Cryptographically Enforced Memory Safety

Martin Unterguggenberger

Graz University of Technology
Graz, Austria

Pascal Nasahl
pascal.nasahl@iaik.tugraz.at
Graz University of Technology
Graz, Austria

ABSTRACT

C/C++ memory safety issues, such as out-of-bounds errors, are
still prevalent in today’s applications. The presence of a single ex-
ploitable software bug allows an adversary to gain unauthorized
memory access and ultimately compromise the entire system. Typ-
ically, memory safety schemes only achieve widespread adaption
if they provide lightweight and practical security. Thus, hardware
support is indispensable. However, countermeasures often restrict
unauthorized access to data using heavy-weight protection mecha-
nisms that extensively reshape the processor’s microarchitecture
and break legacy compatibility.

This paper presents cryptographically sealed pointers, a novel
approach for memory safety based on message authentication
codes (MACs) and object-granular metadata that is efficiently scaled
and stored in tagged memory. The MAC cryptographically binds the
object’s bounds and liveness information, represented by the corre-
sponding address range and memory tag, to the pointer. Through
recent low-latency block cipher designs, we are able to authenti-
cate sealed pointers on every memory access, cryptographically
enforcing temporal and spatial memory safety. Our lightweight ISA
extension only requires minimal hardware changes while maintain-
ing binary compatibility. We systematically analyze the security
and efficacy of our design using the NIST Juliet C/C++ test suite.
The simulated performance overhead of our prototype implemen-
tation showcases competitive results for the SPEC CPU2017 bench-
mark suite with an average overhead of just 1.3 % and 9.5 % for the
performance and efficiency modes, respectively.

CCS CONCEPTS

« Security and privacy — Software and application security;
Security in hardware; - Computer systems organization —
Architectures.

KEYWORDS
Memory Safety, Low-latency Cryptography, Memory Tagging

1 INTRODUCTION

The recent report on software memory safety by the U.S. National
Security Agency (NSA) [1] strongly emphasizes the need for im-
mediate actions to mitigate C/C++ memory errors. Such efforts
are especially relevant for system software, ranging from (cloud)
operating systems to native applications, as memory errors are
the leading cause of software attacks [30, 57]. Especially C/C++

David Schrammel

martin.unterguggenberger@iaik.tugraz.at david.schrammel@iaik.tugraz.at

Graz University of Technology
Graz, Austria

Lukas Lamster
lukas lamster@iaik.tugraz.at
Graz University of Technology
Graz, Austria

Stefan Mangard
stefan.mangard@iaik.tugraz.at
Graz University of Technology

Graz, Austria

programs are notoriously susceptible to memory bugs (i.e., tem-
poral and spatial memory safety errors [81]) due to the flexible
handling of memory references. This often leads to programming
errors, resulting in exploitable software. Spatial memory safety
violations, like Heartbleed [25] (CVE!-2014-0160), allow attackers
to remotely leak or modify data of arbitrary memory locations by
exploiting out-of-bounds (OOB) memory errors. Temporal memory
safety violations such as use-after-free (UAF) errors, e.g., in Google
Chrome [30] (CVE-2016-1635), are introduced by dereferencing a
dangling pointer to an already freed memory object. A single ex-
ploitable software bug can create a large attack surface that allows
for a variety of attacks. Sophisticated exploitation techniques allow
an adversary to hijack the program’s control flow [10, 15, 18, 67, 76],
acquire unauthorized access to resources in memory [8, 16, 34, 37],
or execute arbitrary code [4, 28]. To protect systems against these
powerful attacks, temporal and spatial memory safety is required.

Security mechanisms have been proposed using software-only
and hardware-enforced approaches. Software-based approaches [13,
39, 63, 79] suffer from large runtime overheads (e.g., SoftBound [61]
and CETS [60] incur a 116 % performance overhead) and possible
race conditions in multi-threaded environments [85, 90]. Thus, the
focus in academia and industry shifts more and more to hardware-
enforced mechanisms for memory safety. ISA extensions [22, 41, 59,
64, 69, 78, 91, 94] gain momentum due to reasonable performance
results. Typically, these countermeasures, such as CHERI [27, 84,
88], use a fat pointer approach to enforce bounds-checks in hard-
ware. Such hardware-enforced mechanisms heavily rely on fun-
damental microarchitectural modifications and cannot preserve
ABI or binary compatibility, thus hindering widespread adoption.
Contrarily, commercial products, like the ARM memory tagging
extension (MTE) [74] and SPARC application data integrity (ADI) [2,
75], suffer from limited protection capabilities, i.e., 4-bit security
that yields high tag collision probabilities of 1/16.

In order to find suitable trade-offs between security and effi-
ciency, cryptography has turned out to be a promising approach.
PointGuard [21], ARM pointer authentication (PAuth) [82], and
CCFI [55] utilize cryptographic primitives to provide pointer in-
tegrity (a subset of memory safety for code and data pointers [36,
44, 49]). However, ARM PAuth and CCFI only protect pointers
stored in memory. Academic designs like C3 [48] and CrypTag [62]
enforce memory safety through memory encryption. Yet, without

!Common vulnerabilities and exposures (CVE) by MITRE [19] define and classify
publicly disclosed cybersecurity vulnerabilities such as C/C++ memory safety issues.

authentication, both countermeasures could suffer from silent data
corruption (i.e., program execution with garbled data).
Contributions. In this paper, we present cryptographically sealed
pointers, a novel architectural mechanism to detect and mitigate
memory safety violations with cryptographic strength. We cryp-
tographically bind the object’s bounds and liveness to the
pointer itself. For this, we encode the object’s size and message
authentication code (MAC) into the upper bits of the pointer. We
compute the MAC using the address, encoded length information,
and object metadata from tagged memory to cryptographically link
the bounds and liveness information to the pointer. In contrast to
ARM PAuth and CCFI, our approach utilizes low-latency MACs
in combination with efficient tagged memory to provide strong
security guarantees for both temporal and spatial memory safety.
Newly developed low-latency block cipher designs allow us to per-
form cryptographic access checks during every memory operation.
We significantly enhance security by introducing the novel concept
of tag accumulation that, unlike ARM MTE and SPARC AD], en-
ables us to efficiently scale our tagged architecture. Our approach has
several advantages: First, the MAC binds the pointer with a specific
address range and memory tag, limiting access solely to the data
stored within that range. Similar to capability-based systems [84,
88], these pointers grant only access to the memory location within
the address range rather than the entire address space where two
memory tags could coincide. Second, the (larger) MAC expands the
tag space of the underlying tagged memory architecture, as the at-
tacker must accurately guess the correct MAC of the corresponding
address to mount a successful attack. Third, the MAC computa-
tion prevents tag forging attacks, mitigating security issues when
tagging policies rely on deterministically chosen memory tags.

Our ISA extension only requires minor hardware changes to en-
force lightweight and transparent protection while preserving binary
compatibility. We introduce two modes of operation for our design:
the efficiency and the performance mode. Our efficiency mode pro-
vides area-efficient memory safety. While our performance mode,
on the other hand, utilizes multiple cipher instances to minimize
the impact on the system performance. We provide an extensive se-
curity analysis of our design by systematically analyzing all classes
of memory safety vulnerabilities. Moreover, we analyze the efficacy
of our design using the NIST Juliet C/C++ [11] test suite, empiri-
cally validating the protection against temporal and spatial memory
exploitation. Our performance evaluation, based on the gem5 [9,
52] system simulator, as well as our area and memory utilization
analysis, highlight the practicality of our design.

In summary, our contributions are as follows:

(1) We present cryptographically sealed pointers. A novel
architectural mechanism that enforces temporal and spatial
memory safety by cryptographically binding the object’s
bounds and liveness information to the pointer itself.

(2) We introduce the new concept of tag accumulation.
Tag accumulation enables us to efficiently scale our tagged
architecture using low-latency cryptography, substantially
enhancing security while minimizing the memory overhead.

(3) We prototype our design. Our proof-of-concept implemen-
tation consists of a hardware model of our lightweight ISA
extension and a custom memory allocator.

(4) We systematically analyze the security of our design.
Our comprehensive analysis, including an empirical evalu-
ation based on the NIST Juliet C/C++ test suite, underlines
the strong security guarantees and efficacy of our design.

(5) We demonstrate the practicability of our design. Our
performance evaluation showcases competitive results for
the performance and efficiency modes.

Outline. The paper is structured as follows: Section 2 discusses
the background on memory safety. Section 3 defines our threat
model and assumptions. Section 4 and Section 5 present our design
and implementation. Section 6 provides a systematic and empirical
security analysis. Section 7 evaluates the performance, area, and
memory utilization. Section 8 discusses related and future work.
Section 9 concludes this work.

2 BACKGROUND

This section elaborates on memory safety, cryptographic comput-
ing, and tagged memory architectures.

2.1 Memory Safety Vulnerabilities

Software built with memory-unsafe programming languages such
as C/C++ is highly susceptible to memory errors [1]. More specifi-
cally, memory safety vulnerabilities introduced by programming
bugs allow for powerful software attacks. Such programming errors
frequently occur in large and complex software projects, as recent
surveys from Microsoft [57] and Google [30] indicate. Their surveys
highlight that approximately 70 % of security bug fixes in produc-
tion software are classified as memory safety issues. Depending on
the underlying cause, memory safety errors can be categorized into
two classes: temporal and spatial safety vulnerabilities [81].
Spatial Memory Vulnerabilities. Spatial memory errors allow
an adversary to leak or modify data stored in adjacent or non-
adjacent memory locations. These errors occur whenever a pointer
is dereferenced outside the intended boundaries of the correspond-
ing memory object. For example, a heap buffer overrun (CWE?-122)
occurs when dereferencing a pointer using an incorrect array in-
dex. Such overruns can cause overflows into adjacent memory
objects. Furthermore, an arbitrary access violation, like an out-of-
bounds (OOB) memory access (non-adjacent), can be misused by an
adversary to attack and ultimately compromise the entire system.
Besides adjacent and non-adjacent access violations, intra-object
memory access violations occur if data is modified within an object
outside the intended internal boundaries, e.g., a linear overflow into
an adjacent member of a C structure.

Temporal Memory Vulnerabilities. Temporal memory viola-
tions allow an adversary to manipulate data of already freed or
reallocated memory objects. Typically, pointers referring to already
freed memory locations are called dangling or stale pointers. An
adversary can perform so-called use-after-free (UAF) attacks (CWE-
416) by misusing a dangling pointer to access the data of a freed
memory object. Depending on the state of the memory, i.e., freed
or reallocated, the UAF violation can be used to tamper with data
of another object located on the same chunk of memory. Further-
more, uninitialized memory accesses (CWE-457) leak data of an

2Common weakness enumeration (CWE) by MITRE [20] is a categorized list of security
weaknesses, including software vulnerabilities such as C/C++ memory safety issues.

object previously located at the same memory location. In addi-
tion, double-free violations (CWE-415) tamper with the free list of
the heap allocator or, even more severely, free a memory object
currently used by another part of the program.

