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Abstract

In an era where the Internet plays an ever-expanding role, trust is the
cornerstone of secure and seamless digital interactions. Trust verification
is critical in diverse electronic transactions within our increasingly inter-
connected digital landscape. This thesis enhances trust verification in
diverse electronic transactions within a heterogeneous context.

We address challenges arising from complex electronic transactions covering
various trust aspects.

More specifically, we consider transactions consisting of multiple digital
credentials issued by different entities under varying trust schemes. To
simplify trust establishment across schemes, we propose a trust manage-
ment infrastructure based on the Domain Name System (DNS). This
infrastructure enables verifiers to establish trust in new schemes using
human-readable identifiers instead of manually configuring trust anchors
and cryptographic material. We also introduce support for global trust
scheme recognition and automated trust translations. By doing so, we
establish interoperability between trust schemes that use different under-
standings (or encodings) of trust.

To address the verifier’s individual trust perspectives, we introduce an
expressive trust policy system, facilitating verifiers to define trust criteria
tailored to their use case. Our system’s extensibility accommodates future
needs and integrates with DNS-based and distributed ledger-based trust
management, such as in self-sovereign identity models.

Dealing with diverse credential formats is common in a global context,
resulting in interoperability issues. To mitigate those issues, we introduce
a framework for trustworthy credential transformations. Our framework
allows verifiers to automatically transform data from unknown schemata
into a schema they can parse.

This thesis also considers privacy aspects regarding transaction content and
user behavior. We extend expressive access control systems with privacy
features, enabling seamless integration of privacy-preserving technologies.
By introducing a ledger state attestation system, we enhance distributed
ledger-based registries to ensure data provenance without compromising
user privacy.
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1
Introduction

The Internet has become an integral part of our daily lives, providing
access to a vast array of information, services, and communication tools.
In our connected world, trust and privacy are essential concepts. Trust
enables individuals and organizations to rely on each other, facilitating
the smooth functioning of our digital world. Privacy technology allows
individuals to control their personal information and protect themselves
from unwanted surveillance or profiling. As our reliance on the Internet
increases, so does the importance of trust and privacy.

Trust is essential for building and maintaining relationships, both online
and offline. Without trustworthy information, individuals and organiza-
tions may be hesitant or unable to share personal information, conduct
transactions, or engage in other forms of online activity. For example,
online shoppers may hesitate to provide personal information to an e-
commerce site they do not trust to be legitimate. Conversely, a business
may be reluctant to accept an order without knowledge about the buyer’s
identity and financial standing.

If we talk to someone over the Internet, we want to be sure that this
someone is really who they claim to be. In the case of online browsing,
we rely on our browser to actually communicate with the website we
requested, and not with Eve.1 Trust is also important for other types of
transactions: For software downloads or updates over the Internet, users
want to trust that the code they download is not replaced with malware
by a hosting provider or during transmission. Trust is not always about
the identities of the actors: For computations outsourced to the cloud, it
is important that the results are trustworthy. In the case of eCommerce,
the owner of an online bookstore might not care about the identity of
customers as long as she can trust that they pay their books on time and
that the money is not counterfeit. Or, when we show our electronic ticket

1In the world of Alice and Bob, the Eve character is usually an eavesdropper [BBR85].
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4 Chapter 1. Introduction

to board a train, the automatic gate needs to ensure that our ticket was
not manipulated and that it was really issued by the transport agency, but
it is irrelevant who we are as long as the ticket is valid. To ensure trust
on a technical level, measures like digital signatures and trust schemes are
used.

Privacy is also a critical concern on the Internet. Personal information,
such as financial data, medical records, and browsing history, could be
easily collected, shared, and analyzed against a user’s will. This misuse
can lead to identity theft, fraud, and other forms of abuse. For example,
companies may collect and sell personal information without our know-
ledge, or governments may use this information for surveillance purposes.
This can lead to a loss of trust and control over our personal information,
which can affect our security, autonomy, and well-being. Examples are
financial loss, reputation damage, psychological distress, or discrimination.

Without proper privacy measures, personal information could be misused
or disclosed, leading to serious consequences for the individuals involved.
One common example of a privacy measure is using pseudonyms or
anonymous identities. Such technology allows individuals to use digital
identity systems without revealing their real-world identity, protecting
them from potential privacy breaches or discrimination. An example
relevant in the context of this thesis is the use of decentralized identity
systems, which allow individuals to have more control of their identity
data. In such systems, the data is stored decentralized like on the user’s
phones, providing an additional layer of security and privacy. Further,
zero-knowledge proofs allow individuals to prove that they possess certain
information without revealing it. These tools can be used in digital
identity systems to ensure that private information remains confidential
while allowing for secure authentication and authorization.

1.1. Thesis Objectives

Motivated by the importance of both trust and privacy, we present several
contributions to the two subjects. On a functional level, this thesis focuses
on three aspects of trust and privacy: the encoding and verification of
Credentials, the trust- and access Policies governing this verification, and
the Infrastructure needed to do so. On the subject of trust, we focus
on automated trust management in a global context. To enable this, we
develop solutions for establishing trust into electronic transactions in a
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heterogeneous environment. On the subject of privacy, we improve the
privacy of users interacting with an automated system using access control.
In particular, we focus on the process of authenticating of an user with a
service by presenting some identity credential. The objective of this thesis
address is to consider several points we consider relevant for those goals:

• How can the trustworthiness of complex electronic transactions be
verified? We consider transactions that consist of multiple docu-
ments, each issued by a different authority, contributing a different
perspective to the trust assessment. How can this transaction be
verified even if the transaction stems from a different country? While
several countries provide the infrastructure to do this on a local level,
in Chapter 6, we aim to deliver the interoperability layer to support
automated trust management on a global scale. This includes the
discovery of trust status data and dealing with the heterogeneous
nature of the involved credential systems in Chapter 8.

• How can Service Providers (SPs) customize the conditions that
their system uses to determine the trustworthiness of a transaction?
Each SP has its own perception of trust, also depending on the
concrete use case. It is thus vital to support heterogeneous trust
models instead of relying on a pre-defined perception of a single
trust scheme. Yet, the customization of source code is expensive,
and the formalization of rules is often hard for non-technical domain
experts. In Chapter 7, we aim to enable SPs to formulate rules
easily, and to configure the system’s trust rules to their needs and
local regulations.

• How can we ensure the extensibility of trust verification systems
to make them future-proof for novel technologies and models? For
example, how can users and SPs utilize decentralized technologies to
improve their privacy and interact in a trustworthy way? In addition
to established trust and identity models, we discuss the integration
of novel models like Self-Sovereign Identity (SSI) and Distributed
Ledger (DL)-based trust management. By doing so, in Chapter 7 we
enable SPs to base their trust decisions on both established as well
as novel models in the same transaction. Additionally, in Section 6.6
we enable users to manage their own identity information or publish
trust information about each other.

• How can users stay in control of their data while authenticating
with a service provider? While a SP might need access to the user’s
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identity data to make an access decision, users often reveal more
data than the SP needs. We discuss how existing access control
systems can be extended with privacy features. In Chapter 9, we
use the (existing) custom trust rules formulated by SPs, and connect
them with Privacy-enhancing Technologys (PETs). This enables
users to automatically only share the subset of data that the SP
needs to process their access request. Additionally, in Chapter 10,
we avoid information about the user’s behavior being leaked during
an authentication process.

To work towards the stated objectives, rather than providing a single
solution, we provide building blocks and insights that can be adapted
by existing systems. From these overall objectives, we derive the four
research goals of this thesis, which we present in Chapter 5 below.

1.2. Contributions

This thesis groups my contributions into two Research Areas: Research
Area 1 (RA1) focuses on the trust management aspects, while Research
Area 2 (RA2) focuses on privacy aspects.

RA1 first presents results I developed as part of the LIGHTest project.
More specifically, I am one of the designers of, and the lead developer of,
the described automated trust verification system, as well as a co-designer
of the policy system TPL. In addition, I am one of the lead authors of the
three scientific contributions mentioned in this thesis, which originated
from this project. The rest of RA1 builds on my work by extending upon
the work done in the LIGHTest project by also considering the novel
trust management method SSI. RA1 also considers a more open trust
management architecture in addition to the hierarchical eIDAS architecture
and the SSI model, and discussed credential format interoperability. This
research resulted in three additional publications.

In RA2, I contribute to questions of how to extend the users’ privacy in
the (sub-)field of identity management. First, RA2 presents my work in
extending existing access control systems with privacy features. Second,
RA2 also considers the issue of undetectability during credential showing,
specifically for DL-based data. This research resulted in two publications.
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1.2.1. Main publications
The research on the topics of this thesis resulted in the publication of
eight peer-reviewed papers accepted at international conferences. The
author of this thesis is the lead or one of the main authors of all these
publications. See Appendix A for more detailed contribution statements.
Additionally, some of the results are also implemented and evaluated
during three Horizon 2020 research and innovation projects (LIGHTest,
KRAKEN, Eratosthenes).

Wagner G, Wagner S, More S & Hoffmann M, DNS-based trust scheme
publication and discovery. In Open Identity Summit 2019 [Wag+19].

More S, Trust Scheme Interoperability: Connecting Heterogen-
eous Trust Schemes. In ARES SECPID 2023 [Mor23].

Mödersheim S, Schlichtkrull A, Wagner G, More S & Alber L, TPL: A
Trust Policy Language. In IFIPTM 2019 [Möd+19].

Alber L, More S, Mödersheim S & Schlichtkrull A, Adapting the TPL
Trust Policy Language for a Self-Sovereign Identity World. In
Open Identity Summit 2021 [Alb+21].

More S, Grassberger P, Hörandner F, Abraham A & Klausner LD,
Trust Me If You Can: Trusted Transformation Between (JSON)
Schemas to Support Global Authentication of Education Cre-
dentials. In IFIP SEC 2021 [Mor+21].

More S & Alber L, YOU SHALL NOT COMPUTE on my Data:
Access Policies for Privacy-Preserving Data Marketplaces and an
Implementation for a Distributed Market using MPC. In ARES
SECPID 2022 [MA22].

More S, Ramacher S, Alber L & Herzl M, Extending Expressive Access
Policies with Privacy Features. In TrustCom 2022 [Mor+22].

More S, Heher J & Walluschek C, Offline-verifiable Data from Dis-
tributed Ledger-based Registries. In SECRYPT 2022 [MHW22].
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1.2.2. Other publications
In addition to the publications listed above, the author is a contributor to
the following works:

• Several project deliverables in the Horizon 2020 projects LIGHTest,
KRAKEN, and Eratosthenes.

• Koch K, Krenn S, Marc T, More S, & Ramacher S, A Privacy-
Preserving Data Market for Authentic Data. In CoNEXT 2022
[Koc+22].

• Gabrielli S, Rizzi S, Mayora O, More S, Perez Baun JC & Vandevelde
W, Multidimensional study on users’ evaluation of the KRAKEN
personal data sharing platform. In Applied Sciences 2022 [Gab+22].

• Abraham A, Koch K, More S, Ramacher S & Stopar M, Privacy-
Preserving eID Derivation to Self-Sovereign Identity Systems with
Offline Revocation. In TrustCom 2021 [Abr+21].

• Abraham A, Schinnerl C & More S, SSI Strong Authentication using
a Mobile-Phone based Identity Wallet reaching a High Level of
Assurance. In SECRYPT 2021 [ASM21].

• Abraham A, More S, Rabensteiner C & Hörandner F, Revocable
and Offline-Verifiable Self-Sovereign Identities. In TrustCom 2020
[Abr+20].

• Alber L, More S & Ramacher S, Short-Lived Forward-Secure Deleg-
ation for TLS. In CCS CCSW 2020 [AMR20].

• Omolola O, More S, Fasllija E, Wagner G & Alber L, Policy-based
access control for the IoT and Smart Cities. In Open Identity
Summit 2019 [Omo+19].

• Gruss D, Schwarz M, Wübbeling M, Guggi S, Malderle T, More S &
Lipp M, Use-after-FreeMail: Generalizing the use-after-free problem
and applying it to email services. In ASIACCS 2018 [Gru+18].

• Wagner G, Omolola O & More S, Harmonizing Delegation Data
Formats. In Open Identity Summit 2017 [WOM17].
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1.3. Thesis Outline
The two research areas introduced in Section 1.2 guide the structure of
this thesis, as visualized in Figure 1.1.

Problem Statement

RA 2: Privacy

Chapter 6
Global Trust
Infrastructure

Chapter 7
Extensible 

Policy System

Chapter 8
Credential Format

Interoperability

Chapter 10
Unobservable

Verification

Chapter 9
Privacy-preserving

Access Policies

Chapter 2
On 

Trust

Chapter 3
On 

Privacy

Chapter 4
Technical

Background

Chapter 5
Research Goals

RA 1: Trust

Figure 1.1.: Contribution structure of this thesis.

Part 1: The rest of Part 1 introduces the background of this thesis and
states the motivation for our research. In specific, we first discuss the
subjects of trust (Chapter 2) and privacy (Chapter 3) in more detail. We
then give an overview of the technical building blocks used in this thesis
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(Chapter 4). Finally, we introduce the overall research goals of our thesis
and define the research gaps we address (Chapter 5). The research goals
then further serve as a basis for the evaluation of our research, which we
conduct individually in each subsequent chapter.

Part 2 presents our contributions in the research area of trust. In
Chapter 6, we introduce our DNS-based trust infrastructure, which we
use to facilitate trust management in a heterogeneous context. In specific,
we focus on a global environment, hence we also discuss interoperability
between trust schemes. Additionally, we present an alternative approach
to centralized trust management architectures, operated on a DL. In
Chapter 7, we discuss our access- and trust-policy system “TPL”. TPL
enables SPs to verify transactions based on their own perception of trust,
using existing and novel trust schemes. In this chapter, we also present a
case study of the TPL system applied to a distributed online marketplace.
Finally, in Chapter 8, we introduce a trustworthy interoperability approach
for electronic credentials and their encoding formats.

Part 3 presents and discusses our contributions in the research area of
privacy. In Chapter 9, we discuss how to enrich an existing access control
policy system with privacy features. Finally, in Chapter 10, we discuss
our approach for a verification of undetectable credential verification; we
focus on credentials and other data issued from a DL-based registry, hence
building on the DL’s distributed trust model [ATK18].



2
On Trust

One of the two pillars of this thesis is Trust. In this chapter we explore
the concept of trust and related concepts, with a specific focus on trust
management. We begin by defining trust and introduce trust management
in the context of this thesis. First, we cover the fundamental architec-
ture of trust management, by introducing the important actors and their
relationships. Next, we give an overview of the two common trust manage-
ment models, and discuss the topics of revocation and trust policies. We
conclude the chapter by discussing the use of distributed ledger technology
as a way to store trust information in a decentralized manner.

Figure 2.1.: Trust means making yourself vulnerable [Inm16].

Trust is a complex and multi-faceted concept that is central to many
aspects of human interaction. Hawley defines trust as “the reliance on
some person or institution to meet their commitments” [Haw12, pp. 4-6].
It is often a foundation for cooperation and collaboration, as it allows

11
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individuals and organizations to engage in transactions, relationships, and
activities with a reduced fear of betrayal or harm. From an organizational
research perspective, trust (and trustworthiness) is reducing the cost of
transactions between organizations [DC03]. The concept of trust comes in
when it is not possible to be absolutely sure about something, so we need
to rely on other entities to say the truth. This leaves open the possibility of
the trustee not living up to their commitment, for example by unreliability,
malice, or incompetence [Blo81]. If something is absolutely clear, it is not
a matter of trust.

In a trust relationship, the one putting trust in another entity is the
trustor, and the entity being trusted is called trustee [JKD05]. Thus, a
trustor is relying on some trustee to meet their commitments. There
is also mechanical trust in things such as that a chair, curtains or car.
However, this thesis is focused on the richer interpersonal trust that comes
with a moral overtone [Haw12, p. 6].

If there is trust, there can also be distrust [Haw12, p. 8]. We usually place
distrust in people with whom we had some form of negative experience,
or their reputation tells us so. In contrast, a lack of trust is not the same
as distrust. A lack of trust is simply the absence of factors that would
motivate trust—it is not the presence of factors that motivate distrust.

We often assess the trustworthiness of someone, even if not always doing
consciously. Doing so involves our expectations in both their competence
as well as their intentions [Haw12, p. 6]. There are various factors we
can consider to assess both expectations. For example, what other people
say about them (reputation), our previous experience with them (track
record), as well as their incentives. Additionally, we might require proof to
assess their credibility, such as formal credentials and certifications. Both
competence and good intentions are required for someone to be considered
trustworthy.

While absolute trust also exists, this is rare situation, and so we usually
trust someone only in a specific context or to a different degree [Haw12, p.
6]. For example, we trust our doctor in medical questions, but we are not
trusting them to repair our bike. Additionally, we might trust someone
up to a certain degree, depending on the consequences in case the trustee
is letting us down.

To further differentiate trust, we separate direct trust and indirect trust
[BKW13, p. 39]. Way say trust is direct if we are directly interacting with
the entity which we trust. For example, we trust our friend Reinhard to
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repair our bike because we know he is skilled in doing so. Some form of
direct trust is always the starting point, and it is a requirement for any
model of trust.

In contrast to direct trust, we say trust is indirect if we don’t directly trust
the entity we are interacting with [BKW13, p. 48]. Instead, a (trusted)
third party is establishing that trust relationship for us. For example,
when we bring our bike to our entrusted bike shop for repair, we indirectly
trust their mechanic Mike to be a skilled craftsperson. It is important
to note that indirect trust is never absolute, instead it is only valid in
some specific context. In our example, we trust the bike shop to assess
the skills of their bike mechanics, but that gives us no information about
the trustworthiness of Mike in other matters. Additionally, we would
also not trust Mike to assess the skills of another mechanic for us. An
exception to this is if the shop’s manager explicitly told us that we can
trust Mike to do so, and we trust the manager’s assessment about that
fact. This additional level of indirection is common when dealing with
trust problems in computer science [Per99].

Identity Since we always trust in something or someone, a concept related
to trust is Identity. Identity is “the distinguishing character or personality
of an individual” [Mera], but also of other entities, and even objects. More
plainly spoken, a person’s identity is “their name and other facts about
who they are” [Camb]. Identity information is often encoded in the form
of a set of identity attributes. This attributes are key-value pairs that
describe the characteristics of a subject [Abr22].

Identity is any subset of attribute values of an individual person
which sufficiently identifies this individual person within any
set of persons. So usually there is no such thing as “the
identity”, but several of them [PH10, p. 30].

In contrast, when working with identities in computers science, we use
an abstraction of an identity called Identifier. An identifier is some
information used to identify an entity in a particular context [ITU09]. An
identifier is “a set of numbers, letters, or symbols [. . . ] that is used in a
system to represent someone or something [Cama].
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2.1. Trust in Computer Science

In the field of computer science, cryptography is used to enable security
and privacy.

To ensure authenticity and integrity of some data, cryptography can be
used to create a digital signature.1 These signatures enable use cases such
as private email communication, trustworthy web browsing and secure
boot.

A cryptographic signature is a mathematical construct that uses two
pieces of information. Those pieces of information are a bunch of numbers,
and are commonly called public key and private key. The private key is
personal and private to some entity. This private key is used to “sign”
some data, which results in a “digital signature”, also a set of numbers.
This signature can be verified using the corresponding public key. If
the assumptions of modern cryptography, that a malicious entity (the
adversary) is computationally limited, and that the laws of physics and
mathematics (which are commendable2), are correct, only the private
key can be used to create a signature which successfully validates when
using the corresponding public key. Thus, if the verification succeeds, the
signature is valid. In that case the verifier can be sure that the signature
was created by the entity in possession of the private key.

Cryptographic signatures can only be used in practice if users can trust
the authenticity of public keys [BKW13, p. 39]. The remaining question is
thus whether the verifier can trust that the public key actually belongs to
the entity they assume it does. Ensuring this is one of the main questions
of trust management.

Security is “the quality of being free from danger, threat, or fear” [Merb].
Security concerns are prominent in many domains, like political, physical,
or when working with computers. Examples for political security are
public security (e.g., emergency services and police) and international
security (i.e., diplomacy and military). In the physical realm, examples are
food security, environment security, and airport security. In the context

1Other methods to ensure the authenticity/integrity of data involve concepts like
Message Authentication Codes (MSCs), Non-Interactive Zero-Knowledge Proofs
(NIZKs), and hash functions.

2https://zdnet.com/article/the-laws-of-australia-will-trump-the-laws-of-mathematics
-turnbull/, accessed on 2023-01-19

https://zdnet.com/article/the-laws-of-australia-will-trump-the-laws-of-mathematics-turnbull/
https://zdnet.com/article/the-laws-of-australia-will-trump-the-laws-of-mathematics-turnbull/
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of computer technology, security deals with the security of computers and
communication over networks.

Security in computer science is focused on “information security”, which
describes “ways of protecting information, especially electronic data, from
being used or seen without permission” [Oxf]. Concepts important for
information security are:

• Confidentiality

• Integrity

• Availability

• Authentication, Access Control

• Accountability and Non-Repudiation

2.2. Trust Management
A common question in computer security is whether a document was
really issued by a specific person and not altered during transmission
over the Internet. While digital signatures help with the detection of
(potentially malicious) changes to the document, it requires more work to
authenticate the signer of the document. On a technical level this comes
down to ensuring the correct binding of a (cryptographic) key to some
identity—often the legal identity of some person.

To explore the technical aspects underlying the automation of trust pro-
cesses in a more systematic way, in 1996 Blaze et al. introduced trust
management as a field of research [BFL96]. Trust management deals
with “a need for methodologies that enable [. . . ] parties to determine
the trustworthiness of remote parties through computer mediated com-
munication and collaboration” [JKD05]. The field is concerned with all
problems involved in the formalization and encoding of trust relationships,
the formulation of trust policies, the representation of credentials, and
answering whether to trust a credential or third party. The field is thereby
concerned with protocols to “transfer trust from where it exists to where
it is needed” [SM95].

In contrast to credential-based trust management, reputation-based trust
management [ZM00; Res+00; JIB07] is concerned with subject like product
ratings and “customer reviews” [ST05; Haw12, p. 83]. I.e., in that case,
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someone’s trustworthiness is assessed on what others say about them, and
not from the statement of a qualified authority. While this is an important
aspect of the field, it is out of scope of this thesis. It is to be noted though,
that the factor of reputation also plays a role in non-reputation based
trust management systems. For example, a user might chose a webbrowser
based on its reputation. This decision then defines the list of trusted
certificate authorities, which is shipped with the webbrowser. This list in
turn influences what websites the user can open in a secure manner. In
the use case of legal electronic identities, this is not the case, since the
list of certificate authorities that are authorized (qualified) to issue such
identities is defined by a government (and regulated by a law), which is
again a different kind of trust management.

Trust Management Actors In a typical trust management architecture,
the involved actors fulfill one or more of these roles [CY10]:

• Issuer: The entity that issues some digital information. To do so,
an issuer takes some data and uses their private key to sign the data.
This is role is often fulfilled by an Identity Provider (IDP). In that
case the data that is issued is some form of identity information.

• Holder (or User): The entity that the digital information is issued to.
The holder receives (signed) data from an issuer and later presents
it to some verifier. The issued information is often about the holder,
so the holder is also the Subject of some credential or certificate.

• Verifier (or Service Provider): The entity that receives some signed
data and is interested in its trustworthiness. To ensure that the
received data is trustworthy, the verifier checks the digital signature
of the data. Additionally, the verifier checks if the data was signed by
an issuer they trust. This is done using trust management methods.

• Authority: In use cases on a larger (e.g., global) scale, direct trust
of a verifier in an issuer is often not realistic. To increase the prac-
ticability of systems, there is thus a need for a layer between those
two parties. A common solution to this is the introduction of one or
more authorities that facilitate the trust between verifier and issuer.
An example for this is the Public Key Infrastructure (PKI) used to
authenticate HTTPS connections on the web. In this scenario, a
webserver is presenting some certificate to a webbrowser to prove
that it is indeed the correct server for a certain hostname. Thereby,
the webbrowser serves in the role of a user, and the webbrowser is
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the verifier (of the certificate). While the certificate has been issued
by some certificate authority, the webbrowser does not trust that
authority directly. Instead the webbrowser trusts a set of (root)
authorities that in turn delegate their trust to other authorities, one
of them issued the webserver’s certificate. This delegation scheme,
also possible over multiple levels, is a common construct in trust
management.

In general, there are the following relationships between those roles, also
shown in Figure 2.2:

• Issuer issues data to Holder

• Holder presents data to Verifier

• Verifier trusts Issuer (or Authority)

• Authority authorizes Issuer

Depending on the context, one entity can have multiple roles. For example,
a university is a verifier of identity documents and diplomas of incoming
students. At the same time, the university is also the issuer of diplomas.

BP

Issuer (¤)

Holder Verifier (�)

��

��

trustworthy?

Authority (¤)

trust

authorize

Figure 2.2.: Common roles in trust management and their relation-
ships
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Trust Management Models There are various trust management models
to ensure the binding between key and identity and to support the discovery
of keys [Per99, p. 1].

Buchmann et al. differentiate trust models into direct and indirect trust
models [BKW13]. In the direct trust model, a user establishes trust in
some information directly, e.g., by receiving it from the origin using an
trustworthy communication channel. In contrast, indirect trust models
use one or multiple intermediaries (trusted third parties) to establish
trust. Perlman further differentiates indirect trust models into different
categories [Per99]. For example:

• Anarchy is a trust management models where trust is distributed
among multiple parties, rather than being managed by a central
authority. Each user starts of with a different set of (directly) trusted
entities. For example, the Web of Trust (WoT) model relies on users
to vouch for the authenticity of other users’ digital certificates in
a peer-to-peer way. Users form trust relationships with each other,
and these trust relationships are used to determine which certificates
should be accepted as valid. A prominent instance of a WoT is
PGP [Zim95], which uses a web of trust model to establish trust
relationships between users to authenticate email messages and
software downloads.

• Configured CAs with Delegations is a hierarchical trust man-
agement model where a set of central authorities is responsible for
managing trust relationships. This set of authorities is pre-configured
by the used software, and usually all users of a system agree on
the same set of configured authorities. Additionally, this configured
(root) authorities can authorize other authorities to act as author-
ities. In contrast to peer to peer models like WoT, such a model
often allows for (legal) liability of authorities [BKW13, p. 48]. A
widely used model for managing digital certificates and public keys
is PKI. A central authority, called a Certificate Authority (CA), is
responsible for issuing and revoking digital certificates. A set of
CAs is configured by the user as trustworthy, thus the certificates
issued by them can be used to authenticate entities and thus se-
curely encrypt communications. In practice, the trusted CAs don’t
directly issue certificates. Instead, they authorize other CAs to issue
certificates, which in turn can authorize other CAs to do so, forming
a chain of delegations [Per99, p. 2]. Only the CAs at the end of
this chain sign certificates used to authenticate entities. This form
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of PKI increases the practicability of PKI. An example for a PKI
of this type is the X.509 certificate system used by the Transport
Layer Security (TLS) system for the secure communication between
webservers and webbrowsers [Coo+08]. Another example of PKI is
the trust infrastructure established by the European Union’s (EU)
electronic Identification, Authentication and Trust Services (eIDAS)
regulation [Eur14]. We discuss the technical aspects of the eIDAS
trust service infrastructure in Section 4.1 below.

