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Abstract

With the improvements in computing technologies, edge devices in
the Internet-of-Things or the automotive area have become more
complex. The enabler technology for these complex systems are
powerful application core processors with operating system sup-
port, such as Linux, replacing simpler bare-metal systems. While
the isolation of applications through the operating system increases
the security, the interface to the kernel poses a new threat. Different
attack vectors, including fault attacks and memory vulnerabilities,
exploit the kernel interface to escalate privileges and take over the
system.

In this work, we present SFP, a mechanism to protect the exe-
cution of system calls against software and fault attacks providing
integrity to user-kernel transitions. SFP provides system call flow
integrity by a two-step linking approach, which links the system call
and its origin to the state of control-flow integrity. A second linking
step within the kernel ensures that the right system call is executed
in the kernel. Combining both linking steps ensures that only the
correct system call is executed at the right location in the program
and cannot be skipped. Furthermore, SFP provides dynamic CFI
instrumentation and a new CFI checking policy at the edge of the
kernel to verify the control-flow state of user programs before en-
tering the kernel. We integrated SFP into FIPAC, a CFI protection
scheme exploiting ARM pointer authentication. Our prototype is
based on a custom LLVM-based toolchain with an instrumented
runtime library combined with a custom Linux kernel to protect sys-
tem calls. The evaluation of micro- and macrobenchmarks based on
SPEC 2017 show an average runtime overhead of 1.9 % and 20.6 %,
which is only an increase of 1.8 % over plain control-flow protec-
tion. This small impact on the performance shows the efficiency of
SFP for protecting all system calls and providing integrity for the
user-kernel transitions.
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1 Introduction

Devices in the Internet-of-Things, automotive area, or industrial
computers are getting more complex and powerful. While in the
past, those systems used deeply embedded processing units with
bare-metal applications, they now are based on powerful application-
grade processors with the support for operating systems [40]. Off-
the-shelf operating systems, e.g., Linux, build the foundation for
complex software [10]. They isolate different programs, manage
privileges, or restrict access to particular memory regions. User pro-
grams can only access kernel features via a small but well-defined
interface, the system call (syscall) interface. For this reason, this
interface to the kernel is a prominent target for attackers to escalate
privileges and gain access to the system [48].

One way of manipulating the system call interface is control-flow
hijacking, which can be conducted with different methodologies.
Classical control-flow attacks performed in software exploit a mem-
ory vulnerability to modify a code-pointer or return address on the
stack to redirect the execution of the program. When fault attacks
are considered in the threat model, the attack surface in the kernel
interface increases even more. While faults can manipulate the
control-flow on a much finer granularity, e.g., they can manipulate
direct branches, they can also manipulate the system call being
executed. A control flow hijack can skip or change which system
call gets executed, possibly with a critical security impact. Further-
more, precise faults can directly manipulate which system call gets
executed by manipulating the system call register containing the
system call number.
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One way to counteract control-flow attacks is a generic mecha-
nism called control-flow integrity (CFI) [1]. CFI exists at different
granularities, depending on which threat model is considered. In a
classical software setting, only indirect branches are protected since
those are the only ones an attacker can manipulate. Faults pose
a more severe threat, thus requiring even more robust protection.
Fine-grained instrumentation [2, 22, 36] protects the control-flow
of a program on basic-block or even instruction-level [13, 53]. As a
result, these countermeasures protect direct or indirect branches
or even the whole instruction sequence. Instruction-granular pro-
tection requires intrusive hardware changes to deal with the per-
formance penalty, which is unsuitable for commodity devices.

CFI can be enforced in different security domains. While tra-
ditionally, CFI was only used to protect user-space applications,
different CFI protection schemes can also protect the kernel [16, 21].
However, currently, there are no CFI protection schemes available
providing protection between different security domains, i.e., the
transitions between the user-space program and the kernel. Thus,
the large attack surface, the transitions between user programs
to the kernel remain unprotected. Hence, there is a need for new
countermeasures that protect the software interface to the kernel
and provides system call flow integrity for commodity devices.

Contribution

In this work, we solve the problem of the unprotected system call
interface and provide system call flow protection on top of CFI,
protecting the interface to the kernel against both software and
fault attacks. SFP cryptographically links the system call itself and
its origin to a global CFI state that is verified at runtime in the
operating system. A second-stage linking mechanism within the
kernel dynamically applies a second link to ensure that the correct
system call was selected and executed.

