
ABSTRACT: In case of tunnels with arbitrary geometries, solutions for stresses and displacements 
in the tunnel exterior might be derived with the aid of the conformal mapping technique of the 
complex variable method. Thereby, the physical tunnel domain is mapped onto a fictitious unit circle 
domain on which the elastic potentials, as part of the final solution, are evaluated. The used mapping 
function involves complex mapping coefficients. In this paper an overview of analytical solutions 
for stress and displacements fields around tunnels is provided, from the early Kirsch solution to the 
solutions involving the complex variable theory and conformal mapping. A possible solution 
procedure for the determination of these mapping coefficients based on an iterative process including 
the solution of linear systems of equations is presented. The proposed solution procedure can be 
utilized for the determination of the mapping coefficients of various conformal mapping functions 
as defined in different closed-form solutions. 
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1 INTRODUCTION 

The determination of stress and displacement fields arising from the excavation of underground 
openings has always been a key topic in tunnel engineering. In comparison to the application of 
numerical methods, analytical solutions to various rock mechanical problems show the general 
advantage of a rapid implementation with immediate insights into the effects of various influencing 
parameters.  

Nevertheless, analytical methods are often subjected to limitations in their ability to capture some 
realistic aspects of various boundary value problems. This is mainly due to simplifications made in 
the derivation of the governing equations also to reduce mathematical complexity to an acceptable 
level. These simplifications may involve variables such as the problem geometry, the stress boundary 
conditions and/or the description of the material behavior. With the aim of narrowing down the gap 
between the predictions and the observable ground behaviors various improvements have been made 
to closed form solutions in rock mechanics over the last century.  
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One improvement referring to the possibility for considering arbitrary tunnel geometries in the 
analytical solutions for stresses and displacements in the tunnel exterior was initiated by 
Muskhelishvili (1953). He introduced the concept of conformal mapping to the complex variable 
theory developed by Kolosov (1909). Various available stress-displacement solutions for tunnels 
with arbitrary geometries in isotropic and anisotropic grounds rely on the complex variable theory 
and the method of conformal mapping. However, the implementation of these solutions is 
accompanied by practical difficulties, e.g. when mathematical optimization problems have to be 
solved (see Winkler et al. 2023). 

In this paper a methodology for the determination of the conformal mapping coefficients is 
provided by setting up a corresponding equation system that is iteratively solved by a least square 
approximation and updated by a proposed algorithm of He et al. (2022). Section 2 provides a short 
review of analytical stress-displacement solutions in rock mechanics covering solutions using the 
conformal mapping technique. Section 3 discusses the basic principles of conformal mapping. In 
section 4 the proposed solution procedure is presented and section 5 draws the conclusion. 

2 REVIEW ON ANALYTICAL SOLUTIONS 

In the context of the plane theory of elasticity, a tunnel excavation may be regarded as the problem 
of an infinite elastic plate weakened by a circular or arbitrarily shaped hole under different loading 
conditions. The perhaps most famous solution in rock mechanics for the stress field surrounding a 
circular cavity considering an isotropic material behavior under uniaxial stress was derived by Kirsch 
(1898). In 1909, Russian mathematician Kolosov (1909) developed the concept of the complex 
variable theory initiating the possibility for the study of stress concentrations around arbitrary shaped 
holes in elastic media. He was the first one to solve the special case of the Kirsch problem with 
elliptical cutouts expressing stresses and displacements in terms of two analytical functions of a 
complex variable.  

In 1913, Inglis (1913) proposed a more rigorous generalization of the Kirsch solution to holes 
with elliptical shapes in order to model the destructive influence of cracks in brittle materials. Inglis’ 
solution was later picked up by Griffith (1920) marking the starting point of modern fracture 
mechanics.  

In a published book by Muskhelishvili (1953) he extensively investigated the concepts initialized 
by Kolosov for two-dimensional elasticity problems putting the complex variable theory into a solid 
framework. He further introduced the concept of conformal mapping to plane elasticity studies to 
derive solutions for the “hole in plate” problem with more complex shapes of perforations. 