• Top-Down is another hierarchical trust management model. In
contrast to the CA model described above, there is usually only a
single CA at the root of the hierarchy. Another difference is that
there is a hierarchical namespace: a CA is only authorized to certify
mappings for names in their subtree of the namespace [Per99, p.
4]. This model is for example used in the DNS Security Extensions
(DNSSEC) system to protect the integrity of the DNS system. For
example, a CA trusted for domains in the “at.” Domain Name
System (DNS) namespace (zone) can issue certifications for names
like “iaik.at.”, but not for, e.g., “acm.org.”. Additionally, the CA can
delegate a subtree (subzone), e.g., “gv.at.”, to another CA, which
can then issue certifications for “help.gv.at.”, but not for “iaik.at.”
or “acm.org.”.

We note that some models fit into multiple categories, as for example a
WoT can be used to build a (hierarchical) PKI.

Direct trust serves as the basis for indirect trust models [Prü16, p. 12].
For example, to use a PKI, the user first needs to retrieve the set of
trusted (root) CA certificates. Commonly this is done during the setup
of a computer, e.g., as part of the installation of the operating system.
Generally, “we say that trust in the authenticity of a public key is direct
if the public key is directly obtained from the key owner or its owner
directly confirms the authenticity of the key in a way that is convincing
for the user” [BKW13, p. 39].

Credentials and Certificates To represent identity information and trust
relationships, digital credentials and certificates are used.

A digital credential is a signed data structure which contains a set of
attributes. To securely attest the attributes, the credential is signed by
some issuer using a cryptographic signature scheme. For the credential to
be accepted by a verifier, this issuer needs to be trusted by that verifier.
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Examples for credentials are digital versions of their analog counterparts,
like university diplomas, or a drivers license. A credential format common
in the Self-Sovereign Identity (SSI) world is the Verifiable Credentials
Data Model [SLC22].

In contrast, a digital certificate [Coo+08] is used the bind the identity of a
subject to a cryptographic (public) key.3 For example, in the TLS use case,
a certificate contains the hostname (the identity) of the server alongside
of a set of metadata (like validity and context information). Additionally,
the certificate contains the public key of the server. This key is used by
the webbrowser to authenticate the connection with the webserver. The
issuer that signs the certificate data structure is a certificate authority
which is trusted by the user’s webbrowser. Another use case of certificates
are digital signatures. In this use case, an issuer issues a certificate to a
user which binds the user’s public key to their identity. The user then
uses their corresponding private key to sign a digital document.

Revocation Revocation refers to the process of invalidating some attested
information, or a trust relationship that has been established between two
entities. This can be done for various reasons, such as when a user’s role
changes, when a device is lost or stolen, or when a digital certificate is
compromised.

The type of revocation depends on the information that is to be revoked.
In case of digital certificates and other forms of electronic transactions, a
common way to revoke those is by publishing a list of all revoked data; for
example in the form of a Certificate Revocation List (CRL). This list is
usually published by the issuer of the information, or a entity authorized
by that issuer. Another way for a user to prove that their credential is
still valid is to directly retrieve a attestation about its validity from the
issuer, and prove that (fresh) attestation alongside the data to the verifier;
in TLS this is done using the Online Certificate Status Protocol (OCSP).

Another example for revocations is the revoking of a trust relationship
that has been published directly in the form of trust statements in some
registry. A verifier then checks the presence of this statement before
trusting some information. To revoke such a statement, the issuer of that

3Since credentials can contain key material to prove the ownership of some creden-
tial, and certificates can contain extensive identity information, the two concepts
sometimes overlap.
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statement simply alters the trust level of the statement, or removes it
from the registry entirely.

Trust- and Access-Policies Policies, especially trust policies, enable the
automated processing of electronic transactions. They enable users to
define their own conditions for trusting a transaction and mechanics for
discovering trust information needed to authenticate signers.

Trust policies are sets of rules and procedures that define how trust in an
electronic transaction is established. Policies can also be used to specify
the level of trust that is required for different types of transactions. For
example, a trust policy may require a higher level of trust for a financial
transaction than for a simple message exchange. Organizations can use
these policies to define if and how they want to rely on existing trust
schemes like Europe’s eIDAS to add legal value to the decision.

In addition to trust rules, policies can also include rules for authentication,
authorization, and access control. For example, a trust policy may specify
that a user must provide a valid digital credential containing specific
attributes, before being granted access to a resource. Or a policy can also
include rules for ensuring the validity of a digital credential and that it is
not revoked.

Since trust policies usually encode business rules, they are often authored
by domain experts.
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Chapter 2 Conclusions
This chapter explored the multifaceted concept of trust and its significance
in computer science and beyond, laying the groundwork for our research
on automated trust management. We defined trust management in the
context of this thesis and gave an overview of the related fields of identity
and security. Further, we discussed essential concepts like revocation, trust-
and access-policies, and encoding attributes in the form of credentials.

Automating trust management is often complicated, because no direct trust
relationship exists between the user and the verifier. To instead facilitate
indirect trust relationships, we present the four common roles in trust
management (issuer, holder, verifier, and authority) and the relationships
between them. Those roles and their relationships are fundamental to our
thesis. On the one hand, the entities executing those roles use protocols
and tools to automate them. On the other hand, the relationships between
the entities form a trust path, the basis that a verifier can establish trust
in an electronic transaction they receive. We also discussed trust models
used in practice to organize this trust path. These trust models and their
technical implementation are the first focus of our thesis.

After discussing the concepts related to trust, we now turn our focus to
the second topic of this thesis—the idea of privacy.



3
On Privacy

The second pillar of this thesis is Privacy. In this chapter we introduce
the concept of privacy and discuss its characteristics. Then, we discuss
the relevance of privacy for computer science. We conclude the chapter
by defining several terms related to privacy in the context of information
technology.

Figure 3.1.: Big brother is watching [Cha05].

Privacy The word privacy stems from the Latin word “Privatus”, which
in Roman law means “what is private”, personal and belonging to oneself,
and not someone else. In the historical context, this “someone else” was
“the government”, but our understanding of privacy certainly got more
nuanced over time. Today, privacy refers to many aspects of a person’s
life. When we want to talk to someone in private, we ask for privacy—and
we expect that no one is listening when we talk to a group of friends in
private. When someone is following us in the streets, or wiretapping to a
phone conversation, they are interfering with our privacy. The same is
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often the case with pervasive CCTV cameras or tracking cookies on the
Internet. The European Convention on Human Rights provides a “right to
respect for his private and family life, his home and his correspondence”.1
Modern data protection regulations (privacy laws) are concerned with
how governments and companies collect personal data, and how they are
allowed to use it.

Privacy is “the right that someone has to keep their personal life or
personal information secret or known only to a small group of people”
[Camc]. According to the ubiquitous definition of U.S. legal scholar Westin,
(information) privacy is “the claim of individuals, groups, or institutions to
determine for themselves when, how, and to what extent [any] information
about them is communicated to others” [Wes67, p. 7]. Both definitions
allow for a broad definition of privacy. This differentiates privacy in a
“informational privacy” and a “decisional privacy” [Wac15, p. xiv]. This is
also reflected by the German translation of the word “Privacy”, which is
both “Privatsphäre” and “Privatheit” (privateness). The term privateness
as a right means a “right to a private life”,1 and “the right to be let
alone” [BW90], free from government interference. Decisional privacy also
involves the right to an individuals self-determination, like the right to
contraception and abortion.

While this privateness aspects of privacy are also important, in the context
of this thesis, we are concerned with the information related aspects of
privacy—information privacy. In particular, “information privacy relates
to an individual’s right to determine how, when, and to what extent
information about the self will be released to another person or to an
organization” [HC09]. Thus, privacy concerns itself with the protection of
sensitive personal information [Wac15, p. 2; OBK23].

Characteristics of Privacy Legal scholar Wacks characterizes privacy as
concerned with “limiting accessibility” to an individual in three compon-
ents: limiting information about someone (secrecy), limiting the attention
paid to someone (anonymity), and limiting the physical access to someone
(solitude) [Wac15, p. 44]. Nevertheless, information privacy, which is the
focus of this thesis, is concerned only with the first two components.

What is not privacy? A conversation can be private, as much as data or
information can be private. But, privacy is only concerned with personal

1Convention for the Protection of Human Rights and Fundamental Freedoms,
Article 8 – Right to respect for private and family life: https://rm.coe.int/1680a2353d

https://rm.coe.int/1680a2353d
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information, and not other types of sensitive or secret information.2 For
example, from the General Data Protection Regulation’s (GDPR) point of
view [Eur16, Article 1], secret information belonging to an organization is
not considered private.3 Similar, under the US Privacy Act, corporations
do not have privacy rights.4

Personal Information (and Personal Identifiable Information) In the
digital age, privacy is about questions that “share a concern to limit the
extent to which private facts about the individual are respectively published,
intruded upon, or misused” [Wac15, p. 46]. What are private facts, and
what is to be understood by “personal information”, depends on culture-
specific norms, and conceptions vary over time. Additionally, the extent
of what is personal depends on the context. Thus, the understanding
of “personal information” refers to both the quality of the information,
as well as the desire to control its use (in a specific context) [Wac15, p.
47]. Personal information are all facts relating to a individual “which it
would be reasonable to expect them to regard as intimate or sensitive, and
therefore to want to withhold, or at least to restrict their collection, use,
or circulation” [Wac15, p. 48].

Personal data/information also plays an important role in various data
protection regulations. For example, Article 4 of the European Union’s
(EU) GDPR5 defines “personal data”:

‘Personal data’ means any information relating to an identified
or identifiable natural person (‘data subject’); an identifiable
natural person is one who can be identified, directly or indir-
ectly, in particular by reference to an identifier such as a name,
an identification number, location data, an online identifier or
to one or more factors specific to the physical, physiological,
genetic, mental, economic, cultural or social identity of that
natural person.

2If it allows the identification of a natural person, this data is obviously personal data.
3https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and

-organisations/application-regulation/do-data-protection-rules-apply-data-about-com
pany_en, accessed on 2023-03-20

4The Privacy Act of 1974 in its definition of “Individual” states “Corporations and
organizations also do not have any Privacy Act rights” (https://www.justice.gov/opcl
/overview-privacy-act-1974-2020-edition/definitions#individual). But, the Freedom
of Information Act, which has an exception for the “invasion of personal privacy”,
defines “person” in a broader way, cf. https://en.wikipedia.org/wiki/FCC_v._AT&T_Inc.,
accessed on 2023-03-20

5https://gdpr.eu/article-4-definitions, accessed on 2023-01-25

https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/application-regulation/do-data-protection-rules-apply-data-about-company_en
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/application-regulation/do-data-protection-rules-apply-data-about-company_en
https://commission.europa.eu/law/law-topic/data-protection/reform/rules-business-and-organisations/application-regulation/do-data-protection-rules-apply-data-about-company_en
https://www.justice.gov/opcl/overview-privacy-act-1974-2020-edition/definitions#individual
https://www.justice.gov/opcl/overview-privacy-act-1974-2020-edition/definitions#individual
https://en.wikipedia.org/wiki/FCC_v._AT&T_Inc.
https://gdpr.eu/article-4-definitions
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In U.S. law, the term Personally Identifiable Information (PII) is used.
PII is defined as all data that can on its own be used to uniquely identify
someone. The U.S. Department of Labour defines PII as “Any representa-
tion of information that permits the identity of an individual to whom the
information applies to be reasonably inferred by either direct or indirect
means”.6

It is to be noted that the term personal data covers a wider range of data
than personal identifiable information. PII is a subset of personal data,
thus, all PII is personal data, but not all personal data is PII. For example,
in European law, a device ID or IP address is considered personal data.7
But, in some court rulings, IP addresses are not considered PII.8

Privacy and Security: Ensuring security is both often in conflict with
protecting privacy, but also a requirement for privacy. On the one hand,
there is a tradeoff between security and privacy. Governments often defend
surveillance by arguing that we need to sacrifice some privacy for security
[Sol11]. Balancing this tradeoff involves adequate oversight and regulation.
On the other hand, the protection of privacy always requires security as a
basis [HC09]. A system which is not secure can never ensure the users
privacy. This is both true on a societal as on a technical level.

3.1. Privacy in Computer Science
With the rise of computers and threats on privacy, the protection of privacy
is of increasing importance and interest. A reason for this is that computers
and the Internet are becoming increasingly ubiquitous [RS13, p. 4]. Even
before the Internet, computers were used by professionals and everyday
citizens for a multitude of tasks, from office work to entertainment. But
the increasing interconnection of computers brought this to a new level,
and we are now using computers and the Internet throughout the day for
all kinds of activities. By doing so, we not only need to entrust various

6https://www.dol.gov/general/ppii, accessed on 2023-01-25
7cf. Breyer v. Germany; and GDPR Recital 30: https://gdpr.eu/recital-30-online-i

dentifiers-for-profiling-and-identification, accessed on 2023-01-25
8cf. 2009 court ruling in Johnson v. Microsoft Corp, the judge found that “for

‘personally identifiable information’ to be personally identifiable, it must identify a
person. But an IP address identifies a computer”: https://www.huntonprivacyblog.co
m/2009/07/10/washington-court-rules-that-ip-addresses-are-not-personally-identifia
ble-information/, accessed on 2023-01-25

https://www.dol.gov/general/ppii
https://gdpr.eu/recital-30-online-identifiers-for-profiling-and-identification
https://gdpr.eu/recital-30-online-identifiers-for-profiling-and-identification
https://www.huntonprivacyblog.com/2009/07/10/washington-court-rules-that-ip-addresses-are-not-personally-identifiable-information/
https://www.huntonprivacyblog.com/2009/07/10/washington-court-rules-that-ip-addresses-are-not-personally-identifiable-information/
https://www.huntonprivacyblog.com/2009/07/10/washington-court-rules-that-ip-addresses-are-not-personally-identifiable-information/
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parties with our personal data, but we also make it easier for curious third
parties to learn more about us, as behavior in the digital realm is easier
to track than in the physical world.

Also, computers themselves are a tool to impede privacy. Advances in
information processing and communications make it possible to collect,
process and store a unthinkable amount of information from the digital
and physical world. Once collected, such information is rarely erased and it
is almost impossible to fully control its spread and use. This raises privacy
problems [Gal+11]. If financial resources are available, these technologies
can be scaled to fit almost any need,9 which increases the threats on
privacy. The digital processing of all kinds of information facilitated by
computers enables forms of data analysis and surveillance not possible
before. While it was possible to wiretap a telephone conversation or tail a
person before, this was a manual effort, and so was analyzing the data
gathered by this means. Today, digital communication can be collected
by automated systems, stored in large quantities over a long duration,
and analyzed with dizzying speed. A term describing this is big data,
referred to “things one can do at a large scale that cannot be done at a
smaller one, to extract new insights or create new forms of value [. . . ]”
[MC13]. Additionally, digital data processing enables analyzing different
types of data from many sources. For example, movement data acquired
by tracking a cellphone, and the purchase history retrieved from the bank
could be combined to derive deeper insights into a person’s behavior.

The protection of privacy requires more than the encryption of some data.
For example, for an observer it might not be necessary to see the content
of a user’s communication to learn something about the user. The mere
fact that a communication between two users happened may represent
sensitive information. Thus, privacy is also concerned with the protection
of metadata.

9e.g., the U.S. intelligence community operates a datacenter with a storage capacity
estimated to be around 3-12 exabytes as of 2013: https://en.wikipedia.org/wiki/Utah
_Data_Center, accessed on 2023-01-25

https://en.wikipedia.org/wiki/Utah_Data_Center
https://en.wikipedia.org/wiki/Utah_Data_Center
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Figure 3.2.: Opinions on Internet Privacy [Mun13].

3.2. Privacy Concepts
In computer science, important characteristics of privacy are:

Anonymity means that a user can access a resource while remaining
“not identifiable within a set of subjects, the anonymity set” [PH10, p. 9].
The anonymity set is the set of all users who this access to the resource
could be plausibly attributed to. Thus, the owner of that resource does
not learn which of the possible users just accessed the resource.

Anonymity is crucial to protect users from being tracked or profiled, and
to maintain their privacy.

Pseudonymity: Sometimes full anonymity is not productive, i.e., when a
service provider wants to link multiple requests by the same user, but is
not interested in learning their identity. In that case a pseudonym is used
to identify the user. “A pseudonym is an identifier of a subject other than
one of the subject’s real [legal] names. [. . . ] A subject is pseudonymous if
a pseudonym is used as identifier instead of one of its real [legal] names”
[PH10, p. 21].

Unlinkability of two or more users means that “an attacker cannot
sufficiently distinguish whether these users are related or not” [PH10, p.
12]. For example, if two messages were sent from users within the same
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anonymity set, an observer cannot tell if the messages came from the same
user or from different users. In a system where the user is unlinkable even
from the perspective of the owner of the resource, the owner does not
learn if two requests to a resource came from the same user.

Unlinkability ensures that different data sets, transactions or activities
cannot be linked together to infer information about an individual, or
to identify them. For example, if someone visits a bar two times and
the barkeeper remembers them, their visits are linkable and thus more
information can be derived than from a single visit. Unlinkability is
essential to protect user’s privacy, particularly in scenarios where personal
information is collected and used.

Undetectability of an action from an observer’s perspective means that
the observer cannot sufficiently distinguish whether the action happened
or not [PH10, p. 16]. For example, if a students shows their ID card to a
bouncer, the government is not aware of that bar visit, meaning the visit
is undetectable to them. But, when the student shows a digital credential,
and the bouncer queries for the credential’s validity, the government learns
about this query. Since such a query often comes with contextual inform-
ation like IP address or even location, the government becomes aware of
the student’s bar visit. Thus, the bar visit is not undetectable (from the
perspective of the government). An example for undetectability is that a
communication is undetectable if an observer watching some communica-
tion channel cannot distinguish the communication from random noise
[PH10, p. 16].

Unobservability: In contrast to undetectability, unobservability means
that while a party involved in a communication can obviously detect it,
they do not know with whom they are communicating. For example,
a user is unobservable, if they can retrieve some information from a
government API without the government learning who just queried the
API, and without any observer learning that someone executed a query.
In other words, unobservability implies undetectability (to an observer)
and anonymity (to the involved communication party) [PH10, p. 19].

Context privacy means that an observer should not be able to learn
contextual information like location of a user unless intentionally disclosed
[LR09]. It concerns the protection of sensible information that requires
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to be guaranteed even if data content is fully secured utilizing tradi-
tional security mechanisms [Gal+11]. Contextual information can also be
called metadata, thus context privacy is concerned with the protection of
metadata in contrast to the message content.

Confidentiality is the characteristic of keeping information or data
private and protected from unauthorized access or disclosure. It ensures
that only authorized parties have access to private information. Confid-
entiality is important to protect individuals from having their personal
information accessed, used or shared without their consent. Confidentiality
is often achieved through the use of encryption, access control, and other
security measures.

Chapter 3 Conclusions
This chapter discussed the concept of privacy and its paramount im-
portance for computer science. Privacy—an individual’s right to control
information about the self—is a fundamental human right and is also en-
shrined by law in various legislation, like the EU’s GDPR. These rights are
constantly threatened by new achievements in computational power and
digital surveillance capabilities. However, the digitization of everyday life
also enables new forms to protect one’s privacy—by using cryptography,
or by cleverly designing systems.

As a foundation for our research, we provided an overview of crucial privacy
concepts. These concepts form the basis of our research goals concerning
privacy preservation in trust management systems. Specifically, when a
user presents some credential to a verifier, this credential often contains
more personal information than the user needs to reveal—violating the
principle of confidentiality and data minimization. Further, when a verifier
contacts an authority to verify a credential’s validity, this reveals the
user’s behavior to the authority—violating the principle of undetectability.
Mitigating these issues is the second focus of our thesis.

With this foundation laid, we now focus on the relevant technical concepts
for our research.



4
Technical Background

In the previous chapters, we discussed trust, privacy, and related concepts.
In this chapter, we introduce technical concepts used in the rest of this
thesis.

4.1. Trust Schemes and Trust Status Lists
The value and meaningfulness of both a certificate and a credential depend
on its issuer. A fundamental requirement for any trust in a credential or
certificate is that the relevant verifier trusts the issuer of that credential.
In use cases requiring information with legal value, the only relevant issuer
is the government, or an entity authorized by the government. Such an
issuer is thus qualified to issue certain information.

For example, if some qualified issuer issues a certificate to a user, and that
user uses that qualified certificate to sign a PDF file, then this signature is
called a qualified signature. A common approach to assess the legal value
of an electronic transaction is thus to check if a qualified certificate was
used to sign it.

“Trust schemes” are used to assess the legal value of a transaction. Trust
schemes are the organizational, regulatory/legal, and technical measures
to assert trust-relevant attributes about enrolled entities in a given trust
domain [Wag+19]. We discuss trust schemes in more detail in Section 6.1
below.

For example, the European Union’s (EU) eIDAS regulation introduces
such a trust scheme for the EU member states. In eIDAS, a requirement
for the status of qualified signature is that the certificate of the signer has
been issued by a qualified Trust Service Provider (TSP). To ensure that a
certain issuer is a qualified TSP, the verifier uses a Trusted List, or Trust
(Service) Status List (TSL). The verifier retrieves this list, and checks if
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the list contains the issuer as currently qualified TSP. Trusted lists contain
all currently and previously qualified trust service providers. They are
specified by the eIDAS regulation as public lists in Extensible Markup
Language (XML) format following an European Telecommunications
Standards Institute (ETSI) standard [ETS16].

In eIDAS, every European member state (MS) signs and publishes such
a trusted list,1 containing TSPs from their country. To discover and
authenticate a member state Trust (Service) Status List (TSL), a verifier
first needs to load the List of eIDAS Trusted Lists (LOTL), signed and
published by the European Commission at a known location.2 The LOTL
contains pointers to the MS lists and the certificates used to sign them.

If an issuer is listed on such an MS list as active and Qualified Trust
Service Provider (QTSP), it can provide qualified certificates, which can
then be used to create qualified signatures. Qualified signatures have the
same legal value as handwritten signatures in the EU.

4.2. Identity Management

A common application for trust management is the field of identity man-
agement. Identity management systems are responsible for issuing and
maintaining digital identities, which can include verifying the identity
of users through authentication methods such as digital credentials, and
managing access to resources based on those identities. To verify whether
a digital credential is trustworthy, methods from the field of trust man-
agement are used.

Fundamental concepts in identity management are identity and identifier,
credentials and certificates (cf. Chapter 2).

X.509 and PKIX: The X.509 standard is a International Telecommu-
nication Union (ITU) and International Organization for Standardization
(ISO)/IEC standard for defining public key certificates [ITU88; ISO20].
X.509 also specifies certificate revocation lists (Certificate Revocation Lists
(CRLs)), which are used to distribute information about certificates that
have been deemed invalid. The X.509 standard is widely used in various

1The trusted list of Austria is published at https://www.signatur.rtr.at/currenttl.xml
2https://ec.europa.eu/information_society/policy/esignature/trusted-list/tl-mp.xml

https://www.signatur.rtr.at/currenttl.xml
https://ec.europa.eu/information_society/policy/esignature/trusted-list/tl-mp.xml
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applications, such as web security (Transport Layer Security (TLS)) and
email encryption (S/MIME).

The Internet Engineering Task Force’s (IETF) “Public-Key Infrastructure
(X.509)” working group (PKIX) adapted the standard to the internet’s
needs.3 Consequently, the term X.509 certificate often denotes the IETF’s
PKIX certificate and CRL profile [Coo+08].

Self-Sovereign Identity: Centralized trust infrastructures represent an
attractive target for criminals and cyberwar [Fri20]. Additionally, central-
izing the storage of identity data increases the likelihood of data breaches
[Ber20; Ber17; Tho+17], resulting in a growing demand for more secure
systems [ZS18]. In the last decade, the concept of Self-Sovereign Identity
(SSI) gained popularity. Together with distributed ledgers, they aim to
decentralize several aspects of trust and identity management.

SSI [Müh+18] is an identity model, which puts identity data back in the
hands of users instead of storing them in data silos. The SSI community
introduced several interesting concepts to represent (verifiable) credentials
[SLC22] and (decentralized) identifiers [Ree+21; SSP23] in an interoper-
able, decentralized, and privacy-enabling way, supported by Distributed
Ledgers (DLs).

In the SSI model, a user creates a Decentralized Identifier (DID)
for their identity [Ree+21; SSP23] and publishes it by defining a DID
document containing the DID, a corresponding public key, and other
application-dependent information. That is often done using a DL.

The vision of SSI is that any party can certify attributes of any other
party, e.g., a higher education institution can accredit graduation to a
student, or an interior ministry can attest someone’s date of birth. For
such certifications, it is common to use the W3C Verifiable Credentials
(VCs) data model [SLC22]. This specification defines a generic way of
packaging claims and the corresponding issuing authority in a signed
JavaScript Object Notation (JSON) document.

But, while those concepts enable or improve new use cases, they frequently
build on under-specified or insecure standards and file formats [Hal20].
Additionally, they often lack scientific analysis. This is reinforced by a
lack of liability in the governance models of used distributed ledgers.

3https://datatracker.ietf.org/wg/pkix/about/, accessed on 2023-03-14

https://datatracker.ietf.org/wg/pkix/about/
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Verifiable Credentials (VCs) are used as a typical data format in SSI
systems and are specified by the World Wide Web Consortium (W3C)
[SLC22]. The specification defines a generic envelope to represent a set of
claims (credentialSubject) signed by its issuer. It defines a JSON structure
for the credential envelope itself while allowing credential issuers to choose
their own schema for the credential subject.

While the schema of the envelope is defined by the W3C, the claims
inside a VC are encoded according to a JSON schema [WAH20] so that
credentials are sufficiently flexible for various use cases. This flexibility of
the content’s schema also represents a challenge for verifiers when facing
content in an unknown schema.

4.3. Distributed Ledgers

A DL is a distributed (and often decentralized) data storage model. The
data is stored redundantly at several distributed nodes maintained by
different entities, improving resilience. Each node preserves independent
control and agrees on a common state by running a consensus protocol
[Xia+20].

DLs (often deployed as blockchains) enable storage of data not only in
a distributed way but also with decentralized governance. Access-wise,
DLs support a large spectrum of models, mostly grouped and described
by the terms public, private, permissionless, and permissioned [Zhe+18].
Proposed DL Public Key Infrastructure (PKI) solutions [Ale+17; Koa+]
try to mitigate the weaknesses of conventional PKIs, focusing on issues
like a single point of failure, vulnerability to split-world attacks, and the
lack of identity retention [Koa+].