To automatically protect arbitrary programs, we develop an
LLVM-based toolchain to provide CFI and instrument all system
calls. We provide an instrumented standard library, where all system
calls are instrumented with our system call protection. Furthermore,
we modify the Linux kernel to dynamically verify at runtime that
the correct system call was executed.

We implement SFP on top of FIPAC, a software-based CFI scheme
exploiting ARM pointer authentication. We evaluate the perfor-
mance of SFP based on a microbenchmark to measure the impact
of SFP on the system call latency, leading to an overhead of 1.9 %.
To show the applicability to real-world programs, we perform mac-
robenchmarks using the SPEC 2017 application benchmark. On
average, we measure a runtime overhead of 20.6 % for protected
applications. Summarized, we make the following contributions:

e We provide system call flow protection by linking the syscall
and its origin to a global CFI state and verifying it at runtime.

e We provide a prototype implementation comprising an LLVM-
based toolchain, an instrumented C-standard library, and a
modified Linux kernel.

e We evaluate the performance based on a microbenchmark
and on the application-grade SPEC 2017 benchmark.

2 Background

This section provides background to fault attacks, pointer authenti-
cation, and control-flow integrity.
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2.1 Fault Attacks

Injecting faults into a digital circuit is a powerful threat allowing
adversaries to break the security of a system entirely. The effect of
an induced fault at the electrical level includes timing violations
and transient voltage and current changes [42]. Typically, the effect
of a fault is modeled at the bit-level with transient bit-flips and
permanent stuck-at effects [52].

Common fault injection approaches include voltage or clock
glitching, laser fault injection (LFI), and electromagnetic fault injec-
tion (EMFI) [54]. While these methodologies require physical access
to the device, recently, new techniques relaxing this constraint have
been released [11, 32, 39, 46]. E.g., in Plundervolt [32], the attacker
utilizes the dynamic voltage scaling interface of the CPU to induce
faults remotely in software.

Independently of the injection technique, an attacker can exploit
the effects of faults in various ways. E.g., fault attacks on encryp-
tion primitives enable the attacker to leak secret keys [4, 12, 18].
Despite dedicated attacks on encryption, fault attacks are also ac-
tively used to bypass security features, such as secure boot, on
embedded systems [17, 23, 35, 37, 49]. By inducing targeted faults
into the program counter of a processor, faults enable an adversary
to arbitrarily hijack the control-flow of a program [34, 47, 48].

2.2 Control-Flow Integrity

The control-flow of a program can be hijacked using software
attacks, fault attacks, or combined software-fault attacks. Therefore,
various countermeasures targeting different attacker models were
proposed to protect programs from these attack vectors.

Software CFI Schemes. Software-based control-flow attacks are
typically performed by exploiting a memory vulnerability. By over-
writing control-flow-related data, e.g., return addresses or function
pointers, the adversary can arbitrarily manipulate the execution of
the program [5, 24, 45]. To mitigate these attacks, software control-
flow integrity (SCFI) schemes [15, 25, 27, 31] aim to provide pointer
integrity using different mechanisms. E.g., PARTS [27] uses ARM
pointer authentication (PA) to cryptographically seal and verify
security-sensitive pointers to protect them while stored in memory.

Fault CFI Schemes. Software CFI schemes only protect control-
flow transfers the adversary can also manipulate in the software
threat model, i.e., return addresses and function pointers. Faults also
allow the attacker to tamper with static control-flow data stored in
the program or even skip instructions. Therefore, fault control-flow
integrity (FCFI) schemes enforce their protection at a finer granular-
ity, e.g., at the instruction level [13, 53]. However, as these schemes
usually require custom hardware changes to avoid tremendous
runtime overheads, software-based FCFI schemes typically operate
at the function or basic block level [36, 41]. These schemes track
the execution of the program using a signature and compare this
running signature with a precomputed signature during runtime.

Software Fault CFI Schemes. As most FCFI schemes [36, 41] do
not consider a software attacker in their threat model, software
attacks allow the adversary to bypass most FCFI schemes. Here, the
adversary uses a memory bug to overwrite the state maintained in
software and arbitrarily hijacks the control-flow. Hence, mitigating
software, fault, and software-fault combined attacks require even
stronger countermeasures, i.e., software fault CFI (SFCFI) schemes.
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2.3 FIPAC

FIPAC [44] is a software fault CFI (SFCFI) scheme mitigating soft-
ware and fault-based control-flow attacks exploiting ARM pointer
authentication. Internally, FIPAC maintains a global state through
the entire program execution. When entering a basic block, i.e., a
block of consecutive instructions without a control-flow transfer,
FIPAC cryptographically updates the state. Depending on FIPAC’s
configured checking policy, the value of the state is compared to the
expected value determined during the compilation of the program
at the end of each basic block, function, or program. On control-flow
merges, i.e., indirect calls, the state is updated using a justification
signature to ensure that different valid control-flow paths yield an
identical state. To prevent a software adversary from predicting and
overwriting the state using a memory bug, a MAC is utilized for
the state update. Moreover, the state update and check functions
cryptographically derive and verify the running signature on pro-
gram execution. FIPAC uses the pointer authentication instructions
of modern ARMv8.6A architectures for the MAC computation.