2.2 Cryptographic Computing
Cryptographic building blocks, such as encryption and authenti-
cation, can be leveraged in the context of memory safety, memory
integrity, and isolation technologies [21, 48, 55, 62, 70, 82]. Multiple
academic and commercial designs enforce memory protection via
cryptographic primitives.
Cryptographic Pointer Integrity. Pointer encryption or authen-
tication [36, 49] mitigates attacks that rely on the manipulation of
pointers stored in memory (a subset of memory safety) to hijack the
control flow of the program. PointGuard [21] uses pointer encryp-
tion to prevent attackers from tampering with code pointers. ARM
pointer authentication (PAuth) [82] utilizes message authentication
codes (MACs) encoded into the upper bits of the pointers to en-
force pointer integrity. Control flow hijacking attacks are mitigated
by signing and verifying the pointer, detecting any manipulation
by an adversary while the pointer is stored in memory. Similarly,
CCFI [55] uses MACs to provide integrity for code pointers.
Cryptographic Memory Safety. Recent academic work proposes
the use of cryptographic primitives to enforce full memory safety.
CrypTag [62] uses pointer tagging (i.e., encoding metadata in the
upper bits of a pointer) to enforce memory safety through cache line
granular encryption. Every memory object is padded to the cache
line size, and the pointer tag is used as additional input for the mem-
ory encryption engine. Memory safety violations lead to garbled
data or an authentication error, depending on the underlying mode
of operation (i.e., encryption-only or authenticated encryption).
Cryptographic capability computing (C?) [48] leverages low-
latency pointer and memory encryption to mitigate software at-
tacks. By partly encrypting data pointers, C3 generates a crypto-
graphic address (CA) that provides pointer integrity. The CA acts
as a nonce for the keystream generator used to encrypt and decrypt
the accessed data. This procedure introduces two layers of defense:
First, forging an arbitrary pointer most likely leads to a garbled
pointer and, thus, in most cases to a page fault and program termi-
nation. Second, if the pointer decryption leads to a valid result, the
data decryption using the CA will result in garbled data with high
probability. However, due to its stateless design, C3 is vulnerable
to XOR-based attacks exploiting the garbled data, and UAF attacks
introduced by the low entropy of the 4-bit version field [33].

2.3 Tagged Memory Architectures

Tagged memory constitutes a promising approach for mitigating
a wide range of memory safety issues. In general, memory tag-
ging [75] associates meta-information with every memory location,
thus allowing the enforcement of different security policies [87,
93]. The metadata, called memory tags, is software-controlled and
parameterizable by the tag size and granularity. The chosen tag
size and tag granularity directly determine the incurred memory
overhead as well as the range of implementable policies. Tagged
memory is a versatile tool and can be implemented in software or
with hardware support. Various tagged architectures [2, 38, 71, 74,

87, 93] have been proposed, ranging from single-bit to multi-bit
memory tags and static to (partly) programmable security policies.
Memory Safety Policies. Commercial products, such as ARM
memory tagging extension (MTE) [74] and SPARC application data
integrity (ADI) [2], are ISA extensions integrating memory tagging
into the system architecture. Specifically, ARM MTE and SPARC
ADI utilize a 4-bit tag size at the granularity of 16 B and 64 B, respec-
tively. Both ISA extensions use memory tagging to enforce security
policies for memory safety with a so-called lock-and-key approach.
At its core, a pseudorandomly chosen tag is assigned to a memory
location and the corresponding pointer during allocation. The tag
gets encoded into the upper bits of the pointer (the key) using hard-
ware address masking, e.g., ARM’s top-byte ignore (TBI) feature.
Subsequently, the tag gets assigned to the corresponding memory
location (the lock) using the tagged memory architecture. During
every memory operation, the key and the lock are compared. Only
possession of the correct key grants access to the memory location,
i.e.,, the pointer tag (key) and the memory tag (lock) match.

3 THREAT MODEL AND ASSUMPTIONS

Similar to prior work [41, 48], we consider an adversary that at-
tempts to exploit one or several memory safety vulnerabilities
present in the target user space program. This includes spatial
safety issues such as linear buffer overruns (adjacent) and out-of-
bounds (OOB) errors (non-adjacent). Additionally, temporal safety
issues such as use-after-free (UAF), uninitialized memory, and
double-free errors are included in the threat model. Our work fo-
cuses on heap protection, as most memory safety vulnerabilities
only concern heap memory [57]. While our proof-of-concept im-
plementation enforces heap memory safety, the design can also
be adapted to protect the stack and global memory. In accordance
with related work [41, 48], we exclude intra-object overflows from
our threat model since these overflows are hard to exploit and only
account for around 1 % of observed vulnerabilities [56].

We assume that the adversary knows the address space layout
and that the OS is benign and free of exploitable bugs. Moreover,
we assume that the attacker cannot bypass the heap allocator due
to logical errors. Furthermore, we assume that signing instructions,
which have to exist in the heap allocator, cannot be misused, e.g.,
through selectively protecting the heap library [29, 77]. As modern
systems enforce a strict no-execution policy on writable memory,
we assume that Write-XOR-Execute is enabled. Thus, the attacker
cannot inject and execute custom code. We consider side-channel
attacks [65, 92], microarchitectural attacks [43, 50], and software
fault attacks [42, 58] to be out-of-scope of this work.

4 DESIGN

In this section, we present cryptographically sealed pointers, a novel
architectural mechanism that uses low-latency cryptography in
combination with object-granular metadata that is efficiently scaled
and stored in tagged memory to enforce memory-safe execution.

4.1 Overview

The fundamental idea of our design is to cryptographically enforce
temporal and spatial memory safety by binding the object’s bounds

63 I 59 58 VA Size v 0
I Radix | | Upper Virtual Address I Offset

l |

Memory Tag

Virtual Address l

Figure 1: The pointer layout and MAC generation. We utilize
a radix field to distinguish between the fixed upper virtual
address of a pointer and the offset used for pointer arithmetic
operations. For the MAC generation, we use the fixed part
of the pointer’s address, the radix, and the object-specific
memory tag in combination with a secret per-process key.

and liveness to the pointer. For this, we leverage message authen-
tication codes (MACs) embedded into the pointer and associated
metadata (i.e., memory tag) stored in tagged memory to perform
fine-grain access checks. In order to link the bounds and liveness
information to the pointer, we compute the MAC using a memory
object’s address and size, as well as an associated memory tag.

Our hardware architecture synchronously verifies the MAC en-
coded in the pointer during every memory access. Thus, every
memory access implicitly authenticates the pointer enforcing mem-
ory safety for our scheme. This inherently mitigates any potential
race conditions in multi-threaded environments. We utilize low-
latency cryptographic primitives for the MAC computation, as the
frequent verification must be highly efficient. Successful verifica-
tion of a pointer guarantees that the memory access is within the
object’s boundaries and attests the liveness of the referred object.
A failed verification denotes that the pointer is invalid, e.g., an
out-of-bounds (OOB) error or a memory access using a dangling
pointer. Thus, our design provides strong probabilistic detection
of temporal and spatial memory safety violations. We maintain
binary compatibility while achieving low overhead and transparent
protection.

4.2 Cryptographically Sealed Pointers

We use a specially designed pointer layout that cryptographically
binds the object’s bounds and liveness to the pointer using a MAC.
Computing a MAC over certain fields of the pointer in combination
with tag metadata effectively seals the pointer, making it unforge-
able (within cryptographic bounds) for an attacker. Figure 1 shows
the pointer layout and MAC generation of our design.

Radix Encoding. In order to utilize our MAC-based approach,
we need to adapt the pointer layout to support pointer arithmetic
operations. Similar to the M-Machine [14] and C? [48], we encode
a radix field into the pointer, dividing the address into two parts: A
fixed upper field and a variable offset field used for pointer arith-
metics. The field sizes are determined by the base-2 logarithm of
the size corresponding to the object’s memory. The 5-bit radix al-
lows us to encode object sizes ranging from 16 B to 16 GB. Larger
allocation sizes could be supported by increasing the radix by a
single bit at the cost of decreasing either the virtual address space
or the MAC size. Alternatively, Huffman codes [35] could be used

to compress the radix for frequently used radix sizes. This would
increase the MAC size, and thus the security, for commonly used
allocation sizes (at the cost of higher decoding complexity).

MAC Generation and Authentication. The radix field divides
the virtual address into a fixed upper part and an offset part enabling
pointer arithmetic operations. The fixed upper part of the virtual
address must be unforgeable by an adversary to mitigate spatial
memory violations. We compute the MAC over the fixed part of the
address, the radix, and the memory tag, which gets encoded into
the upper bits of the pointer. By including the radix field, the coarse-
grain memory range of the allocation influences the resulting MAC.
Fine-granular access checks (within the bounds of the radix) are
enforced by the tag metadata included in the MAC computation.
Note that accessing a memory location that only differs in the
memory tag will cause a MAC mismatch. In addition, the key used
for MAC computations is unique per process and pseudorandomly
generated by the OS (through exec-like system calls).

The pointers are used for cryptographically secured memory
accesses during runtime, i.e., all sealed pointers are verified for
every memory operation. The hardware architecture implicitly ver-
ifies the MAC using the fixed upper virtual address of the pointer,
the radix, and the object-specific memory tag. Legacy pointers, ie.,
pointers that are not protected by our design, are easily identified
as their radix and MAC fields are either set to all 0 or 1 for user
space and kernel space addresses, respectively. For legacy point-
ers, the hardware verifies that the corresponding memory tags are
zero, which is the default value of our tagged memory architecture.
Notably, there is no co-location of legacy data and protected data
within a single cache line, i.e., the memory tag of the entire cache
line is set to zero. This is sufficient to guarantee the security of
all sealed pointers since protected memory always has non-zero
memory tags. Thus, even if an attacker strips the MAC from a
sealed pointer, it cannot be used to access the corresponding data.
A stripped pointer will be interpreted as a legacy pointer and the
check whether the memory tag is zero will fail.

4.3 Memory Tagging and Tag Accumulation

As described above, the radix allows the MAC computation to bind
the approximate object size to the pointer. However, to ensure
spatial (and temporal) safety within the radix, additional object-
granular access checks are necessary. We solve this by associating
tag metadata with the memory of each allocation. On memory
allocation, the memory tag is pseudorandomly chosen and assigned
to the memory location. Our design uses a 4-bit tag per 16 B of
memory, i.e., 16 bits per cache line with a granularity of 64 B. This
combination of tag size and granularity allows us to enforce fine-
grain access policies while keeping the memory overhead low.
Conventional tagged memory architectures suffer from limited
tag spaces and relatively high tag collision probabilities (i.e., 1/16
in the case of ARM MTE [74]). In contrast, our approach uses
the MAC to bind the memory tag to the radix memory region,
where the correct tag only grants access within the power-of-two
memory region. As a result, tag collisions (for large allocations) can
only occur within the radix range rather than in the entire address
space. Note that for small allocations, the radix field still protects

4x 16 B Objects Overflow prevented by Radix 64B Cache Line

/X
(#1 I #2 I #3 (#5 I #6 I #7:32B) [#8: 64 B (and larger)]
Co e) (

4 x 4-bit Tags

A F B} 3]

2 x 4-bit Tags 8-bit Tag 16-bit Tag

Figure 2: Tag accumulation. Depending on the object’s size,
we use 4-bit, 8-bit, or 16-bit tags. The co-located memory tags
are used for intra-radix isolation and liveness information.

co-located objects within a single cache line, even when multiple
allocations within a cache line may share the same tag (cf. Figure 2).
Tag Accumulation. For a memory safety scheme, it is important
to support object-granular memory sizes. To accommodate a wide
range of allocation sizes, our smallest supported tag granularity
is 16 B. Existing research [75] shows that the alignment of alloca-
tions to 16 B has a negligible impact on system performance and
memory overhead. Contrary, for the majority of software, a gran-
ularity of 32 B or 64 B would drastically increase the runtime and
memory alignment overheads. In addition, to keep the chance of
tag collisions reasonably low, larger tag sizes (e.g., 16-bit) are de-
sirable. However, 16-bit tag sizes quadruple the memory overhead
compared to the 4-bit tags used by ARM MTE, when implemented
naively. To solve this issue, our design introduces a novel concept
called tag accumulation. We increase the tag space by utilizing the
16-bit tag metadata of an entire cache line for objects that have the
size (and alignment) of a cache line or larger. Our pointer layout,
which includes the object’s size (i.e., the radix), allows for flexible
tag sizes depending on the object’s actual size. We accumulate up
to four 4-bit tags per cache line for a combined 16-bit tag, which
drastically reduces the probability of tag collisions for larger objects.
However, we can still authenticate smaller (intra-cache line) alloca-
tions. Depending on the object’s size, i.e., 16 B, 32B, or 64 B (and
larger), our scheme utilizes 4-bit, 8-bit, or 16-bit tags, respectively
(cf. Figure 2). At runtime, during the pointer authentication, the
radix part of the pointer decides which parts of the full 16 tag bits
are used as an input for the MAC. To unambiguously select the
correct bits, we align small (16 B and 32 B) allocations according to
their respective radix, and larger allocations to 64 B.