Distributed vs. Decentralized In contrast to systems running on a single
computer, a system can also be distributed onto a collection of autonomous
computers [VT17]. These computers are often distributed geographically
in different data centers. But, whether a system is distributed says nothing
about who controls the individual computers. While the distribution of
a system enables the decentralization of its control, many systems are
distributed but depend on central authorities. For example, (not only)
large organizations like Google distribute their data centers all around
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the world,4 but nevertheless control them centrally. Conversely, Bitcoin’s
blockchain technology was introduced as a system without depending on
central authorities [Nak08]. But, in general, whether a distributed ledger
is also decentralized depends on its governance model.

Smart Contracts: Many ledgers support the storing of code on the DL,
which is then deterministically executed by the nodes performing the
consensus protocol.

Examples of this are the Ethereum ledger5 and various ledgers from the
Hyperledger project.6 One particular example is Hyperledger Besu,7 an
Ethereum client specifically designed for use in permissioned consortium
ledgers. Such code is called a “smart contract” (SC) [But+14] in the
Ethereum world, while the Hyperledger project also calls it “chaincode”
[Cac+16]. Variables in the code are stored on the DL as well and can
be read and modified using functions supplied by the contract. SC code
is written in a high-level language and then compiled to ledger-specific
bytecode. Only this bytecode is then written to the DL. When a user sends
a function call to a contract, nodes execute this bytecode, for example,
using the Ethereum Virtual Machine (EVM).8 The resulting state is only
written to the ledger if all nodes agree on the result of the computation.

SCs can be used to provide simplified views on complex data stored on the
DL, forming a generic stored-procedures-like query and filtering system
akin to stored procedures in a traditional database.

Ethereum RPC API: To allow other entities to access the state of the
DL and call SC functions, Ethereum nodes provide an HTTP API.9 It
offers a JSON-RPC interface, which can be used by entities who do not
wish to operate a full node, or cannot participate in the ledger.

On the client-side, the web3.js10 library is commonly used to interact with
nodes’ JSON-RPC API. It provides users a high-level interface to interact

4https://www.google.com/about/datacenters/locations/, accessed on 2023-03-14
5https://docs.soliditylang.org
6https://hyperledger-fabric.readthedocs.io/en/release-2.2/chaincode4ade.html
7https://besu.hyperledger.org
8https://ethereum.org/en/developers/docs/evm
9https://eth.wiki/json-rpc/API

10https://github.com/ethereum/web3.js

https://www.google.com/about/datacenters/locations/
https://docs.soliditylang.org
https://hyperledger-fabric.readthedocs.io/en/release-2.2/chaincode4ade.html
https://besu.hyperledger.org
https://ethereum.org/en/developers/docs/evm
https://eth.wiki/json-rpc/API
https://github.com/ethereum/web3.js
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with SC functions and translates these function calls to a representation
that the EVM understands.

InterPlanetary File System (IPFS) is a distributed file system based on
an open peer-to-peer network [Pro21]. Similar to a public DL, there is no
central party controlling the system, and everyone can join the network of
nodes and retrieve data. As files on IPFS are content-addressed (i.e., a file
is addressed based on a hash of its content), the files’ integrity is ensured
by design, which reduces the trust requirements towards the nodes. Hence,
IPFS is an ideal data storage system for decentralized apps hosted on a
DL.

4.4. DNS and DNSSEC
The Domain Name System (DNS) is a hierarchical distributed naming
system that is commonly used for translating domain names to IP addresses
[Moc87a; Moc87b]. DNS enables users to access websites and other
internet resources using human-readable domain names instead of numeric
IP addresses. The governance of the DNS is managed by the Internet
Corporation for Assigned Names and Numbers (ICANN), which oversees
the allocation of domain names and IP addresses to organizations and
individuals around the world. ICANN works in collaboration with regional
domain name registries, delegating the management of a Top-Level Domain
(TLD). For example, EURid is responsible for operating the .eu TLD.

In addition to resolving IP addresses, the DNS can also be used to translate
domain names into other identifiers. To do so, the DNS uses resource
records to store information about domain names and their associated
values [Moc87b]. Resource records are stored in DNS (name) servers,
which are distributed around the world and are responsible for providing
resource records to users.

The DNS Security Extensions (DNSSEC) is a set of specifications that are
designed to enhance the security of the DNS system [Are+05a]. DNSSEC
works by adding digital signatures to DNS resource records, which are
used to ensure the integrity and authenticity of the information stored
in the records. DNSSEC uses a key management system that is based
on public-key cryptography. The public keys are distributed through the
DNS system using resource records, which allows clients to verify the
digital signatures on resource records and ensure their authenticity.
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DNS supports several resource record types that are used to store inform-
ation. For example, the URI resource record is used to store Uniform
Resource Identifiers (URIs), e.g., an HTTP Uniform Resource Locator
(URL). The PTR resource record maps IP addresses to domain names
and is commonly used in reverse DNS lookups. But, PTR records can also
be used to point from one domain name to another. The TSLA record is
used to store a X.509 certificate in DNS,11 enabling the DNS to serve as
a root of trust for, e.g., a TLS connection [HS12]. Additionally, there are
resource record types related to DNSSEC. On the one hand, a DNSKEY
resource record is used to store the public key for a DNS zone, which is
used to verify the digital signatures on the zone’s resource records. On
the other hand, the RRSIG resource record stores the digital signature
for a resource record, which can be used to verify the authenticity of the
information stored in the record. Further, the NSEC and NSEC3 resource
records link to the next DNS name in a zone and are used to verify the
nonexistence of a DNS name [Lau+08].

For operational reasons, each zone has two key pairs: The Zone Signing
Key (ZSK) is used to sign all the records in the zone. This ZSK is then
added to a DNSKEY in the zone. In turn, this DNSKEY record is then
signed by the Key Signing Key (KSK), resulting in a RRSIG record. To
establish trust into this KSK, it is signed by the zone one level higher in
the DNS hierarchy, resulting in a RRSIG in that zone. For example, the
root zone uses its ZSK to sign the KSK’s of all top-level domains (e.g.,
.at), and stores the resulting signatures. The root zone’s KSK is publicly
known and directly trusted by all participants of the DNSSEC system.
This structure forms a trust hierarchy from the root zone’s KSK down
to the individual record (e.g., iaik.tugraz.at). Each zone operator can
only sign keys for zones in the subtree of the DNS namespace of which
it is the root (e.g., the .at operator cannot sign the key for europa.eu).
This trust hierarchy thus represents a top-down trust model using name
subordination, as discussed by Perlman, p. 4.

4.5. Prolog and logic programming
Prolog is a logic programming language [ISO95]. In Prolog, programs are
composed of a set of rules and facts (predicates) that define relationships
between objects and concepts. The language is based on a formal system
11when used in combination with DNSSEC, this is called DNS-based Authentication of

Named Entities (DANE)
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of logic called definite Horn clauses, which allow for the representation of
complex relationships and the derivation of new facts from existing ones
through logical inference.

A Horn clause is a logical formula with at most one positive literal, also
called the head, and any number of literals, which are also called the body.
The head and body are separated by the reversed implication symbol (←)
or the symbol :-.

In Prolog, a relationship between terms is specified as a rule, given as a
definite clause. A definite Horn clause is a special type of Horn clause
that has exactly one positive literal in the head and any number of literals
in the body. In other words, a Definite Horn clause is a Horn clause with
a single positive literal in the head. Definite Horn clauses are used in
Prolog because they are well-suited for reasoning and inference in Prolog
programs.

We discuss the syntax and semantics of Prolog in more detail in Section 7.3.

4.6. Cryptography and Privacy-enhancing
technologies

Signatures: Digital signature schemes are a fundamental cryptographic
primitive [Lys02]. In a signature scheme based on public-key cryptography,
each user can generate a key pair consisting of a private key and a public
key. The user can then sign a message using the private key, resulting in
a digital signature. Another user can then verify this message using the
signer’s public key since it is public. If the signature is valid, the verifier
can be sure of the message’s authenticity, i.e., that the message has not
been altered since it was signed. Since the signing key is private, only the
signer can generate a valid signature; hence, the verifier can be sure that
that user signed the message.12

We recall the standard definition of a signature scheme [GB08, Section
10.1; AMR20]:

A signature scheme SIG is a triple (KeyGen, Sign, Verify) of PPT al-
gorithms,13 which are defined as follows:
12Verifying that the public key belongs to the correct user is a separate task, as discussed

in Chapter 2.
13probabilistic polynomial time algorithms [KL14, Section 3.1.2]
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KeyGen(1κ) : On input security parameter κ outputs a (private) signing
key sk and a (public) verification key pk with associated message
space M.

Sign(sk, m) : On input, a secret key sk and a message m ∈M, outputs a
signature σ.

Verify(m, σ, pk) : On input a message m ∈ M, a signature σ, and a
public key pk, outputs a bit b ∈ {0, 1} indicating the validity of the
signature.

Multi-Signatures: In extending signature schemes to multi-signature
schemes, signatures on the same message w.r.t. some public keys can be
aggregated into one compact signature. This aggregated signature is valid
w.r.t. an aggregated public key. We define such signatures following the
definition of Drijvers et al. [Dri+19, Section 5.1; Abr+20]:

A multi-signature scheme MSIG is a signature scheme SIG with an addi-
tional triple (APKs, ASigs, AVerify) of PPT algorithms, which are defined
as follows:

APKs(pk1, . . . , pkn) : This algorithm takes n public keys pk1, . . . , pkn as
input and outputs an aggregated public key pkM .

ASigs((σ1, pk1), . . . , (σn, pkn), m) : This algorithm takes n signatures
σ1, . . . , σn on the same message m and the corresponding public
keys pk1, . . . , pkn, and outputs an aggregated signature σM on the
message m or ⊥ on error.

AVerify(m, σM , pkM ) : This algorithm takes a message m ∈ M, an ag-
gregated public key pkM , and an aggregated signature σM as input
and outputs a bit b ∈ {0, 1} indicating the validity of the signature.

Boneh–Lynn–Shacham (BLS) is a provable secure pairing-based sig-
nature scheme for producing short signatures [BLS04]. One property of
BLS is that it can be used as a multi-signature scheme; signatures by
multiple private keys can be combined into a single constant-size aggregate
signature. This saves space and verification time [Bol03; BDN18].

Non-interactive Zero-knowledge (NIZK) proof systems represent power-
ful tools that enable a prover to convince a verifier of the validity of a
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statement without revealing any other information [GMR85; BFM88]. For
an NP-language L ⊂ X and a statement x ∈ X, a prover can present a
proof to the verifier that x ∈ L, e.g., there exists a witness w such that
x ∈ L. No other information about the witness w is leaked to the verifier.

Formally, let R be the associated witness relation such that L =
{x ∈ X | ∃w : R(x, w) = 1}. A non-interactive proof system Π con-
sists of algorithms Setup(1κ) producing a common reference string crs,
Proof(crs, x, w) taking a statement x ∈ X and a witness w, and outputting
a proof π, and Verify(crs, x, π) taking a statement x and a proof π, and
outputting the verification status.

We require such a proof system to be complete (i.e., all proofs for statements
in the language verify), sound (i.e., a proof for a statement outside the
language verifies only with negligible probability), and zero-knowledge
(i.e., a proof reveals no information on the witness).

Succinct Non-Interactive Arguments of Knowledge (SNARKs) are one of
such systems and of particular interest to us, as they come with small proofs
that are independent of the witness size and allow for fast verification
[Bit+12; Abd+23]. With the work of Groth [Gro16], SNARKs have been
improved in various directions. To reduce the trust assumptions necessary
for the generation of the common reference string crs, subversion-resistant
and updatable versions have been investigated [Gro+18; ARS20].

Toolsets14 including ZoKrates [ET18], arkworks15 or xJsnark [KPS18]
provide compilers to turn arbitrary programs into circuits suitable for
SNARKs or implement building blocks to help with the design of suitable
circuits.

ZoKrates offers a high-level language syntax akin to Python with static
typing. It allows to implement functions and programs that represent
statements to be proven with a Non-Interactive Zero-Knowledge Proofs
(NIZKs). Internally, the program will be represented as rank-1 constraint
systems to be consumed by bellman16 which implements Groth’s SNARKs
[Gro16].

14https://github.com/ventali/awesome-zk, accessed on 2023-09-14
15https://arkworks.rs, accessed on 2022-07-07
16https://github.com/zkcrypto/bellman, accessed on 2022-07-01

https://github.com/ventali/awesome-zk
https://arkworks.rs
https://github.com/zkcrypto/bellman


5
Research Goals

In this thesis, we improve the state of the art of both trust management
and privacy in a global context. To do so, we focus on different steps of
the identity and trust verification process.

The overall goal is a authentication and authorization system that

• uses qualified information to assess the trustworthiness of a transac-
tion and different authorities for different aspects of trust

• can be used globally in a heterogeneous world

• supports both existing and novel identity management models, and
is extensible to be adapted to new technologies and models

• provides privacy to the user

In the remainder of this chapter, we describe the goals we will aim to satisfy
in the following chapters. To better illustrate the scientific contribution,
we also discuss the challenges involved in working on those goals. Our
contribution to each challenge is described in detail in the later chapters
of this thesis.

5.1. Goal 1: Support Different Qualities of Trust
To check the trustworthiness of some digital information, a Service Provider
(SP) needs to verify if a issuer indeed issued the respective information.
Further, the SP needs to check if the issuer is qualified to issue information
of that type. To do so, the SP needs to discover information about
the issuer (qualification status, cryptographic material, metadata) and
authenticate it. Real-world electronic transactions are complex, involving
many different qualifies of trust. Hence, in this thesis, we focus on

41
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transactions that consist of multiple pieces of information, issued by
different issuers, trusted in different trust schemes.

5.1.1. Complex Transactions
When evaluating the trustworthiness of an electronic transaction, a SP
wants to get a complete picture about the transaction. Since different
trust schemes might be relevant for different aspects of trust, a SP might
want to consider trust information from different schemes instead of just
a single authority. For example, while identity-centric schemes provide
information about (legal) identities, reputation-centric schemes could
provide information about customer satisfaction ratings, and business-
centric schemes are responsible for credit ratings [BL16].

We address these challenges in this thesis by using electronic transactions
that consist of multiple attestations, for example various credentials and
certificates. Each of those attestations contributes a specific piece of trust
information. Combining them during verification then enables a holistic
trust assessment. While information about those trust aspects is coming
from inside the same trust scheme (e.g., country’s eID scheme), it might
also be issued by different schemes.

5.1.2. Setup of Trust Anchor
To automate trust verification, it is necessary to automatically discover the
required trust information. In traditional trust management systems, the
SP either already has this information (in a trust store) or knows where
to retrieve it (e.g., from a trust status list). In addition to discovering the
source of trust information itself, the SP also needs to retrieve up-to-date
cryptographic material to authenticate the trust information.

For example, in the eIDAS trust scheme, a SP needs to be aware of the
latest URL of the European List of Trusted Lists (LOTL) published by
the European Commission (EC) [Eur14]. This list is needed to assess
whether an issuer is qualified. Also, to authenticate the list, the SP needs
to retrieve (the fingerprints of) the certificates that the EC authorized to
sign its LOTL. Both information is published in non-machine readable
form in the Official Journal of the European Union.1 This information
forms the root of trust and is thus required for each scheme which is

1https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019XC0816(01)&from
=EN, accessed on 2023-02-03

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019XC0816(01)&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52019XC0816(01)&from=EN
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relevant for a SP. Thus, so far, manual effort is needed to set-up and
maintain trust information retrieval for each scheme.

In Chapter 6, we address this challenge by introducing a trust management
infrastructure based on the Domain Name System (DNS). Using this
infrastructure, a SP establishes trust in a previously unknown trust scheme
by simply configuring a single human-readable identifier. Our system then
resolves this identifier and automatically retrieves the trust anchor of the
scheme. We use the DNS Security Extensions (DNSSEC) to authenticate
the cryptographic material. Afterwards, the SP can use our system to
directly query the trust scheme, e.g., to verify whether a issues is qualified
in that trust scheme. Doing so simplifies the setup process which is
otherwise tedious to perform. This is especially the case if multiple trust
schemes are involved in the assessment of an electronic transaction, since
a separate trust anchor is needed for each scheme.

5.1.3. Different Types of Trust Schemes

When certifying the trustworthiness of a certain entity or information,
different trust schemes use different means to communicate this quality
of trust [BL16]. For example, some schemes only certify whether they
consider a certain entity trustworthy or not (boolean). Others use a
ordinal level to represent their degree of confidence, e.g., in the form of
a level of assurance they have into this fact [WKR19]. We discuss the
different types of trust schemes in more detail in Section 6.1.

A system that supports not a single but many trust schemes hence also
needs to support this heterogeneous nature of representing trust status
information. This is both the case for the trustworthiness of information
in a credential as well as trust information about an issuer/authority.
Additionally, when a trust verification process works with information
from multiple trust schemes, there is the need to also “translate” this
trust information between those schemes [Roß17].

We address this challenge within this thesis. In particular, in Chapter 7,
we enable SPs to define their own rules on the required quality of trust
in an expressive way. Further, in Section 6.3, we discuss the automated
translation of trust data between schemes of different type.
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5.1.4. Local Trust View

When a SP relies on a trust scheme to assess and certify the trustworthiness
of some information, it depends on that scheme’s understanding of trust.
Similar, as a common alternative some SPs send the attestation to a
Validation Authority (VA) for trust verification.2 In that case, the SP
depends on the VA’s perception of trust, i.e., on the trust scheme(s) that
the VA trusts.

This is a limitation of current approaches, since the rules about the
trustworthiness of data on hand are specific to the concrete SP or a
business use case. Those rules are usually not known to a scheme operator
or VA as they represent a very specific perception of trust.

To mitigate this, the SP needs to formulate their own perception of trust
for the verification of a transaction. Hence, the SP must be enabled to
define their own trust rules in an expressive way. This is not possible if
the SP has to rely on a single trust scheme, or if the software used by the
SP codifies these trust rules in its source code.

In addition to specifying rules about whether to trust an entity, the SP
also needs to specify additional rules about which transactions they accept
under what condition. For example, a merchant might require a higher
level of trust for orders of more expensive goods. Those rules are usually
even more specific to a certain business case, thus decoupling them from
the implementation is a requirement as well.

We address this challenge in Chapter 7 by introducing a expressive policy
system. Our system separates the trust and access control logic and en-
coded rules from the business logic/software. The result is a configuration
file that encodes the specific rules, a so-called “policy”.

5.2. Goal 2: Global Interoperability

A modern trust management system has to deal not only with electronic
transactions issued in the local trust scheme, but also from other trust
schemes. In our first goal, the SP trusts the scheme directly. Further, it is
likely that all system participants can agree on a format to encode data.
However, both assumptions are less likely in the global setting. Thus,

2e.g., signaturpruefung.gv.at, or trusted validators in the EU’s proposed eHealth
Network [GL23]
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as we focus on trust management in this heterogeneous environment,
additional challenges arise.

5.2.1. Global Trust Scheme Interoperability

When operating within a single trust scheme (like a country, or the EU),
there is often a single root of trust (like the government, or the EC) that
is qualified to certify information or authorize issuers. Even if there are
multiple issuers for various trust contexts (like stated above), when it
comes to legal binding of information, there is only one qualified root per
trust scheme. In contrast, in a heterogeneous setting there is no such thing
as a single root of trust. An example for this is an European customer
interacting with a Chinese online shop.

We address these challenges by introducing a trust scheme recognition
and translation system (see Section 6.3). Following this approach, a trust
scheme authority that recognizes another trust scheme can publish this
recognition using our DNS-based infrastructure. A SP can then securely
retrieve this recognition, and use it to establish trust in attestations
issued in that foreign scheme. If the two trust schemes use the same
understanding of trust, our approach is conceptually similar to eIDAS’s
Article 14 about international aspects [Eur14, Article 14]. However, we
also cover the case of trust schemes with different understandings of trust,
by introducing an automated trust translation system.

Trust Policy Aspect of Global Trust Management: An architecture that
enables the discovery and authentication of trust information from multiple
schemes is the basis for global automated trust management. To also
bring the benefits of custom trust perceptions discussed above to the
global setting, the involved policy system needs to support this scenario
as well. Additionally, some business processes might require the definition
of additional restrictions on trustworthy trust schemes. On the other
side, it is also possible that some business cases or domains allow the
translation of certain trust attributes that are not globally valid. Thus,
our automation system also needs to support the codification of rules
concerning global trust management. In Section 7.4.3, we tackle this
challenge by extending our policy system with support for trust scheme
recognitions and translations.
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5.2.2. Attestation Format Interoperability

Attestations like credentials and certificates are encoded using various
formats and schemata. A challenge of global trust management is the large
variety of formats and schemata in a heterogeneous world. A credential
issued in some trust scheme might be encoded using a different encoding
schema or even file format than a credential issued in a different scheme.
The SP needs to not only ensure the trustworthiness of some credential, but
also understand the semantics of the data encoded in the credential. But a
SP can only understand a limited set of credential schemata. To mitigate
this, the FutureID project introduces the concept of simple credential
transformers (SCTs) that can handle different types of credentials [Fut14].
But, both the SCTs as well as the policies they enforce are hardcoded in the
application, and the project does not discuss the secure and trustworthy
retrieval of additional SCT.

We tackle this challenge in Chapter 8 by introducing a generic framework
for trustworthy credential transformations. Using this framework, a SP
automatically retrieves the data needed to transform a credential into a
format and schema it can parse. Further, our framework optionally also
allows to discover and retrieve the required custom signature verification
code. Doing so, we enable SPs to keep using the access policies formulated
for some local credential schema while handling a larger set of credential
representations.

5.3. Goal 3: Extensibility

When building a framework tailored for a global context, it is impossible
to anticipate all technologies and models that are relevant today and
tomorrow. Hence, it is important to build extensibility into the system
already on the conceptual level. By introducing an open framework based
on the DNS and utilizing trust translation, we enable the extensibility for
additional trust schemes. Additionally, our policy system is extensible
to support new features, trust data sources, and transaction formats.
Further, our system is also open for additional trust models, to make it
future-proof for novel technologies and needs.
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5.3.1. Novel Models

Authorization systems rely on different trust management models. For
example, many established identity management models use centralized
(and often hierarchical) trust management models. Additionally, user
data is often stored on servers, or directly in the registry of some author-
ity. In contrast, novel identity management models like Self-Sovereign
Identity (SSI) aim to store the identity data directly on the device of
the user [Abr17]. Additionally, these novel models use data structures
like Distributed Ledgers (DLs) for trust management. It is a challenge
for automated trust verification systems to support both centralized and
distributed models, and to keep up with new developments.

In our thesis, we enable SPs to formulate trust policies for centralized (see
Section 7.4.2) and decentralized (see Section 7.4.3) trust schemes. To be
future-proof, we introduce concepts that enable the easy extensibility of
our policy system without requiring modifications to the policy language
itself. We demonstrate this approach by extending our policy system with
support for the SSI model (see Section 7.4.4).

5.3.2. Trust among Peers

Since many trust structures in the real world follow a hierarchical ap-
proach, a system using a hierarchical architecture (like in the Public
Key Infrastructure (PKI) model) is able to represent those processes in a
machine-processable way. However, some use cases use trust information
not in a hierarchical structure, but provide trust information among peers
(Web of Trust (WoT)). For example, when verifying the authenticity of a
diploma issued by a foreign institution, a university might ask another
university for their previous knowledge about this institution. This peer-to-
peer trust information can then be used by a SP to authenticate incoming
information, or to enrich existing information (from hierarchical systems)
and aiding automated decision support.

To enable trustworthy peer-to-peer information sharing in a generic way,
in Section 6.6 we discuss a system where any entity can encode and
publish (trust) information about any other entity. For this we publish
trust information on a DL. By using the WoT model, we ensure that a
SP uses only trusted information. Additionally, we connect this system
with our credential transformation system (as introduced in Chapter 8)
by publishing transformation information on InterPlanetary File System
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(IPFS) and authenticating it using the WoT on the DL.

5.4. Goal 4: Privacy
While privacy is important (and a human right), ensuring privacy in
complex systems presents a considerable challenge. Thus, privacy is a
“horizontal” goal of this thesis, concerning several aspects. It considers
the content of an electronic transaction as well as the user’s behavior. See
also Section 3.2 for a discussion of related privacy concepts.

5.4.1. Confidentiality

The retrieval and verification of trust information from trust status lists
is a tedious process [SLL13] (see also Section 5.1.2). Therefore many SPs
turn to VAs for transaction verification. This has the advantage that they
only need to send the transaction to the VA, and receive a verification
status as result. However, in sending the full transaction in plaintext to
the VA, they might reveal sensitive data to the VA [BL16], which violates
the requirement of confidentiality (cf. Section 3.2). Further, since the
transaction contains the certificates, the VA also learns about the identity
(and thus their behavior) of the transaction’s signer.

We address this challenge in Chapter 6 by removing the need to send the
transaction to a third party. Instead, we enable the SP to easily establish
trust in the transaction locally. Using our DNS-based approach, the SP
directly queries the system for the issuer’s status, and only the fingerprint
of the issuer’s certificate is send to the trust management infrastructure.

5.4.2. Integration of privacy technology into access control
systems

Authentication, authorization, and trust verification are central parts of
an access control system. The conditions for granting access in such a
system are collected in access policies. Since access conditions are often
complex, policy languages for defining policies are in use.

However, current implementations suffer from privacy issues. Users are
often in possession of credentials that certify numerous attributes. When
showing a credential to an SP, users reveal all attributes to the SP, which
is often neither desirable nor necessary to fulfill an authentication request.
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By integrating privacy-preserving technologies into the access control
process, users are enabled to only reveal a subset of the attributes, or even
prove a statement without revealing any attribute at all.

Match expressive Access Request with Access Policies: Various privacy-
enhancing/-preserving technologies exist to protect the user’s privacy,
ensure confidentiality, and sometimes even enable anonymity or pseud-
onymity. But integrating these technologies into existing access control
systems is not straightforward.

Several points need to be addressed: How should sensitive attributes be
marked hidden in a policy? Which statements on the hidden attributes
need to be revealed? How is the user informed on the statements they need
to prove? Which privacy-preserving technologies can help to overcome
these challenges while being flexible enough to preserve the expressiveness
of the policy languages?

We tackle this challenge in Chapter 9 by extending an expressive access
control system with privacy features. In our approach, existing access
control policies are re-used, requiring only minor modifications to define
which attributes need to be revealed. Our system then automatically
derives an access control flow from the policy. This effectively turns an
existing access control system into a privacy-preserving access control
system.

5.4.3. Undetectability
Trust management systems often use registries to dynamically obtain
additional data needed to authenticate attestations or form trust decisions.
Examples are revocation registries and trust status lists.