ARM Pointer Authentication. ARM pointer authentication is a
hardware feature introduced with ARMv8.3A [29] and updated in
ARMv8.6A [30]. This extension provides new instructions to cryp-
tographically sign and authenticate data. These instructions derive
a message authentication code (MAC) using a secret key, a 64-bit
modifier, and the value of a provided register, e.g., an address stored
in a pointer. A fraction of this MAC, called the pointer authenti-
cation code (PAC), is then stored in the upper bits of the provided
register. By using the authentication instructions, the authenticity
of the MAC and the data in the register can then be verified.

2.4 Linux and the System Call Interface

Linux [50] is a monolithic kernel used in billions of devices [51] and
embedded systems. To retrieve a particular service or get a specific
resource, e.g., reading and writing a file, or to get dynamic memory,
the user program needs to request this from the kernel, i.e., via a
system call. A system call changes the privilege and transfers the ex-
ecution from the user-space program to the kernel of the operating
system, which then grants or denies the requested service. A user-
space program aiming to execute a certain system call invokes the
corresponding system call wrapper routine provided by a library.
This wrapper then initiates a control-flow and privilege transfer
into the kernel space by using a dedicated instruction, i.e., the svc
instruction for AArch64. The system call instruction requires the
system call number of the requested service and additional optional
parameters as arguments.

3 Threat Model and Attack Scenario

Our threat model considers a powerful adversary capable of per-
forming software attacks, fault attacks, or combined software and
fault attacks. This attacker can exploit memory vulnerabilities to ar-
bitrarily read or modify data in memory. However, we assume that
the code segment of the program cannot be modified by a software
adversary by, for example, exploiting memory vulnerabilities. Nev-
ertheless, by inducing faults, the attacker can flip bits in memory,
the registers, the code segment, or the instruction pipeline of the
processor. We assume that the control-flow of executed programs
and the kernel is protected using an SFCFI scheme, such as FIPAC.
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Figure 1: Redirecting a system call using fault attacks.

1 basic_block:

2

3 1dr w8, memAddress ; load data from memAddress to w8
4

5 mov x0, #... ; arguments for C system call

6 mov w8, #syscall C ; system call number for C

7 svc #0

Listing 1: Invoking system call C on AArch64.

Note that faults on the data, except the syscall register, are out
of the scope of this work. It requires orthogonal schemes, e.g.,
redundancy encoding schemes for data [6], for their protection. We
assume ARM PA to be cryptographically secure, and the attacker
does not have access to the encryption keys. Furthermore, the
operating system is assumed to be secure, providing isolation of
the kernel task structure to the user program.

3.1 Attack Scenario

Within this threat model, the adversary aims to hijack the program’s
interface to the Linux kernel. In the example shown in Figure 1, the
user program invokes the system call C using the Linux system
call interface. However, by using a fault attack or a software-fault
combined attack, the adversary can either (i) redirect the system
call to B or (ii) entirely skip the system call.

Listing 1 shows the instruction sequence to invoke the system
call C on AArché64. The system call number is stored in register w8,
and the system call arguments are stored in the remaining registers.
By flipping bits in register w8 using faults, the adversary can redirect
(i) the execution to a different system call.

Moreover, the syscall gadget in Listing 1 is susceptible to com-
bined attacks. A software-fault combined attacker utilizes a memory
vulnerability to overwrite data at address memAddress. Afterward,
in Line 4, the adversary hijacks the execution of the program by
flipping bits in the program counter to redirect the control-flow
to the svc instruction in Line 7, responsible for switching to the
kernel. This attack enables the adversary to invoke arbitrary system
calls. In addition to these attacks, a fault attacker can also corrupt
the svc instruction to skip (ii) the execution of the entire syscall.