Figure 2 shows an overview of our tag accumulation. There,
despite the matching tags, allocation #6 cannot overflow into the
adjacent buffer (#7), due to the radix within the pointer. Specifically,
allocations up to 64 B in size are always aligned and padded to
their radix. Since this means that there only exists a single allo-
cation within its radix, spatial memory safety issues will always
be detected, and the tag metadata (for small allocations) is only
used for temporal protection. Thus, a 4- or 8-bit tag is sufficient
to enforce temporal safety for small allocations. Alternatively, we
could systematically protect small allocations (i.e., 16 B and 32 B) by
assigning each tag value only once (and not reusing it afterward).
Thereby we prevent UAF errors due to tag mismatches, despite a
slight decrease in usable virtual address space for small allocations
over time. For larger allocations, on the other hand, it is possible
that multiple memory objects exist within a single radix. In this
case, the tag metadata is not only used for temporal protection but

63 I 5958 VA Size v 0
Upper Virtual Address Offset

l

Verify MAC

Cache/TLB

Figure 3: Cryptographically secured memory access. Every
memory operation verifies the pointer’s MAC using the up-
per virtual address and radix of the pointer in combination
with the memory tag. The upper virtual address and tag ac-
cumulation are determined using the radix encoded into the
pointer. The object-specific memory tag co-located within
every cache line allows for fine-grain access checks.

64 B Cache Line)

also to distinguish between different memory objects within the
radix. Due to tag accumulation, these larger allocations benefit from
the increased tag size of 16-bit, which provides a vast improvement
in temporal safety compared to regular 4-bit security.

Apple’s recent M1 CPU reports a cache line size of 128 B (using
sysctl -a). There, using the same memory overheads, we could
also obtain 32-bit metadata for objects that are cache line-sized or
larger. This would vastly improve the number of available unique
tags (232 instead of 2'®). However, throughout this paper, we use
64 B since this is the most commonly used cache line size.

4.4 Cryptographic Memory Safety

The hardware architecture enforces implicit memory safety checks
by authenticating the cryptographically sealed pointers during ev-
ery memory operation. Figure 3 illustrates the cryptographically
secured memory access of our design. The authentication procedure
re-computes the MAC from the fields of the dereferenced pointer
in combination with the memory tag. The re-computed MAC and
the encoded MAC are checked for equivalence. A matching MAC
implies a successful authentication, while a mismatch denotes a
memory safety violation and triggers a hardware exception.
Spatial Violations. In the context of spatial memory safety, we
distinguish between spatial violations outside and within the ob-
ject’s radix bounds. A spatial violation outside the radix bounds
manipulates the fixed upper part of the virtual address, leading to
an authentication error within the cryptographic security bounds.
Moreover, a spatial violation within the radix bounds is detected
through the mismatching memory tag, e.g., the tag mismatches by
overflowing into an adjacent memory object. The object-specific
memory tag is used as an input for the MAC computation, thus, a
tag mismatch is detected within the cryptographic bounds. Given
that the MAC is chosen sufficiently large, it is highly unlikely that
a spatial violation passes the authentication.

Temporal Violations. We counteract temporal safety violations
by generating and assigning a pseudorandom memory tag on object
allocation. Generating a fresh memory tag binds the liveness of the
corresponding object (using the MAC computation) to the sealed
pointer. In this way, the tag metadata mitigates UAF errors on a
probabilistic basis. Additionally, uninitialized memory errors are

[Pointer H Cache/TLB H CL M

Efficiency Mode n cycles m cycles

Cache/TLB }—>{ cL]

Performance Mode

[Pointer

Computed MAC

MAC

max(m, n) cycles

Figure 4: The memory access latency of the introduced
modes. The efficiency mode introduces additional memory
access latency due to the MAC verification (m cycles). The
performance mode allows to pre-compute the MAC from all
possible tag values in parallel to the cache lookup. This ef-
fectively eliminates any performance overhead if the MAC
is faster than the cache lookup.

prevented by our design since setting tags always zeroes the data
of the corresponding memory location.

4.5 Hardware Architecture

Our design integrates MAC computations and memory tagging into
the architecture, which causes additional latency at three distinct
places in the system. First, the memory tag has to be fetched from
the cache before the MAC can be calculated. This has the same
latency as a regular (L1) cache lookup, which is typically only a
few cycles. Second, once the tag value is known, the MAC is then
re-computed and compared to the MAC from the pointer. Third,
the memory has to be tagged with its respective tag value when the
object is allocated. This is done using a new instruction, which sets
the tag and zeroes the data of the corresponding memory location.
In the following, we detail these architectural aspects of our design
and discuss optimizations that minimize the introduced latency.
Note that we do not limit our design to a specific cipher design
or cache architecture. Hence, in this section, we describe the added
latencies as follows. A normal cache hit, or cache lookup, takes
n cycles. Computing and comparing the MAC takes m cycles. In
Section 7, we perform a case study with concrete numbers for
our cache hierarchy and different cipher latencies, evaluating the
impact when using real-world lightweight ciphers.
Tagged Memory Modes. Our tagged memory architecture fetches
the cache line and its associated tags from the DRAM and stores
them together in the cache. Our classic tagged memory architecture
issues additional DRAM requests to fetch memory tags on every
cache miss. Additionally, memory tags can also be stored in ECC
memory [32, 45, 80], allowing for zero-overhead tag fetches. These
two approaches represent the worst-case and the best-case overhead
in terms of system performance. Thus, in Section 7, we evaluate
the performance impact of our design with both tagged memory
architectures. In practice, however, different trade-offs are possible
by using advanced tag caches and different techniques for storing
the tags in memory [40, 66], improving system performance.

Efficiency and Performance Modes. For a concrete hardware
implementation, we suggest two different instantiations of our
design called the efficiency and the performance mode. These modes
differ in terms of area/power overhead and cache access latency.

In Figure 4, we illustrate both modes. The efficiency mode (top)
targets lightweight and efficient memory protection in terms of
area overhead, power consumption, and system complexity. It only
requires a single cipher instance per core. There, we require n
cycles for a cache lookup and an additional m cycles for the MAC
calculation, resulting in an overall overhead of n + m cycles.

The performance mode (bottom) aims for the lowest possible
impact on system performance. There, we do not wait for the cache
lookup to receive the tag required for the MAC computation. In-
stead, we compute the MAC for all possible tag values in parallel
to the cache access. Thus, for a 4-bit tag, we use 24 _1=15 cipher
instances since the zero tag is reserved. After the n cycles for the
cache access, we select the computed MAC according to the fetched
tag value. Thus, at the cost of additional area and power, this mode
of operation shortens the total cache access (and pointer verifica-
tion) time to max(m, n) cycles. Assuming a MAC computation that
is faster than the (L1) cache access, this mode completely masks
the latency of the MAC, resulting in zero performance overhead.

Naturally, there is a limit to the number of cipher instances
before the trade-off is no longer worth it. In this paper, we assume
that only 4-bit tags are computed in parallel. This also means that,
in this mode, our tag accumulation concept does not apply.
Speculation and Prediction. Alternatively, an obvious solution
to eliminate the MAC latency (while enabling tag accumulation)
would be to only compute frequently-used, previously-used, or
otherwise predicted tag values. There, it may only be required
to have very few cipher instances to minimize the performance
overhead to a negligible level. While the potential for performance
and area/power savings is undeniable, one must be careful not to
introduce any new attack surfaces. E.g., related work [48] uses
similar prediction tables with a hit rate of 99.85 %. However, in this
paper, we do not use any speculation or prediction, as this could
introduce new side-channels similar to the PACMAN [68] attack.

5 IMPLEMENTATION

In this section, we elaborate on our proof-of-concept implemen-
tation. We model the microarchitecture of our design using the
gemb [9, 52] system simulator. Moreover, we use an instrumented
memory allocator to enforce our memory safety policies.

5.1 Microarchitecture

We utilize the open-source gem5 [9, 52] system simulator, which is
widely used in academia [41, 45, 54, 83, 86], for our implementation
and evaluation. Related work (i.e., C3 [48]) uses Simics [53], a func-
tional full-system simulator. Note that Simics is a closed-source
simulator by Intel and only supports functional simulation. In addi-
tion, C3 uses the generated Simics traces as input for a proprietary
cycle-accurate simulator to evaluate the performance impact of
their design. Thus, Simics is unsuitable for this work.

Our proof-of-concept prototype is based on the gem5 simulator
version 22.1.0.0, allowing us to implement a functional and timing-
accurate hardware model of our design. The prototype consists

1 Sign(ptr, tag, key) { 14 AddMAC (ptr, tag, key) { 27 HwAuth (ptr, tag, key) {

2 return AddMAC(ptr, tag, key) 15 assert(tag != 0) 28 if CheckLegacyMem(ptr, tag)
3} 16 assert(tag < TAG_SIZE) 29 return

4 Settag(ptr, tag) { 17 assert(ptr[58:VA_SIZE] == 0) 30

5 assert(tag < TAG_SIZE) 18 31 MAC = ptr[58:VA_SIZE]

6 assert(ptr == Align(ptr)) 19 sh = ptr[63:59] + 4 32 p = ptr

7 R = ptr[63:59] 20 p = (ptr >> sh) << sh; 33 p[58: VA_SIZE] = 0

8 paddr = TranslateAddr (ptr) 21 34

9 22 MAC = ComputeMAC(p, tag, key) 35 ptr_auth = AddMAC(p, tag, key)
10 StoreMem(paddr, R) = 0@ 23 res = ptr 36 MAC_auth = ptr_auth[58:VA_SIZE]
1 24 res[58: VA_SIZE] Trunc (MAC) 37

12 StoreTag(paddr, R) = tag 25 return res 38 assert (MAC == MAC_auth)

13} 26 } 39 }

Figure 5: Pseudocode description of our ISA extension, including the new instructions and the hardware authentication.

of a custom instruction set extension (ISE), hardware models of
the efficiency and performance modes, and the tagged memory
architecture supporting two modes of operation. The gem5 imple-
mentation is fully parameterizable with regard to the additional
latencies, tag sizes, and tag granularities. Although our design is ISA
agnostic, we implement the prototype for the x86-64 architecture.
Instruction Set Extension. Our prototype integrates two new
instructions: one to generate cryptographically sealed pointers (on
object allocation) and another to interact with the tagged memory
architecture. Both instructions are implemented using previously
unused three-byte opcodes. Figure 5 provides a pseudocode descrip-
tion of our ISA extension, including the new instructions.

First, the Sign(ptr, tag, key) instruction calculates the MAC
for a pointer based on a given radix and tag value provided by
our memory allocator. The pointer, stored in a general-purpose
register (GPR), contains the encoded radix, while the tag value
is passed through another GPR. When executed, the instruction
computes the MAC in AddMAC(ptr, tag, key) for the provided
input using the secret per-process key and encodes the resulting
MAC back into the pointer stored in the GPR. Precisely, we compute
the MAC using ComputeMAC(p, tag, key), which calculates the
MAC for the given input (i.e., the radix-aligned pointer, memory
tag, and secret key), and truncate the resulting output.