Online Registries: During the verification of an attestation the SP queries
the registry, e.g., to retrieve trust status information of the credential.
While this ensures trustworthy information, the connection from the SP
to the registry poses a privacy issue, as it leaks information about the
user’s behavior (see also Section 3.2). Additionally, the process requires
the SP to be online and the authority available, which poses a challenge
for the availability of the system. While concepts like PKI enable the
offline verification of the trustworthiness of a credential, this does not help
with revocation checks.
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Decentralized Registries: By introducing concepts like DLs, it is possible
to create decentralized registries. Instead of contacting a registry, a SP then
needs to query a node of the respective ledger, e.g., to retrieve trust status
information during the verification of a credential. This leaks information
about the user’s behavior to the DL node (or an observer). Additionally,
such a check does not work if the user is offline. Abraham et al. discuss
the offline verification of DL-based revocation information.[Abr+20].3
However, their system is limited to only the revocation use case and a
specific revocation scheme. Modifying this system for other use cases is
possible, but each additional use case requires adaptions on all of the DL’s
nodes.

We resolve these issues in Chapter 10 by extending existing ledger APIs to
support generic results that are trustworthy without directly communicat-
ing with the DL node during the interaction with a SP. By introducing a
simple query system, we enable the attestation of any data stored on the
ledger, without the need to modify the system for each use case. Further,
the results are trustworthy even in an offline setting. Our approach is
similar to Online Certificate Status Protocol (OCSP) but adapted to a
distributed architecture: We introduce attestations of the ledger’s state,
issued by ledger nodes, aggregatable into a collective attestation by all
nodes. This attestation enables a user to prove the provenance of any
DL-based data to an offline SP.

5.5. Summary
In the rest of this thesis, we address the stated research goals. Table 5.1
illustrates the chapters of our thesis and their relation to the research
goals.

3Note: The author of this thesis co-authored the publication.
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Table 5.1.: Overview of our research goals and where in our thesis we adress them.

Goal Sub-goal Contribution
1) Different Qualities of Trust Complex Transactions Chapter 6, Chapter 7

Setup of Trust Anchor Chapter 6
Different Types of Trust Schemes Chapter 6, Chapter 7
Local Trust View Chapter 7

2) Global Interoperability Global Trust Scheme Interoperability Chapter 6 (Section 6.3), Chapter 7
Attestation Format Interoperability Chapter 8

3) Extensibility Novel Models Chapter 7
Trust among Peers Chapter 6 (Section 6.6)

4) Privacy Confidentiality Chapter 6, Chapter 9
Integration of privacy technology Chapter 9
Undetectability Chapter 10
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Research Area 1 Introduction

Outlook

In this part of the thesis, we present our research in the area of Trust. Our
work in this area resulted in six scientific publications (see Section 1.2.1).
The presentation of this research area is structured into the following
three chapters:

In Chapter 6, we present our Global Trust Infrastructure. Using this
infrastructure, Service Providers (SPs) can verify the trustworthiness of
a complex electronic transaction, even if the transaction stems from a
different country (or trust scheme).

First, we introduce our publication method for trust schemes based on
the Domain Name System (DNS). In this method, trust scheme operators
use the DNS to publish information about the qualified issuers of their
trust scheme. The result of this publication is a simple and human-
readable identifier for the trust scheme. The verifier of an attestation can
directly resolve this identifier to assess the trustworthiness of an issuer. To
authenticate the trust information, we use the DNSSEC root as a global
root of trust. We then extend this trust scheme publication system beyond
a single trust scheme. In our extended method, trust scheme operators
that recognize another trust scheme publish this recognition in a machine-
readable form. For trust schemes that don’t agree on an understanding
of trust, we further allow the publication of trust translations. Using
these translations, a verifier can translate the trust data of an incoming
attestation to assess whether it considers it trustworthy. We also provide
a reference implementation and discuss our approach.

Besides our DNS-based trust publication approach, we present an altern-
ative publication method that uses a distributed ledger. We enable all
system participants to publish trust statements about each other, which
forms a web of trust. The publication of these trust statements is done in
a smart contract. This results in an open trust system, enabling use cases
that follow a peer-to-peer sharing of trust information.

In Chapter 7, we present our Trust- and Access-Policy system TPL.
SPs use this system to specify rules about their own perception of trust,
i.e., which schemes they consider trustworthy.
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The TPL system enables SPs to customize their system’s conditions
to determine an incoming transaction’s trustworthiness automatically.
The TPL system supports our novel DNS-based trust infrastructure, as
introduced in Chapter 6. As opposed to the state of the art, TPL can
be extended to work with novel trust models and trust data sources. To
demonstrate this, we extend TPL with concepts used in the Self-Sovereign
Identity (SSI) model. Doing so enables SPs to base their trust decisions
on established as well as novel models in the same transaction. Besides
the specification of such a trust policy, TPL also provides means to specify
an access policy, encoding further business logic-related rules. The TPL
system also serves as a basis for graphical policy-authoring tools. Such
tools allow non-technical domain experts to create and modify policies to
configure the system’s trust rules to their needs and local regulations.

In Chapter 8, we present our work on Credential Format Transform-
ations. To enable automated trust management on a global scale, SPs
need to be able to trust incoming transactions (as described in Chapter 6)
and understand the contents of those transactions.

In our transformation approach, trusted entities publish transformation
information describing how to transform credentials between formats (i.e.,
encoding schemas). Depending on the type of the trust scheme, those
trusted entities are either authorities qualified in the scheme or entities
trusted on a peer-to-peer basis. This transformation information is then
automatically retrieved and authenticated by SPs. Afterwards, SPs can
use the information to transform incoming credentials from a foreign
scheme’s credential format into a format they understand.



6
Towards a Global Trust Infrastructure

This chapter is based on the papers DNS-based Trust Scheme
Publication and Discovery by G. Wagner, S. Wagner, More et al.
[Wag+19] and Trust Scheme Interoperability: Connecting Hetero-
geneous Trust Schemes by More [Mor23]. Parts of the latter paper
have been copied verbatim. Additionally, parts of this chapter were
conceptualized and implemented as part of the Horizon 2020 project
LIGHTest.

Assessing the truth of received information is a crucial component of
electronic transactions. For example, to establish liability in a business
transaction, a Service Provider (SP) needs to determine the identity
of their business partner. In that regard, trust schemes are used to
support SPs in assessing the trustworthiness of the identifier of some
entity. Further, trust schemes are also used to establish trust in other
aspects of electronic transactions. To provide the SP with all required
information to assess an electronic transaction, the transaction can consist
of multiple attestations issued by different issuers. For example, a seller
of goods might be interested in the identity of prospective buyers as well
as their financial standing.

One critical step during the verification of a signed electronic transaction
is trustworthy identification, hence to establish trust in the transaction’s
signer. This is commonly done by verifying the signer’s attestation (e.g.,
certificate) and assessing the trust in the issuer who issued the attestation.
The last step is done by determining if the issuer is a member of a trusted
trust scheme. In various trust schemes such as the European Union’s (EU)
eIDAS, the trusted issuers1 are published in list form—a so-called trusted
list (see also Chapter 4).

1in eIDAS, such issuers are called (Qualified) Trust Services, operated by Qualified
Trust Service Providers (QTSPs)
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While in the EU all eIDAS-compliant verifiers of electronic transactions
are aware of the location of this European trusted list, this is not the
case for trusted lists of other trust schemes, such as those of non-member
state countries or domain-specific schemes. The same is true for the
cryptographic key material needed to authenticate the trusted list: in
eIDAS this has been elegantely solved by publishing the EU’s trust list
signing certificates in the Official Journal of the European Union.2 But,
the secure retrieval and update of those certificates remains a manual
process. Further, as the EU Journal acts as a legal root of trust, the
verifier needs to authenticate it beforehand,3 which is not possible for
foreign trust schemes without prior trust relationship.

In addition to discovering and authenticating foreign trust schemes, it
is necessary to ensure the other trust schemes can actually be trusted.
This is especially a challenge if the other trust scheme uses a different
understanding of trust.

In this chapter, we introduce a trust management architecture which
enables a verifier to discover and retrieve required trust information
automatically from various sources by using the Domain Name System
(DNS). Doing so, users need to only configure the DNS identifier of the
schemes they directly trust, freeing the users from manually configuring
trust information and cryptographic material. This is especially crucial if
a user in a single transaction relies on multiple trust schemes for different
qualities of trust, which would otherwise multiply the setup costs. Our
approach further allows the verification of attestations issued in foreign
trust schemes. We use the DNSSEC’s global root of trust to automatically
authenticate the retrieved trust information without requiring tedious
management of cryptographic keys.

Chapter 6 Goals:

We discuss the overall goals of this thesis in Chapter 5. In this chapter,
we focus on Goals 1, 2, and 3. In specific, we tackle the following aspects:

• from Goal 1: Complex Transactions, Setup of Trust Anchor, Different
Types of Trust Schemes

• from Goal 2: Global Trust Scheme Interoperability

• from Goal 3: Trust among Peers
2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.0

1.ENG
3https://eur-lex.europa.eu/content/help/oj/authenticity-eOJ.html

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://eur-lex.europa.eu/content/help/oj/authenticity-eOJ.html
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Chapter 6 Outline:

We start the chapter with a conceptual introduction to trust schemes
(Section 6.1). In this section, we also introduce the relevant actors and
describe the three types of trust schemes.

In Section 6.2, we present our first contribution: a DNS-based architec-
ture to enable the publication and automated discovery of trust scheme
information. We extend this architecture in Section 6.3 with a method
to recognize foreign trust schemes; furthermore, we present a system to
translate trust data between the scheme-specific structure and semantics
of different trust schemes. We provide an implementation in Section 6.4.
In Section 6.5, we evaluate and discuss our approach and state ideas for
future work.

As an alternative to the DNS-based trust scheme publication, in Section 6.6
we discuss the publication of trust scheme information using a distributed
ledger.

6.1. On Trust Schemes
Trust schemes help entities to automatically make trust decisions about
electronic transactions they receive. To do so, trust schemes consist of
legal regulations, technical standards, organizations, and infrastructure.

6.1.1. Actors

On a technical level, trust schemes are used to authenticate attestations.
An attestation is a signed document containing some claims about the
holder. For example, the document is called a certificate if it attests
the binding between the user’s name and their public key (e.g., X.509
certificate). Or, it is called assertion or credential if it contains identity
attributes about the holder directly used to authenticate at a service (e.g.,
Security Assertion Markup Language (SAML) assertions, W3C Verifiable
Credentials (VCs)).

A simplified trust scheme consists of the following actors, also shown in
Figure 6.1:

• Holder: the user in possession of some attestation, which they
present to the verifier or use to sign some data.
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• Verifier: a component that is typically operated by each SP. It
assesses the authenticity of incoming attestation by checking if the
attestation was issued by a trustworthy issuer. The verifier relies on
the trustworthiness of the data in the attestation and is thus also
called “relying party”.

• Issuer: the entity that attests the holder’s attributes after checking
them. To do so, the issuer signs the holder’s claims. This results in
an attestation, which the issuer sends to the holder. For example,
in the eIDAS qualified signature use case, an issuer is called “trust
service”.

• Authority: the entity that authorizes some issuer to issue attest-
ations, commonly the operator of a trust scheme. Depending on
the trust model, authorities are either directly authorized, or they
receive their authorization from some other authority. The authority
on top of this authorization chain is called root of trust and must
be trusted by all entities in a trust scheme.

An issuer is considered trustworthy by the verifier if it is qualified in a
trust scheme that the verifier trusts. I.e., if it is authorized by an authority
of that scheme. The trusted scheme and other trust requirements are
configured in the verifier’s trust policy. Additionally, the verifier checks
if the attestation values match other business logic-specific rules. To do
so, it evaluates the values of the attestation against the verifier’s access
policy.

6.1.2. Types of trust schemes

A trust scheme is, among other things, characterized by the requirements
on how to acquire a qualified attestation. For example, a trust scheme
might require that holders need to prove their identity in person, and use
secure hardware to store their credentials. Another scheme could support
remote identity verification and require no specific storage hardware.
Trust schemes can thus be categorized by those requirements and how the
fulfillment of these requirements is encoded. Following this, Wagner et al.
describe three types of trust schemes [WKR19]:

Boolean trust schemes only allow attestations that fulfill all require-
ments. In that case, the mere existence of a (qualified) signature on the
attestation is enough to certify that the attestation fulfills all requirements
of the trust scheme.
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Holder A Verifier B (�)

Scheme A Authority (¤) Scheme B Authority (¤)

authorize

issue ��

show ��

�:
trusts scheme B
...

Figure 6.1.: Global trust management actors and their relationship.
Verifier B does not trust Issuer A authorized in the untrusted
trust scheme A.

Ordinal trust schemes differentiate between different types of attesta-
tions depending on the degree of trust they can achieve. This differenti-
ation is represented in the form of a numeric level, such as the Level of
Assurance (LoA) a verifier can have about the received information. By
stating that an attestation has a certain level, an issuer certifies that the
specific requirements for that level are fulfilled. Verifiers can then specify
the required level in their policy.

Tuple-based trust schemes are an even more flexible approach to
differentiate the level of trust. This flexibility is achieved by directly
publishing the complete list of requirements of the trust scheme, and
specifying which are fulfilled by a certain attestation in the form of key-
value pairs. In the simplest form, each value is a boolean but can also be
a ordinal level or a string.

For ordinal and tuple-based schemes, the level or tuples can be part of
the attestation document, e.g., the certificate or assertion. In some trust
schemes, the information is instead part of the issuer’s authorization. For
example, in a scheme using trusted lists, it can be part of the issuer’s
trust list entry.
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6.1.3. Example: eIDAS Trust Scheme Verification

Inside the EU, to verify if an incoming attestation (e.g., certificate used
to sign a PDF file) has been issued by a qualified issuer, a verifier uses
the trust scheme specified by the eIDAS regulation (see Section 4.1). The
verifier first loads and verifies the List of eIDAS Trusted Lists (LOTL)
provided by the European Commission. It then uses one of the signing
certificates it previously retrieved from the EU’s Journal to authenticate
the list. Afterwards, the verifier uses the LOTL to discover, load, and verify
the Trusted List of the respective member state of the issuer. Using this
country list, the verifier ensures that it lists the issuer of the attestation as
a qualified trust service. This process determines whether the attestation
is qualified, trustworthy, and thereby legally binding.4 Since all trusted
lists are published publicly on the web in Extensible Markup Language
(XML) form, and XML Advanced Electronic Signature (XAdES) are used
to authenticate them, this process can be automated. But, this is only
possible if the location of the LOTL (the trust root) and the certificate
used to sign it is known to the verifier.

6.2. DNS-based Trust Scheme Publication and
Discovery

To check the trustworthiness of an incoming attestation, a SP uses an
automated trust verifier. To know if the attestation has any legal value,
the verifier must check if it was issued by a qualified issuer. An issuer
is qualified with respect to a certain trust scheme if it is a member of
that trust scheme, i.e., if the issuer is authorized by that trust scheme’s
authority.

Additionally, the verifier needs to assess the confidence it can have in the
information provided in the attestation. For a certificate that binds a
cryptographic key to a (legal) identity, this means how sure the verifier
can be about the identity of the holder that signed the incoming document.
The possible degree of confidence depends on the type of the trust scheme.
For example, the trustworthiness of the identity is determined by factors
such as how the holder needed to prove their identity (at enrollment), e.g.,

4The requirements for qualified electronic signatures involve further points, e.g., that
the signature must be created by a qualified signature creation device (QSCD)
[Eur14, Article 32 and Annex I].
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remote or in-person. Other factors are the type of information known
about the holder and how the credential is stored and managed.

In this part of the thesis, we enable trust scheme operators to publish
trust scheme information. Further, we enable verifiers to retrieve this
information securely and to use it to assess the trustworthiness of incoming
attestations automatically. By doing so, we demonstrate how the DNS can
be used to publish trust scheme information, either replacing or enriching
the established trusted list approach. Further, we show how the global
agreement on a single root of trust in DNSSEC could be used to facilitate
a global trust management system.

Phase 1 Trust Scheme Publication:

We enable trust scheme operators to publish trust scheme information
using the DNS. By doing so, they provide information about the issuers
that are a member of their scheme. Depending on its type, a trust
scheme can also characterize the trustworthiness of attestations issued
by its members. Our system ensures the authenticity of the published
information by signing it using the DNS Security Extensions (DNSSEC).

Using a DNS domain name for publication results in a simple and human-
readable identifier for each trust scheme and issuer. Since a trust scheme
identifier is “resolvable” (using DNS), it can directly be used by all
participants and other trust schemes to discover trust information relevant
to this scheme. Besides pointing to trust information, the DNS records
also contain digital certificates which are used to authenticate the trust
information.

Phase 2 Trust Scheme Discovery:

During the verification of an attestation, the published trust scheme
information can then be discovered, retrieved, and authenticated. This
enables a verifier to automatically check the trust scheme membership
of the attestation’s issuer. Further, the verifier can use the information
about the quality of the attestation and compare it with the SP’s trust
policy.

While this system can be used to authenticate attestations issued by the
scheme the verifier directly trusts; it also forms the basis for the verification
of attestations issued in a foreign trust scheme, introduced in Section 6.3
below.
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Figure 6.2.: Example trust path for a published trust scheme.

6.2.1. Trust Scheme Information
Trust scheme information is the set of issuers that are a member of the
trust scheme, thus qualified to issue qualified information in that scheme.
This member set can be published in the form of a list.5 This list further
contains additional information about the individual scheme members.
The additional information depends on the type of the trust scheme.
For example, for ordinal schemes, each list entry may contain a specific
(ordinal) level (if this level is not stored directly in the issuer’s certificate).
Correspondingly, for tuple-based schemes, the scheme membership is
characterized by the values of a set of tuples. The set of tuples is defined by
the trust scheme, and for each member, the scheme operator assigns values
to all of those tuples, depending on which requirements the individual
issuer does (not) fulfill.

6.2.2. Publication Process
Encoding of scheme information: A trust scheme operator uses its
governance framework to determine the list of issuers that are members of
its trust scheme. The operator then encodes this list in machine-readable
form and signs it using its certificate.

5This list is commonly called Trusted List (eIDAS), Trust Status List (Kantara
Initiative), or Trust Service Status List (FutureTrust) project.
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Additionally, the list also contains some data about the list itself. Most
importantly, it specifies the time period in which it is valid.

Publication of scheme information: The trust scheme operator then
publishes the list file on a public server and makes it available using
a network protocol understood by all parties (i.e., Hypertext Transfer
Protocol (HTTP)). It then performs the publication by publishing in the
DNS a pointer to the list. This is done by operating a DNSSEC-enabled
DNS nameserver for the DNS zone representing the scheme’s identifier.
The publication is done in the form of a Uniform Resource Identifier (URI)
record at the DNS name of the scheme. For example, the operator of
the “Example.com” scheme operates a DNS nameserver at example.com.
The operator is also in possession of the DNSSEC private key of this
DNS zone. A URI record at _scheme._trust.example.com then points
to the (HTTP) location of the published list. Additionally, the operator
publishes its certificate in a TSLA record at the same DNS identifier. URI
and TLSA records are signed using the DNSSEC key of the zone. This
DNSSEC signature delegates the trust from DNS to the signed list.

As an additional shortcut, ordinal trust schemes can optionally publish a
pointer to a (signed) sub-list containing all entries of a certain level. For
example, a pointer to the list with all entries of level 3 could be published
at _level3._scheme._trust.example.com. After doing so, the trust
scheme information can be discovered and authenticated by any verifier
using solely the (DNS) scheme identifier. The result of a trust scheme
publication is a DNS zone, as shown in Listing 6.1. The chain from the
verifier to the attestation forms a trust path, as shown in Figure 6.3.

Adding and revoking issuers: If the trust information of a scheme
changes, the scheme operator re-issues a new list and publishes it at
the same (HTTP) location or a different one requiring an update of the
corresponding DNS records as well. This update is needed if the set of
qualified issuers changes or if the level or tuples of one of the issuers
changes. In the same way, a trust scheme operator can revoke a trust
scheme membership by removing the entry of the corresponding issuer
from the trust scheme information and re-publishing the list. Since any
previously published list remains valid, the effectivity of the revocation
depends on how often verifiers update their cached lists. An adversary
capable of injecting an old list into a verifier could hide the revocation of
an issuer until the list’s expiry date. The same is true for DNS records6

6e.g., using DNS hijacking or DNS (cache) poisoning
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_scheme._trust.example.com. IN URI 1 1 https://tspa.example.com/trust-list.xml
_scheme._trust.example.com. IN TLSA 3 1 2 <cert...>

_scheme._trust.example.com. IN RRSIG URI 13 4 10 20240501000000 20180501000000
22222 example.com. <signature...>↪→

_scheme._trust.example.com. IN RRSIG TLSA 13 4 11 20240501000000 20180501000000
22222 example.com. <signature...>↪→

example.com. IN DNSKEY 256 3 13 <key_22222 data>
example.com. IN RRSIG DNSKEY 13 2 8640 20240501000000 20111001000000

11111 example.com. <signature...>↪→

example.com. IN DNSKEY 257 3 13 <key_11111 data>

Listing 6.1.: Example DNS records of a scheme publication of the
example.com scheme. TTL fields omitted for clarity. DNSSEC
setup: Key 22222 (ZSK) signs the zone (RRSIG records for the
URI and TSLA records), while key 1111 (KSK) signs the ZSK’s
record. Key 1111 is, in turn, signed by the .com zone (in its
zonefile).

with a not-yet-expired signature (in the RRSIG record).7 Depending
on the scheme’s structure and governance model, the revocation speed
could be improved by requiring issuers to revoke their certificates, using
standard X.509 revocation mechanisms.

Directly publishing trust scheme information in DNS: An alternat-
ive to publishing a pointer to the trust scheme information in the DNS is
to directly publish the set of trust scheme members in the DNS. The DNS
names for the URI records of individual issuers are formed by prepending
the identifier of the issuer certificate (i.e., fingerprint) to the identifier of the
trust scheme. Additionally, a TSLA record with the issuer’s certificate is
published alongside the URI record at the same location. For example, the
URI record at <fingerprint>._level3._scheme._trust.example.com
resolves directly to the trust information of the corresponding issuer certi-
ficate. Additionally, the existence of a (valid) TSLA record at that DNS
name is enough to prove the issuer’s trust scheme membership. Since the
TLSA record contains the issuer’s certificate, it also provides all informa-
tion needed to verify that membership cryptographically. This approach
makes most sense for boolean and ordinal trust schemes. Since the length

7RRSIG records have an expiry date independent of its TTL value, see [Are+05b,
section 3.1.5] and [Are+05a, section 8.1].
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of DNS names is limited,8 the encoding of tuples into DNS identifiers is not
possible. Further, this approach complicates caching of trust information
by verifiers. Thus, it makes only sense for trust schemes where the set of
qualified issuers changes frequently.

6.2.3. Trust Scheme Membership Claim
An issuer is a member of one or more trust schemes. To inform a verifier
about this membership is the purpose of a trust scheme membership claim.
This claim is represented by the (DNS) identifier of the trust scheme.

There are two methods to provide this claim to the verifier: Using a
direct trust scheme membership claim, the issuer adds the scheme’s
identifier directly into its certificate. Alternatively, the issuer can also
use an indirect trust scheme membership claim. In that case, the
issuer certificate contains the (DNS) identifier of the issuer and not of the
scheme. This claim is added to the issuer’s certificate as X.509 extension
Subject Alternative Name, or directly in the holder’s attestation as Issuer
Alternative Name [Coo+08, Sections 4.2.1.6 and 4.2.1.7]. At the stated
DNS identifier, the issuer publishes the scheme membership claim(s) in
the DNS. This publication is done by operating a DNSSEC-enabled DNS
nameserver in the same way as described above. The (indirect) claim
publication happens in the form of a PTR record, pointing at the scheme
identifier of the trust scheme. For example, Listing 6.2 shows the DNS
zone of Exampleissuer claiming membership in the example.com scheme.

_scheme._trust.exampleissuer.com. IN PTR example.com.
_scheme._trust.exampleissuer.com. IN RRSIG PTR 13 4 10 20260501000000

20200501000000 33333
exampleissuer.com. <signature...>

↪→
↪→

Listing 6.2.: Example DNS records of an indirect trust scheme mem-
bership claim. The records are signed using exampleissuer.com’s
zone signing key (ZSK). TTL fields and DNSSEC records omitted
for clarity.

An advantage of the indirect membership claim is that it is more flexible,
e.g., when the scheme memberships of an issuer change after its certificate

8limit for each label: 63 bytes, for the full DNS name: 255 bytes [Moc87b].
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was issued. An additional advantage of the indirect approach is that it
only uses existing X.509 extensions. As this approach is more generic, the
rest of this chapter uses indirect membership claims.

6.2.4. Discovery and Verification Process
When a verifier receives an attestation, it uses the published data to
verify it. To assess whether the issuer of the attestation is qualified, it
first extracts the issuer (DNS) identifier from the attestation (e.g., from
the issuer certificate’s Subject Alternative Name). It then resolves the
identifier using DNS, retrieving PTR records with one or more trust
scheme membership claims. As part of this DNS query, the verifier uses its
configured DNSSEC root signing key and the DNSSEC signature chain to
verify the signatures on the DNS records and checks if they are still valid.
Next, it loads its trust policy to retrieve the list of identifiers of schemes
it trusts. Using this list, the verifier checks if the issuer’s membership
claim is for a trusted scheme. If the scheme is trusted, the verifier directly
proceeds. Otherwise, it first tries to establish trust in that scheme by
using a trust recognition (see Section 6.3).

As the membership claim alone is not proof of scheme membership, the
verifier proceeds with verifying the claim. To do so, it first “discovers” the
trust scheme information by querying the DNS for the scheme identifier,
asking for the URI record and corresponding TLSA record. Again, it
checks the DNSSEC signatures on these records. Using the URI record,
the verifier retrieves the trust information of the scheme, commonly using
an HTTP request to the referenced webserver. Since this list is signed,
the verifier then uses the certificate from the TLSA record to authenticate
the list. Doing so, it verifies that this list was indeed issued by the trusted
trust scheme. Further, it checks if the expiry date of the list is in the
future. If this is the case, it proceeds by iterating on the list to extract the
entry corresponding to the attestation issuer. If an entry for the issuer in
question exists, the verifier considers the issuer qualified. It then concludes
the process by using the issuer certificate extracted from the list to verify
the signature on the attestation.
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Figure 6.3.: Example trust scheme publication and trust scheme
membership claim published in DNS. (1) The verifier extracts
the claim from the attestation and uses it to discover the scheme
information. (2) It then authenticates the scheme information
using DNSSEC, and compares the scheme’s identifier to the one
configured in the trust policy. (3) The now-authenticated scheme
information is then used to check if the issuer is qualified. (4)
The certificate of the now-qualified issuer is then used to verify
the attestation.
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6.3. Connecting Heterogeneous Trust Schemes

Verifying a trust scheme membership is a challenge if the issuer is qualified
in a different trust scheme than the one the verifier trusts. Since there is no
common root of trust between the schemes, the trust scheme authorizing
the issuer is not known to the verifier. Thus, the verifier has no information
about the trustworthiness of that issuer. Consequentially, the attestation
has no value for the verifier.