SCFI schemes, such as FIPAC, currently cannot mitigate these
attacks as these countermeasures do not consider transitions be-
tween user-space and kernel space in their threat model. While
they only protect the user-space application, they fail to provide
protection for the kernel interface, posing a large threat surface
for critical vulnerabilities. Furthermore, current SCFI protection
schemes use static control-flow instrumentation, which is the same
for subsequent calls to the program. As a result, an attacker with
access to the code segment or to general-purpose registers can learn
from subsequent program executions. Thus, it would be possible
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for an attacker to attempt multiple control-flow attacks until the
hijack succeeds.

3.2 FIPAC Intra Basic Block Protection

The authors of FIPAC describe a mechanism to extend the pro-
tection guarantees of FIPAC from inter to intra-basic block secu-
rity [44]. By applying a state update after every instruction within a
basic block, the subsequently also update the CFI state continuously.
Although this mechanism can be applied around syscalls, it does
not add any protection. With a state update before and after the
system call, an attacker can still fault the syscall number or manip-
ulate the svc instruction to perform a nop instruction. Although
this attack manipulates the execution of the system call, FIPAC’s
extended intra-basic protection does not detect these attacks. Con-
sequently, it requires a different protection scheme to provide call
flow protection for system calls.

4 Design of SFP

In this section, we present SFP, a mechanism that provides system
call flow protection by exploiting a stateful CFI protection scheme.
While SFP is generic and compatible with different CFI protection
schemes, our design exploits FIPAC as the underlying CFI protec-
tion scheme. Section 7.3 discusses the compatibility aspects and
how SFP can be applied to different CFI schemes.

4.1 Requirements for System Call Protection

The goal of SFP is to protect the system call interface to the ker-
nel against software, fault, and combined attacks. Based on the
attack scenario from Section 3, the protection of SFP must fulfill
the following requirements.

R1 System Call Number. Prevent an attacker from manipulating
the system call number to a different system call.

R2 System Call Execution. Ensure that a syscall cannot be skipped.

R3 System Call Protection. Ensure the system call dispatcher in
the kernel executes the correct system call function.

R4 Dynamic CFI Instrumentation. Provide a dynamic CFI in-
strumentation to ensure protection between consecutive
program executions.

4.2 System Call Protection

To fulfill requirements R1 to R3, SFP introduces a two-step ap-
proach cryptographically linking the syscall to the state of the
deployed SCFI scheme. First, at the system call caller site, we cryp-
tographically link the system call origin and which system call we
want to execute to the cryptographic CFI state. Second, at runtime,
we perform a second-stage linking operation during the system call
operation, confirming that the correct syscall gets executed.

First-Stage System Call Linking. We statically identify at compile-
time which system call is getting executed for all locations in the
program. To protect the system call, SFP binds the syscall to the CFI
state, i.e., to perform a CFI state update with the system call number.
The system call number is a monotonically increasing number, thus
not providing a significant Hamming distance between different
system calls. A single bit-flip on the system call number changes the
system call to a different one. As a result, the system call number
cannot safely be used to bind it to the CFI state since faults can
easily manipulate the system call to a different one.
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Figure 2: System Call protection in SFP. Before a syscall, we
cryptographically bind the syscall to the CFI state for later
verification and second-stage linking in the kernel.

To overcome this limitation and perform a safe and secure state
update, we need to compute a system call-dependent update value
with a sufficiently large Hamming distance. In SFP, we exploit the
cryptographic properties of ARM PA for this purpose. We use com-
putation of a PACIA operation, with the system call and a random
modifier as input, and compute a cryptographic 15-bit patch value
for the particular system call. Due to the cryptographic MAC op-
erations of ARM PA, the patch values for subsequent system call
numbers have a large Hamming distance and cannot be computed
without having access to the secret ARM PA key. The computa-
tion of those patch values occurs at compile-time or load time and
replaces the empty patch values in the binary.

Before executing a system call and jumping to the kernel, we
patch the CFI state with the statically computed system call patch,
thus performing the first-stage linking. At this point in time, we
bind the future execution of the particular system call to the CFI
state ahead of executing it. Performing first-stage linking already
provides protection for requirements R1 and partly R2.

Second-Stage System Call Linking. After linking the system call
to the CFI state in the user-space of the program, the system call
is executed, and the execution switches into the kernel. Via dis-
patching code and the selected system call in the general-purpose
register w8, the kernel selects the correct system call function and
executes it. At the end of each system call function, we apply a sec-
ond patch, i.e., the second-stage linking to the CFI state, confirming
that the previously selected system call was really executed. This
patch value is computed dynamically during the execution of the
syscall. The second linking step ensures that both requirements R2
and R3 are fulfilled.