Second, the Settag(ptr, tag) instruction sets the memory
tag for a given memory address while simultaneously zeroing the
corresponding memory location. Similar to the Sign instruction,
the radix is encoded within the pointer (passed through a GPR)
of the corresponding memory location. Depending on the radix,
the instruction zeroes 16 B, 32 B, or 64 B of memory and sets the
memory tag (i.e., 4-bit, 8-bit, or 16-bit) for the cache line.
Hardware Authentication. The MAC encoded within our crypto-
graphically sealed pointers is implicitly authenticated during every
memory access, i.e., every load and store operation. Figure 5 illus-
trates the pseudocode description of the hardware authentication
in HwAuth(ptr, tag, key). The hardware authentication first
verifies whether the memory operation accesses a legacy memory
location (i.e., zero tag) using a legacy pointer. If the memory access
uses a sealed pointer, the hardware re-computes the MAC from the
sealed pointer and the corresponding memory tag. Subsequently,
the re-computed MAC is compared to the encoded MAC, and in
case of a MAC mismatch, a hardware exception is triggered.

The memory access latency varies depending on the selected

mode, i.e., efficiency or performance mode. In the efficiency mode,
the MAC computation latency is added to the L1 cache latency,
impacting system performance. Contrarily, the performance mode
utilizes multiple cipher instances in parallel to eliminate the per-
formance overhead, albeit introducing a higher area overhead and
increased power consumption.
Cipher Instances. Several low-latency ciphers, such asBipBip [7],
QARMA [6], or SPEEDY [47], are potential candidates for our design.
As the MAC is computed over a fixed-size input, we can construct
our MAC from a single (tweakable) block-cipher instance. This
cipher encrypts the fields of a pointer (along with the tag value),
and the resulting output is truncated to the desired MAC size M.
Given that the used cipher is secure, the probability that the MAC
of a modified pointer matches the original MAC is 2~M.

For our proof-of-concept implementation and evaluation, we
select BipBip as the underlying cipher. Note that the choice of
the secure cipher only influences the performance overhead of
our design. With BipBip, each MAC computation takes 3 cycles
at a 4.5 GHz clock frequency [7]. The hardware verifies the MAC
encoded in the pointer (enabled by hardware address masking) on
every Imemory access.

As the MAC resides in the topmost bits of the pointer, the MAC

size depends on the virtual address mode of the system. Our pointer
tagging approach allows us to use 25 bits and 16 bits for metadata
encoding using the 39-bit and 48-bit virtual addressing modes, re-
spectively. We require 5 pointer bits for the radix encoding, which
leads to MAC sizes of 20 bits and 11 bits for 39-bit and 48-bit virtual
addressing, respectively.
Tagged Memory Architecture. Our proof-of-concept implemen-
tation supports two modes: the classic tagged memory mode and
the ECC-based tagged memory mode. Tagged memory architectures
allow the co-location of data and memory tags by increasing the
cache line size to store the associated tag metadata.

For the classic tagged architecture, additional DRAM requests (is-
sued by the memory controller) are required for every cache miss to
load the corresponding tag from memory. Therefore, our prototype
reserves a dedicated DRAM memory region (proportional to the
overall system memory) to enable tagging of the remaining system
memory. This region is inaccessible for regular memory operations,
and tags are solely set through the Settag instruction. Notice that

our classic tagged memory implementation is a worst-case represen-
tation, and further optimizations, such as integrating an advanced
tag cache [40, 66], can significantly reduce the overhead of fetching
the memory tags.

In contrast, the ECC-based memory tagging approach stores the
memory tags in the additional chips found on ECC DRAM modules,
as suggested by previous research [32, 45, 80]. This mode allows
the memory controller to load the associated tags in parallel with
the data, eliminating the need for additional DRAM requests. Our
prototype implements the tagged architecture with a 16-bit tag size
at a cache line granularity of 64 B. This combination is practical
since commercial products (e.g., ARM MTE [74]) incur the same
memory overhead.

5.2 Memory Allocator

We base our prototype implementation on the GNU C/C++ stan-
dard library (glibc 2.37). The memory allocator is instrumented to
create cryptographically sealed pointers by leveraging our ISE (i.e.,
using the Settag and Sign instructions). For every allocation, our
memory allocator pads and aligns the memory to 16 B, which is
our smallest granule. This is also the smallest granule used by most
existing allocators to achieve maximum compatibility.

Subsequently, the allocator generates a non-zero pseudorandom
tag for the allocation utilizing the on-chip random number gener-
ator (via RDRAND). We then calculate the radix (from the object’s
size) and set the tag for the corresponding memory of the newly al-
located object. Notably, the zero tag is reserved for legacy memory
locations. After allocating and tagging, we cryptographically seal
the pointer using the tag metadata. The allocator returns the cryp-
tographically sealed pointer and subsequent memory accesses are
authenticated in hardware. During object deallocation, the memory
allocator first authenticates the sealed pointer before freeing the
object by zeroing the content and tag of the corresponding memory
location. On memory reallocation, a new non-zero pseudorandom
tag is generated and set for the reallocated memory location.

Special considerations are required for small allocations co-
located within the same cache line (i.e., 16 B and 32 B). There, we
ensure that small allocations are also aligned to their radix. This
alignment ensures that there are no two allocations within the same
radix (for small allocations). Thus, each intra-cache line object is
protected by the radix.

6 SECURITY ANALYSIS

In this section, we analyze the security of our design. First, we
present a systematic analysis showcasing the protection against
all classes of memory safety violations and other attack vectors.
Second, we provide an empirical security evaluation using the NIST
Juliet C/C++ [11] test suite.

6.1 Systematic Analysis

In the following, we provide a detailed discussion of the derived
security properties of our design. We analyze our design regarding
memory safety, i.e., the temporal and spatial security guarantees
(cf. Section 2.1). Furthermore, we discuss fundamental security
properties such as thread safety and pointer forgery prevention.

Definitions. Our approach is a probabilistic scheme for which the
detection of memory safety violations depends on the MAC size
and the tag size. Our prototype implementation uses a MAC size of
M = 20 bits and tag sizes of T = 4 to 16 bits. However, we analyze
the general security of our design for a MAC size of M bits and for
T-bit tags (assuming M > T).

In general, a MAC collision occurs at a probability of 2~ and

a tag collision at 1/(2T = 1) ~ 27T This is because we reserve
one tag value to support legacy memory locations. Apart from this,
our allocator chooses the tag values pseudorandomly using the
on-chip random number generator with the hardware instruction
RDRAND. Thus, the values of the MACs, as well as the tags, are
expected to be uniformly distributed. To be more precise, if an
attacker already knows k MAC values that are not possible, the
probability of correctly guessing the MAC is 1/(2M — k). E.g., when
the radix is set to all 0 or 1, then k = 1, since the MAC value of
all 0 or 1 is not possible for the respective radix. However, in the
remainder, we approximate this to 2™M,
Spatial Memory Safety. For our spatial memory safety anal-
ysis, we distinguish between (i) adjacent memory violations, (ii)
non-adjacent memory violations, (iii) arbitrary memory access vio-
lations, and (iv) intra-object memory violations.

(i) Our memory allocator guarantees that two consecutive allo-
cations receive different tags. Since these tags are covered by the
MAC, the collision probability is 27M.

(ii) For non-adjacent memory accesses within the same radix,
a collision of the tags could occur. There, another object within
the radix could have the same tag value. Thus, given a valid sealed
pointer, an attacker can access different objects within the same
radix with a probability of 277. In practice, this can be further
improved, similar to (i), by using unique tags within a radix.

(iii) For arbitrary memory accesses (outside the bounds of the
radix), e.g., out-of-bounds (OOB) violations, the MAC’s inputs (up-
per address bits, radix, tags) change, which leads to an unpredictable
MAC. Thus, the collision probability is 2~M.

(iv) One special case of spatial violation is the intra-object mem-
ory violation. Heap allocators lack the information about the ob-
ject’s internal structure to support intra-object memory safety. How-
ever, intra-object memory violations are typically hard to exploit
and only account for around 1% of observed vulnerabilities in
recent studies [56]. Similar to the prior work No-FAT [94], C struc-
ture members could be promoted to separate allocations to enforce
protection with our design. Note that this promotion might cause
compatibility issues if the source code makes assumptions about
the memory layout of the C structure and requires program recom-
pilation. Additionally, In-Fat [91] addresses intra-object violations
by encoding a subobject index into the pointer for bounds retrieval.
Temporal Memory Safety. In our temporal safety analysis, we
distinguish between (i) use-after-free (UAF) errors, (ii) uninitialized
memory accesses, and (iii) double-free errors.

(i) UAF errors allow an adversary to tamper with data in memory
by misusing dangling pointers. For precise security guarantees,
we need to further distinguish between two UAF states, the freed
state and the reallocated state. In the freed state, the allocator sets
the object’s tags, as well as the memory content, to zero, thus
deterministically preventing any memory accesses using a dangling

pointer. This is because memory with tag values of zero can only
be accessed with plain pointers where the MAC and radix fields
are all zero or one. On memory reallocation, the allocator assigns a
new pseudorandom tag to the memory location of the reallocated
object. Thus, the probability of successful memory accesses using a
dangling pointer in the reallocated state is 277 .

(ii) Uninitialized memory accesses are deterministically miti-
gated since our Settag instruction zeroes the associated memory.

(iii) Besides UAF and uninitialized memory accesses, double-free
errors can lead to undefined behavior of the program by corrupting
the allocator’s metadata or freeing a memory object currently used
by another part of the program. Again, we distinguish between
the freed state and reallocated state. Before freeing a memory ob-
ject, our allocator performs a memory access on the object. This
implicitly verifies the MAC and ensures that the memory has not
been freed or reallocated yet. In the freed state, the tags are set to
zero, deterministically detecting double-free errors. In the reallo-
cated state, a double-free error can be detected with a probability
of 1 — 27T since the new memory object likely has a different tag.
Thread Safety. One important property of a security counter-
measure is thread safety. Countermeasures that do not enforce this
property can be vulnerable to time-of-check-to-time-of-use (TOCT-
TOU) [85] attacks. In general, thread safety is an important property
that is hard to enforce using software-based approaches [90]. Our
approach is thread-safe by design as we perform our cryptographic
memory access checks before every memory operation. When the
CPU requests memory from the DRAM, the memory controller
always fetches its associated tags. Tags are always stored within
the cache next to the fetched cache line. When tags are written,
they are also updated within the cache line. Like for ARM MTE
and SPARC ADJ, the cache coherence protocol ensures consistency
across all cores and CPUs, thus providing thread safety for data
and tags simultaneously.
Pointer Forgery. An attacker might strip a tagged pointer to by-
pass the verification procedure. This could be done using a pointer
arithmetic operation or a gadget that allows the attacker to craft a
custom pointer, e.g., using arithmetic and logical operations on a
casted pointer. Such attacks are inherently mitigated by the design
since legacy memory locations are marked with the tag zero. Thus,
accessing protected data by stripping the MAC from the pointer is
impossible. Besides removing the MAC, harvesting or leaking valid
(non-dangling) sealed pointers could lead to MAC-reuse attacks.
An adversary could use the harvested sealed pointer to perform
MAC-reuse attacks while the corresponding memory object is live.
Related work, like C3 [48] and ARM PAuth [82], also suffers from
this problem, which cannot be easily mitigated. However, we argue
that leaking and harvesting pointers are hard to perform for an
attacker. An attacker cannot simply scan the memory without first
forging individual pointers for every memory location with differ-
ent tags. Thus, a valid pointer can only be harvested if it is stored
within a memory object to which the attacker already has access
through a valid sealed pointer or when it is stored in a legacy mem-
ory region. Countermeasures like PACTight [36] bind the MAC
authentication to the memory address where the pointer is stored to
counteract this problem. However, this leads to severe compatibility
issues since pointers cannot be copied, e.g., using memcpy.