In some cases, there is a legal relationship between two trust schemes, e.g.,
a treaty between two countries, or some other form of recognition. In that
case, the verifier needs to learn about this relationship. This allows the
verifier to assess the trustworthiness of the foreign issuer, but it is currently
a manual process that involves non-machine-readable information.

Trust Recognition: We enable trust scheme operators who recognize
other schemes as equivalent to publish this recognition in the form of a
trust recognition. The trust recognition can later be retrieved by a verifier.
Using this recognition, the verifier can automatically authenticate the
issuer of information, even if this information was issued in a different
trust scheme.

Different understanding of trust: Since different legislations and use
cases require a different confidence in a holder’s identity, the verifier needs
to ensure that the provided attestation meets their requirements. To do
so, the verifier acquires the level of trust of the attestation and compares
it with their local trust policy. The structure and semantics of this level of
trust depend on the individual trust scheme. For their local trust scheme,
either the verifier is aware of the trust levels of attestations issued by
qualified issuers. Or, there is no need to know since the trust scheme
already ensures compliance with the local laws which the verifier needs to
follow. But, this is not the case if the attestation was issued in a different
trust scheme.

Trust Translation: For situations where trust schemes are not equi-
valent, we provide a system to translate information about the quality
of identities between schemes. We do so by attaching trust translation
data to the published recognition. This translation data can be used by
a verifier to automatically map trust data into a trust scheme type and
semantics it understands. This enables a verifier to seamlessly work with
trust information from trust schemes with a different understanding of
trustworthiness.
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6.3.1. Concept

When a verifier receives an attestation as part of some electronic transac-
tion, it first authenticates the issuer of this attestation. To do so, it checks
if this issuer was authorized by an authority of the local trust scheme (see
Section 6.2). If this check succeeds, the verifier can directly check whether
the attestation satisfies the service’s trust policy. But: this authentication
check fails if the attestation was signed by an issuer not authorized by
one of the authorities in this trust scheme.

In that case, the verifier checks if there is a trust recognition from the
issuer’s trust scheme to the verifier’s trust scheme. If this recognition
exists, the verifier retrieves it and checks if the issuer is qualified in the
other trust scheme. Further, if the schemes are not equivalent, the verifier
retrieves the trust translation and translates the trust data into its own
scheme.

Scheme B (target)

Authority B
Translation

A➔B

Scheme A (source)

authorize

Authority A

Issuer A
direct
trust

indirect
trust

Verifier

issue/sign

recognize

show
Attestation:

Certificate Alice

Issuer Trust Policy
Trust: B

Figure 6.4.: Example trust path between two trust schemes. Trust
scheme B recognizes trust scheme A and also publishes a transla-
tion from A to B. The verifier in scheme B can use this trust path
to authenticate a attestation issued in scheme A, and execute
the translation to understand trust data from scheme A.
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6.3.2. Roles of trust schemes in a translation

We name the roles of the involved trust schemes from the perspective of
the translation process.

• Source scheme is the trust scheme of the holder and their issuer.
It is responsible for defining the authorities that, in turn, authorize
issuers qualified in that scheme. One of these issuers issued the
attestation we are going to verify. The verifier does not trust the
source scheme directly.

• Target scheme is the trust scheme of the verifier. The verifier
trusts the target scheme, and uses its infrastructure to retrieve the
list of qualified issuers. Additionally, the target scheme is responsible
for publishing the trust recognition and translation data.

For example, if country B—operating the target scheme—recognizes the
trust scheme of some other country A, it publishes a trust translation
from that trust scheme A to its own trust scheme B. From the verifier’s
perspective, the “target scheme” is the home scheme, and the “source
scheme” is the foreign scheme.

6.3.3. Trust Recognition

If a trust scheme operator recognizes some other trust scheme, it publishes
this statement in form of a trust recognition. A recognition is published
by the target of the recognition since it represents the authority (the root
of trust) for its own scheme. It is thus already trusted by all verifiers
operating in its scheme. In contrast, the authority of the source scheme
is not trusted by a verifier; thus the verifier does not trust a recognition
published by that other scheme.

For example, if scheme B recognizes scheme A, this recognition requires a
translation from scheme A to scheme B (A→B). This recognition is hence
published by scheme B, as illustrated in Figure 6.4.

The recognition of a trust scheme by another trust scheme leads to a
trust model with cross certifications [Gas+89; Per99], as both scheme
authorities are the respective root of trust in their scheme. This removes
the need for a root of trust shared by all trust schemes.

If the two schemes are equivalent, the sole existence of the recognition
is already enough for a verifier in the target scheme to work with an
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attestation issued in the source scheme. It can use the now-trusted
authorities of the other scheme to authenticate the attestation’s issuer.
If the schemes are not equivalent, the verifier first needs to translate the
trust data of the attestation and its issuer.

6.3.4. Trust Data

The trust data of an attestation specifies the requirements for trust scheme
entry. Those are the requirements that the holder needs to fulfill to receive
the attestation. Trust data is either directly attached to that attestation
or can be retrieved by the verifier from the trust scheme. The structure of
the trust data depends on the type of the trust scheme (see Section 6.1).
Trust data is encoded in different ways depending on the type of scheme
and the relevant trust scheme requirements. Also, the semantics of trust
data depends on the scheme. But, a verifier needs the trust data in an
encoding, and with semantics it understands. Therefore trust data is the
subject of the trust translation process.

6.3.5. Translation Data

The trust translation is a function to translate trust data between two
schemes. The goal is to translate trust data of the source scheme’s type
and semantics to the target scheme’s type and semantics.

The operator of the target scheme is trusted by all verifiers inside that
scheme. Since it manages legal recognition between countries, it also
defines this trust data mapping and encodes it in the form of trust transla-
tion data. The trust scheme then publishes this translation data alongside
the corresponding recognition. As also shown in Figure 6.5, the input to
the translate function are trust data (issued by the source scheme) and
the corresponding translation data (published by the target scheme). The
output of the function is trust data (understood by entities in the target
scheme).

For publication, the translation function is formulated as a table. Table 6.1
illustrates a trust translation data table for a simple translation. The first
column lists all possible trust scheme requirement combinations as trust
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Attestation:

Certificate Alice

Target Scheme

Translation Data

IDverify: true
HSM: true
MFA:      true
...

Trust Data:
Example Issuer A

Source Scheme

Level:  3

Trust Data:
Example Issuer A

translate()

Issuer

Figure 6.5.: Example trust data translation process. The trust data
describing Alice’s attestation is translated from a ordinal scheme
into a tuple based scheme.

data for the incoming attestation.9 In the case of the example, the source
scheme is an ordinal scheme, so this list consists of all possible levels. The
second column maps this levels to a set of tuples of the target scheme.

In the Table 6.1 example, the highest level, 3, requires that an issuer
verifies the holder’s legal identity (IDverify), and that the holder uses an
Hardware Security Module (HSM) to store the attestation key material
(HSM ), and has performed multi-factor authentication (MFA). An example
translation executing this translation data is shown in Figure 6.5. This
table is then encoded in machine-readable form (e.g., as XML or JavaScript
Object Notation (JSON)) and published by the trust scheme. Since trust
translation data published by a trust scheme authority can be used by all
entities operating in that trust scheme, the translation data needs to be
encoded in a data format understood by all entities in the scheme.

There is only a mapping to some combinations of tuples since other
9If the source scheme is a tuple based scheme, in this naive approach the table can

become quite large. In that case it makes sense to only specify the tuples and their
values required to reach a certain level, and leave all other tuples open. This is also
the case for mapping a tuple based scheme into another tuple based scheme.
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Table 6.1.: Example trust translation data for a translation from
an ordinal scheme into a simple tuple-based scheme.

Source Scheme Target Scheme
IDverify: true

Level: 1 HSM: false
MFA: false
IDverify: true

Level: 2 HSM: false
MFA: true
IDverify: true

Level: 3 HSM: true
MFA: true

... ...

combinations of requirements are not possible in the source scheme. For
example, in the source scheme, there are no attestations issued without
identity verification. The table for the other direction of the translation
(formulated and published by source scheme) might look different. And,
multiple combinations of tuples could be mapped to the same level.

Special case: equivalent schemes If the semantic meaning of all
levels/tuples is the same in both schemes, the schemes can be considered
equivalent. In that case, the translation function is the identity map,
and thus the trust recognition can be published without trust translation
data.10 But: the translation of trust data between two schemes of the
same type is not automatically an identity map, as different levels could
have different semantics in each scheme.

6.3.6. Recognition and Translation Process
Our approach can be split into three phases:

1. Initially, two trust scheme operators negotiate a legal agreement
and compare their trust schemes. They also agree on a translation
between their schemes and formulate this translation of trust data.

10However, to prevent an adversary from hiding a translation, it is important to also
publish a statement about the non-existence of a translation. A verifier can then
consider two schemes equivalent only if this information exists.
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2. The trust scheme operators encode the trust recognition and trans-
lation in machine-readable form and publish it.

3. Later, a verifier receives an electronic transaction.

To be able to verify it, the verifier retrieves the trust recognition and
translation data, and executes the translation.

Phase 1 Legal Agreement:

The preparation of a trust recognition starts with a negotiation phase
between the two trust scheme operators (e.g., two governments). The
details of this phase depend on legal circumstances but might include a
feasibility study of the planned recognition. Further, a self-assessment
of the individual trust schemes could be conducted. Next, the scheme
operators need to ensure technical compatibility between their schemes.
While agreeing on a technical standard to encode attestations is preferable,
we discuss alternatives to this limitation in Section 6.5.4.

Mapping Trust Scheme Data: To formulate a trust translation, the scheme
operators then compare the characteristics of their schemes. For example,
they both map the characteristics of their schemes to a unified data model.
A possible data model for mapping trust schemes was established by
Wagner et al. [WKR19]. Or, they use a process like the eIDAS Article 14
Mutual Recognition check-list, which maps the 3rd party requirements to
the eIDAS requirements [CEF21]. The result of this process is a mapping
between the two schemes. If there is a direct mapping between all tuples
of the two schemes (i.e., the mapping is the identity map), they can
be considered equivalent. In that case, only the recognition itself—and
no translation data—is needed. If the schemes are not equivalent, a
mapping between different trust data is created. The scheme operators
then individually formulate their mapping as trust translation data.

Mutual or Unilateral Recognition: While these steps describe a mutual
recognition of two schemes, it is also possible that only one scheme
recognizes the other. Similarly, it is possible that the schemes mutually
recognize each other, but use different translation rules. Thus, the outcome
of the first phase might differ between the two schemes, but the following
phases are performed in the same way.

Phase 2 Publication:

After formulating their trust recognition, the trust scheme operators
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publish it (using the DNS-based infrastructure introduced in Section 6.2).
They also encode and publish the trust translation data. Each trust
scheme individually performs this phase. The encoded translation data is
a machine-readable document in a format that all involved trust schemes
understand.

In our implementation, we serialize this table as a JSON file. This file
contains a list of trust-recognition JSON objects, where each line in
the table is represented by one object in the list.11

The operator then signs this JSON document to ensure its integrity and
authenticity. It uses the same key it uses for signing the trust scheme’s
list of authorities.

Next, the trust scheme operator publishes the recognition and translation
data at a DNS name known by all entities in the trust scheme. The domain
name is constructed by combining the DNS identifiers of both schemes
(i.e., <source-scheme>._translation.<target-scheme>). At this location,
the (target) scheme publishes a PTR record pointing to the DNS identifier
of the source scheme. Additionally, it publishes a URI record with a
HTTP link to the trust translation data document.12 Both the URI and
the PTR records are signed using the DNSSEC key of the scheme’s zone.
The signing key used by the (target) scheme to sign the translation data
is already published in a TLSA record at _scheme._trust.example.com
(see Section 6.2.2). The result of a translation publication process is a
DNS zone, as shown in Listing 6.3. Together with the publications from
the previous section, this results in a trust path like shown in Figure 6.6.

Phase 3 Verification & Trust Translation:

The verification process starts when a service provider receives an attesta-
tion as part of an electronic transaction.

Local Trust Scheme: To ensure the authenticity of the attestation, the
verifier first extracts the information about its issuer. It uses the issuers’
trust scheme membership claim to assess if the issuer is indeed a member
of its local scheme. If the verifier can verify the membership claim, it
proceeds with verifying the signatures of the trust chain and executes
11An example trust recognition encoded as JSON is shown in Listing 6.4 below.
12If the schemes are equivalent, no URI record is needed. In that case, NSEC3 records

are used to prove the nonexistence of the URI record (see Section 4.4). This prevents
an adversary from hiding a translation, which would “promote” a source scheme to
be equivalent even if it is not.
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pof.org._translation._trust.example.com. IN PTR pof.org.
pof.org._translation._trust.example.com. IN URI 10

https://tta.example.com/pof.org.json↪→

pof.org._translation._trust.example.com. IN RRSIG PTR 13 6 11 20240501000000
20180501000000 22222 example.com.
<signature...>

↪→
↪→

pof.org._translation._trust.example.com. IN RRSIG URI 13 6 10 20240501000000
20180501000000 22222 example.com.
<signature...>

↪→
↪→

Listing 6.3.: Example DNS records of a trust recognition and trans-
lation published by the example.com scheme (recognizing the
pof.org scheme). The records are signed using example.com’s
zone signing key (ZSK). TTL fields and DNSSEC records omitted
for clarity.

the service provider’s trust policy. Otherwise, the verifier proceeds to the
trust recognition process.

Discover Trust Recognition: The verifier uses the issuer’s trust scheme
membership claim to query its own trust scheme authority for a trust
recognition to the specified scheme. In that case, the verifier queries for a
PTR record at the recognition domain name constructed from the DNS
identifiers of its trusted scheme (target scheme) and the schemes from
the issuer’s claim (source scheme), i.e., source-scheme._translation.target-
scheme. If such recognition exists, the verifier attempts to also retrieve
the corresponding trust translation data from the scheme. This is done
by querying the URI record at the same domain name and verifying
the DNSSEC record. If such a URI record does not exist,13 there is no
translation mapping between the schemes, and hence the schemes are
equivalent. If a URI record exists, the verifier uses its value to retrieve
the translation data (the signed JSON published in phase 2). It then
authenticates this data using the public key of the target scheme (retrieved
from the scheme’s TLSA record). If the signature verification succeeds, the
foreign scheme is trusted. Using this recognition, the verifier established
trust in the foreign scheme’s authority.

Verify (Foreign) Trust Scheme Membership: The verifier then queries the
DNS of the now trusted authority of the foreign scheme for the issuer’s
certificate. This is done in the same way as with a local issuer (see
13the nonexistence of a DNS record is verified using the NSEC3 record of the zone

[Lau+08], see Section 4.4.
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Figure 6.6.: Example trust recognition and translation published
in DNS. The verifier trusts Scheme B (on the right), but the
transaction it received was issued in Scheme A (on the left). Since
Scheme B recognizes Scheme A, it publishes this recognition and
the corresponding translation data.

Section 6.2.2). If the authority returns the correct certificate, the issuer’s
membership claim is confirmed. Next, the verifier uses the retrieved issuer
certificate to verify the signature on the attestation. If the schemes are
not equivalent, the verifier executes the retrieved trust translation.

Execute Trust Translation: The verifier retrieves the trust data of the
attestation, either directly from the attestation (see Section 6.3.4), or
using the (now trusted) source scheme. This trust data uses the source
scheme’s format and also follows its semantics. Thus, the verifier cannot
directly use it in its trust policy and needs to translate it. The translation
is performed by applying the translate function on the trust data with the
previously retrieved trust translation data. The translation process is a
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simple table lookup: the verifier iterates over the list of trust recognitions
and compares each source scheme specification (i.e., the left side of the
translation data table) with the trust data at hand. If it finds a match, it
returns the corresponding target scheme specification (i.e., the right side
of the table).

The result of this translation process is trust data in the format of the
target scheme. Since the verifier now understands the data, it can load
its trust policy and executes it on the trust data, thereby assess the
trustworthiness of the attestation.

6.4. Reference Implementation

This section is based on the author’s work in the Horizon 2020
project LIGHTest. The described software was developed in collab-
oration with other members of the LIGHTest consortium.

We implement our trust publication and recognition approach to study
it further. This implementation also demonstrates the feasibility of our
approach. Building on the abovementioned concepts, we develop sev-
eral software components to assist trust scheme operators, issuers, and
verifiers.14

Trust Scheme Publication Authority (TSPA)
We provide a tool to support trust scheme operators with the publication
and maintenance of their trust scheme information. This tool can also be
used by issuers to publish their trust scheme membership claim. The TSPA
provides a high-level API offering the (re-)publishing of trust schemes. It
takes the desired trust scheme identifier and a trust scheme information file
as input and publishes it in the DNS while abstracting away the technical
concepts of the publication. To do so, the TSPA connects to both a
webserver and a DNS API. We also provide this DNS API to manage
trust information published in signed DNS zones. Once configured, the
DNS API takes trust scheme publications or membership claims as input
and creates signed zonefiles for the NSD nameserver.15

14The source code of all software components is available on GitHub: https://github.c
om/H2020LIGHTest

15https://www.nlnetlabs.nl/projects/nsd/about/, accessed on 2023-03-13

https://github.com/H2020LIGHTest
https://github.com/H2020LIGHTest
https://www.nlnetlabs.nl/projects/nsd/about/
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Automated Trust Verifier (ATV)
We implement the Automated Trust Verifier (ATV) tool to automatically
discover, retrieve, and authenticate published trust scheme information.
Further, we extend the ATV to retrieve trust recognitions and execute
trust translations. To enable verifiers to define which trust scheme they
trust, we develop and integrate the flexible and extensible trust policy
system TPL, which we introduce in Chapter 7 below.

In addition to a REST API and a Java library, the ATV also provides
a GUI. The ATV GUI takes as input an electronic transaction and a
TPL trust policy, as shown in the screenshot in Figure 6.7. An electronic
transaction is a file with an XML, Cryptographic Message Syntax (CMS),
or Portable Document Format (PDF) advanced electronic signature.16

The ATV automatically parses the transaction, retrieves all required trust
information, and executes the trust policy. Additionally, the ATV verifies
all DNSSEC from the root zone down to the TSPA zone. By doing so, it
automatically establishes a trust path from the verifier to the transaction
(see also example scheme publications in Figure 6.3 and Figure 6.6).

Trust Translations
A trust scheme operator publishes recognitions of other schemes in the
same way they also publish the scheme information itself. If the schemes
are not equivalent, they also publish translation data. Both recognition
and translation are published using the DNS tool mentioned above. In our
implementation, we serialize the trust translation data table as a JSON
file. An example of trust translation data encoded as JSON is shown in
Listing 6.4.

In our implementation, the service provider uses the verification tool
ATV to authenticate attestations. Additionally, the SP uses the trust
policy system TPL to codify its rules about trust conditions, such as
which trust scheme it considers trustworthy (see Chapter 7). The trusted
scheme is specified by its DNS identifier. In the trust policy, the SP also
activates trust translations. An example TPL trust policy with enabled
trust translation is shown in Listing 6.5.

16XML as XAdES, PDF as PDF Advanced Electronic Signature (PAdES), or a ZIP
container in Associated Signature Container (ASiC) format.
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Figure 6.7.: Screenshot of the Automated Trust Verifier (ATV) tool.
The ATV executes the SP’s trust policy and uses the DNS-based
trust scheme publication system to authenticate an order. The
order is stored in an ASiC container signed by a supermarket.
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{
"trust-recognitions": [
{

"source": {
"name": "pof.org",
"provider": "Pumpkin Seed Oil Federation",
"level": "3"

},
"target": {
"name": "example.com",
"provider": "exampleCom Scheme",
"params": [
{
"value": "ServiceTypeIdentifier",
"name": "ETSI/CA/QC"

}
]

},
"name": "pof-to-example-esig",
"creation-date": "2023-02-13",
"activation-date": "2023-02-23",
"status": "active",
"expiry-date": "2023-12-24"

},
// further trust-recognition objects

]
}

Listing 6.4.: Example (unsigned) trust translation data published
by the operator of the exampleCom trustscheme.
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accept(Transaction) :-
extract(Transaction, signer_cert, Certificate),
check(Certificate, format, x509cert),
extract(Certificate, pubKey, PK),
verify_signature(Transaction, PK),
check_qualified(Certificate).

check_qualified(Certificate) :-
extract(Certificate, issuer, IssuerCert),
% look for path from trusted exampleCom scheme
% (logical OR: only one `trust` predicate needs to succeed)
trust(IssuerCert, exampleCom, TrustData),
% apply policy to (now-local) trust data
verify_service_type(TrustData),

extract(TrustData, pubKey, PkIss),
verify_signature(Certificate, PkIss).

trust(IssuerCert, TrustedScheme, TrustData) :-
% → Attempt to establish trust with local trust scheme
% extract trust scheme membership claim
extract(IssuerCert, trustScheme, Claim),
% retrieve issuer's trust data from local scheme
trustlist(Claim, IssuerCert, TrustData),
% check if scheme of issuer is trusted
trustscheme(Claim, TrustedScheme).

trust(IssuerCert, TrustedScheme, TrustedData) :-
% → Attempt to establish trust using recognition/translation

% extract trust scheme membership claim
extract(IssuerCert, trustScheme, Claim),

% encode DNS identifier for translation
encode(Claim, TrustedScheme, TTAdomain),

% query translation DNS and retrieve translation data
lookup(TTAdomain, TranslationData),

% retrieve issuer's trust data from foreign scheme
trustlist(Claim, IssuerCert, TrustData),

% execute translation on issuer's trust data
translate(TranslationData, TrustData, TrustedData).

Listing 6.5.: Example TPL trust policy including an explicit trust
translation to target scheme exampleCom.
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6.5. Evaluation & Discussion

In this section, we first present a functional and a qualitative evaluation
of our approach. We then briefly discuss legal aspects. We further
discuss several additional aspects of our approach, namely the questions of
translating attestation formats and whether transitive trust recognitions
are a good idea. We further suggest the use of NAPTR records as an
alternative to URI records.

6.5.1. Proof of Concept Demonstrator

Our implementation shows the technical feasibility of the DNS-based trust
scheme publication approach.

Pumpkin Seed Oil Federation: In order to test our implementation,
together with LIGHTest project partners, we built a testbed using the
components described in Section 6.4 above.17 To simulate a trust scheme,
we configured a TSPA on a cloud server alongside a DNSSEC-enabled
DNS nameserver and used it to publish several qualified issuers. Further,
we used this method to simulate two additional trust schemes of different
type. In specific, we simulated a “Pumpkin Oil Federation” (POF) trust
scheme and a Turkish trust scheme. To evaluate our trust recognition
approach, we published several trust translations. Additionally, we took
the existing trusted list of eIDAS and imported it into our system as
additional (simulated) trust scheme we publish. This allowed us to use
real trust services (i.e., the Austrian mobile phone signature) to generate
test attestations.

We then set up a SP using an ATV instance on a laptop, which we
configured to trust the POF scheme as well as schemes recognized by it.
Using this ATV, we successfully verified several test attestations, which
we created using issuers qualified in all three schemes.

Further, the approach was evaluated in the context of the PEPPOL
eProcurement large scale pilot [Dou+19]. Additionally, it was discussed
in the context of IOT and smart cities [Omo+19].

17https://github.com/H2020LIGHTest/PumpkinSeedOilDemo

https://github.com/H2020LIGHTest/PumpkinSeedOilDemo
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6.5.2. Evaluation

In this chapter, we focused on Goals 1, 2, and 3 of our overall goals (see
Chapter 5). In specific, we consider the following aspects:

• Aspects of Goal 1: Complex Transactions, Setup of Trust Anchor,
Different Types of Trust Schemes

• Aspects of Goal 2: Global Trust Scheme Interoperability

• Aspects of Goal 3: Trust among Peers

We now discuss the evaluation of our approach against the tackled aspects:

Complex Transactions: The first goal was to facilitate different percep-
tions of trust for different SPs and use cases. For this it is necessary
that individual trust schemes are not aggregated by a bigger scheme or
validation authority, but instead published directly and in a queryable way.
This has been achieved by enabling different trust schemes of different
type to be published in the DNS. Those trust schemes contribute different
perspectives to the trust assessment of a electronic transaction consisting
of multiple attestations. It is optionally possible to also implement the
subsidiarity principle, delegating the publication of a part of the trust
scheme to another entity. To customize the trust requirements to their
individual understanding of trust, SPs formulate trust policies that define
a set of trusted schemes for specific transactions (see Chapter 7).

Setup of Trust Anchor: To authenticate electronic transactions, a SP
always needs information about qualified issuers and a way to establish
trust in this information (trust anchor). This is a tedious, manual process,
which needs to be performed for each trust scheme that the SP trusts
directly. Hence, the goal was to simplify the process and replace it with
a single cryptographic trust anchor for all trust schemes. This has been
achieved by using the (established) root of trust of DNSSEC as global
trust anchor.

To set up a verifier that uses our DNS-based trust discovery approach, a
SP needs to configure the human-readable DNS-identifier of the scheme
it trusts. This is the only step that is needed for each trust scheme that
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the SP directly trusts.18 Additionally, as a pre-requisite, the SP needs
to provide a DNS and DNSSEC setup on its machine. This involves the
network address of at least one DNS resolver, as well as the DNS’ root key
signing key (KSK).19 The retrieval of the root KSK and the identifiers
of the trusted schemes requires a secure channel, although the KSK is
often shipped with the operating system20 and the scheme identifier is
human-readable and can thus be more easily acquired. As an alternative,
the SP can send the transactions and its policy to an ATV operated by
an entity the SP trusts (this is similar to an eIDAS validation authority).

Different Types of Trust Schemes: In addition to supporting the use
of multiple trust schemes in a single transaction, the goal was to support
trust schemes of different types. After analyzing the three types of
trust schemes (see Section 6.1), we design our trust scheme publication
approach accordingly. We support the publication of boolean and ordinal
trust schemes directly in the DNS, while we point to trust list entries
for tuple based schemes. Using this information, SPs can use the trust
characteristics of the individual schemes to define their policies. Further,
we extended our approach by trust translations. This enables that SPs
define their trust policy for a local scheme type, and then translate
transactions from different schemes using our system (see Section 7.4.3).

Global Trust Scheme Interoperability: As we focus on trust management
in a heterogeneous environment, our next goal was to take indirect trust
in a scheme into account. For example, when a SP directly trusts scheme
A, and scheme A recognizes scheme B, the SP can establish trust in
transactions issued in scheme B.

In our approach, trust schemes that recognize other trust schemes pub-
lish this information in the DNS (see Section 6.3). By means of trust
translations, it is further possible that trust schemes with different un-
derstandings of trust recognize each other. This is done by publishing a
mapping between the scheme’s trust data alongside the recognition. By
18We note that this trust-anchor approch could be adapted to the TSL world by

publishing a global LOTL at a well-known location and using the established
DNSSEC root of trust to sign this global TSL. The challenges on the root governance
remain (see below).