In Figure 2, we summarize SFP’s system call protection. A user
program performs the first-stage linking and patches the CFI state
with a statically computed syscall patch to link the execution of a
system call. The execution transitions to the kernel, which executes
the desired system call function. At the end of the system call, the
kernel performs the second-stage linking operation, followed by a
CFI check operation. The later second-stage linking operation only
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succeeds when the correct system call is linked to the CFI state. As a
result, SFP’s approach translates system call errors, independent of
how they occur, to CFI state errors, which eventually are detected
through the checking policy of the selected CFI protection scheme.
Note, Figure 2 includes CFI checks at the beginning and end of the
syscall to immediately detect a wrong syscall when entering the
kernel and after the syscall’s execution.

4.3 Dynamic Instrumentation

Existing SFCFI protection schemes [13, 33, 44, 53] use a static post-
processing or encryption phase. A dedicated post-processing tool
recovers the control-flow, computes the patch and check values, and
modifies the program. The static approach with a single encryption
key leads to the fact that all executions of the same program use
the same CFI values, e.g., patches, updates, or checks. By observing
the used CFl-related values, attackers can more easily craft valid
CFI states to bypass the control-flow protection.

In SFP, we overcome this limitation by splitting up the toolchain
and integrating the CFI instrumentation into the kernel. When
starting a program, the ELF loader of the OS identifies a CFI in-
strumented program. It generates a random ARM PA encryption
key and stores it in the process task structure. The ELF loader then
performs the per-program call unique CFI instrumentation and
computes the expected CFI state and all patch values needed to
handle the control-flow. The CFI states are stored along with the
process task structure within the kernel. With this mechanism, sub-
sequent calls to the same program create different encryption keys.
As a result, it guarantees that different CFI values are generated on
each new program start, i.e, fulfilling requirement R4.

Kernel Checking Policy. In SFP, we develop a novel CFI checking
policy at the edge of the operating system. Due to dynamically
instrumenting the program when starting it, the operating system
exactly knows the expected CFI state for every location of the
program. When a user program now enters the kernel, e.g., due to
a system call instruction, the kernel, which has access to both the
user program state and the expected CFI states, can verify them. If
the current CFI state matches the expected state, the system call
continues. However, if the CFI state deviates from the expected
state, a CFI error is detected, and the operating system aborts the
program execution. A CFI check at the end of the syscall confirms
the execution of the right syscall. Apart from system calls, a user
program can enter the operating system also via different execution
paths. We include the same checking policy when a timer interrupt
is raised, and the kernel is entered.

5 Implementation

The prototype implementation of SFP consists of two parts. First,
we develop a toolchain to automatically compile and instrument
arbitrary C-programs with CFI, including a custom runtime library.
Second, we modify the kernel of the Linux operating system to
include the system call verification, the new checking policy, and
the dynamic instrumentation on the program start.

5.1 Toolchain
Compiler. We base the toolchain on the modified compiler of
FIPAC [43], which is based on the LLVM [26] compiler framework.

We adapt the AArch64 backend of the compiler to instrument the
control-flow and embed control-flow meta information in a custom
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1 basic_block:

2

3 mov x0, #... ; arguments for B system call
4 mov x15, #0 ; Zero system call patch

5 eor x28, x28, x15 ; Perform a CFI state update
6 mov w8, #syscall B ; system call number for B
7 svc #0 ; Jump to kernel

Listing 2: Patched system call in the musl standard library.

section of the ELF binary. The compiler inserts the updates for
every basic block, inserts patches for control-flow merges, and also
deals with call instructions. Our modified compiler emits a running
ELF binary but leaves all patch values for control-flow merges and
system calls to be zero. The necessary post-processing step is shifted
to the operating system, which computes all patches at the program
start. Note that the instrumented program does not contain any
check instructions as they are part of the transition to the operating
system and are performed in the kernel.

C Standard Library. System calls are typically invoked via wrap-
per functions provided by the standard library of the programming
language. This prototype toolchain uses a CFI-instrumented version
of the musl [19] C standard library. The standard library provides
wrapper functions for all system calls or uses system calls directly
in different library functions. We identify every system call in the
musl standard library and insert the necessary patch sequence con-
taining an immediate load and the xor-based state update ahead
of executing the system call. Listing 2 summarizes the first-stage
linking, where the immediate value for the mov instruction is zero.
When starting the binary, the operating system computes the actual
patch value for this system call and fills out the correct load value.