Settag Gadgets. An attacker that has access to a set-tag gadget
could misuse it to gain access to a distinct memory location. If the
attacker would guess the tag value of their own allocation, they
could use the set-tag gadget to set tags to the entire memory area
within their own power-of-two radix, and then be able to read any
potential secret values within this radix. We mitigate this threat
on several layers. First, our Settag instruction always zeroes the
data stored at the memory location. Thus, secret data of the corre-
sponding memory location cannot be leaked. Second, the attacker
has to guess the correct value (with a probability of 2~7), other-
wise, the MAC verification would fail, and the program execution
would stop. Third, within our modified standard library, this in-
struction exists only once and can only be called when memory
is allocated or freed. Additionally, our ISE only utilizes three-byte
opcodes to minimize the risk of introducing any gadgets through
misaligned opcodes. However, we suggest that exploitable set-tag
gadgets should generally be absent from the program.

Signing Gadgets. Similarly, an attacker that has access to a signing
gadget could misuse this gadget to forge arbitrary pointers. We
emphasize that arbitrary pointer signing gadgets should be absent in
the program outside of our allocation library. However, we mitigate
this attack vector since the Sign instruction takes the tag as an
argument and checks if the tag matches the one in memory. Thus,
an attacker would need to guess the correct memory tag in order
to forge a pointer using a signing gadget.

System Calls. One known method to brute-force stack canaries is
to misuse a fork gadget. One process continuously uses the fork
system call, effectively duplicating the calling process. This child
process is then misused by the attacker to brute-force the stack
canary. A similar methodology could be applied to brute-force
MAC collisions of sealed pointers. Every security violation signals
the operating system, which can then decide how to handle the
situation, e.g., by killing the child and parent process.

Besides this fork gadget, an attacker that has the capability
to execute arbitrary system calls could also simply spawn a shell
for arbitrary code execution. As such, this must be mitigated by
orthogonal countermeasures (e.g., by system call filtering [72]).
Microarchitectural Attacks. Side-channel and microarchitec-
tural attacks are considered out-of-scope for our threat model.
Nevertheless, new architectural features should avoid introduc-
ing attack surfaces based on side-channels. Recently, PACMAN [68]
showcased that timing variations in the authentication procedure
can break the security of the ARM PAuth hardware primitive. Thus,
our design performs the MAC authentication synchronously on
every memory access without timing variations. In our belief, per-
formance optimizations (e.g., by using a prediction table similar to
C3) require a thorough analysis of the microarchitecture to ensure
that no leakage occurs. Otherwise, it might lead to new side-channel
attack vectors (similar to PACMAN), ultimately compromising the
provided security guarantees.

Cryptographic Primitive. In general, the security of our design
does not depend on the chosen cipher, given that it is infeasible to
revert it and its output is uniformly distributed. In Section 7, we
evaluate the impact of using different low-latency ciphers in our
design. Our proof-of-concept implementation uses the low-latency
tweakable block cipher BipBip [7], specifically designed for the

Table 1: The empirical security evaluation using CWE-122
and CWE-416 of the NIST Juliet C/C++ test suite.

CWE Description Number of Test Cases Passed

CWE-122 Heap buffer overrun 63 Variants 100 %
2985 Test Cases 100 %

CWE-416 Use-after-free 22 Variants 100 %
459 Test Cases 100 %

C3 countermeasure, with an excellent latency/area ratio. BipBip
is a 24-bit tweakable block cipher with a 40-bit tweak input, and
the sizes in combination with the low latency make it a suitable
candidate for our use case. BipBip is secure against an attacker that
has the capability of reading and choosing plaintexts, ciphertexts,
and tweaks [7]. Note that for our design, parts of the tweak (i.e.,
tag metadata) cannot be read or chosen by the attacker. Thus, the
attacker’s capabilities are even more limited than assumed in the
security analysis of BipBip. Our approach is covered by the security
claim of BipBip since we use the cipher for its envisioned use
case. We use BipBip to calculate a MAC that gets truncated and
encoded into the pointer. Hence, the chance of predicting a MAC
is influenced by the truncation and equals 2~ per guess for an
M-bit MAC. As our MAC size is never larger than the output of the
cipher, we can use a single cipher instance to compute the MAC.
On detection of a memory safety violation, the hardware imme-
diately triggers an exception and the program aborts. Thus, the
adversary can never repeat a forgery attempt. A new per-process
key is generated for subsequent program execution, thus further
limiting the attacker. Note that these per-process keys used for the
MAC calculations are secret, thus, not known by the attacker.

6.2 Empirical Security Analysis

We provide an empirical security analysis to practically analyze
the efficacy of our design. We evaluate common types of memory
safety vulnerabilities, such as heap buffer overruns (CWE-122) and
UAF errors (CWE-416) described in Section 2.1. For our evaluation,
we used the NIST Juliet C/C++ test suite version 1.3.

Juliet C/C++ Test Suite. The NIST Juliet C/C++ test suite consists
of test case pairs separated into good and bad types of a CWE (sub-
divided into various variants). Every variant is duplicated several
times with obfuscation since the test suite is designed for static
analysis tools. However, Juliet also allows us to test the runtime
security of our design. Particularly, we evaluate the effectiveness
of our design using CWE-122: heap buffer overrun and CWE-416:
use-after-free. Juliet is originally designed for static analysis. Thus,
some test cases are not applicable or do not provide an input stim-
ulus to trigger a memory safety violation. Additionally, some test
programs already crash without modifications or protection. We
exclude the test cases for intra-object memory violations since they
are currently not supported by our prototype.

We use the Address Sanitizer (ASan) [73] to select the relevant
test cases that actually trigger heap memory safety violations. We
consider a distinct test case as passed if our architecture detects
the memory violation and an authentication exception is raised.
For the evaluation of CWE-122, some test cases need to be adapted

Table 2: The gem5 configuration of our prototype.

Parameter Configuration
Core 3 GHz, TimingSimpleCPU model

L1-ICache 16kB, 8-way, 5-cycle latency, 64 B line (private)
L1-D Cache 64KkB, 8-way, 5-cycle latency, 64 B line (private)

L2 Cache 8 MB, 16-way, 17-cycle latency, 64 B line (shared)
MAC 1-4 cycles depending on the cipher
DRAM 8 GB, DDR4-2400

due to the 16 B memory alignment of our design to actually trig-
ger a memory safety violation. Following our methodology, we
detect all relevant test cases of CWE-122 (heap buffer overflow) and
CWE-416 (use-after-free), as shown in Table 1. This highlights that
our approach effectively protects against spatial (CWE-122) and
temporal (CWE-416) memory safety violations.

7 EVALUATION

In this section, we evaluate our prototype in terms of system per-
formance and approximate the area and memory utilization.

7.1 Performance Evaluation

We evaluate our introduced modes using the SPEC CPU2017 [12]
benchmark suite. All benchmarks are compiled using our instru-
mented glibc with optimization level -03. We execute all bench-
marks on our gem5 prototype running Linux (kernel 5.15.67).
Configuration. Table 2 shows the core parameters of our gem5
prototype. We use the TimingSimpleCPU model for our evaluation
and configure the system to a clock frequency of 3 GHz. Moreover,
we use a private 8-way set associative L1 instruction (16 kB) and
data (64 kB) cache with 64 B cache line size. We use a shared 16-way
set associative L2 cache with a size of 8 MB, which is shared within
the cores. The system’s main memory is an 8 GB dual-channel
2400 MHz DDR4 DRAM module. The cache access latencies for the
L1 and L2 cache are configured to 5- and 17-cycles, respectively.
These parameters are derived from recent Intel processors, which
are in line with prior work [41, 48].

Timing Model. The system performance is simulated according
to our timing model. For the ISE, our Settag instruction accesses
the cache line and zeroes the memory data in addition to setting
the tag for the corresponding memory location, which is simulated
accurately in the cache hierarchy. Depending on the mode, the MAC
authentication is performed serial or parallel. For the performance
mode, no additional L1 cache access overhead is required since
the MAC computation is performed in parallel by multiple cipher
instances. Contrarily, the efficiency mode increases the L1 cache
access latency by the duration of the MAC computation.

Both modes are evaluated using different implementations of
the tagged memory architecture. The classic tagged memory ar-
chitecture issues additional DRAM requests to fetch and store tags
on each memory access that is not directly served by the cache
hierarchy. Our optimized tagged memory implementation utilizes
ECC memory to co-locate data and memory tags [32, 45, 80]. Thus,
no additional tag fetches are required.

20—
D oPerformance mode w/ ECC I Performance mode w/ TMA BB Efficiency mode w/ ECC BB Efficiency mode w/ TMA

Performance Overhead [%]

‘ <
- ‘0/(\{1‘/ 5q§)

O > \% &2 2 b 85 O cy‘ e
§ 9\0\ ‘\60“;%5 <2 er\e\ @%‘ M\ b‘ﬂ%e% 6‘&\ s 960“; 16* QQ q,} A
ks o s &

Figure 6: The simulated relative runtime overhead of the
performance and efficiency modes using the SPEC CPU2017
benchmark suite. (Efficiency mode +3-cycle L1 delay)

We use the TimingSimpleCPU model for our evaluation, similar
to existing work [45, 54, 83, 86] that utilizes the gem5 simulator.
Additionally, gem5 provides an O3CPU model supporting out-of-
order execution. However, the O3CPU model drastically increases
the simulation time (at least by a factor of x10) for larger work-
loads. Consequently, evaluating the O3CPU model for larger SPEC
CPU2017 benchmarks is infeasible due to the simulation times.
We report our experimental results for a subset of SPEC CPU2017
benchmarks in Appendix A. Note that out-of-order execution pri-
marily masks memory access latencies. Thus, our simulation results
based on the TimingSimpleCPU represent a worst-case approxima-
tion, as reflected in the experimental results, since the main source
of overhead arises from the increased L1 cache access latency.
Simulation Results. We use an unmodified gem5 model executing
the SPEC CPU2017 benchmarks compiled with an uninstrumented
glibc as our baseline. Our evaluation setup measures the execu-
tion time of each workload. Thus, we use the execution time as
our performance metric when comparing the different system con-
figurations. We evaluate all possible combinations of our modes
(efficiency and performance modes), cipher latencies, and tagged
memory architectures (ECC-based and classic tagged memory).
Note that some SPEC CPU2017 benchmarks are excluded from our
evaluation due to toolchain issues that either resulted in compila-
tion failures or runtime errors, even for the baseline binaries.

Figure 6 illustrates the simulated runtime overhead of our design
for the performance and efficiency modes using the ECC-based
tagging and the classic tagged memory implementation. Besides
the runtime overhead introduced by memory tagging, i.e., setting
the tags in memory and the tag propagation in hardware, the
performance mode effectively conceals the overhead of the MAC
calculation in the microarchitecture. We find that the geomean of
the relative runtime overhead equals 0.013 % when using ECC-based
memory tagging in the performance mode. For the unoptimized
tagged memory implementation, we measure an average overhead
of 1.286 %. Moreover, we report the runtime overhead of our design
in the efficiency mode supporting tag accumulation. In this mode,
the MAC computation delays each access to the L1 cache. The over-
all memory access latency is increased by the combination of MAC
latency and the latency of the tagged memory architecture. When
using BipBip, the MAC computation introduces a 3-cycle latency
for every L1 memory access. Here, the geomean of the relative

2 I
[0 +1-cycle L1 delay 00 +2-cycle L1 delay BB +3-cycle L1 delay BN +4-cycle L1 delay

Performance Overhead [%]

19

S % 35 o 2 ot vﬂw 2y
@g\\wé"tﬁ*m eQ @Q"c ““ﬁ "1 1¥‘<e>“°’&a\"\\7\ 03’6;%"*2 e? - %%\Cs o ‘JC’(\ o
@ o 55> (‘ﬁo

Figure 7: The simulated relative runtime overhead of the
efficiency mode with ECC tagged memory using different
cipher latencies for the SPEC CPU2017 benchmark suite.