19https://www.iana.org/dnssec/files, e.g., using https://github.com/iana-org/get-trust-a
nchor

20See also the discussion on direct vs. indirect trust in Chapter 2.

https://www.iana.org/dnssec/files
https://github.com/iana-org/get-trust-anchor
https://github.com/iana-org/get-trust-anchor
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doing so, it is also possible to map between trust schemes of different
type, e.g., from a boolean scheme into an ordinal scheme (see Section 6.1).
While our approach uses the DNS for the publication and discovery, the
underlying trust translation concept is technology-neutral. As such, it
can also be used with other trust scheme models, e.g., with eIDAS, by
publishing translation data in the TSL.

Related Work: The eIDAS regulation’s Article 14 establishes a legal
framework for the recognition of foreign trust schemes [Eur14, Article
14]. It establishes that if there is a mutual recognition agreement (MRA)
between the EU and the third country, any trust service recognized in the
third country shall be recognized as legally equivalent to qualified trust
services provided in the EU. Article 14 is concerned with the recognition of
trust services and does not consider, e.g., electronic identity schemes. On
a technical level, this has been piloted by the Pilot for the International
Compatibility of Trust Services.21 The pilot imposes the requirement that
third countries publish a trust list conforming to ETSI TS 119 612 . To
simulate the recognition, the pilot publishes a simulated EU trust list22 that
contains a pointer to the trust list of the (simulated) third country. In turn,
the third country adds a pointer to the eIDAS LOTL in its list.23 Both
pointers are published alongside a set of MRA Information24 to describe
the recognition. This information can for example be used to restrict the
recognition to a specific type of trust service (e.g., qualified certificates for
electronic seals). The MRA information can also map identifiers used in
the trust list, but it is limited to technical identifiers and direct mappings
(cf. Section 6.3.5). To facilitate the technical validation of Article 14,
the EU also publishes a (fictional) “Third Countries List of Trusted Lists
(LOTL)” recognizing the (real) trust list of Ukraine.25

Trust among Peers: While our trust publication approach discussed
so far follows a hierarchical model (with side delegations [Per99]), our
last goal was to also consider a peer-to-peer trust approach. We discuss
our Web of Trust (WoT)-based trust publication system in Section 6.6
below. This system is not intended to provide qualified information, but
instead facilitate the easy and trustworthy exchange of trust knowledge

21https://eidas.ec.europa.eu/efda/intl-pilot/#/screen/home/demo, accessed on 2023-06-21
22https://eidas.ec.europa.eu/intl-comp/tl/lotl.xml, accessed on 2023-06-21
23https://eidas.ec.europa.eu/intl-comp/tl/tc-tl.xml, accessed on 2023-06-21
24http://ec.europa.eu/tools/lotl/mra/schema/v2, accessed on 2023-06-22
25https://eidas.ec.europa.eu/efda/tl-browser/#/screen/tc-tl, accessed on 2023-06-21

https://eidas.ec.europa.eu/efda/intl-pilot/#/screen/home/demo
https://eidas.ec.europa.eu/intl-comp/tl/lotl.xml
https://eidas.ec.europa.eu/intl-comp/tl/tc-tl.xml
http://ec.europa.eu/tools/lotl/mra/schema/v2
https://eidas.ec.europa.eu/efda/tl-browser/#/screen/tc-tl
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between peers. Hence, it can be used to enrich the qualified information
from our DNS-based system, or used separately. As this system allows the
trustworthy publication of any information (not just trust information), it
also serves as a potential basis for the trusted credential transformation
framework introduced in Chapter 8.

6.5.3. Need for a Legal Framework

Any country that already operates its own trust scheme and is interested
in implementing a trust recognition approach needs to establish a legal
framework for trust scheme recognition. In addition to the mapping of
trust data between schemes, rules for the operation of trust infrastructure
are needed. These rules also need to define the liability of involved parties
for damage caused intentionally or negligently. In the context of eIDAS, the
regulation defines a liability model in Articles 11 (for electronic identities)
and Article 13 (for trust services, such as electronic signatures) [Eur14].

Legal Aspects of our Approach: In contrast to eIDAS, there is no
existing legal model for our approach, and establishing such a model for a
global system remains a challenge.

Our reference implementation builds on the LIGHTest system, which uses
the hierarchical DNS for trust data publication. While the DNS has a
governance structure, it only defines rules and processes about the man-
agement and publication of standard DNS records [ITU05; IANb]. Using
the DNS as a trust scheme root of trust has different legal implications. It
thus requires that the government of the trust scheme establishes a legal
framework that defines the liability of the country registry to establish
trust in the Country Code Top-Level Domain (ccTLD). Additionally, an
adaption to the governance structure of the DNS root zone establishing
a similar liability model is needed. It is unclear who could create the
legal basis for such a governance model. We note though that the most
important requirement at the root level is that each ccTLD is delegated
to an institution authorized by the respective country (operating the
trust scheme). This requirement is not different than in the existing DNS
governance model overseen by IANA [IANa], but has different implications
and thus might require a different liability model.
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Alternative Legal Frameworks: As an alternative, or for the time until
interested governments establish such a legal framework, the LIGHTest
project proposes an alternative framework directly between the involved
parties [GJ19a; GJ19b].

We note that it is not always necessary that a government legally imple-
ments our approach for trust translations to provide value. For example,
even if the government of Fantasyland is currently not interested in recog-
nizing the eIDAS trust schemes, the business trade union of Fantasyland
could nevertheless use its own trust scheme to publish a trust recognition to
eIDAS. Since this recognition is not published by the government, it does
not have legal value. However, it still reduces the transaction overhead
between the two schemes by supplying local business with trustworthy
information.

6.5.4. Attestation Format
In its basic form, our trust translation approach assumes that both trust
schemes use the same standard for encoding attestations. This is required
because the verifier needs to be able to parse and understand the attesta-
tion and the certificate of the signer. Since X.509 is an established standard
that is commonly used by trust schemes, this is a realistic assumption
[Hou+99; WKR19]. If another standard is used, but both schemes are
using the same format (e.g., VCs), our approach can be applied as well.

If one scheme uses a different attestation format than the other, there
is a lack of understanding of the attestation, which is an issue for trust
verification. In that case, the verifier needs to translate the attestation as
well. To do so requires translation information about how to transform
the attestation from one format into the other. We introduce an approach
to translate attestations between different file formats and schemas in
Chapter 8. Additionally, the verifier requires information about how to
verify the signature on the attestation in its original format since trans-
forming it breaks the signature. This attestation translation information
could be provided by the same party that publishes the trust translation
information.

6.5.5. Transitive Trust Recognitions?
Trust transitivity is a property of trust where an entity accepts the trust
assumptions of another entity about a third entity (if A trusts B and B
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trusts C, then A trusts C). In the case of trust recognitions, this means
that a verifier would not only trust a recognized scheme, but also all
other schemes recognized by that scheme. While transitive recognitions—
and even translations—are technically possible with our approach, we
note that trust recognition transitivity is more complicated regarding
recognition agreements. Just following along a transitive recognition can
lead to unintentional trust in an issuer, i.e., trust that is not covered by
the recognition agreement [CH96]. Since our approach explicitly resolves
each trust recognition, is does not transitively resolve the recognitions of
a recognized scheme.

An alternative to trust recognition transitivity is to negotiate a agreement
with the third scheme and add a explicit trust recognition to that scheme.
In the example above, scheme A could negotiate an agreement with scheme
C directly and publish that recognition. A middle course is to allow trust
recognition transitivity up to a certain depth of transitivity, i.e., limit
the length of the path in the trust graph. This enables that A trusts all
schemes recognized by scheme B, such as scheme C, but does thereby not
trust schemes recognized by scheme C. Doing so requires adding a shared
understanding of trust recognitions to the trust agreement.

6.5.6. NAPTR Records

In our architecture, we use URI records for the publication of trust scheme
information in the DNS. These URI records map a DNS identifier to an
(HTTPS) URI. An alternative to URI records for doing so are NAPTR
resource records [MD00]. NAPTR records are commonly used in internet
telephony to map telephone numbers to Session Initiation Protocol (SIP)
addresses.26 In contrast to a URI record, the response to a NAPTR
query does not contain the final URI directly. Instead, the nameserver
returns a regular expression. The verifier then uses this regular expression
to construct the desired URI. Thus, NAPTR records could be used for
the publication shortcut discussed in Section 6.2.2 without the need to
explicitly publish separate records for each scheme level or issuer. While
NAPTR records provide more flexibility, they also introduce complexity
and were hence not used in our implementation.

An example NAPTR record is shown in Listing 6.6. The regular expression
in this record informs the verifier about how to transfer a scheme identifier
26RFC 3401 generalizes NAPTR records further into the Dynamic Delegation Discovery

System framework [Mea02].
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into the URI of the corresponding trust scheme information. The U flag
tells the verifier that the output of the regular expression field is a URI
that the verifier can query directly.

_scheme._trust.exampl.com. IN NAPTR 100 10 "U" "trustscheme"
"!^.*$!https://tspa.example.com/scheme/\1.xml!" .↪→

Listing 6.6.: Example alternative trust scheme publication using
a NAPTR record. TTL field and DNSSEC records omitted for
clarity.

6.5.7. Related Work

Automated Trust Verification: The Public Key Infrastructure (PKI)
based on X.509 certificates (PKIX)—called web PKI —is the predomin-
ant authentication model on the internet [Hou+99; Dur+13]. In this
hierarchical model, the list of Certificate Authorities (CAs)—the trust
store—forms the root for trust chains binding an entity’s identifier (e.g.,
domain name) to its cryptographic keys. Root CAs are only considered
trustworthy if a client trusts them directly, which is usually achieved
by bundling a set of root certificates with the operating system or web
browser. While the current web PKI serves its purpose, it is limited to
establishing the binding between a domain name and a cryptographic key.

The EU’s eIDAS regulation and technical specification [Eur14] establishes
a trust infrastructure between the EU’s member states along with legal
liabilities but is currently limited to Europe. eIDAS uses its own PKI,
where each EU member state defines a Trust (Service) Status List (TSL),
i.e., a list of all trusted certificate authorities (trust services) [SLL13]. The
locations of those lists are in turn published by the European commission
in the form of a LOTL, forming eIDAS’ root of trust.27

Galal and Lehmann discuss the EU’s eHealth Network specification (for
the verification of COVID certificates). The EU specification proposes to
outsource the complicated validation of certificates to trusted validation
services, i.e., a trusted third party (TTP) [GL23]. Galal et al. further
propose a privacy-preserving alternative to the EU’s system (PP-COV )
27https://ec.europa.eu/tools/lotl/eu-lotl.xml

https://ec.europa.eu/tools/lotl/eu-lotl.xml
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using non-interactive zero-knowledge proofs [GL23, Section 4]. The goal of
these projects is to hide the user’s attributes from the verifier (but reveal
them to the validation authority). In contrast, we focus on revealing the
(required) attributes only to the verifier without the need for a TTP.

The Trust over IP project combines DIDs, VCs and related technology and
governance models into a stack compatible with our approach [Dav+19].

Trust Scheme Interoperability: Article 14 of the eIDAS regulation
provides a framework for the recognition of trust services operated by
trust service providers from a country outside of the EU (the “3rd country”)
[Eur14, Article 14]. This is relevant if the EU and the 3rd country have
reached a legal agreement about that recognition. Article 14 covers only
trust services (e.g., signatures and seals), but not electronic identities. A
prerequisite for mutual recognition under Article 14 is that the 3rd country
publishes a trusted list.28 If recognized, a pointer to the 3rd country list
would be included in the EU’s LOTL, next to pointers to EU member
states’ lists. ETSI TR 103 684 is a technical report that studies existing
trust schemes around the world and their possible mutual recognition in
the EU [ETS20].

Wagner et al. propose a unified data model by consolidating the data
models of nine existing trust schemes [WKR19]. It can be used to describe
trust schemes in a unified way, and to compare different schemes to simplify
mutual recognition.

The Futuretrust project [Hüh+16] proposed the concept of a global Trust
Status List (gTSL) [Fut19a] to extend the EU’s TSLs to institutions
from outside the EU. This gTSL is hosted on a Distributed Ledger (DL);
access is provided using a smart contract and write access is limited
to governmental authorities. The stated goal is “[. . . ] to manage and
provide information related to qualified trust service providers across
European Member States and beyond, extending the current TSL model
[. . . ]” [Fut17]. Additionally, it “[. . . ] aims at decentralizing the current
distribution scheme in order to improve its resilience aspects as well as
manageability”. Sellung et al. discuss further academic and industry
perspectives of trust scheme interoperability [Sel+19, Section 8].

28The “CEF Pilot for the International Compatibility of Trust Services” recommends
[CEF21] that this trusted list follows the same standard as the EU’s lists (ETSI TS
119 612) [ETS16]. See also https://eidas.ec.europa.eu/efda/intl-pilot

https://eidas.ec.europa.eu/efda/intl-pilot
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FutureID and LIGHTest: In the FutureID project, Bruegger et al. con-
sider a TSL-based infrastructure not scalable and thus unsuited for the
implementation of a larger (e.g., global) trust infrastructure. They also
state that trust lists and local trust stores “put a significant burden on
relying parties who need to securely provision trust data (e.g., certificates
or trust lists), keep them up to date, and query them for individual trust
decisions” [BÖ14]. To mitigate this limitations, they propose to instead
use the DNS with security extension (DNSSEC) as the base for a trust
infrastructure.

The LIGHTest project29 built on this ideas to develop a lightweight, global
trust infrastructure, which enables automatic validation of trust based on
the policy of a verifier [BL16; Roß17; Wag+19]. As such, LIGHTest utilizes
the DNS with its existing global infrastructure, organization, governance
and security standards. LIGHTest uses DNS to publish information
protected by DNSSEC. It enables trust scheme operators to publish
information (trust data) about their trust schemes. Further, LIGHTest
provides an ATV which is capable of automated discovery and retrieval of
the published trust information [Wag+19]. To enable verifiers to define
which scheme they trust, LIGHTest uses the trust policy system TPL
[Möd+19]. The author of this thesis participated in the LIGHTest project;
Chapter 6 and Chapter 7 of this thesis build on ideas of the project.

Digital Object Architecture and X.1255: An alternative to DNS as
identifier resolution system is the Digital Object Architecture (DOA) and
its Handle system [KC88; KW06]. DOA consists of a set of components
and protocols to facilitate the resolution of identifiers (handles) to the
location of digital objects. Governance of DOA identifier registration,
policy development, and operation is managed by the Digital Object
Architecture (DONA) Foundation [Ala19, Section 9.3]. An example system
based on DOA is the Digital Object Identifier (DOI) system well-known
in, e.g., academic publishing. Similar to DNS, a DOA handle is structured
in a hierarchical way,30 allowing for delegation in the resolution process.
Kim provides a more detailed comparison of DNS and DOA [Kim19].
DOA provides origin authenticity of the resolved objects by means of a
built-in PKI, where the root key is stored in the root handle (0.0/0.0)
29https://www.lightest.eu, accessed on 2023-02-13
30A DOA handle has the form prefix/suffix (e.g., 10.3030/700321), forming a left-

to-right hierarchy where the prefix is globally unique. A DNS identifier forms a
right-to-left hierarchy (e.g., iaik.tugraz.at).

https://www.lightest.eu
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and manged by the DONA Foundation. This root key is used to sign
the handle records of keys lower in the hierarchy, similar to DNSSEC
[Ala19, Section 8.6]. However, there is no documented mechanism on the
management of the root key, nor how it could be rolled out in the future
[Ala19, Section 8.6]. Based on DOA, the International Telecommunication
Union (ITU) published recommendation X.1255 “to provide an open
architecture framework in which identity management information can be
discovered” [ITU13]. X.1255 is a framework that enables the discovery of
identity information and its provenance [ITU13, Section 1]; as such, it can
act as an alternative publishing system for our approach (cf. Section 6.2.4
and Section 6.3.6).

6.6. Alternative Approach using a Distributed Ledger

This section is based on the paper Trust Me If You Can: Trusted
Transformation Between (JSON) Schemas to Support Global Au-
thentication of Education Credentials by More, Grassberger et al.
[Mor+21]. Parts of this paper has been copied verbatim. The
prototype was implemented by our student Peter Grassberger.

In this section, we discuss an alternative approach to mitigate the problem
stated above by introducing a decentralized and open system to automat-
ically verify the legitimacy of issuers. This infrastructure can also serve
as a basis for the credential transformation system introduced later in
Chapter 8.

We use a DL to enable all involved entities to publish trust information
about credential issuers. This effectively forms a WoT, a directed graph
of certifications published by institutions based on previous manual eval-
uations. This web of trust further enables verifiers to define their own
policies on how to automatically evaluate a (previously unknown) entity’s
legitimacy.

In contrast to the architecture discussed in the previous sections, in this
approach, trust in a credential issuer is not established by an authority.
Instead, entities participating in the system issue statements about their
trustworthiness about each other. Thus, the role of an authority does
not exist here. Instead, entities that are issuing trust statements about
other entities are acting in the role of a so-called “trust certifier”. Since
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the system works on a peer-to-peer basis, an entity can act in several
roles. Correspondingly, entities that act as trust certifiers can also act as
credential issuers or verifiers.

A trust certifier is usually attesting the trustworthiness of a credential
issuer. The meaning of trustworthiness depends on the context of the
system. For example, in the education diploma use case, universities issue
digital diplomas in the form of credentials to students (holders). During
a student mobility process, those credentials are then received by other
universities. The receiving universities need to assess if the issuer of the
diploma credential is a legitimate university—usually accredited by some
government body. In an international context, assessing this legitimacy is
a non-trivial task. In our approach, the universities can rely on statements
published by their (trusted) peers. While such peer-issued information has
no direct legal value, it can assist universities in their assessment process.

6.6.1. Concept

To help verifiers in their assessment process, entities in our system provide
statements on the trustworthiness and legitimacy of others—so called
“trust statements”.

A Trust Statement is a tuple of the form ⟨C, LL, LC, u, σ, t, I⟩, where C
is the trust certifier, I is the credential issuer being certified, LL ∈ [−1, 1]
is the level of legitimacy C asserts for I, LC ∈ [−1, 1] is the level of
confidence C has in the statements published by I, u is the identifier of
what I is trusted to issue (e.g., type of credential), and t is a timestamp.
Additionally, σ is a cryptographic assurance (digital signature) of the
certificate’s integrity and authenticity. Depending on the system chosen,
levels are allowed to be any real value in the interval, one of several discrete
values, or even just in {−1, 0, 1} (with 1 denoting the highest trust level).

The Web of Trust is a collection of trust statements.

A Web of Trust is a directed, edge-labeled multigraph W = ⟨V, E⟩,
where the vertices V are entities (e.g., educational institutions) and the
edges E represent trust statements, which are consequently labeled as
stated in the definition above. For edge labels in a web of trust, the trust
certifier–credential issuer parameters have to match the edge’s vertices,
i. e. for each edge e from v1 to v2, the corresponding label of e has to
be of the form ⟨v1, LL, LC, u, σ, t, v2⟩. An example web of trust graph is
visualized in Figure 6.8.
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The WoT graph is maintained by a Registry, a data structure on the
DL. The registry is implemented as a smart contract (SC). This results
in a single point of contact for trust certifiers and verifiers who want to
access or append to either graph by calling the get or add function on the
contract, respectively.

Uni A

Uni B Uni C

Fake D Fake E

credential V C

credential V CF ake

eA→B

eB→C

eD→B

eD→E

issue V C

issue V CF ake

trust

Figure 6.8.: Example Web of Trust with Uni A acting as verifier,
Uni B acting as trust certifier, and Uni C acting as legitimate
issuer of a credential V C. A credential V CF ake issued by Fake
E is not trusted by Uni A, because there is neither a trust path
from Uni A to Fake E nor to Fake D. The edge eD→B was issued
by Fake D and is not part of the (directed) trust path.

6.6.2. Process

The first step needed to check a credential is to verify the legitimacy of
the credential and its issuer using information published by other entities.

Our approach can be split into four phases: 1. Initially, the registry and its
smart contract are established on the DL. 2. The trust certifier identifies
a credential issuer and publishes the certification information using the
registry. 3. The issuer issues a credential to a holder. 4. The holder shows
the credential to a verifier, who uses the information stored in the registry
to verify the credential and the credential issuer’s legitimacy. These phases
are also visualized in Figure 6.9.
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Phase 1 Setup:

The registry smart contract provides a single point to create or update
(add) and retrieve (get) the lists of edges (trust statements). Additionally,
holders, credential issuers, and trust certifiers create their own key pairs
and use them to establish their self-sovereign identities, i.e. derive and
register Decentralized Identifiers (DIDs). These DIDs with corresponding
DID documents are registered on the DL to enable other parties to retrieve
the respective public keys for signature verification processes.

Phase 2 Issue Trust Statement:

After having assessed an issuer’s legitimacy (e.g., in a previously performed
tedious manual process or using other channels), a trust certifier may
share its decision with others by issuing a trust statement. Based on the
previous assessment, the certifier chooses an appropriate level of legitimacy
LL, which may also be a negative value if the certifier concludes that the
credential issuer is an illegitimate institution.31 In addition, it adds the
level of confidence in trust statements published by the issuer, represented
by LC. The certifier publishes its assessment as a trust statement on the
registry by setting the variables on the edge accordingly, using its private
key to sign the edge. It publishes the signed edge by calling the smart
contract through one of the DL’s nodes. This creates a new edge in the
registry’s WoT graph pointing from the trust certifier to the prospective
credential issuer.

Phase 2.1 Revoke Trust Statement:

As trust in other institutions changes and faulty entries occur, trust
certifiers are able to add a new edge between the same vertices (but with
a more recent timestamp) to the WoT, thereby altering the stated level of
legitimacy or other attributes. Based on the timestamps, verifiers select
edges at points in time based on the received credential and their trust
policy.

Phase 3 Issue Credential:

At some point, a (prospective) holder requests a credential, for example,
for some accomplishment. Initially, the holder proves their identity using
their DID and private key. Then, the issuer loads the holder’s attributes
31Optionally, the certifier adds a textual description of its decision to help a verifier

with its assessment.
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from its information system, encodes those attributes using a suitable
JSON schema, and places the encoded attributes into a credential. The
credential issuer finally signs the credential and hands it to the requesting
holder for their own use. Optionally, the issuer registers the credential by
publishing its fingerprint on a separate smart contract.32 This is done to
prove the existence of the credential at a certain point in (ledger) time.
Otherwise, the issuing of credentials is independent of the registry, and a
DL may only be needed to retrieve the holder’s public key via its DID for
authentication.

Phase 4 Verify Credential:

When a holder presents a credential to a verifier, the verifier needs to verify
it according to its trust policy. The verifier first retrieves the registry’s
WoT graph by calling the smart contract’s get function using a DL node.
In this graph, the verifier performs the path-finding algorithm defined in its
policy. The verifier also verifies the signature of each trust statement in the
trust paths with public keys obtained from the DL. If there are multiple
paths toward a credential issuer, the verifier’s trust policy may select
which paths are relevant. This enables different verification scenarios, such
as “Was the issuer trusted at the time the credential was issued?” and
”Is the issuer trusted right now?”.33 On the identified paths, the verifier
computes an overall “legitimacy score” and compares this score with the
policy’s requirements. Next, the verifier verifies the credential’s signature
with the public key that has been registered in the DL for the issuer’s
DID, including a revocation check by consulting the respective revocation
registry. The verifier concludes the process by checking the credential
with regard to a set of rules stated in the trust policy, such as the specific
field of study or certain grade requirements.

6.6.3. Discussion

Revocation of trust statements is an essential feature in any trust man-
agement system. In our proposed system, a trust certifier can revoke a
trust statement at any time by issuing a new one with a reduced legitim-
32However, depending on the content of the credential, the hash digest itself might

constitute PII and thus publishing it on a DL is not legally possible.
33If the signing-time is added to a credential by the issuer (i.e., the credential is not

registered on the DL, and there is no trusted timestamp), a compromise of the
issuer’s private key also destroys the trustworthiness of the issuance information. In
that case, a issued credential is never trustworthy.
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Figure 6.9.: Architecture and example dataflows of our DL-based
WoT system. University A, acting as trust certifier, adds an
edge stating its trust about University B. Later, University A,
acting as verifier, verifies a credential issued by University C. It
does so by additionally obtaining a previously registered edge
from university B to C from the registry smart-contract.

acy level—even with a negative value to explicitly declare mistrust in the
credential issuer. An issuer can also add a trust statement about itself,
enabling self-revocation. Additionally, an issuer can revoke a credential
after it has been issued, e.g., by publishing a corresponding statement to
a revocation registry, which is checked by the verifier. Checks for both
types of revocations need to be performed during credential verification
by the verifier.

Smart Contract Security: Depending on the access model of the
DL, many or even all entities can write data into the registry. Since all
information published in the registry is signed by its publisher, this is
not a problem for the authenticity of trust statements. Nevertheless, an
overfull registry could lead to performance issues during verification. To
mitigate this issue, the smart contract serving the registry can be equipped
with access control mechanisms. For example, it is possible to enforce
that an issuer can only add edges that are outgoing from its own vertex.
Preventing an attacker from adding invalid edges starting at the vertex
of a legitimate entity keeps the path-finding algorithms from having to
verify many invalid signatures to find the valid ones. Furthermore, it is
possible to only allow adding edges to trust certifiers already part of the
graph. While this keeps attackers away, it also hinders legitimate entities
from joining the graph. Thus it depends on the concrete use case which
mechanisms should be used.
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Since a smart contract is code and code could contain bugs that malicious
parties might be able to exploit [Tor+20], it is important to apply secure
software development practices when adding access control mechanisms.
This is even more important when considering that smart contracts cannot
be changed after they have been deployed on a DL [Rod+19; Rod+21].

Operational Costs: To evaluate our concept, we deployed a smart
contract that maintains a registry, which manages the graph represented
as a list of edges. The smart contract does not perform additional checks
to verify the publisher, so a verifier needs to retrieve the complete graphs
and filter out any irrelevant or invalid edges. While a public DL enables
an open system, all write operations on the ledger have a cost. In the
Ethereum context, the cost of a contract call is measured in units called
gas and depends on the required computational effort. Adding an edge
to our registry costs about 78,000 gas, worth about US$ 2 in March
2023.34 In contrast to write operations, read operations are free. As most
operations in our system are of the latter kind, the total costs are still
relatively low.

Since the costs of using a public ledger are hard to predict in advance,
private or consortium ledgers represent alternatives. In such ledgers,
members of a consortium operate all nodes of the ledger, removing the
need for an incentive system like gas. This limits the expenses to the
costs needed to host the nodes but restricts (write) access to consortium
members.

Sybil Attacks and Censorship: The existence of fake issuers issuing
(fake) credentials also make the existence of fake trust certifiers issuing
trust statements to (fake) issuers plausible. However, since such fake
certifiers are neither trusted by a verifier nor have a trust path from
the verifier to them, these (fake) trust statements do not influence a
credential’s verification (see Figure 6.8).