5.2 Kernel Support

SFP requires minor modifications to the operating system. We base
the prototype of SFP on the Linux kernel in version 5.15.32 [3].

Dynamic Instrumentation on Program Start. On program start,
when an instrumented ELF binary is started, SFP performs the per-
program instrumentation of the program. First, the kernel generates
arandom encryption key used for the PA instrumentation. With the
help of control-flow metadata, which is stored along with the ELF
binary in a metadata section, we compute the CFI state throughout
the program and fill the necessary patch values for justifying sig-
natures. Furthermore, we compute the syscall- and key-dependent
patch values that are used to protect the system call interface. For
every system call in the program, we compute its PAC based on
the system call number and user-space program unique modifier.
The resulting PAC value, which is not guessable by the attacker, is
filling out the immediate patch value before the syscall.

As discussed, the instrumented program does not contain dedi-
cated CFI check operations as they are performed when entering the
kernel. Instead, we store the expected CFI state for each program
location in the task’s kernel structure. To reduce the storage over-
head, we use a RangeMap, to only have one entry for a contiguous
range of states, where it does not change.

System Call Verification. During the system call, the user program
updates the CFI state with a statically computed cryptographic
patch value that depends on the system call number. The verification
that the correct system call gets executed happens in the kernel.
After the system call jumps into the kernel, a dispatcher code selects
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syscall_A:

1
2
3 mov x16, #1 ; Load kernel modifier

4 pacia x8, x16 ; Compute system call patch
5 eor x28, x28, x15 ; Perform 2nd stage linking
6 and x28, x28, #Oxffffffffe0e00000 ; Clear syscall
7 ret ; number from CFI state

Listing 3: Dynamically computing the system call patch and
removing it from the CFI state at the system call end.

the correct system call function to be executed. At the end of every
system call function in the kernel, we perform the second-stage
linking. Based on the system call number, we dynamically compute
a second patch value dependent on the currently executed system
call. In Listing 3, we summarize this operation sequence, where we
perform the second-stage linking within the kernel. To retrieve a
cryptographically secure patch value, we exploit ARM PA’s PACIA
instruction, which takes the system call and a modifier as input
operands. Note that the modifier used for the kernel update of the
CFI state is different from the one used for the first-stage linking
in the user program. This property is essential to avoid attackers
being able to skip system calls entirely since patching the CFI state
twice with the same value would cancel out and has no permanent
effect on the CFI state. We finally apply the computed patch to the
CFI state and clear the lower bits from the system call.

Checking Policy at the Kernel Boundary. Whenever a user pro-
gram enters the kernel, SFP performs a CFI check to validate if the
current CFI state still matches the expected state. We perform CFI
checks on two entering points: During a system call and when a
timer interrupt is raised. With the help of the CFI states stored in a
RangeMap within the process structure and the knowledge of the
program’s current program counter, we look up the expected CFI
state for the program location. If the current CFI state, stored in the
register x28 of the user program state, diverges from the expected
state, a CFI error is raised, and SFP stops the program execution.
For syscalls, we perform a second CFI check at the end of the syscall
function in the kernel to ensure the syscall was really executed.

6 Evaluation

In this section, we first evaluate the security of SFP and show how
it provides protection and the defined threat model. Second, we
evaluate the functionality and the performance overhead of the
prototype implementation.

6.1 Security Evaluation

We analyze the security guarantees of SFP and show how different
attacks within the threat model are mitigated.

Control-Flow Hijacks in the User-Space or Kernel. SFP provides CFI
protection for the user-space application based on the selected un-
derlying CFI protection scheme. The prototype uses FIPAC, a basic-
block granular CFI scheme, protecting all direct/indirect branches
as well as direct/indirect calls. The protection domain includes the
C standard library, which is fully CFI instrumented. Consequently,
an attacker cannot redirect syscalls in the user-space application
by redirecting the control-flow to a different wrapper function of
the standard library. Control-flow attacks in the kernel are detected
via the kernel internal CFI protection scheme.
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Skipping a System Call. When skipping a system call instruction,
i.e, the svc instruction, the first-stage linking already occurred. Sub-
sequently, the skipped system call misses the second-stage linking
from the kernel, which yields a wrong CFI state, which is detectable
through the CFI checking policy. However, if the entire system call
instruction sequence is skipped, i.e., first-stage patching and the
syscall instruction are omitted, the hijack is still detectable. As both
patch operations are missing on the CFI state, the state is wrong
again, and a subsequent CFI check, e.g., when the program gets
scheduled, detects the invalid state. In both cases, SFP transforms
the skipped system call into a CFI error, which manifests itself in a
wrong CFI state, which is detectable.