Table 3: The latency and area overhead of suitable ciphers.

Latency Cyclesi Area Manufacturing Process
0.622ns 2/3/4

0.300ns 1/2/2 34.64kGE NanGate OCL 15nm
0.431ns 2/3/3 48.72kGE

0.385ns 2/2/2 1488kGE NanGate OCL 15nm
0.608ns 2/3/4 22.76kGE

Cipher
BipBip [7]
SPEEDY-5 [47]
SPEEDY-7 [47]
QARMA-5 [47]
QARMA-8 [47]

5.74kGE Intel 10 nm FinFet [5]

¥ Cycle numbers are for 3 GHz / 4.5 GHz / 5 GHz, respectively.

runtime overhead ranges from 8.157 % to 9.542 %, depending on the
implementation of memory tagging.

To showcase the impact of the MAC latency, we evaluate a range
of ciphers and their corresponding MAC delays. With the selected
ciphers, we simulate the runtime overheads for additional L1 la-
tencies ranging from 1 to 4 cycles. Figure 7 shows the relative
runtime overhead for different L1 delays, highlighting the perfor-
mance impact of different ciphers. In the slowest configuration
with a 4-cycle delay, our design introduces a reasonable average
overhead of 10.874 %. With the fastest configuration of a 1-cycle
delay, we measure an average performance overhead of 2.707 %.

Our evaluation shows that the performance overhead scales
approximately linearly with the delay introduced by the MAC com-
putation. We find that the performance mode, in combination with
ECC-based memory tagging, introduces negligible performance
overheads that are below 1 %.

7.2 Area and Memory Utilization

Memory Overhead. Our tagged memory architecture requires the
alignment of allocations to 16 B. However, most software and heap
allocators (including the one we chose for our implementation)
already adhere to this alignment. Thus, the additional memory
overhead for alignment or padding is negligible.

Furthermore, we need to store 16-bit tag metadata per 64 B cache
line. Similar to ARM MTE, this has a memory overhead of 3.125 %.
However, existing work already showed that memory tags could
be stored within the ECC memory [32, 45, 80], effectively reducing
this overhead to zero.

Area and Power Estimation. In our design, we introduce either
one or multiple instances of a MAC per core. In Table 3, we give
an overview of the most relevant low-latency ciphers that can be

used for this purpose. In the case of BipBip, this would roughly
add 5.74 kGE for our efficiency mode and 15 - 5.74 kGE = 86.1 kGE
for the performance mode for each core. Depending on the cache
architecture, more instances might be required to support multi-
ple ports. Intel’s 10nm process achieves around 100.8 M transis-
tors/mm?®. Thus, one BipBip instance with 5.74 kGE, or roughly
22.9k transistors, would require around 227 um®. Recent Intel Alder
Lake 16-core CPUs have a similar manufacturing process and their
dies are 215.25 mm?” in size. With one instance per core, BipBip re-
quires 3632 pm?, or around 0.000016873x the size of the CPU. Hence,
we claim that our added area overheads, even in our performance
mode which multiplies the overhead by 15, are insignificant. BipBip
claims a power requirement of just 15.91 mW [7]. If we pessimisti-
cally assume that cache hits, and thus MAC calculations, happen in
every single cycle, this is equal to around 0.01 % of the TDP of the
same CPU.

8 DISCUSSION

In this section, we compare our design to related work on memory
safety and discuss possible future work.

8.1 Related Work

In the following, we compare our design to state-of-the-art memory
safety countermeasures and directly related prior work. Table 4
compares hardware-based memory safety countermeasures, includ-
ing their protection capabilities and required hardware extensions.
Memory Protection. Various protection mechanisms utilize addi-
tional bounds [22, 23, 24, 41, 59, 61, 63, 64, 69, 79, 91, 94] metadata
inlined, co-located, or disjoined with pointers to enforce spatial
memory safety. Moreover, different strategies for temporal memory
safety based on additional liveness metadata [26, 60] or quarantine
lists [3, 27, 31, 89] are proposed. These additional access checks are
either entirely implemented in software [13, 60, 61, 39, 63, 79] or
utilize hardware extensions [22, 41, 59, 64, 69, 78, 91, 94].

Software-based countermeasures, like CCured [63] and Soft-
Bound [61], provide spatial memory safety by instrumenting ad-
ditional bounds checks for every memory access. While software-
based approaches provide a flexible solution based on compile-time
transformations, these countermeasures typically introduce a high
impact on system performance. For instance, SoftBound+CETS [60,
61] incur a runtime overhead of 116 % for temporal and spatial
protection, thus, often not applicable for runtime deployment.

Hardware-enforced mechanisms [22, 41, 59, 69, 94] typically
achieve better performance results. However, they often require
intrusive hardware and ABI changes, which increase the overall
system complexity and are difficult to deploy on a large scale.

For example, CHERI [84, 88] requires so-called fat pointers to
co-locate the object’s bounds information with the pointer. This
breaks ABI compatibility: software libraries must be recompiled,
and the operating system needs to support it. Additionally, Cornu-
copia [27] and CHERIvoke [89] provide temporal memory safety
for the CHERI architecture. In contrast, we require only minimal
hardware changes and maintain binary compatibility.

ISA extensions, like AOS [41] and In-Fat [91], adapt pointer
tagging for bounds retrieval. Particularly, In-Fat encodes an index
to the base and bounds metadata achieving subobject granular

Table 4: Comparison of hardware-based memory safety coun-
termeasures. Legend: ® Deterministic mitigation, © Pointer
integrity, ® Probabilistic mitigation, O None.

Mechanism OOB UAF Uninit. Hardware Extensions

ARM PAuth [82] © [)] (¢] Ptr. Auth. Instr. (e.g., QARMA)
CCFI [55] © © o Intel x86 AES-NI Instr.

CHERI [88] [} o o* Cap. Regs + Tag$ 1-bit/16-32B
Cornucopia [27] o (] o* Cap. Regs + Tag$ 1-bit/16-32B
C3 [48] ot ot of Ptr. Enc. + Keystream Gen.
CrypTag [62] © © ® Tag$ + Mem. Enc. Engine
ARM MTE [74] (-} (V) o* Tag$ 4-bit/16 B

SPARC ADI [2] (-} (V) o* Tag$ 4-bit/64 B

Our work e e [Ptr. Auth. + Tag$ 16-bit/64 B

¥ Silent data corruption possible (garbled data), * Memory zeroing can be enforced

spatial protection. However, compared to our design, In-Fat cannot
provide temporal safety. Moreover, our design aims for lightweight
and hardware-enforced protection based on efficient cryptography.
Cryptographic Memory Protection. Several countermeasures
aim to enforce memory safety using cryptographic primitives [21,
48, 55, 62, 70, 82] (cf. Section 2.2). Specifically, PointGuard [21],
ARM PAuth [82], and CCFI [55] enforce pointer integrity for code
pointers, data pointers, or both. In comparison to mechanisms such
as ARM PAuth and CCFI, we enforce temporal and spatial memory
safety instead of only focusing on pointer protection.

Furthermore, CrypTag [62] enforces memory safety by utilizing
pointer tagging in combination with memory encryption. Every
memory object gets a key assigned during allocation, which is used
as additional metadata to tweak the memory encryption procedure.
Depending on the used encryption mode (i.e., encryption-only or
authenticated encryption), memory accesses using the wrong key
lead to garbled data or lead to an authentication error immediately
triggering a hardware exception. Compared to CrypTag, we do
not require a memory encryption engine, which also introduces
memory overhead to store the MAC values for authentication. Fur-
thermore, the key metadata must be stored in the cache, i.e., large
key sizes result in large cache size overheads.

Cryptographic capability computing (C?) [48] uses a combination
of pointer and data encryption. The pointer encryption generates a
cryptographic address (CA), preventing arbitrary pointer forgery.
Moreover, the CA is used to derive a keystream that gets XORed
with the accessed data in memory. Accessing memory without
the correct CA leads to garbled data. Due to its stateless design,
C3 is susceptible to specific attacks [33] misusing the XOR-based
keystream generator. Specifically, an adversary can mount attacks
that exploit the silent data corruption. For example, the garbled data
can be misused to leak secrets of memory locations initialized with
known values [33]. Besides XOR-based attacks, UAF attacks are
introduced by the low entropy of the 4-bit version field. In contrast,
our approach offers stronger security properties, such as tangible
detection capabilities (and appropriate error handling) instead of
program execution with garbled data.
Memory Tagging. Tagged memory is a versatile building block
used to enforce different security policies [2, 38, 71, 74, 87, 93] (cf.
Section 2.3). Currently, the Clang/LLVM [46] compiler supports two

memory sanitizers that rely on memory tagging: HWASan [75] and
MemTagSanitizer [51]. HWASan applies software-based memory
tagging to detect memory errors utilizing 8-bit tags. The memory
tags are encoded into the pointer and are stored in shadow memory.
However, HWASan is primarily used for debugging purposes due
to the relatively high runtime overhead.

MemTagSanitizer adopts a comparable implementation strategy
based on ARM MTE [74] (4-bit tag size at the granularity of 16 B)
and is used for debugging as well as safeguarding production code
during runtime. MemTagSanitizer generates a pseudorandom tag
for the first object within a stack frame, and subsequent objects
receive incremented tag values.

In contrast to schemes based on ARM MTE, our approach offers
significantly stronger protection. First, we enhance the probabilistic
detection substantially, achieving a spatial security of up to 20-bit
using the MAC (i.e., 99.9999 % detection probability). Moreover, we
enable stronger temporal security by using tag accumulation for
16-bit memory tags (i.e., 99.998 %) while maintaining the same mem-
ory overhead as ARM MTE, which only provides 4-bit security (i.e.,
93.75 %). Second, our design enforces pointer integrity by crypto-
graphically binding the protection to the pointer. The pointer (and
encoded tags) of ARM MTE are forgeable when tagging policies
rely on deterministically chosen memory tags.

For instance, MemTagSanitizer increments the memory tag for
adjacent memory locations, which can easily be exploited, e.g.,
by forging the incremented tag value using pointer arithmetics.
Additionally, Google’s StarScan [31] provides UAF protection using
ARM MTE by incrementing tags before memory reallocation. In
comparison, our design utilizes the uniformly distributed output of
the MAC computation, which effectively mitigates this issue, as an
adversary cannot predict MACs or leak memory tags.

Similar to ARM MTE, SPARC ADI [2] implements memory tag-
ging in hardware with a 4-bit tag size at a granularity of 64 B. Besides
the outlined issues of ARM MTE (i.e., low detection probability),
SPARC ADI also requires padding to 64 B, leading to caching effects
that introduce a non-negligible performance overhead [75].

Furthermore, we evaluate the performance impact of tagged
memory using a classic tagged memory architecture that duplicates
every DRAM request to fetch the corresponding tag value (a worst-
case approximation). However, our design could benefit from an
enhanced tagged memory architecture incorporating an advanced
tag cache, as proposed by prior work [40, 66], which would improve
system performance.

In addition, we evaluate our design utilizing memory tags stored
in ECC memory [32, 45, 80], which has been widely recognized as
a viable option, as seen in SPARC ADI [75], Intel TDX [17], and
CHERI [88]. Recent research, such as HashTag [45], showcases
how memory tags can be encoded into ECC using a hash-based
integrity scheme. Also, implicit memory tagging [80] provides mem-
ory tagging using alias-free tagged ECC. Both approaches propose
efficient implementations of tagged memory architectures that are
fully compatible with our design.