Although the decentralized and distributed nature of DLs provides res-
istance against censorship and denial-of-service attacks [Ale+17], a node
might still provide bogus information to a verifier. Hence a verifier needs
to establish a trust relationship with at least one node. One way of doing
this is having the verifier operate its own node. Another way is to ask
multiple or even all DL nodes to attest a certain set of edges represents the
34Computed by multiplying the gas price (https://etherscan.io/chart/gasprice) and

ether price (https://etherscan.io/chart/etherprice) using https://petertheone.github
.io/gasPriceFiat on 2023-03-21.

https://etherscan.io/chart/gasprice
https://etherscan.io/chart/etherprice
https://petertheone.github.io/gasPriceFiat
https://petertheone.github.io/gasPriceFiat
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full graph and that no edges were censored. While the first case increases
the operational effort, the latter case introduces a performance overhead.
It is thus important to balance the number of prompted nodes with use
case-specific censorship-resistance requirements. To query several nodes
of the DL, the ledger attestation system introduced in Chapter 10 can be
used.

Chapter 6 Conclusions
In this chapter, we presented the results of our work in the field of
trust management in a heterogeneous environment. We introduced our
DNS-based architecture that enables trust scheme operators to publish
information about their trust scheme. Using this published information
and our trust recognition approach, a verifier can automatically verify
attestations and transactions, regardless of origin. We extended this trust
recognition approach with trust translations, which enables the use of trust
information even if the foreign trust scheme uses a different understanding
of trust. We also presented a reference implementation of our approach
and discussed severally of its aspects. Further, we looked into novel trust
management techniques by also discussing the use of a distributed ledger
for web of trust-based trust publication. The results of the research
presented in this chapter have been published in three academic papers
[Wag+19; Mor+21; Mor23].



7
Expressive Trust- and Access-Policies

This chapter is based on the papers TPL: A Trust Policy Language
by Mödersheim, Schlichtkrull, Wagner, More et al. [Möd+19] and
Adapting the TPL Trust Policy Language for a Self-Sovereign Iden-
tity World by Alber, More, Mödersheim et al. [Alb+21]. Parts of
those papers have been copied verbatim, making this chapter a
revised version of the original papers. The introduced TPL sys-
tem was designed in collaboration with DTU Compute. The TPL
interpreter was implemented by Lukas Alber. Additionally, the
SSI extension was implemented as part of the master’s thesis of
Bernhard Zenz.

When Service Providers (SPs) receive an electronic transaction, they need
to ensure it is trustworthy before processing it further. Such an electronic
transaction are documents that are either human-readable (i.e., PDFs)
or machine-readable (e.g., XML or JSON files) with business-specific
content. To establish trust in these documents, they are accompanied by
an attestation, for example, an identity assertion or a certificate. This
attestation is cryptographically linked to the document, and issued by
a trust scheme. The SPs then uses a trust scheme it trusts to establish
trust in the transactions.

But, the specific understanding of trust—and trustworthiness—depends
on factors like country, context, and risk. Correspondingly, the rules
describing the trustworthiness of a transaction vary for different SPs and
use cases. Directly encoding these trust rules in trust management systems’
source code is possible, but this increases the effort to customize them
to an SPs needs. However, without these customizations, assessing the
trustworthiness of diverse transactions remains a manual effort. A more
flexible solution is to encode the trust rules in a separate file—a so-called
policy.
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Electronic policies support the automated processing of electronic
transactions. In this context, we differentiate between Trust Policies and
Access (Control) Policies. Trust policies enable users to define their own
conditions for trusting a transaction and mechanics for discovering trust
information needed to authenticate attestation holders. For example, an
SP might require a qualified eIDAS signature for purchases of expensive
goods. Once trust in a transaction has been established, access policies
are used to define business logic-specific acceptance criteria. A simple
example of such an access policy rule is an age check. Another example is
the limiting of offered products depending on the type of the buyer, who
was previously authenticated using the trust policy (we discuss a concrete
example of this in Section 7.6).

Introducing TPL: Our global trust management system presented in
Chapter 6 enables verifiers to encode their trust and access rules as a policy.
To do so, in this chapter we introduce TPL—our trust- and access-policy
system. TPL can represent complex policies and facilitates the discovery of
trust status information. With TPL, an SP only needs to specify the DNS
identifier (see Chapter 6) of the schemes it trusts. Information required to
check the trust scheme membership and signatures are then automatically
retrieved and verified. Further, TPL supports concepts to verify electronic
transactions issued in trust schemes other than the local scheme. Besides,
TPL can be used to (additionally) formulate access policies. Doing so
makes complicated trust assessments easily customizable.

To establish trust in electronic transactions and attestations, TPL sup-
ports classical trust management approaches like Public Key Infrastructure
(PKI)-based trust infrastructures and X.509 certificates. TPL also sup-
ports several Self-Sovereign Identity (SSI) concepts, such as resolving of
Decentralized Identifiers (DIDs), retrieval of trust information from a
Distributed Ledger (DL), and the verification of World Wide Web Consor-
tium (W3C) Verifiable Credentials. We contribute towards integrating SSI
and the interaction with a DL into a trust policy language. TPL further
enables using SSI concepts and classical trust schemes in the same policy.

Chapter 7 Goals:

We discuss the overall goals of this thesis in Chapter 5. In this chapter,
we focus on Goals 1, 2, and 3. In specific, we tackle the following aspects:

• from Goal 1: Complex Transactions, Different Types of Trust
Schemes, Local Trust View



7.1. Requirements 105

• from Goal 2: Global Trust Scheme Interoperability

• from Goal 3: Novel Models

Chapter 7 Outline:

We start the chapter with a detailed definition of requirements that our
thesis goals pose on a trust policy system (Section 7.1). In Section 7.2,
we then use these requirements to survey the state of the art.

In Section 7.3, we give a conceptual introduction of our TPL system. In
this section we present the TPL language and its syntax and semantics.
We also discuss the concept of TPL formats that enables part of TPL’s
modularity.

In Section 7.4, we present the integration of the TPL system into our global
trust management system from Chapter 6. To extend TPL’s modularity,
we introduce a extensible library of predicates which can be used to
query trust schemes from policies. We also discuss how the TPL system
can be used to verify transactions from local (Section 7.4.2) and foreign
(Section 7.4.3) trust schemes, as well as SSI credentials (Section 7.4.4).

In Section 7.5, we evaluate TPL against the requirements we previously
introduced. We also describe how non-technical users can use graphical
tools to author TPL policies. Further, we discuss the formal verification
of TPL evaluations and consider the privacy of users.

To show the flexibility of TPL, in Section 7.6 we present a case study in
which we add the TPL system to a distributed data marketplace. In doing
so, we also present a generic access control extension that can be applied
to other marketplace systems as well.

7.1. Requirements

In this section, we outline the requirements for our policy system. We
start by deriving five requirements from the overall goals considered in
this chapter (R1–R5). Additionally, we add 11 general policy language
requirements (G1–G11) from Seamons et al. and Coi et al. [Sea+02; CO08].
In the following Section 7.2, we then use those requirements to survey the
state of the art. Later in Section 7.5.1, we also use the requirements to
evaluate our own approach.
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7.1.1. Thesis Requirements

Based on the overall goals (see Chapter 5) relevant for this chapter, we
derive the following five requirements for a trust policy system.1

R1 Local Trust View: The main reason for this chapter is the need to
enable SPs to assess electronic transactions based on their own perception
of trust (Goal 1). To fulfill this requirement, we require a expressive trust
policy system for distributed trust management.

R2 Support for Trust Scheme Data and Trust Translation: To en-
able SPs to work with different qualities of trust (Goal 1) in a global
setting (Goal 2), in Chapter 6 we introduce concepts like trust scheme
memberships, trust translations and recognitions. To support local trust
views utilizing this concepts, our policy language must support them. In
specific, it needs to support a.) the use of trust scheme data discovered
from various sources, b.) the use of trust recognitions to establish trust in
foreign schemes, and c.) the possibility to specify rules on trust criteria
and the use of trust translations to work with heterogeneous trust schemes.

From the implementation perspective, our proof of concept (Section 6.4)
provides the Automated Trust Verifier (ATV) component, which enables
the interaction with the mentioned concepts. Hence, the policy system
should be integrated with the ATV component, developed in the Java
programming language.

R3 Modularity and Extensibility: To ensure that there is no need to
hardcode any policy-specific details (Goal 1), we seek that the core com-
ponents of our system are build in a modular way, allowing to extend or
replace them if needed. Core components with which our policy system is
interacting are trust schemes and transaction formats. Hence, this must
also modularize the trust scheme interface, allowing for novel models to
be added later (Goal 3).

Extensibility is also a requirement proposed by Coi et al. to allow that
the system can be updated and extended with new features [CO08].

1Note: In this thesis, we don’t use the RFC 2119 [Bra97] convention of the words
“must” and “should”.
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R4 Declarativity and Expressive Power: One goal is provide a policy
system flexible enough to represent all kinds of expressive policies (Goal
1). To provide a policy designer with the greatest flexibility possible, we
seek for a system build around a Turing-complete language. At the same
time, policies should be easy to grasp for a policy designer, and thus
semantically as easy as possible. We strive to achieve this by avoiding
complex semantic structures and negative constraints, hence formulating
all policies in a positive way only.

R5 Accountability: Policy systems deal with transactions of substantial
value, so it is crucial that there are no undefined corner cases or bugs in
the implementation. In support for Goal 1, it should thus be possible that
an independent third party to easily review a policy decision.

7.1.2. General Policy Language Requirements

To fulfill general requirements on a trust policy system, we add the criteria
from two review papers by Seamons et al. and Coi et al. [Sea+02; CO08].

G1 Well-defined semantics: The semantics (i.e., the meaning) of a
policy must be independent of the implementation (e.g., of the language
interpreter) [Sea+02]. This is an important requirement for the under-
standing of the language, but also for interoperability between different
implementations.

G2 Monotonicity: A granted request for a specific resources must also be
accepted if accompanied by additional credentials or attributes [Sea+02].
I.e., adding of new information can lead to additional permissions, but
must not result in lower privileges. Thus, the policy cannot require the
absence of information or attributes. The easiest way to achieve this is by
banishing negation from the language [Sea+02].

G3 Evidences: A trust policy system is used to establish trust in data,
and hence always deals with untrusted data. Hence, the policy system must
be able to validate incoming credentials, i.e., support signed transactions
and signature verification.
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G4 Credential combinations: The policy system must accept transac-
tions comprising of multiple credentials issued by different issuers. This
requirement also supports our goal to support complex transactions (Goal
1).

G5 Condition expressiveness: The policy system must allow policy
authors to constrain the type of credentials. Additionally, the system must
support constraints on attribute values. In this thesis we also call this
conditions access (control) policies (in contrast to trust policies). Further,
the system must allows for different trust rules depending on the value of
certain attributes.

G6 Inter-credential constraints: The policy system must support con-
strains in the attributes of two different credentials. E.g., by requiring
that a specific attribute in two credentials has the same value, those two
credentials could be linked. Additionally, the value of an attribute in a
credential can influence the constraints on attributes in another credential.

G7 Credential chains: The system must provide enough expressive power
and constructs to describe attestations that are signed by the holder of
other attestations.

G8 Transitive closure: The system must allow for credential chains of
arbitrary length. This is an extension of the credential chain requirement.
The language should also allow to constrain the length of the chain.

G9 External functions: The system must provide function to operate on
dates, numbers, etc. Additionally, it must functions to interact with other
parts of the trust management system, i.e., the ATV. This is closely linked
to the extensibility requirement, and also needed for our thesis goals, i.e.,
to interact with trust schemes and transactions. While Coi et al. describes
functions that can modify the outside world, we require functions that can
only change the state of the policy validation. This is needed to combine
functions that retrieve some data with other functions that verify or use
it. Apart from that, functions must be side-effect free w.r.t. the outside
world (to facilitate the accountability requirement). This limitation does
not concern topics like caching, logging and reporting, though.
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G10 External trust data: The policy system should support the retrieval
and processing of extra trust data in addition to the attestations provided
by the user. For example, the system introduced in Chapter 6 queries the
DNS to resolve the trust scheme membership of a credential. Additionally,
certificate status (i.e., revocation) checks are other common sources for
external trust data.

G11 Verifier requirements: Coi et al. also state several requirements for
the policy compliance checkers, i.e., the verifier component operated by
an SP [CO08, Section 3.2].

The verifier must validate the credential validity of any credential
involved in the transaction, or provide means to the policy author to do
so. Additionally, the verifier must provide means for credential chain
discovery to retrieve any credentials in a chain between two involved
credentials.

Requirements out of scope: Seamons et al. consider the verification
of credential ownership, which is not part of our goals. Additionally,
they discuss the protection of sensitive policies, which is also out of the
scope of our design goals. Nevertheless, we utilize encrypted policies in
our use-case implementation in Section 7.6. Coi et al. further propose
support for delegation and trust negotiation, which we don’t consider in
our system.

7.2. State of the Art

Based on the requirements defined in Section 7.1, we now evaluate the
state of the art of (trust) policy systems [CO08; Yai19]. Given the
architecture introduced in Figure 6.2 and the overall architecture of
systems considered by this thesis (see Chapter 2), we focus our analysis
on policy languages for distributed trust management. This has the
implication that we don’t consider languages that assume that the issuer
and verifier of an authorization token is the same entity. Hence, we
require verifiable evidence (i.e., signed attestations). Additionally, we
don’t consider languages that only support a fixed set of trusted issuers,
as this contradicts our trust scheme based approach.
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Evaluation by Coi et al.: In their paper on trust, security, and privacy
policy languages, Coi et al. evaluate 12 policy languages against 10 cri-
teria [CO08]. Since those criteria are a subset of our requirements (see
Section 7.1), we take their evaluation as basis for our state of the art ana-
lysis. The languages they evaluate are Cassandra [BS04], EPAL [Ash+03],
KAoS [Usz+03], PeerTrust [NOW04; Gav+04], Ponder [Dam+01], Protune
[BO05; BOP06], PSPL [BS00], Rei [KFJ03], RT [LM03], TPL (unrelated
to our TPL system) [Her+00], WSPL [And04] and XACML [Lor+03]. Of
those languages, Cassandra, PeerTrust and Protune fulfill all their criteria.
But, there are design decisions that make those languages unsuitable for
our approach. In specific, in terms of the requirement of “external func-
tions”, PeerTrust is limited to sending evidence during interactive trust
negotiation, which is out of our scope. Protune supports “whatever kind
of actions, not necessarily side-effect free, as long as a basic assumption
holds, namely that action results do not interfere with each other” [CO08].
Cassandra’s action execution is limited to side-effect free functions. Ad-
ditionally, as Yaich states, “the Cassandra trust engine is only available
as a proof-of-concept implementation in OCaml” [Yai19, p81]. Those
limitations prevent their use for work with trust scheme discovery and the
integration with our ATV.

Nevertheless, their design provides a valuable basis for our own investiga-
tion. Protune is based on logic programming (extended with an object-
oriented syntax [Yai19]), while Cassandra and PeerTrust are based on
Constrained DATALOG (a subset of logic programming) [CO08; Mai+18].
All those languages fulfill our requirements on expressiveness and declar-
ative power. This makes the logic programming paradigm a suitable
candidate for our goals (cf. [BRS12]).

Other languages: Since the abovementioned survey by Coi et al. is 15
years old, we also explore and evaluate newer trust management systems
and their policy languages. We start by reviewing the retrospective study
on trust management systems by Yaich from 2019 [Yai19].2 As it does not
involve any systems which we did not discuss above, we then survey the
literature for additional trust policy languages. SecPal is a decentralized
authorization language based on logic programming [BFG10]. Braghin
notes that, as SecPal focuses on authorization, “[it] does not provide a
direct way to address credential-based policies, nor it provides an approach

2Note: The study by Yaich was the newest survey available when the TPL system
was created.
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for specifying conditions against credentials” [Bra11, p. 8]. Belchior et
al. propose a Self-Sovereign Identity based access control (SSIBAC) for
service providers [Bel+20]. It leverages conventional attribute-based access
control using the attributes in SSI credentials. SSIBAC uses the XACML
standard for policy specification. XACML does not fulfill our requirements
on well-defined semantics and does not support verifiable evidence [CO08].
PolicyMan3 supports simple trust rules, but only allows for static trust
rules (i.e., direct specification of an issuer or group of issuers).

Conclusion: After this preliminary evaluation we conclude that there is
no candidate that fulfills all our requirements. This is not surprising, as
our requirements are very specific and introduce concepts not commonly
used by other languages.

Given that circumstance, we face three options: First, extend and adapt an
existing policy language to our needs. As this would require modifications
not only to the implementation but also to the language itself, we do not
consider this option. This option is also less attractive since our integration
requirements pose a strong constraint on the technology stack used to
build the trust language (i.e., Java). Second, develop a new language from
scratch. We do not consider that option, as designing a new language is a
complex task and likely reinvents the wheel in several aspects. Third, a
middle ground between the first two options is to adopt the design of an
existing language and build a new system around it. In our evaluation we
discovered interesting properties and paradigms that we learn from. For
example, the logic programming paradigm supports all our goals specific
to core language design. Based on this assessment, we went for the third
option. The result is the TPL system, which we present and discuss in the
rest of this chapter. In Section 7.5.1, we then evaluate our TPL system
against the abovementioned requirements.

7.3. The TPL Policy System
We introduce TPL as a system for SPs to formulate their trust- and
access-policies. Using TPL, SPs decide if and how to rely on existing
trust schemes like the European Union’s (EU) eIDAS, other trust schemes
endorsed by trusted schemes, or DL-based trust schemes.

3https://gitlab.grnet.gr/essif-lab/business/policyman/policyman_project_summary,
accessed on 2023-07-18

https://gitlab.grnet.gr/essif-lab/business/policyman/policyman_project_summary
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TPL is both a trust policy language and a trust management system geared
to support and integrate today’s existing trust schemes and enable a global
trust infrastructure.4 In this context, the term electronic transaction
denotes all data that the SP receives and wants to verify. Examples are
attestations, as discussed in earlier chapters. More concrete examples are a
bid in an auction house or a login at an online system. Those transactions
have in common that an SP needs to establish trust in them to rely on
their content. TPL helps to specify and automatically implement the SP’s
business policy for trust decisions.

TPL is designed in the context of the global trust management architecture
introduced in Chapter 6 above. The idea is that there are many trust
schemes, but no scheme on which the whole world agrees. To mitigate this,
TPL supports different formats of electronic documents and transactions.
It also allows authorities behind a trust scheme to define trust recognitions
of other schemes. These recognitions can be automatically processed
during the execution of a policy. A policy author can then decide to what
extent to accept the result of a trust recognition and corresponding trust
translation.

7.3.1. Concepts
In this section we introduce several important concepts of the TPL system.
The TPL system comprises a language specification (the TPL language)
and a software component (the TPL interpreter). A SP uses the TPL
language to encode trust and access rules, forming a TPL policy. This TPL
policy is then executed by the TPL interpreter, evaluating an electronic
transaction. In doing so, the interpreter uses concepts of the language
that provide an abstraction layer to file formats (TPL formats) and online
trust information sources (built-in predicates).

TPL Policy: A TPL policy is a list of Horn clauses in a syntax similar
to Prolog [ISO95]. A (definite) Horn clause is a rule that specifies a
relationship between terms. It consists of a head and a body, separated
by an arrow from right to left (←, encoded as :-). The head of a definite
clause is a predicate, and the body is a conjunction (logical and) of
predicates called goals.

4Even though the name TPL originally came from an acronym for the TPL trust
policy language, it is now simply a name for the TPL system. TPL supports both
trust- and access-policies.
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Each Horn clause is in the form p(u) :- q1(u), ..., qn(u) meaning: if all the
goals qi(u) are true, then also p(t) is true. A set of clauses for the same p
defines the specification for the TPL predicate p. As only one clause for p
needs to succeed, a set of more than one clause for the same p represents
a disjunction (logical or).

In TPL, the entry point of a policy is represented by the accept predic-
ate. This notation stems from the question the SP is asking the TPL
interpreter: the query accept(Form) asks whether the policy accepts a
transaction. The arguments of the accept predicate depend on the con-
crete instantiation but always include the holder’s transaction.5 Listing 7.1
illustrates this syntax.

accept(Form) :- extract(Form, age, Age), Age >= 18.

Listing 7.1.: Simple policy illustrating the syntax of TPL.

TPL Interpreter: As TPL is an interpreted language, policies encoded in
TPL syntax are interpreted by a TPL interpreter. The TPL interpreter is
a software component used by a SP as part of its trust verification system.6
The interpreter handles the syntax-checking, parsing, and execution of a
TPL policy. Since the interpreter is focused on the language handling and
interpretation of a policy, it does not directly provide functionalities for
trust scheme discovery. Instead, it interacts with our ATV to query for
trust information (see Chapter 6). We will discuss this integration further
in Section 7.4 below.

Formats: In TPL, the concept of formats connects policies with parsers
that extract values from complex data formats and ensure compliance
with data schemata. These values can be concrete numbers, constants, or
of some complex format themselves. For example, the extract predicate
is used in a policy to extract values. For example, extract(Transaction,

5The argument is commonly called Form since it follows the metaphor of a paper
form that the holder filled out. An example for a TPL policy with multiple accept-
arguments is given in Listing 7.8 below.

6The source code of our TPL interpreter is available at https://github.com/H2020LIGHTe
st/TrustPolicyInterpreter

https://github.com/H2020LIGHTest/TrustPolicyInterpreter
https://github.com/H2020LIGHTest/TrustPolicyInterpreter
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certificate, Certificate) extracts data from a transaction’s field
called certificate into the variable Certificate. Further, the special
field format is used to access the data format of some data/transaction.
For example, extract(Certificate, format, CertFormat) retrieves
(or constrains) the certificate’s file format.

Built-in predicates: TPL features built-in predicates which wrap context-
specific discovery and verification logic. That includes all the interactions
with trust schemes and format parsing logic. The name built-in predicate
comes from the fact that this logic is not implemented in TPL syntax
but these predicates are built into the system. However, implementing
of the predicates happens in an extensible predicate library and can be
used to customize the TPL system to an SP’s needs. For example, our
implementation builds on the infrastructure introduced in Chapter 6.
There, the TPL interpreter calls a function of the ATV to retrieve trust
information (see Section 7.4 below).

Built-in predicates store their results in the variables passed as output
parameters to the call. By directly binding an output parameter to some
constant (denoted by an identifier beginning with a lower-case letter),
we require that parameter to be that value for the clause to be true.
Thus, extract(Cert, format, x509) is a shortcut for extract(Cert,
format, CertFormat), CertFormat == x509.

7.3.2. Syntax

The language of TPL consists of definite horn clauses. Its syntax is based
on that of Prolog [ISO95; DEC96].

As the basis for our language’s grammar, we define four sets of symbols:7
(1) Variable symbols—starting with upper-case letters. (2) Constant
symbols—starting with lower-case letters. (3) Function symbols—starting
with lower-case letters, having a fixed number of arguments.8 (4) Predicate
symbols—starting with lower-case letters, having a fixed number of argu-
ments. With this in place, we use a grammar in Extended Backus–Naur
form (EBNF) to define the syntax of TPL, as shown in Figure 7.1. A
visualization of TPL’s grammar is given in Appendix B. In addition to

7In the given EBNF grammar, those sets of symbols are used as terminals and not
specified.

8The number of arguments taken by a relation is also called its arity.
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this basis, TPL has built-in arithmetic operators which are mapped to
function symbols (see example in Listing 7.2).

TPLPolicy ::= Clause*

Query ::= (Predication,)* Predication.

Clause ::= Predication.
| Predication :- (Predication,)* Predication.

Predication ::= PredicateSymbol
| PredicateSymbol((Term,)* Term)

Term ::= VariableSymbol
| ConstantSymbol
| FunctionSymbol((Term,)* Term).

Figure 7.1.: EBNF grammar specifyign the syntax of TPL

Example TPL Policy: An example of a simple policy in TPL syntax is
shown in Listing 7.2. This example is an encoding of the following policy:

Example Policy Rule 1. The auction house accepts any transaction
which is of the "Auction house 2023" format and contains a bid up to 100
euros.

In this example, the variable Form is the transaction, here a bidding form
in some concrete data format (e.g., Extensible Markup Language (XML)).
The built-in predicate extract is used to extract the attributes from
the form. This predicate represents the interface to the parser for the
respective data format. The detailed semantics and parameters of the
built-in predicates are described in Section 7.4.1 below.

To ensure format compliance, the first extraction must always be the check
for the expected format type. In our example, the format used by the
concrete auction house is identified by the theAuctionHouse2023Format
constant. This constant is defined by the respective format parser in the
SP’s format library. To load the format, we constrain the value of the
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format field to that constant. Next, we extract the bid field, bound to
the output parameter Bid. Finally, we check that the value is below 100.9

accept(Form) :-
extract(Form, format, theAuctionHouse2023Format),
extract(Form, bid, Bid),
Bid <= 100.

Listing 7.2.: Example simple TPL policy (without trust rules).

7.3.3. Semantics
We formally define the semantics of TPL in two ways: logical semantics
and executable semantics.

Logical Semantics:

A logical view of the semantics can be obtained if we consider the Horn
clauses as logical formulas of first-order logic. In doing so, :- is the arrow
← (logical implication from right to left), and the comma represents logical
conjunction (logical and). Further, all variables of every Horn clause are
universally quantified. Following this, p(X, Y ) :- q(X), r(Y, X) becomes
∀X, Y : p(X, Y )← q(X) ∧ r(Y, X).

Special care must be taken for built-in predicates, i.e., the interface to
the environment. For the semantics, we fix the meaning of these built-in
predicates to a snapshot of the world. In particular, we assume that during
the policy checking, the world’s state does not change. It is also possible
to evaluate a historical policy decision by specifying the environment as it
was at some point in the past. This allows us to answer whether a policy
accepted a given transaction at a previous point in time.

Executable Semantics:

Rules can be evaluated in the same way as in Prolog. To see if a query
p(s) succeeds, find a suitable rule; e.g., the rule p(u) fits if s and u can be
unified. Then apply the resulting unifier to all qi(ui) and evaluate them.
If the evaluation for the subqueries evaluates to true, then we say that the

9In that example, the currency of the value is fixed by the format.
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original query was also evaluated to a success. If that is not the case, then
try again with the next suitable rule if any such exists. The subqueries
are evaluated in the same way by recursion, except for the case where a
qi is a built-in predicate. In that case, the predicate is directly executed,
which either results in a success or a failure.

TPL is similar to Prolog but does not include the ! (cut) operator
or negation as failure. Such concepts prohibit interpretation as logical
formulas and thus hinder the definition of clear and simple semantics.
However, policies are lists of definite Horn clauses and TPL also shares
most of Prolog’s syntax. Therefore, TPL’s executable semantics are the
same as that of Prolog; except that in TPL, unification always includes
the occurs check.10

The semantics of Prolog can be described as an interpreter.11 But, this
interpreter is only responsible for the parsing and executing of the policies,
as TPL’s built-in predicates (such as extract and lookup) are not part
of TPL’s core language but are defined outside of the language directly in
the TPL system.