Changing a System Call. A fault on the register containing the
system call number, or a combined attack, in which the attacker
controls the register used to execute the system call, redirects the
system call to a different one. SFP protects against both attacks.
By applying the first-stage linking to the CFI state, the correct
system call is already bound to its future execution. Manipulating
the system call register, e.g., due to a fault or software vulnerability,
leads to applying the wrong system call patch to the CFI state. When
the system call is executed, the CFI state for that program differs
from the expected state, and the CFI check in the kernel detects the
problem and aborts the program.

To bypass a system call, the attacker only has a single chance
to change the system call number and manipulate the previous
system call patch to correct one for this location. However, the
system call patch is protected via the secret ARM PA key, which
the attacker cannot access. Guessing the PAC leads to a probability
of p= 2—}5 =0.0031 % for getting the correct patch value, where
15 is the configured PAC size of our prototype implementation.
Furthermore, due to the dynamic instrumentation on the program
startup, the system call patches always differ between subsequent
calls of the same program. As a result, the attacker cannot learn
new patch information between subsequent program calls.

6.2 Functional Evaluation

To validate the functional correctness of SFP, we emulate the execu-
tion on the functional simulator QEMU [38] in version 7.0.0. Since
this simulator currently only supports ARM PA from ARMvS.3-
A, we extend it to include ARM PA of ARMv8.6-A to support the
CFI protection. The functional evaluation runs the modified Linux
kernel from the prototype and can start and execute instrumented
programs, where all system calls are protected. Within the kernel,
the functional simulator performs the second-stage linking and a
CFI check to verify the execution of the correct syscall.

To verify the functionality of the countermeasure, we emulated
skipping a system call and modifying the system call number. In
both cases, SFP detects the attack through the next CFI check since
the CFI state became invalid and stops the program execution.

6.3 Performance Evaluation

At the time of evaluation, there is no publicly available system
supporting ARMv8.6-A needed to run FIPAC. However, to conduct
the performance evaluation and to measure the performance im-
pact of SFP, we emulate the runtime overhead of PA instructions.
Therefore, we base the performance evaluation on a Raspberry Pi
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Figure 3: The microbenchmark shows the s%;stem call latency
of the getpid system call for different kernel configurations.
SFP increases the system call latency by 1.9 %.

4 Model B [20] with 8 GB RAM configured with a fixed CPU fre-
quency of 1.5 GHz. The Raspberry Pi contains an ARM Cortex-A72
CPU based on ARMv8-A but without Pointer Authentication. To
emulate the overhead of PA instructions, we replace them with
a PA-analogue instruction sequence, i.e., four consecutive XORs.
Related work [27, 28] evaluated this instruction sequence to mimic
the timing behavior of a PA instruction.

Microbenchmark. To evaluate the overhead of SFP executing sys-
tem calls, we perform a simple microbenchmark. Our benchmark
measures the syscall latency of the getpid system call, which is
a side-effect-free syscall and is used in related works to bench-
mark the syscall execution path [7, 8]. We execute the system call
10 million times and measure the system call latency via the pro-
cessor’s inbuilt cycle counter. Figure 3 summarizes our evaluation
results, showing the syscall latency in different kernel configura-
tions. On the plain unmodified Linux kernel, we measure an average
system call latency of 2131 cycles. When integrating the system
call verification alone, the latency rises to 2144 cycles. Furthermore,
with the CFI checks alone enabled, the latency increases to 2175 cy-
cles. When both are active, we measure a system call latency of
only 2185 cycles, impacting the system call latency by only 1.9 %.

Macrobenchmark. To demonstrate the applicability of SFP on a
larger scale, we perform a macrobenchmark on real-world applica-
tions. We compiled the SPECspeed 2017 [14] benchmark with our
toolchain, including only C-based programs. In Figure 4, we plot
the runtime overheads in two different configurations compared to
the plain uninstrumented code. First, we only include the dynamic
verification, including the new CFI checking policy, that verifies
the CFI state of user programs when entering the kernel. Second,
we include the syscall protection based on the two-stage linking ap-
proach together with the previously evaluated CFI checking policy.

