for non-experts. Additionally, they can be used to visu-
alize state information while simulating or debugging.

Fig. 8 shows a snapshot of RATSY’s GUI when play-
ing a diagnostic game against a countertrace for an un-
realizable specification. The entire history of the play is
shown with signal waveforms. Different colors indicate
different origins of signal values (chosen by the user, ar-
bitrarily chosen by the tool, no other possibility, or a
consequence of a choice of some other signal value). The
colors remind the user of her choices and their conse-
quences. When analyzing a lost play, this allows her to
see where she might be better off with a different choice.
The current time step is highlighted in red. Also high-
lighted is the current state of the play in all DBWs of the
specification, as well as state transitions which are still
possible. The user has two possibilities for setting signal
values. First, she can change signal values directly in the
waveforms. Second, she can click on state transitions in
the DBWs. The restrictions on signal values associated
with this transition will then be enforced. This allows
the user to navigate through DBWs, a natural way to
play the diagnostic game. A log window informs the user
about what the tool did, about results, and it also pro-
vides help for interacting with the tool. When a play of
the diagnostic game is finished, an explanation why the
user has lost is given in this log window, too.

If the specification is realizable, the user can simulate
it. Here, an additional option is available: The user can
switch into a mode where the simulation trace can be
corrected to match the design intent. A DBW enforcing
this design intent is then created automatically. In fact,
the DBW shown in Fig. 8 has been created in this way.

RATSY is implemented in Python. It uses the deci-
sion diagram package CUDD [43] for the implementa-
tion of all symbolic algorithms. Furthermore, it uses the

4 http://rat.fbk.eu/ratsy/
5 http://www.gnu.org/licenses/lgpl.html
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Fig. 8: A snapshot of RATSY’s GUI.

model-checker NuSMV [10] to create BDDs from PSL
formulas. If a formula is not GR(1), NuSMV is often
able to bring it into the desired format using syntactical
transformations. It also encodes multi-valued variables
using Boolean signals.

7 Experimental Results

For our evaluation, we used mutants of two different
specifications, both parameterized. The first one defines
an arbiter for ARM’s AMBA AHB bus [3], parameter-
ized with the number of masters it can serve. Mutants
are denoted Anei, where n is the number of masters, e
characterizes the error we introduced artificially (woef
for a removed fairness assumption, wsf for an added
fairness guarantee, and wst for an added safety guar-
antee), and i is a running index to distinguish different
mutations of the same kind. The second specification, de-
noted Gnei with the same syntax, defines a generalized
buffer [4] connecting n senders to two receivers. All spec-
ification mutants are satisfiable but unrealizable. Their
size is between 90 properties over 22 signals (A2woef1)
and 6004 properties over 218 signals (G100wst1). All sig-
nals are Boolean control signals. Most properties refer to
only a couple of signals. Only one property in the Gnei
mutants contains up to 100 signals, but this property
is simple in structure. Note that the mutants Anwoefi
and Gnwoefi do not match the fault model we assume
for diagnosis, namely that assumptions are always cor-
rect. Nevertheless, our approach is able to compute diag-
noses. Our method to explain unrealizability using coun-
terstrategies does not rely on this assumption. It leaves

it up to the user to conclude whether guarantees are too
strong or assumptions are too weak.

7.1 Performance Results

Table 1 summarizes performance results of RATSY. The
scripts to reproduce them are contained in the distribu-
tion of RATSY. All experiments were performed on an
Intel Core Duo P7350 processor with 2× 2.0 GHz and 3
GB RAM, running a 32-bit Linux.

The Columns 1 to 4 show results for applying model-
based diagnosis (MBD). Column 1 gives the time for
single-fault diagnoses computation as described in Sec-
tion 4.2.4 with Delta Debugging as a minimization algo-
rithm. Column 2 contains the time for the same compu-
tation with the performance optimization using approx-
imations of realizability as described in Sections 4.2.5
and 5.3. The corresponding speed-up factor is listed in
Column 3. Column 4 contains the number of single-fault
diagnoses (potentially faulty guarantees or outputs) that
have been computed.