8.2 Future Work

In this work, we introduced two modes to present possible trade-
offs between the runtime overhead of the system and area efficiency.

However, the approach of our performance mode is only applica-
ble for small tag sizes due to the area overhead of several cipher
instances. Future research could investigate solutions to reduce the
cache access latency introduced by the authentication check of the
memory accesses. Particularly, we could use a prediction table (e.g.,
similar to C3 [48] that reports a prediction rate of 99.85 %) to cache
recent MAC calculations. We anticipate that our mechanism with
a prediction table would yield comparable runtime overheads for
the efficiency mode to those observed by the performance mode
demonstrated in our evaluation. Nevertheless, such a prediction
table would require extensive analysis of the microarchitecture to
guarantee the absence of possible side-channel attacks like PAC-
MAN [68], allowing an attacker to bypass the security mechanism.

Moreover, this paper focuses on the microarchitecture of our
design and uses our hardware feature to implement lightweight and
efficient heap memory safety. Similarly, stack and global memory
objects could be protected using our mechanism. Future compiler
support could be investigated to protect stack and global data. How-
ever, then our heap allocator cannot be linked to existing binaries
anymore, i.e., losing binary compatibility. Note that implementing
such a compiler extension requires engineering effort beyond the
scope of this paper.

9 CONCLUSION

In this paper, we presented cryptographically sealed pointers, a
novel architectural mechanism that cryptographically enforces
temporal and spatial memory safety. Our lightweight ISA exten-
sion provides memory safety based on message authentication
codes (MACs) and object-granular metadata efficiently scaled and
stored in tagged memory enabled by our new concept of tag accu-
mulation. We use the MAC to cryptographically bind the object’s
bounds and liveness to the pointer. Precisely, we compute the MAC
of the address and encoded length in combination with the memory
tag to associate the pointer with the corresponding memory. The
hardware architecture implicitly enforces memory access checks
by authenticating the sealed pointers on every dereference.

Our comprehensive security analysis, including an empirical
evaluation using the NIST Juliet C/C++ test suite, highlights the
strong protection capabilities of our design. We implemented a
proof-of-concept prototype consisting of a hardware model based
on gemb> and a custom memory allocator and evaluated the impact
on the system performance. The performance evaluation, using the
SPEC CPU2017 benchmark suite, showcases the practicability of
our design, introducing a negligible performance overhead of 1.3 %
and 9.5 % for the performance and efficiency modes, respectively.

ACKNOWLEDGMENTS

We thank Robert Primas and the anonymous reviewers for their
valuable feedback that improved this work. This project has re-
ceived funding from the Austrian Research Promotion Agency
(FFG) via the SEIZE project (FFG grant number 888087) and the
AWARE project (FFG grant number 891092). Additional funding
was provided by generous gifts from Intel and from SGS.

REFERENCES

(1]

(2]

NS

(6]

[14]

[15]

[16]

[19]
[20]

[21]

[22]

[23]

National Security Agency. 2022. Software memory safety - cybersecurity in-
formation sheet. https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0
/CSI_SOFTWARE_MEMORY_SAFETY.PDF. Accessed: 2023-02-26. (2022).
Kathirgamar Aingaran, Sumti Jairath, Georgios K. Konstadinidis, Serena Leung,
Paul Loewenstein, Curtis McAllister, Stephen Phillips, Zoran Radovic, Ram
Sivaramakrishnan, David Smentek, and Thomas Wicki. 2015. M7: Oracle’s
Next-Generation Sparc Processor. IEEE Micro, 35, 36-45.

Sam Ainsworth and Timothy M. Jones. 2020. MarkUs: Drop-in use-after-free
prevention for low-level languages. In S&P’20, 578-591.

Ivan Arce. 2004. The Shellcode Generation. IEEE Security & Privacy, 2, 72-76.
C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall,
N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han,
D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S.
Jaloviar, L Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee,
J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy,
C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. Dacuna
Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St.
Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, and A. Yeoh.
2017. A 10nm high performance and low-power cmos technology featuring 3rd
generation finfet transistors, self-aligned quad patterning, contact over active
gate and cobalt local interconnects. In 2017 IEEE International Electron Devices
Meeting (IEDM).

Roberto Avanzi. 2017. The QARMA Block Cipher Family. Almost MDS Matri-
ces Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Con-
structions With Non-Involutory Central Rounds, and Search Heuristics for
Low-Latency S-Boxes. IACR Transactions on Symmetric Cryptology, 2017, 4-44.
Yanis Belkheyar, Joan Daemen, Christoph Dobraunig, Santosh Ghosh, and
Shahram Rasoolzadeh. 2023. BipBip: A Low-Latency Tweakable Block Cipher
with Small Dimensions. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2023, 326-368.

Bruno Bierbaumer, Julian Kirsch, Thomas Kittel, Aurélien Francillon, and
Apostolis Zarras. 2018. Smashing the Stack Protector for Fun and Profit. In
SEC’18, 293-306.

Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali G. Saidi, Arkaprava Basu, Joel Hestness, Derek Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf,
Nilay Vaish, Mark D. Hill, and David A. Wood. 2011. The gem5 simulator.
SIGARCH Computer Architecture News, 39, 1-7.

Tyler K. Bletsch, Xuxian Jiang, Vincent W. Freeh, and Zhenkai Liang. 2011.
Jump-oriented programming: a new class of code-reuse attack. In AsiaCCS’11,
30-40.

Tim Boland and Paul E. Black. 2012. Juliet 1.1 C/C++ and Java Test Suite.
Computer, 45, 88-90.

James Bucek, Klaus-Dieter Lange, and Joakim von Kistowski. 2018. SPEC
CPU2017: Next-Generation Compute Benchmark. In ICPE’18, 41-42.

Nathan Burow, Derrick Paul McKee, Scott A. Carr, and Mathias Payer. 2018.
CUP: Comprehensive User-Space Protection for C/C++. In AsiaCCS’18, 381-
392.

Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. 1994. Hardware
Support for Fast Capability-based Addressing. In ASPLOS’94, 319-327.
Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-oriented programming
without returns. In CCS’10, 559-572.

Long Cheng, Salman Ahmed, Hans Liljestrand, Thomas Nyman, Haipeng
Cai, Trent Jaeger, N. Asokan, and Danfeng (Daphne) Yao. 2021. Exploitation
Techniques for Data-oriented Attacks with Existing and Potential Defense
Approaches. ACM Transactions on Privacy and Security, 24, 26:1-26:36.
Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed, Zhongshu
Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley. 2023. Intel TDX
Demystified: A Top-Down Approach. CoRR, abs/2303.15540.

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing Control: On the Effectiveness of Control-Flow Integrity under
Stack Attacks. In CCS’15, 952-963.

MITRE Corporation. 1999-2023. Common vulnerabilities and exposures. https:
//cve.mitre.org/. Accessed: 2023-02-26. (1999-2023).

MITRE Corporation. 2006-2023. Common weakness enumeration. https://cwe
.mitre.org/. Accessed: 2023-02-26. (2006-2023).

Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. 2003. Point-
Guard™: Protecting Pointers from Buffer Overflow Vulnerabilities. In USENIX
Security Symposium’03.

Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. 2008.
Hardbound: architectural support for spatial safety of the C programming
language. In ASPLOS’ 08, 103-114.

Gregory J. Duck and Roland H. C. Yap. 2016. Heap bounds protection with low
fat pointers. In CC’16, 132-142.

[24]

[25]

[26]

[27]

(28]

[29]

[39]

[40]

[43]

(48]

Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro. 2017. Stack Bounds
Protection with Low Fat Pointers. In NDSS’17.

Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael
Bailey, Frank Li, Nicholas Weaver, Johanna Amann, Jethro Beekman, Mathias
Payer, and Vern Paxson. 2014. The Matter of Heartbleed. In IMC’14, 475-488.
Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. 2021. PTAuth: Tem-
poral Memory Safety via Robust Points-to Authentication. In USENIX Security
Symposium’21, 1037-1054.

Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan
Gudka, Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert
M. Norton, Michael Roe, Peter Sewell, Stacey D. Son, Timothy M. Jones, Simon
W. Moore, Peter G. Neumann, and Robert N. M. Watson. 2020. Cornucopia:
Temporal Safety for CHERI Heaps. In S&P’20, 608-625.

Aurélien Francillon and Claude Castelluccia. 2008. Code injection attacks on
harvard-architecture devices. In CCS’08, 15-26.

Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis Atlidakis,
and Vasileios P. Kemerlis. 2023. FineIBT: Fine-grain Control-flow Enforcement
with Indirect Branch Tracking. CoRR, abs/2303.16353.

Google. 2021. An update on memory safety in chrome. https://security.google
blog.com/2021/09/an-update-on-memory-safety-in-chrome html. Accessed:
2023-02-26. (2021).

Google. 2022. Retrofitting temporal memory safety on c++. https://security
.googleblog.com/2022/05/retrofitting- temporal- memory- safety-on-c.html.
Accessed: 2023-07-26. (2022).

Richard H. Gumpertz. 1983. Combining Tags With Error Codes. In ISCA’83,
160-165.

Mohamed Tarek Bnziad Mohamed Hassan. 2022. Hardware-Software Co-design
for Practical Memory Safety. Columbia University.

Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-control Data Attacks. In S&P’16, 969-986.

David A. Huffman. 1952. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40, 9, 1098-1101.

Mohannad Ismail, Andrew Quach, Christopher Jelesnianski, Yeongjin Jang,
and Changwoo Min. 2022. Tightly Seal Your Sensitive Pointers with PACTight.
In USENIX Security Symposium’22, 3717-3734.

Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block Oriented Programming: Automating Data-Only Attacks. In CCS’18, 1868~
1882.

Samuel Jero, Nathan Burow, Bryan C. Ward, Richard Skowyra, Roger Khazan,
Howard E. Shrobe, and Hamed Okhravi. 2023. TAG: Tagged Architecture Guide.
ACM Computing Surveys, 55, 124:1-124:34.

Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. 2002. Cyclone: A Safe Dialect of C. In USENIX
ATC’02, 275-288.

Alexandre Joannou, Jonathan Woodruff, Robert Kovacsics, Simon W. Moore,
Alex Bradbury, Hongyan Xia, Robert N. M. Watson, David Chisnall, Michael
Roe, Brooks Davis, Edward Napierala, John Baldwin, Khilan Gudka, Peter G.
Neumann, Alfredo Mazzinghi, Alex Richardson, Stacey D. Son, and A. Theodore
Markettos. 2017. Efficient Tagged Memory. In ICCD’17, 641-648.

Yonghae Kim, Jaekyu Lee, and Hyesoon Kim. 2020. Hardware-based Always-On
Heap Memory Safety. In MICRO 20, 1153-1166.

Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
In ISCA’14, 361-372.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In S&P’19, 1-19.

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R.
Sekar, and Dawn Song. 2014. Code-Pointer Integrity. In OSDI’'14, 147-163.
Lukas Lamster, Martin Unterguggenberger, David Schrammel, and Stefan Man-
gard. 2023. HashTag: Hash-based Integrity Protection for Tagged Architectures.
In USENIX Security Symposium’23.

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO’04, 75-88.

Gregor Leander, Thorben Moos, Amir Moradi, and Shahram Rasoolzadeh.
2021. The SPEEDY Family of Block Ciphers Engineering an Ultra Low-Latency
Cipher from Gate Level for Secure Processor Architectures. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021, 510-545.

Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, Santosh
Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana, Karanvir Gre-
wal, and Sreenivas Subramoney. 2021. Cryptographic Capability Computing.
In MICRO21, 253-267.