During the evaluation, we measure a geometric mean overhead
of 18.8 % for the new CFI checking policy and 20.6 % with the system
call protection and CFI checking policy in place. Based on the evalu-
ation of the SPEC 2017 benchmark, we only measure a difference in
the overhead of 1.8 % between the pure CFI protection and the full
system call protection of SFP. This result shows that the dominating
part of the overhead comes from the CFI instrumentation, not from
the system call protection. Thus, reducing the overheads of the CFI
protection directly influences the performance of SFP.

7 Discussion

This section discusses prototype limitations and shows how SFP is
compatible with other CFI protection schemes.
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Figure 4: Macrobenchmark shows the performance impact
of SFP on the SPEC 2017 benchmark. We evaluate the impact
of CFI only and SFP, including the system call protection.

7.1 Dynamic System Call Instrumentation

In our prototype, we manually instrument all syscalls of the C
standard library with the necessary patch instructions, consisting
of a load of an immediate patch value followed by applying the
patch value to the CFI state. The immediate value is zero and is
set to its concrete value during the dynamic instrumentation of
the startup phase of the program. In a future version of SFP, we
could instrument the compiler to detect syscall instructions, i.e., svc,
and then automatically insert the necessary patch sequence. This
enhancement would also include cases where syscalls are invoked
manually without the wrapper functions of the standard library.

7.2 CFI Checking Policy Extension

SFP currently performs CFI checks when entering the kernel through
a syscall or a timer interrupt. A future version of this work can ex-
tend the CFI checking policy to include all interrupts of the system.
Our microbenchmark shows adding new CFI checks adds minimal

overhead to the syscall latency. Thus, adding additional CFI checks

for all interrupt handlers are expected to have minimal impact on

the system performance.

7.3 Compatibility

Although SFP uses FIPAC as the underlying CFI protection scheme,
the design or the protection mechanism of SFP is generic and com-
patible with different CFI schemes. To apply the protection of SFP to
a different protection scheme, two things are required. First, the CFI
protection scheme must be stateful, and there must be a possibility
to manipulate the state, e.g., via standard or custom instructions,
to inject the system call patch. Second, it is necessary to be able to
dynamically compute a second system call patch required for the
second-stage linking in the kernel. With these requirements, SFP
is compatible with existing CFI protection schemes such as SCFP,
SOFIA, or any other state-based CFI protection scheme.

8 Related Work

SCFP [53] and SOFIA [13] are hardware-assisted control-flow in-
tegrity schemes on the instruction level. They encrypt the pro-
gram’s instruction stream at compile-time, and perform a fine-
granular decryption during runtime to retrieve the correct instruc-
tion sequence. In order to deal with the performance penalty, both
protection schemes require intrusive hardware changes. This limits
their applicability to small custom embedded processing cores but
does not provide protection on a larger scale.

FIPAC [44] is a software-based FCFI protection scheme that ex-
ploits the architectural features of recent ARM processors. This
protection scheme instruments all basic blocks of a user program
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with a running CFI signature, thus providing control-flow integrity
at that granularity. They present three checking policies, i.e., where
to check whether the running CFI signature still matches the ex-
pected one. However, FIPAC only protects the control-flow of the
user-space part of the program. Although FIPAC is developed for
being used with operating systems, they miss the protection of the
system call interface to the kernel.

SFIP [9] implements coarse-grained syscall flow protection for
user-space applications. They statically identify the possible transi-
tions between different syscalls at compile-time and then enforce
that at runtime. Since SFIP only considers software attackers in
their threat model, they fail to protect against fault attacks.

9 Conclusion

In this work, we presented SFP, a protection mechanism that pro-
vides system call flow protection on top of ordinary CFI, protecting
the interface to the kernel against both software and fault attacks.
We show that an already employed CFI protection scheme can
be used as a versatile tool to protect the system call interface to
the kernel. Furthermore, we present a new CFI checking policy at
the edge of the kernel to verify the CFI state for all transitions to
the kernel. Combined with a dynamic CFI instrumentation on pro-
gram startup, the attacker cannot learn CFI or system call-related
information from subsequent program executions. We showed a
prototype implementation comprising an LLVM-based toolchain to
automatically instrument arbitrary programs and protect all system
calls. A modified Linux kernel running on a Raspberry Pi evaluation
setup is used to show the applicability of SFP to real-world pro-
grams. Our evaluation based on a microbenchmark and on the SPEC
2017 application benchmark shows an average runtime overhead
of 20.6 %, which is only an increase of 1.8 % compared to plain CFI
protection. This slight increase in the performance impact shows
the effectiveness of SFP for protecting all system calls of a program.
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