Research on plane problems in anisotropic elastic bodies was largely carried out by various 
authors, e.g. Green & Taylor (1939), Green & Zerna (1954) and Lekhnitskii (1963) who applied 
complex variable techniques in their studies.  

Gerçek (1997) deployed the conformal mapping technique of the complex variable method to 
investigate stress concentrations around non-circular tunnels with more conventional shapes as used 
in mining and civil engineering. The study considers a linear-elastic isotropic medium with an 
arbitrarily oriented biaxial in situ stress field.  

Based on the work of Green & Zerna (1954), Hefny & Lo (1999) studied the influence of elastic 
parameters and non-hydrostatic far-field stress states on the results for stresses and displacements at 
the circumference of unlined circular tunnels driven in a cross-anisotropic medium.  

Exadaktylos & Stavropoulou (2002) derived a stress-displacement elastic closed-form solution 
based on the complex variable theory and conformal mapping for non-circular tunnels in an isotropic 
medium with a non-hydrostatic stress field. As an extension to Gerçek (1997), they included the 
consideration of an incremental stress release due to tunnel excavation and presented a methodology 
for the determination of the constant conformal mapping coefficients.  

The most comprehensible elastic solution for unlined tunnels with arbitrary cross-sections 
excavated in transversely isotropic ground and based on the complex variable theory and conformal 
mapping has been proposed by Tran Manh et al. (2015). Besides taking into account an incremental 
pressure release factor their solution also allows for the consideration of an arbitrary orientation of 
the biaxial in situ stress-field and the material’s planes of isotropy.  
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3 CONFORMAL MAPPING 

3.1 Complex variable z 

Within the complex variable theory, the solutions for stress and displacement fields are derived from 
elastic potential functions, respectively their derivatives (Green & Zerna 1954). Due to difficulties 
in evaluating these functions at points in the geometrically complex physical tunnel domain, the 
system is conformally mapped into a fictitious unit circle domain. The values of the potential 
functions are then evaluated at associated points in the unit circle domain. A point p in the physical 
tunnel domain, designated as the z-plane, is represented by the complex variable zp. Variable zp 
dependents on Cartesian coordinates xp and yp by  

 𝑧𝑧𝑝𝑝 = 𝑥𝑥𝑝𝑝 + 𝑖𝑖𝑦𝑦𝑝𝑝 (1) 

 
Figure 1. Conformal mapping of points from the physical z-plane onto the unit circle exterior in the ζ –plane. 

3.2 Mapping function 

A point ζp on the unit circle domain (ζ-plane) is associated with a point zp on the z-plane by the 
conformal mapping function ϖ (see Figure 1). 

 𝑧𝑧𝑝𝑝 = 𝜛𝜛(𝜁𝜁𝑝𝑝) (2) 

While in literature various definitions of the conformal mapping function are defined, exemplarily 
in this paper the following definition is used based on the Laurent series (Tran Manh et al. 2015), 
describing a conformal map of the tunnel exterior to the unit circle exterior.  

 
𝑧𝑧 = 𝜛𝜛(𝜁𝜁) = 𝑅𝑅 �𝜁𝜁 + �𝑀𝑀𝑛𝑛𝜁𝜁−𝑛𝑛

𝑁𝑁

𝑛𝑛=1

�  

𝑤𝑤𝑤𝑤𝑤𝑤ℎ  𝜁𝜁 =  𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒±𝑖𝑖𝑖𝑖𝑖𝑖 = cos(𝑛𝑛𝑛𝑛) ± 𝑖𝑖 sin (𝑛𝑛𝑛𝑛) 

(3) 

 
Polar angle θ and polar distance ρ describe the polar coordinates of points on the ζ-plane 
corresponding to associated points on the z-plane. Parameter N in Eqn. (3) represents the number of 
terms used in the series expansion. N is typically chosen as three, however, a higher number of terms 
can be used to increase the mapping accuracy (Exadaktylos & Stavropoulou 2002, Tran Manh et al. 
2015, Xiong et al. 2022). R denotes a constant factor relating to the overall size of the original cross 
section and Mn = an +ibn are complex constant coefficients (Gerçek 1997). R and Mn are the unknowns 
to be determined, for instance in an iterative manner, focusing on the tunnel boundary C with ρ = 1 
(unit circle) only. 
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4 SOLUTION PROCEDURE 