The Columns 5 to 7 summarize results when a coun-
terstrategy is computed for the entire specification. The
overall time for computing the counterstrategy (the win-
ning region followed by the counterstrategy’s relation) is
given in Column 5. Column 6 shows the number of nodes
in the graph G that summarizes all plays that are pos-
sible against this counterstrategy. Graph computation
was aborted as soon as 1 000 nodes were reached. Such
entries are marked with ’>1 k’. A ’?’ in Column 6 indi-
cates a time-out without reaching 1 000 nodes. Column 7
indicates if our heuristic found a countertrace.
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Table 1: Performance Results.

Column 1 2 3 4 5 6 7 8 9 10 11 12
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[s] [s] [-] [-] [s] [-] [-] [s] [-] [-] [-] [-]

A2woef1 2.6 1.5 1.8 7 0.8 27 yes 1.3 5.8 9 5 yes
A4woef1 311 232 1.3 8 48 75 yes 3.5 47 11 13 yes
A5woef1 2.5 k 960 2.6 9 595 139 yes 5.3 499 12 5 yes

A2wsf1 5 1.4 3.5 6 0.6 59 yes 1.2 9.2 8 5 yes
A4wsf1 213 62 3.4 7 64 171 yes 3.5 176 9 5 yes
A5wsf1 4.9 k 1.1 k 4.7 7 493 683 yes 8 2.2 k 9 5 yes

A2wsf2 7.4 1.7 4.3 6 0.7 9 yes 2.7 4.1 12 7 yes
A4wsf2 444 59 7.6 7 60 35 yes 40 16 20 13 yes
A5wsf2 8.0 k 1.7 k 4.7 12 550 9 yes 225 73 12 17 yes

A2wst1 3.6 1.3 2.8 8 0.7 51 yes 1.4 4.3 9 7 yes
A4wst1 93 47 2 9 8 139 yes 4.3 28 11 19 yes
A5wst1 1.6 k 336 4.8 10 96 >1 k yes 12 92 12 43 yes

A2wst2 3.4 1.6 2.1 8 0.3 7 yes 1.9 3.6 10 7 yes
A4wst2 115 50 2.3 9 15 7 yes 5.2 15 12 19 yes
A5wst2 449 221 2 10 26 7 yes 6.8 24 13 63 yes

G5woef1 3.3 3 1.1 10 0.5 192 no 2.4 1.5 15 52 no
G20woef1 24 23 1 10 4.8 >1 k no 14 4.4 15 52 no
G100woef1 1.2 k 1143 1.1 10 317 ? no 253 236 15 52 no

G5wsf1 6.2 6.1 1 14 0.2 249 no 5 0.7 19 3 yes
G20wsf1 787 1.0 k 0.8 44 1.4 789 no 409 0.2 49 3 yes
G100wsf1 >40 k >40 k ? ? 41 ? no >40 k ? ? ? ?

G5wsf2 1.1 1.1 1 2 0.2 >1 k no 0.8 2.6 7 36 no
G20wsf2 8.1 9.2 0.9 2 1.6 >1 k no 4.7 7.9 14 58 no
G100wsf2 404 407 1 2 54 ? no 181 309 7 36 no

G5wst1 1.1 0.7 1.5 1 0.2 7 yes 1.1 2.4 7 4 yes
G20wst1 6.3 5.3 1.2 1 1.4 22 yes 5.7 8.8 7 4 yes
G100wst1 305 302 1 1 52 46 yes 238 240 7 4 yes

G5wst2 1.6 1.3 1.2 2 0.2 37 no 1.7 1.7 9 4 yes
G20wst2 8.2 6.9 1.2 2 1.4 118 no 7.5 6.8 9 4 yes
G100wst2 402 368 1.1 2 65 262 no 263 215 9 4 yes

total 22 k 8.0 k 2.7 226 2.5 k 60% 1.7 k 157 358 549 80%

The Columns 8 to 12 contain results when coun-
terstrategies are combined with unrealizable cores. The
time for unrealizable core computation using Delta De-
bugging is listed in Column 8. Column 9 gives the speed-
up factor of Delta Debugging compared to linMin, which
is used for core computation in [11]. Column 10 shows
the size of the core. Finally, the last two columns list the
size of the graph G, and whether a countertrace could
be found. Entries preceded with ’>’ indicate time-outs.
A ’?’ marks a missing value due to a time-out.