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://cve.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html
https://security.googleblog.com/2022/05/retrofitting-temporal-memory-safety-on-c.html

[49]

[50]

[51]

[52]

[58]

[63]

[67]

[68]

[69]

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N. Asokan. 2019. PAC it up: Towards Pointer Integrity using ARM
Pointer Authentication. In USENIX Security Symposium’19, 177-194.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In USENIX Security Symposium’18, 973-990.

LLVM. 2020. Memtagsanitizer. https://releases.llvm.org/11.0.0/docs/MemTag
Sanitizer.html. Accessed: 2023-07-26. (2020).

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Srikant Bharad-
waj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho,
Jerénimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,
Wendy Elsasser, Marjan Fariborz, Amin Farmahini Farahani, Pouya Fotouhi,
Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanind-
hito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,
Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza
Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Chris-
tian Menard, Andrea Mondelli, Tiago Miick, Omar Naji, Krishnendra Nathella,
Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo
Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg,
Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur,
Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong
Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Eder F.
Zulian. 2020. The gem5 Simulator: Version 20.0+. CoRR, abs/2007.03152.
Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and
Bengt Werner. 2002. Simics: A Full System Simulation Platform. Computer, 35,
50-58.

Evgeny Manzhosov, Adam Hastings, Meghna Pancholi, Ryan Piersma, Mo-
hamed Tarek Ibn Ziad, and Simha Sethumadhavan. 2022. Revisiting Residue
Codes for Modern Memories. In MICRO’22, 73-90.

Ali José Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maziéres. 2015.
CCFI: Cryptographically Enforced Control Flow Integrity. In CCS’15, 941-951.
Microsoft. 2020. Security Analysis of CHERI ISA. https://github.com/microsoft
/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20
of %20CHERI%20ISA.pdf. Accessed: 2023-02-26. (2020).

Microsoft. 2019. Trends, challenges, and strategic shifts in the software vulner-
ability mitigation landscape. https://github.com/Microsoft/MSRC-Security-Re
search/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20Blue
HatIL%20-%20Trends%2C%20challenge%2C%20and%20shif ts %20in%20sof twa
re%20vulnerability %20mitigation.pdf. Accessed: 2023-02-26. (2019).

Kit Murdock, David F. Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. 2020. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In S&P’20, 1466—-1482.

Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 2012. Watchdog:
Hardware for safe and secure manual memory management and full memory
safety. In ISCA’12, 189-200.

Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In ISMM’10, 31-40.
Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
2009. SoftBound: highly compatible and complete spatial memory safety for c.
In PLDI’09, 245-258.

Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge, Marcel
Medwed, and Stefan Mangard. 2021. CrypTag: Thwarting Physical and Log-
ical Memory Vulnerabilities using Cryptographically Colored Memory. In
AsiaCCS’21, 200-212.

George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: type-safe
retrofitting of legacy code. In POPL’02, 128-139.

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. 2018. Intel MPX Explained: A Cross-layer Analysis of the Intel
MPX System Stack. In SIGMETRICS’18, 111-112.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and
Countermeasures: The Case of AES. In CT-RSA 06, 1-20.

Aditi Partap and Dan Boneh. 2022. Memory Tagging: A Memory Efficient
Design. CoRR, abs/2209.00307.

Marco Prandini and Marco Ramilli. 2012. Return-Oriented Programming. IEEE
Security & Privacy, 10, 84-87.

Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PAC-
MAN: attacking ARM pointer authentication with speculative execution. In
ISCA’22, 685-698.

Gururaj Saileshwar, Rick Boivie, Tong Chen, Benjamin Segal, and Alper Buyuk-
tosunoglu. 2022. HeapCheck: Low-cost Hardware Support for Memory Safety.
ACM Transactions on Architecture and Code Optimization, 19, 10:1-10:24.
David Schrammel, Salmin Sultana, Karanvir Grewal, Michael LeMay, David M.
Durham, Martin Unterguggenberger, Pascal Nasahl, and Stefan Mangard. 2023.

[76]

(7]

(78]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

[90]

[91]

[92]

(93]

[94]

MEMES: Memory Encryption-Based Memory Safety on Commodity Hardware.
In SECRYPT’23, 25-36.

David Schrammel, Moritz Waser, Lukas Lamster, Martin Unterguggenberger,
and Stefan Mangard. 2023. SPEAR-V: Secure and Practical Enclave Architecture
for RISC-V. In AsiaCCS’23, 457-468.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for PKU-based Memory Isolation Systems. In USENIX
Security Symposium’22, 936—952.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC’12, 309-318.

Kostya Serebryany. 2019. ARM Memory Tagging Extension and How It Im-
proves C/C++ Memory Safety. login Usenix Mag., 44.

Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ mem-
ory safety. CoRR, abs/1802.09517.

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In CCS’07, 552-561.

Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis
of Processor Instruction Set Architecture for Enforcing Control-Flow Integrity.
In HASP’19, 8:1-8:11.

Rasool Sharifi and Ashish Venkat. 2020. CHEx86: Context-Sensitive Enforce-
ment of Memory Safety via Microcode-Enabled Capabilities. In ISCA 20, 762
775.

Matthew S. Simpson and Rajeev Barua. 2010. MemSafe: Ensuring the Spatial
and Temporal Memory Safety of C at Runtime. In SCAM’10, 199-208.
Michael B. Sullivan, Mohamed Tarek Ibn Ziad, Aamer Jaleel, and Stephen W.
Keckler. 2023. Implicit Memory Tagging: No-Overhead Memory Safety Using
Alias-Free Tagged ECC. In ISCA 23, 67:1-67:13.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In S&P’13, 48-62.

Qualcomm Technologies. 2017. Pointer authentication on armv8.3. https://ww
w.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/poin
ter-auth-v7.pdf. Accessed: 2023-02-26. (2017).

Martin Unterguggenberger, David Schrammel, Pascal Nasahl, Robert Schilling,
Lukas Lamster, and Stefan Mangard. 2023. Multi-Tag: A Hardware-Software
Co-Design for Memory Safety based on Multi-Granular Memory Tagging. In
AsiaCCS’23, 177-189.

Robert N. M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore,
Jonathan Anderson, David Chisnall, Nirav H. Dave, Brooks Davis, Khilan
Gudka, Ben Laurie, Steven J. Murdoch, Robert M. Norton, Michael Roe, Stacey
D. Son, and Munraj Vadera. 2015. CHERI: A Hybrid Capability-System Archi-
tecture for Scalable Software Compartmentalization. In S&P’15, 20-37.
Jinpeng Wei and Calton Pu. 2005. TOCTTOU Vulnerabilities in UNIX-Style
File Systems: An Anatomical Study. In FAST 05.

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via
Cache Set Randomization. In USENIX Security Symposium’19, 675-692.
Emmett Witchel, Josh Cates, and Krste Asanovic. 2002. Mondrian memory
protection. In ASPLOS 02, 304-316.

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert M.
Norton, and Michael Roe. 2014. The CHERI capability model: Revisiting RISC
in an age of risk. In ISCA 14, 457-468.

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel Wesley Filardo,
Michael Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Simon
W. Moore, Robert N. M. Watson, and Timothy M. Jones. 2019. CHERIvoke:
Characterising Pointer Revocation using CHERI Capabilities for Temporal
Memory Safety. In MICRO’19, 545-557.

Jianhao Xu, Luca Di Bartolomeo, Flavio Toffalini, Bing Mao, and Mathias Payer.
2023. Warpattack: bypassing cfi through compiler-introduced double-fetches.
In S&P’23.

Shengjie Xu, Wei Huang, and David Lie. 2021. In-fat pointer: hardware-assisted
tagged-pointer spatial memory safety defense with subobject granularity pro-
tection. In ASPLOS 21, 224~-240.

Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium’14,
719-732.

Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis.
2008. Hardware Enforcement of Application Security Policies Using Tagged
Memory. In OSDI’08, 225-240.

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny Manzhosov, Ryan Piersma,
and Simha Sethumadhavan. 2021. No-FAT: Architectural Support for Low
Overhead Memory Safety Checks. In ISCA 21, 916-929.

https://releases.llvm.org/11.0.0/docs/MemTagSanitizer.html
https://releases.llvm.org/11.0.0/docs/MemTagSanitizer.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf

A SPEC CPU2017 EXPERIMENTAL SETUP

In our gem5 performance evaluation, we utilize the in-order Tim-
ingSimpleCPU model. While gemb5 also provides an O3CPU model
supporting out-of-order execution, we observed a drastically in-
creased simulation time for large workloads like SPEC CPU2017
when using the O3CPU model. Specifically, depending on the bench-
mark, we can report an increase by a factor of x10 to x18 compared
to the TimingSimpleCPU model.

Benchmarking the TimingSimpleCPU took several weeks, pri-
marily due to large simulation times with individual benchmarks
lasting several days and due to the comprehensive set of different
configurations of our design. Consequently, given the extensive sim-
ulation time required, evaluating the O3CPU for all SPEC CPU2017
benchmarks is infeasible. Nevertheless, we want to provide experi-
mental results for a subset of SPEC CPU2017 benchmarks.

Figure 8 shows the simulated relative runtime overhead of the
performance and efficiency modes using the O3CPU model for a
subset of SPEC CPU2017 benchmarks. These smaller workloads
provide insights into the performance of our design using the
O3CPU model and reveal a performance overhead reduction. For
instance, the 538. imagick_r overhead decreased from 7.2 % (with
TimingSimpleCPU) to 5.9 % (with O3CPU) for the efficiency mode
using the classic tagged memory architecture. Moreover, the over-
head of 544.nab_r decreased from 10.0 % (with TimingSimpleCPU)
to 1.1 % (with O3CPU) using the efficiency mode.

Additionally, Figure 9 illustrates the simulated relative runtime
overhead of the efficiency mode with ECC tagged memory using the
O3CPU model with different cipher latencies for a subset of SPEC
CPU2017 benchmarks. In comparison to the TimingSimpleCPU, the
experimental results indicate that the out-of-order execution of the
O3CPU masks the increased L1 cache access latency introduced by
our design. Thus, our simulation results based on the TimingSim-
pleCPU provide a worst-case approximation since the main source
of overhead is the increased L1 cache latency.

2 | | | | | | |
D0 Performance mode w/ ECC 0 OPerformance mode w/ TMA B Efficiency mode w/ ECC B BEfficiency mode w/ TMA

Performance Overhead [%]

o

S
@@C bb‘b"‘\

S

N
&)
o o ¥

X
o "&\

Figure 8: The simulated relative runtime overhead of the
performance and efficiency modes using the O3CPU model
for a subset of SPEC CPU2017 benchmarks. (Efficiency mode
+3-cycle L1 delay)

Y
8

.
‘ 00 +1-cycle L1 delay D0 +2-cycle L1 delay BB +3-cycle L1 delay BN +4-cycle L1 delay

Performance Overhead [%]

Figure 9: The simulated relative runtime overhead of the
efficiency mode with ECC tagged memory using the O3CPU
model with different cipher latencies for a subset of SPEC
CPU2017 benchmarks.

	Abstract
	1 Introduction
	2 Background
	2.1 Memory Safety Vulnerabilities
	2.2 Cryptographic Computing
	2.3 Tagged Memory Architectures

	3 Threat Model and Assumptions
	4 Design
	4.1 Overview
	4.2 Cryptographically Sealed Pointers
	4.3 Memory Tagging and Tag Accumulation
	4.4 Cryptographic Memory Safety
	4.5 Hardware Architecture

	5 Implementation
	5.1 Microarchitecture
	5.2 Memory Allocator

	6 Security Analysis
	6.1 Systematic Analysis
	6.2 Empirical Security Analysis

	7 Evaluation
	7.1 Performance Evaluation
	7.2 Area and Memory Utilization

	8 Discussion
	8.1 Related Work
	8.2 Future Work

	9 Conclusion
	Acknowledgments
	A SPEC CPU2017 Experimental Setup