In order to solve for the mapping coefficients, the tunnel contour C in the z-plane needs to be 
discretized into a finite number of M points zm (m = 1, 2,…, M). For an exemplarily chosen semi-
circular cross-section, an increased point density in corners of boundary C on the z-plane is used as 
suggested by Exadaktylos et al. (2003) for regions with large variations of the radius of curvature 
(Figure 2a). Each of the discrete points zm from the z-plane is associated with a corresponding point 
ζm (m = 1, 2,…, M) on the tunnel contour in the ζ-plane for which the position is not known in 
advance. In case of an infinitely accurate mapping relationship, any point ζm from the tunnel contour 
in the ζ-plane mapped onto the z-plane (image of ζm designated as zc,m) must be equal to the associated 
discrete point zm on the real tunnel contour. Following this ideal consideration, an equation system 
needs to be set up as described in section 4.1 which can be solved for the sought mapping coefficients. 

4.1 Equation system and initial solution 

For setting up the system of equations as part of an optimization problem it is helpful to express Eqn. 
(3) in terms of the two parametric functions as stated in Eqn. (4). The coordinates xc,m and yc,m (m = 
1, 2,…, M) represent the Cartesian coordinates of the z-plane image zc,m of a point ζm from the tunnel 
boundary on the ζ-plane (ρ = 1). 

 

𝑥𝑥𝑐𝑐,𝑚𝑚(𝜁𝜁) = 𝑅𝑅 �𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑚𝑚) + �𝜌𝜌−𝑛𝑛
𝑁𝑁

𝑛𝑛=1

(𝑎𝑎𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜃𝜃𝑚𝑚) + 𝑏𝑏𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝜃𝜃𝑚𝑚))�  

𝑦𝑦𝑐𝑐,𝑚𝑚(𝜁𝜁) = 𝑅𝑅 �𝜌𝜌 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃𝑚𝑚)−�𝜌𝜌−𝑛𝑛
𝑁𝑁

𝑛𝑛=1

(𝑎𝑎𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛𝜃𝜃𝑚𝑚) − 𝑏𝑏𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛𝜃𝜃𝑚𝑚))� 

(4) 

By equalizing the known x- and y-coordinates of each of the M points from the discretized tunnel 
boundary in the z-plane with the images of the points from the ζ-plane, represented by the functions 
in Eqn. (4), the following overdetermined non-linear system of equations is received 
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⎢
⎢
⎡
𝑥𝑥1
𝑦𝑦1
⋮
𝑥𝑥𝑀𝑀
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⎥
⎥
⎥
⎤

=  
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⎢
⎡
𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐 1𝜃𝜃1 𝑠𝑠𝑠𝑠𝑠𝑠 1𝜃𝜃1 ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝜃𝜃1 𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁𝜃𝜃1
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃1 −𝑠𝑠𝑠𝑠𝑠𝑠 1𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐 1𝜃𝜃1 ⋯ −𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝜃𝜃1 𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝜃𝜃1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐 1𝜃𝜃𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠 1𝜃𝜃𝑀𝑀 ⋯ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝜃𝜃𝑀𝑀 𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁𝜃𝜃𝑀𝑀
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑀𝑀 −𝑠𝑠𝑠𝑠𝑠𝑠 1𝜃𝜃𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐 1𝜃𝜃𝑀𝑀 ⋯ −𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝜃𝜃𝑀𝑀 𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝜃𝜃𝑀𝑀⎦
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⋮

𝑅𝑅 ∙ 𝑎𝑎𝑁𝑁
𝑅𝑅 ∙ 𝑏𝑏𝑁𝑁⎦

⎥
⎥
⎥
⎥
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 (5) 

The problem in the form b = Ax as stated in Eqn. (5) consists of finding approximate solutions for 
θm (m = 1, 2,…, M), R, an and bn (n = 1, 2,…,N) to minimize an objective function by defining suitable 
constraints on these design variables. In literature, the mixed penalty function method is sometimes 
used to solve this non-linear constrained optimization problem (Zeng et al. 2019). However, it is 
possible to simplify and transform the non-linear problem into a linear problem by making 
assumptions on the values for θm, presuming that the points ζm (ρ=1,θm) (m=1, 2,…,M) with ζm ≠ ζm+1 
must be distributed over an interval [0,2π] on the unit circle. 