In our experiments, we observed the following.

– MBD achieves a more precise error localiza-
tion than single unrealizable cores. Every un-
realizable core element can be seen as a fault can-

didate. In our experiments, MBD yields 37% fewer
single-fault candidates (Column 4 vs. 10).

– The performance optimizations discussed in
Section 4.2.5 are effective. We achieve a speed-
up factor of 2.7 in the computation of single-fault
diagnoses (Column 3). However, single-fault diagno-
sis computation is still slower than unrealizable core
computation by a factor of 4.7 (Column 1 vs. 8).

– Our heuristic algorithm for countertrace com-
putation performs well. A countertrace is found
in 60% of the cases, and in 80% when using an un-
realizable core (Columns 7 and 12). In our experi-
ence, countertraces are much easier to understand
than counterstrategies. Computation time is insignif-
icant (fractions of a second) if a counterstrategy is
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(a) Simulation (b) Design Intent

Fig. 9: Debugging a mismatch with the design intent.

available. Hence, the heuristic provides much simpler
explanations at very little additional costs.

– Computing at least one unrealizable core is
very beneficial. The size of the specification is re-
duced by 90% on average, which makes it much easier
to debug. We found that the size of the graph G is a
good indicator how difficult it is for the user to get
meaningful insights during the diagnostic game. This
size is reduced dramatically due to unrealizable core
computation (Column 6 vs. 11)6. It also increases the
chances for finding a countertrace. Moreover, it often
even speeds up the entire computation, because once
a core is available, the time for counterstrategy com-
putation is negligible (Column 5 vs. 8).

– Delta Debugging is often much faster than lin-
Min. In total, we achieve a speed-up factor of 157,
with higher speed-ups for larger specifications (Col-
umn 9). Only for the mutants Gnwsf1, Delta Debug-
ging is slower.

7.2 Example

In this section, we show how to apply our debugging ap-
proach to resolve a mismatch between a fictitious design
intent and the unmodified specification of the AMBA
bus arbiter [3] for two masters. We use lower case let-
ters for input signals and upper case letters for outputs.
The output HMASTER is set to 0 whenever the bus is
owned by Master 0, and set to 1 when owned by Mas-
ter 1. If the input hready is set, then HGRANT1=1 sig-
nals that HMASTER=1 in the next step. Analogously for
HGRANT0. The signals HGRANTi can only change when the
output DECIDE is set. Finally, the bus can be requested
by Master 0 and Master 1 with the inputs hbusreq0 and
hbusreq1. The meaning of all other signals is irrelevant
for this example.

6 There is no guarantee that the size of the graph G decreases,
and in one case it actually increases. In fact, removing only guar-
antees increases the graph size because it gives the system more
freedom. Removing output signals counteracts this effect.

(a) HMASTER remains 1 (b) HMASTER=0

Fig. 10: Two possible plays against the countertrace.

A possible simulation trace is depicted in Fig. 9a.
The gray background marks the part that repeats in-
finitely often. Suppose now that the user is not satisfied
with this behavior. Suppose that the design intent was
that DECIDE=0 as long as input hburst0 keeps changing.
Our tool allows the user to modify the obtained simu-
lation trace so that it matches this expectation. The re-
sult is shown in Fig. 9b. Next, following our debugging
approach, the tool adds a guarantee to the specification
which enforces this desired behavior. The resulting spec-
ification is now unrealizable. This means that the design
intent is in contradiction with the rest of the specifica-
tion. This contradiction is debugged by debugging the
unrealizability of the extended specification.