The polar angles θm are equated with ϑm= sm/2π+ϑoff, describing the normalized path coordinate sm 
of a corresponding point zm along the initially discretized tunnel boundary C including a considered 
offset angle ϑoff equal to the polar angle of zm=1. As can be seen in Figure 2a), the path coordinate s 
is chosen to start from z1 at the symmetry axis of the considered semi-circular cross section. 

After setting θm in Eqn. (5) to constant values ϑm, an initial solution for the mapping coefficients 
can be found by applying a least squares approximation and minimizing the objective function in 
Eqn. (6) down to a prescribed error tolerance ε. This equation describes the sum of the distance 
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residuals between mapped points zc,m from the unit circle onto the z-plane and discrete points zm on 
the tunnel boundary C. 

 
Figure 2. a) Polar angle correspondence for points ζ m in the ζ-plane based on the normalized path coordinate 

s of points zm in the the z-plane and b) Update of tunnel boundary points zm based on the principle of 
corresponding point polar angle Equality (PCPPAE) after He et al. (2022) by polar projection of points zc,m 
onto boundary C within a single iteration step j (Exemplarily shown for three points with varying index m). 

 𝑓𝑓(𝑅𝑅,𝑀𝑀𝑛𝑛) = � ��𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑐𝑐,𝑚𝑚(𝑅𝑅,𝑀𝑀𝑛𝑛)�
2

+ �𝑦𝑦𝑚𝑚 − 𝑦𝑦𝑐𝑐,𝑚𝑚(𝑅𝑅,𝑀𝑀𝑛𝑛)�
2

𝑀𝑀

𝑚𝑚=1

≤ 𝜀𝜀 (6) 

Following the assumption on fixed polar angles θm for points on the unit circle, the initial solution of 
the above stated problem does not result in an optimum solution for the mapping coefficients. To 
improve the mapping accuracy, an iterative procedure acc. to He et al. (2022) is utilized in this paper.  

4.2 Iterative procedure  

The iterative procedure for the determination of the mapping coefficients starts after an initial 
solution to the problem, as described in section 4.1, is found. The procedure is based on the principle 
of corresponding point polar angle equality (PCPPAE), stating that the z-plane polar angles of 
mapped points zc,m and discrete points zm on the tunnel boundary are considered to be quasi-equal 
provided the mapping relationship is sufficiently accurate.  

Consequently, in each iteration step j, the points zm
j are updated by projecting the image points 

zc,m
j-1 onto the physical tunnel boundary C via projection lines connecting points zc,m

j-1 with the 
coordinate origin. A graphical representation of this principle is given in Figure 2b). The points 
obtained are used to replace the left-hand side in Eqn. (5) and the updated mapping coefficients are 
obtained from the described least squares approximation in section 4.1. Iterations j are to be carried 
out until the mapping function in Eqn. (3) sufficiently satisfies the tunnel boundary approximation. 

5 CONCLUSIONS 

An iterative procedure for the determination of the conformal mapping coefficients required in many 
complex variable solutions has been presented. An overdetermined system of non-linear equations 
has been defined, relating points on the physical tunnel boundary with boundary points on the unit 
circle plane. Thereby, an exemplary definition of the conformal mapping function based on the 
Laurent series has been considered. The non-linear system has been transformed into a system of 
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linear equations by making assumptions on the z-plane and ζ-plane point polar angle correspondence. 
The application of an iterative algorithm by He et al. (2022) has been suggested to find an 
approximate solution for the conformal mapping coefficients.  

The defined procedure serves as a robust computer implementation technique for the 
determination of the conformal mapping coefficients as required in various plane elasticity complex 
variable solutions. The accuracy of the determined mapping coefficients can be increased by 
increasing the number of terms in the series expansion of the mapping function or the number of 
iteration steps in the solution process.  
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