Our debugging procedure for unrealizability starts
with MBD computing unrealizable cores and diagnoses.
Besides the guarantee enforcing the design intent, an
unrealizable core contains the guarantees

HMASTER=HGRANT1=A0=A1=LK=0 and DECIDE=1, (8)

always(((LK=0 or hburst0=1 or hburst1=1)

and A0=A1=0) implies next(A0=A1=0)), (9)

always(hready=1 implies

(next(HMASTER=1) iff HGRANT1=1)), (10)

always(DECIDE=0 implies

(next(HGRANT1=0) iff HGRANT1=0)), (11)

always(eventually(HMASTER=0 or hbusreq0=0)), and (12)

always(eventually(HMASTER=1 or hbusreq1=0)). (13)

Although this unrealizable core is rather short, it is not
easy to manually derive an explanation. Our tool helps.
It computes a counterstrategy and it is able to find a
countertrace. This countertrace is depicted in Fig. 10,
together with two different responses in the diagnostic
game. It explains the unrealizability of the core as fol-
lows: Since hburst0 keeps changing, DECIDE must be 0
after the first tick according to the design intent. Output
HGRANT1 cannot change as long as DECIDE=0 (Eq. 11).
Hence, HGRANT1 can only change its value in Step 1, then
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it remains constant. Since hready is set to 1 in the coun-
tertrace, HMASTER cannot change either (Eq. 10). If it
remains 1 (Fig. 10a), then the fairness guarantee stated
in Eq. 12 cannot be fulfilled because hbusreq0=1 for-
ever. If it remains 0 (Fig. 10b), then Eq. 13 cannot be
fulfilled because hbusreq1=1 forever. Hence, no matter
how the system behaves, it cannot fulfill all guarantees.
The countertrace fulfills all assumptions, so the specifi-
cation cannot be fulfilled. The guarantee in Eq. 9 is only
in the core because without it the system could enforce
a violation of an assumption.

There are many ways to resolve the illustrated prob-
lem. By removing Eq. 11 the user could allow HGRANT1

to change even if DECIDE=0. This would resolve the pre-
sented core, but it would not make the entire specifica-
tion realizable. The reason is that an analogous conflict
exists with HGRANT0. Similarly, Eq. 10 and Eq. 12 cannot
be modified in such a way that the specification becomes
realizable. MBD helps the user to find a possible loca-
tion for the fix. It identifies Eq. 9 and Eq. 13 as the only
guarantees being single-fault diagnoses. If the fix should
affect only one guarantee, then it must be one of these.

8 Summary and Conclusion

In this work, we addressed the problem of debugging
an incorrect formal specification of a reactive system in
absence of a corresponding implementation. We showed
how debugging mismatches between the informal design
intent and the formal specification can be reduced to de-
bugging unrealizability. Our method for debugging un-
realizability is based on two pillars. First, we use model-
based diagnosis for error localization. Second, we explain
problems in the specification using counterstrategies. In
order to obtain helpful explanations, we discussed tech-
niques to keep counterstrategies simple. Our generic de-
bugging method can be applied to many logics. Exper-
imental results for GR(1) specifications show that the
proposed debugging method is both feasible and useful.

Model-based diagnosis for unrealizability is computa-
tionally expensive but it yields more precise information
about the error location than single unrealizable cores.
In order to explain unrealizability in a simple way, it is
absolutely vital to compute a counterstrategy not for the
original specification but for an unrealizable core. This
greatly reduces the complexity of the specification and
allows the user to focus on one problem at a time. A sig-
nificant part of the simplification can be attributed to
the fact that we do not only remove properties but also
signals from the specification when computing unrealiz-
able cores. Model-based diagnosis produces such unre-
alizable cores as a side-product, which makes the tech-
niques fit together nicely. Countertraces are much easier
to understand than counterstrategies, because they are
independent of the moves of the opponent. We presented
a heuristic for the computation of such countertraces.

Although not complete, it is able to find countertraces
in many cases. It avoids an exponential blow-up of the
state space and it is very fast in practice.
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