7.3.4. Formats

Policies work on data represented by various concrete data formats, from
X.509 certificates and DNS resource records (cf. Chapter 6) to custom
data formats for electronic transactions. TPL supports all of these in
a flexible way without cluttering the policies with low-level details like
parsing. To achieve this, we use an abstract notion of formats, similar to
abstract syntax. We use the metaphor of a paper form with fields to fill in
and each field having a unique identifier. This represents an abstraction
layer between TPL and concrete measures to structure this information
(e.g., XML). Any concrete format can be connected to TPL by providing a
parser. A parser performs the transformation between actual byte strings
and the abstract syntax. In TPL, these format parsers are extensible and
stored in a format parser library.

Abstractly, a form is a set of attribute-value pairs, as shown in Listing 7.3.

The actual transaction on the string level could be an XML representation,
10An occurs check assesses if a variable is part of another variable before attempting

to perform unification on them. Occurs checks are disabled in Prolog by default,
which can lead to circular/infinite loops.

11see, e.g., Deransart, Ed-Dbali and Cervoni’s textbook [DEC96, Section 4.2].
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{(format, the_auction_house_2023), (bidder_name, "Jon Doe"),
(street, "Dartmouth St"), (city, "Midfarthington"),
(country, "England"),
(lot_number, 54678), (bid, 60),
(signature, ...), (certificate, ...)}

Listing 7.3.: Example of an abstract representation of a simple
electronic transaction.

as shown in Listing 7.4.

Abstract symbols like bidder_name are a sound abstraction of their con-
crete byte-level format [MK14]. Notice that the XML representation’s tree
structure and the attribute value pair set representation are different. This
forms a layer on top of an XML format, so one does not have to browse
the XML parse tree but has a purpose-specific immediate representation
of the data. TPL provides the built-in predicate extract to connect the
interpreter with the appropriate parser. Using these parsers, attributes
can be extracted from the format specified by the attribute value pair
representation.
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<?xml version="1.0" encoding="UTF-8"?>
<form format="the_auction_house_2023" xmlns=...>

<person>
<name>Jon Doe</name>
<street>Dartmouth St.</street>
<city>Midfarthington</city>
<country>England</country>

</person>
<lot_number>54678</lot_number>
<bid>60</bid>
<ds:Signature>

...
<ds:X509Certificate> ... </ds:X509Certificate>

</ds:Signature>
</form>

Listing 7.4.: Example of an auction house bid in the form of an
eletronic transaction encoded as XML. XMLDsig omitted for
clarity.

7.4. Integration

TPL policies are executed by the TPL interpreter. The interpreter is only
responsible for parsing and interpreting the policy and has no functionality
to access external data. To facilitate communication with the outside world
(SP, trust scheme), the TPL interpreter is integrated into our ATV, which
we introduced in Figure 6.7. This integration is visualized in Figure 7.2.

Interfaces: The ATV provides the interface to service providers who need
to assess the trustworthiness of incoming transactions (e.g., an attestation
is loaded using the ATV GUI or API). Thus, the ATV receives a trust
policy and an attestation from the SP, and initializes the TPL interpreter.

TPL Interpreter: The interpreter is responsible for executing the policy.
To do so, it first parses the policy and checks its syntax. In case of
syntax or execution errors, the interpreter halts and directly provides error
messages to the SP. For a policy where the execution takes too long, the
interpreter rejects the transaction based on a timeout.

Libraries for Built-in predicates and Formats: The ATV also
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Figure 7.2.: Architecture of the integration of the TPL system
into our ATV component. The components enabling TPL’s
extensibility are highlighted in purple.

provides the functionality for format parsers and built-in predicates to
the interpreter. Built-in predicates are the predicates like extract whose
truth value depends on external facts and actions. These predicates are
implemented as functions in the ATV that the TPL interpreter invokes
once its execution reaches the call of a built-in predicate. To do so, the
ATV provides a callback handler for built-in predicates. Depending on
the concrete built-in predicate, the handler discovers or retrieves trust
information from the internet (see Section 6.2.4). Or, it uses the library
of format parsers to parse some data, e.g., the attestation, the issuer’s
certificate, or some other data retrieved from the internet. Neither the list
of built-in predicates nor the format library are hardcoded in the ATV.
Thus, any SP can add their own predicates or formats, adapting the ATV
to their needs. Those libraries enable the extensibility of the TPL system.

Data Handles: After finishing the execution of the built-in predicate,
ATV handler gives the control back to the interpreter. In our implement-
ation, the callback handler does not directly return the retrieved data to
the interpreter. Instead, the handler takes over that data’s management,
storage, and caching. To allow the interpreter to execute predicates on
the data, the handler returns a data handle to the interpreter. This data
handle is an internal URI the interpreter uses to address data in a later
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call to some built-in predicate. The structure of this handle URI is opaque
to the interpreter.

ATV Report: In the end, the ATV returns the final result of the policy
execution (as determined by the interpreter). In addition, the ATV logs
every call to a built-in predicate in a report. This report also contains
the results of all predicates calls. After the execution is completed, this
report is returned to the SP. The SP can use the result to learn whether
or not the incoming attestation is trustworthy with regard to the specific
trust policy. And the report informs the SP about the reasons for this
decision. This can for example be used by the SP to automatically request
additional information from the user. An example report is displayed in
the ATV GUI screenshot in Figure 6.7.

7.4.1. Main Built-in Predicates

This section describes the important built-in predicates of TPL in more
detail, as they are specified in our TPL papers [Möd+19; Alb+21].

Built-in Predicate 1 (extract). The extract predicate is used to extract
information from a document (e.g., a transaction, certificate, or trust
list entry). This predicate gives a uniform interface to all kinds of data
formats. The interpreter is designed modular so that new data formats
can easily be integrated by providing a parser for the respective data
structure. For a call

extract (From , Field , Out)

we have that Form is an input document, Field is a field of the document,
and Out is the output, i.e., the value of that field.

The set of document fields that are available depends on the format. When
trying to extract a field that does not exist in the current format, the
predicate fails. For every format, the field format is always defined and
returns the unique identifier for the document’s format.

Built-in Predicate 2 (lookup and trustlist). The lookup predicate allows
to perform lookups at DNS name servers and HTTP queries authenticated
using DNSSEC. The input parameter Domain defines the DNS domain to
query, while the output parameter Entry contains the resulting document.
It implements the functionality required to discover trust schemes or trust
translation, and to retrieve the information published by them. In a similar
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manner, the trustlist predicate is a more specific case, which is used to
retrieve a single trust list entry, identified by the parameter Certificate.

lookup (Domain , Entry)
trustlist (Domain , Certificate , TrustListEntry )

Due to the nature of Horn clauses, the same predicate is often called
multiple times. Doing so for built-in predicates results in multiple network
requests leading to a negative performance impact. To mitigate this, those
predicates also implement an internal cache.

Built-in Predicate 3 (trustscheme). The trustscheme predicate checks
if a trust scheme membership claim (a DNS identifier) represents a trusted
scheme. Both parameters are input parameters. A call

trustscheme ( TrustSchemeClaim , eIDAS_qualified )

is true if and only if the trust scheme claim is a claim for an eIDAS
membership.

Built-in Predicate 4 (verify_signature). The verify_signature predicate
has two input parameters. For a call

verify_signature (Form , PubK)

the TPL interpreter will use the appropriate signature verification function
for the format of Form and succeeds if and only if the form was properly
signed using the given key.

Built-in Predicate 5 (verify_hash). The verify_hash predicate checks
if an object evaluates to the correct hash value. So for a call

verify_hash (Form , Hash)

the TPL interpreter will use the appropriate hash function for the format
of Form and succeeds if and only if the parameter Form has the same hash
as passed by the parameter Hash.

In addition, our implementation comes with the encode() built-in predic-
ates to support the encoding and concatenation of scheme identifiers.

For our extension to SSI, we introduce one additional built-in predicate:

Built-in Predicate 6 (resolveDID). The resolveDID predicate takes three
arguments: The first argument is the DID to resolve. The second argument
specifies the minimal age of the block in which the DID was registered. On
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calling this predicate, the ATV will try to look up the DID document at
the DL and, on success, return the result to the third argument’s variable.

resolveDID (DIDsubject , min_blockage , DIDdocument )

If a DL-based system is used, the block age parameter can be seen as
a choice of assurance level regarding the DID document. Since a young
block could be dropped as the blockchain grows, an older block is more
established and is less likely to drop out.

7.4.2. TPL for Trusting the Local Scheme
In this section, we extend our example policy with trust rules and built-in
predicates. So far, our example auction house only accepts bids up to a
certain amount but puts no constraints on who may place a bid. For larger
bids up to a specific limit, the auction house needs to know who the bidders
are. Bidder authentication is achieved by issuing qualified certificates to
users. Such a policy represents an example of a policy containing both
trust- and access-rules. Therefore, we extend our example:

Example Policy Rule 2. The auction house accepts any bid up to 1500
euros, if it is signed by an ExampleScheme qualified signature.

Thus, we need to perform the following checks: (1) Is the bid amount
smaller than 1500 euros? (2) Has the bidder’s certificate been issued by
an ExampleScheme qualified authority? (3) Did the bidder actually sign
the bid?

Signatures and Signable Formats: To verify signatures, we use the
built-in predicate verify_signature and signable formats: A signable
format is a format for which a signature verification function is specified.
For a form of the specified format and a public key, we can verify if the
form is properly signed.

Trust Scheme lookups: We need to verify the trust scheme membership
of the bidder’s issuer and thus have to obtain the associated trust list.
Trust lists are discovered using a trust scheme membership claim which
is inside the bidder’s or issuer’s certificate (see Section 6.2.3). In our
approach, this claim is represented by a domain name. For example, the
(fictional) DNS identifier example.com is a (direct) claim of membership
in the trust scheme of qualified ExampleScheme authorities.
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The trustlist built-in predicate triggers a server lookup. It will succeed
if a the given trust scheme exists, the trust list is available, and the
desired certificate is on that list. It fails otherwise. It, therefore, acts
as a requirement in a policy that the given certificate is on the claimed
trust list. To claim a trust scheme membership, a certificate includes a
field trustScheme that states the DNS identifier of the trust scheme it
claims to be in. In order to ensure that the domain actually belongs to
our desired trust scheme, we use the built-in predicate trustscheme with
the exampleScheme_qualified constant.

Specifying the policy: We encode Example Policy Rule 2 in a TPL
policy, shown in Listing 7.5.

When this TPL code is added to a TPL specification containing Listing 7.2,
then any form that lives up to the requirements of either accept() rule
is accepted. The result of this policy is that the auction house accepts
bids up to 100€ without identification, and bids up to 1500€ for bidders
authenticated by a qualified issuer.

Listing 7.5 requires that the format of the form is the auction house
format and extracts the bid to check that it is at most 1500 euros. After
that, it extracts the bidder’s certificate. Since Certificate is also a form,
the policy extracts the public key of the bidder, given in the pubKey field.
Then the verification of the signature of the form is done for the public
key using the verify_signature predicate. Afterward, the policy checks
that the certificate is ExampleScheme qualified. This trust check is done
in a separate predicate specified directly in the policy. From the bidder’s
certificate, it extracts the issuer’s certificate, given in IssuerCert. From
the IssuerCert it then extracts the TrustSchemeClaim, a DNS identifier
used to address the trust scheme and verify the issuer’s trust scheme claim.
The policy checks that the trust scheme membership claim is really the
ExampleScheme trusted by the SP. This is done using the trustscheme
predicate. A lookup is then done using the trustlist predicate, which
discovers and retrieves the trust list and verifies that the IssuerCert is
on the list. If so, it returns the corresponding list Entry. Lastly, the
issuer’s public key is extracted from the list entry and then used with
verify_signature to verify the signature on the bidder’s certificate. The
Entry must contain at least the issuer’s public key, such that it can be
verified to be the same as the issuer key recorded in the certificate.

This example shows that policies can be specified on an abstract level.
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accept(Form) :-
extract(Form, format, theAuctionHouse2023format),

% access-policy rule
extract(Form, bid, Bid),
Bid <= 1500,

% verify holder's signature on transaction
extract(Form, certificate, Certificate),
extract(Certificate, format, qualified_cert),
extract(Certificate, pubKey, Pk),
verify_signature(Form, Pk),

% establish trust in certificate
check_qualified(Certificate).

check_qualified(Certificate) :-
% extract issuer's cert & trust scheme membership claim
extract(Certificate, issuer, IssuerCert),
extract(IssuerCert, format, qualified_cert),
extract(IssuerCert, trustScheme, TrustSchemeClaim),

% check if claimed scheme is trusted
trustscheme(TrustSchemeClaim, exampleScheme_qualified),

% verify if issuer is qualified
trustlist(TrustSchemeClaim, IssuerCert, Entry),
extract(Entry, pubKey, PkIss),

% verify if issuer signed holer's certificate
verify_signature(Certificate, PkIss).

Listing 7.5.: Example TPL policy with trust rules.
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TPL frees the policy author from specifying the whole interaction with
the internet. It also takes care of authenticating the retrieved data. Since
the verification of a certificate often follows the same steps, this sequence
of predicates could be collected in a “TPL standard library” and then
re-used in different policies (see Section 7.5.4).

7.4.3. TPL for Trusting a Foreign Scheme

In the previous section, we discussed how TPL can be used to formulate
complex trust policies. So far, we only consider the verification of attesta-
tions that have been issued in the trust scheme that the verifier directly
trusts (local scheme). But a verifier can also use TPL to verify trust rules
that were issued in a different scheme. As discussed in Section 6.3, trust
schemes can define trust recognitions, i.e., an SP might consider other
schemes equivalent to their trusted one. These recognitions can then be
used in a TPL policy. We extend our example policy accordingly:

Example Policy Rule 3. The auction house accepts any bid of at most
1000 euros with a signature from a scheme outside ExampleScheme if the
scheme is deemed equivalent to ExampleScheme via a regognition published
by ExampleScheme.

We introduce a notation of equivalence with respect to a recognition
relying on the trust recognition provided by the authority of the local
scheme (see Section 6.3). The used example policy is similar to Listing 7.5,
but the trustscheme predicate is changed to trust, which allows trust
recognition and is defined explicitly in the TPL policy: trust checks
that a trust scheme membership claim belongs either directly to the
scheme we are trusting or belongs to an equivalent scheme, as shown in
Listing 7.6. A complete example for a TPL policy with trust translation
(for non-equivalent schemes) is shown in Listing 6.5 above.

For a claim of a foreign scheme and the name of a trusted scheme, the built-
in predicate encode generates an identifier for the trust recognition. Sup-
pose Claim is a (hypothetical) Swiss scheme located at example.admin.ch
and the TrustedScheme is example.com. Then the domain points to the
DNS identifier admin.ch._translation._trust.example.com (i.e., it
should escape the domain of the original scheme and select the corres-
ponding recognition of ExampleScheme). This domain should refer to the
entry about the Swiss scheme at ExampleScheme. The entry is then used
to discover information that can be used to verify equivalence. In the
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trust(Claim, TrustedScheme) :-
trustscheme(Claim, TrustedScheme).

trust(Claim, TrustedScheme) :-
encode(Claim, TrustedScheme, Domain),
lookup(Domain, TranslationData),
extract(TranslationData, recognition_level, equivalent).

Listing 7.6.: Example trust policy with enabled trust recognition
for equivalent schemes.

example case, we check if the recognition level field is set to equivalent
(this also means there is no trust translation data, see Section 6.3).

If the two schemes are not equivalent, the ATV additionally retrieves
the translation data and hands it to the TPL interpreter, which executes
the translation. A TPL policy retrieving and using a trust translation is
presented in Listing 6.5.

7.4.4. TPL for Trusting SSI Credentials

In addition to classical PKI and DNS-based trust schemes, TPL also sup-
ports several SSI concepts: the resolution of DIDs, retrieval of trust status
information from a DL, and verification of W3C Verifiable Credentials.
To illustrate this use case, we use the example of a social online platform
for teenagers. In this fictional platform, teenagers can join without reveal-
ing their legal identity, but they need to prove their age to ensure only
teenagers participate in the discussions.

Example Policy Rule 4. The social platform accepts any registration of a
person between the age of 12 and 18, if this is attested by a ExampleScheme
qualified identity provider (IdP).

Since other identity attributes of the teenagers are irrelevant, it is sufficient
to provide a birthdate credential. This credential only contains the date
of birth of the teenager and no further attributes.

In this example, the birthdate credential is a W3C W3C Verifiable Cre-
dential (VC) containing the user’s DID as the subject and the date of
birth encoded in the credential’s credentialSubject field. To add (legal)
value to the credential, a qualified issuer must issue it. A government
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authority or a similar trusted institution can be a legitimate issuer for
such claims.

Thus, we need to perform the following checks: (1) Is the holder’s age
≥ 13 and ≤ 18? (2) Has the holder’s credential been issued by an
ExampleScheme qualified issuer? (3) Did the holder sign the registration?

To verify the registration transaction, the verifier checks the holder’s
signature on the registration. In the SSI world, this is done by resolving
the DID of the holder, for example, from a DL [SSP23, Section 14]. The
result of this is the DID document of the holder’s DID. The verifier then
uses the key extracted from the DID document to verify whether the
holder signed the credential. For check 2, the issuer’s signature on the
(age) credential is verified in the same way. After checking whether the
issuer’s DID was used to sign the credential, the verifier needs to establish
trust in the key. This is done by verifying the trust scheme membership
claim of the issuer in the same way as above (see also Section 6.2).

The example TPL policy in Listing 7.7 corresponds to Example Policy
Rule 4. A user sends a transaction containing a registration request in
registrationFormat format to the discussion platform. The discussion
platform uses the given policy and an automated verification tool to assess
if the user is in the right age to be admissible to the platform.

The input parameter passed to the TPL interpreter (Form) contains the
registration request, signature, and credential of the user. After ensuring
the incoming transaction has the correct format, it checks the user’s age
by extracting the date of birth from the birthdate credential. Then, it
uses the predicate calculateAge to derive the user’s age before it verifies
if the age is within the specified range.12

Next, the built-in predicate extract is used to retrieve the DID of the
sender (credential subject) and the credential’s issuer. These two DIDs are
then used with the built-in predicate resolveDID (see Section 7.4.1) to
retrieve the DID documents of the two entities. This step also considers the
minimum age of the DID document, as specified by the second parameter.
Each DID document contains a public key corresponding to DID, which
is first used to verify the DID document itself. Further, the sender’s key
is used to verify the transaction, and the issuer’s is used key to verify
the credential. If all those checks succeed, there is a valid trust chain

12We omit a concrete explanation of the calculateAge predicate since it is not of
interest for this discussion.
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accept(Form) :-
extract(Form, format, registrationFormat),
extract(Form, birth_credential, Credential),
extract(Credential, format, w3c_verifiableCredential),

% access-policy rules
extract(Credential, date_of_birth, Birthdate),
calculateAge(Birthdate, Age),
Age >= 13, Age <= 18,

extract(Credential, dIDsubject, DIDsubject),
extract(Credential, dIDissuer, DIDissuer),

% verify holder's signature on transaction
get_DIDdoc(DIDsubject, PKu, DIDDocSubject),
verify_signature(Form, PKu),

% verify issuer's signature on credential
get_DIDdoc(DIDissuer, PKi, DIDDocIssuer),
verify_signature(Credential, PKi),

% establish trust in credential issuer
check_issuer(DIDDocIssuer).

get_DIDdoc(DID, PK, DIDDoc) :-
resolveDID(DID, 30, DIDDoc),
extract(DIDDoc, format, w3c_diddoc),
extract(DIDDoc, pk, PK), verify_signature(DIDDoc, PK).

check_issuer(DIDDocIssuer) :-
extract(DIDDocIssuer, trustScheme, TrustSchemeClaim),
trustscheme(TrustSchemeClaim, exampleScheme_qualified),
trustlist(TrustSchemeClaim, DIDissuer, Entry),
extract(Entry, pubKey, PKi),
verify_signature(DIDDocIssuer, PKi).

Listing 7.7.: Example TPL policy using SSI concepts.
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between the issuer and the registration request. The interpreter proceeds
to authenticate the issuer itself. In our example, we authenticate the issuer
in check_issuer using the trust scheme flow described in Section 7.4.2,
and our ExampleScheme, showing that both centralized and decentralized
world can be used together in one TPL policy.

7.5. Evaluation & Discussion
In this section, we evaluate our approach against the overall goals of this
thesis. We then discuss several aspects of our TPL system.

7.5.1. Evaluation
In this chapter, we focused on Goals 1, 2, and 3 of our overall goals,
i.e., the support of different qualities of trust, global interoperability,
and extensibility (see also Chapter 5). Based on this, in Section 7.1, we
formulated the concrete requirements for our trust policy system. From
the stated goals, we derived five requirements (R1–R5, see Section 7.1.1).
Additionally, we added 11 general trust policy language requirements (G1–
G11, see Section 7.1.2), which we take from two survey papers [Sea+02;
CO08]. We now discuss the evaluation of our TPL system against the
tackled requirements. For each requirement we briefly state the measure
or design decision that ensures we comply with it.

R1 Local Trust View: We fulfill this (meta-)requirement by providing
a trust policy system tailored to the needs of global and heterogeneous
trust management (Section 7.3).

R2 Support for Trust Scheme Data and Trust Translation: We comply
with this requirement by providing predicates for working with the neces-
sary trust concepts (Section 7.4.1 – Section 7.4.4). To facilitate this in our
implementation, we integrate the TPL system with our ATV component
(Section 7.4).

R3 Modularity and Extensibility: The built-in predicate concept and
the modular predicate library provide extensibility of TPL’s functionality.
The extensible format library further enables modularity of supported
transaction format.
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R4 Declarativity and Expressive Power: TPL’s declarativity and ex-
pressive power ensures that even complex policies can be represented in
TPL. For example, depending on a transaction’s payload or assessed risk,
a policy could require different credentials or trust levels.

To achieve this, we designed TPL with inspiration from Prolog without
the cut operator13 and negation. Thus, policies are always formulated
positively, i.e., under which conditions the policy is fulfilled. This is in
contrast to policy languages that allow negative constraints, inducing
much more complex semantic structures that are often hard to grasp
for the policy designer. Nonetheless, TPL is Turing complete, i.e., every
computable policy can be expressed. This programming aspect allows
generating templates for the most common kinds of policies. Others have
also produced graphical interfaces to TPL for users with different degrees
of experience with encoding policy specifications (see below).

R5 Accountability: TPL’s formal precision and accountability eliminate
ambiguity and allows us to achieve verified evaluations. To achieve this,
TPL has a strict syntax with defined semantics. Further, the execution of
a TPL policy generates a trace that can be independently verified using a
theorem prover (see Section 7.5.2 below).

G1 Well-defined semantics: TPL has a well-defined semantic (Sec-
tion 7.3.3) based on logic programming.

G2 Monotonicity: Compliance with this requirement can be achieved by
banishing a negation operator, i.e., by not allowing policies that require
the absence of some credential [Sea+02, Section 3.1]. TPL intentionally
does not support negation (see Section 7.3.3).

G3 Evidences: TPL supports constructs to work with electronic transac-
tions—containers comprised of signed attestations. Those attestations can
be handled by (signable) format (see Section 7.4.2), validating its integrity
and authenticity.

13Prolog’s cut operator is used to influence execution and optimize backtracking. Its
implications introduce too much complexity for our policy system.
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G4 Credential combinations: The electronic transactions supported by
TPL are collections of one or many attestations, potentially signed by dif-
ferent entities. For example, the policy accept(Form) :- extract(Form,
diploma, GraduationCred), extract(Form, cv, CVCred) extracts two
credentials from a transaction container.

G5 Condition expressiveness: TPL allows (and requires) policy authors
to constrain the type of credentials they validate. For example, the pre-
dicate extract(GraduationCred, format, w3c_university_diploma)
uses TPL’s format parser system to load the diploma document and verify
its type. This predicate fails if the loaded document does not comply to
the defined document type.

G6 Inter-credential constraints: TPL supports expressive inter-credential
constraints. E.g., the policy extract(GraduationCred, student_name,
Name), extract(CVCred, person_name, Name) requires that the attrib-
ute student_name in the first credential is equal to the person_name
attribute of the second credential.

G7 Credential chains: TPL enables policy authors to verify signatures
on any attestation handled by a (signable) format (see Section 7.4.2).
Further, it supports the extraction of cryptographic keys from certificates.
For example, a key extracted from a certificate can be used to verify the
signature on another certificate, as shown in Listing 7.5.

G8 Transitive closure: By supporting recursion, built-in arithmetic
operators (see Section 7.3.2), and credential chains (see G7), TPL enables
credential chains of arbitrary (but contrained) length.

G9 External functions: TPL’s built-in predicate concept and the mod-
ular predicate library enable the use of functionality that is built-in the
system, i.e., not implemented in the TPL policy itself. In the TPL sys-
tem, those libraries are extensible (see Section 7.4), i.e., the SP can add
additional predicates. Examples for a simple external function are the
calculateAge predicate (see Listing 7.7) and the verify_hash predicate
(see Section 7.4.1).
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The TPL system also supports predicates that modify the state of the
policy evaluation, e.g., to pass data from one predicate to another (via data
handles). However, TPL cannot prevent built-in predicates from modi-
fying the outside world, with limits the fulfillment of the accountability
requirement (R5) to a concrete execution trace.

G10 External trust data: By being integrated with our ATV component
(see Section 7.4), TPL can query a trust scheme to retrieve additional
trust data. Examples for TPL’s support for external trust data are the
trustlist, lookup and resolveDID predicates (see Section 7.4.1).

G11 Verifier requirements: In the TPL system, the combination of
TPL interpreter and ATV acts as verifier component, i.e., the policy
compliance checker. By means of (signable) formats and predicates for
signature verification, TPL validates the credentials provided by the user.
To accomplish this, TPL uses the rules codified in the trust policy to assess
whether the issuer of those credentials is trusted. TPL supports different
(extensible) ways to define the trust anchor for such validations, e.g., trust
scheme lookups, DL lookups, trust translations, or a hardcoded list of
trusted issuers. To build certificate chains from incoming attestations to
retrieved trust roots, TPL optionally performs automated credential chain
discovery [LWM01]. However, TPL does not support any online credential
chain discovery, i.e., it cannot search for a full credential chain on its own.

7.5.2. Formal Verification

TPL has simple, clear, and precise semantics as first-order clauses inter-
preted with respect to an environment representing TPL’s interaction
with the outside world. To do so, the TPL interpreter works together with
the Automated Trust Verifier (see Figure 6.7)—connecting transaction
parsers and server lookups with logical evaluation.

A concern is the reliability of trust decisions, i.e., that bugs in a com-
ponent might lead to false positives. Thus, TPL’s architecture allows for
boiling this problem down to the correctness of isolated components. To
facilitate the verification of the correctness, our TPL interpreter produces
an execution trace and stores it together with the policy decision. This
trace is a logical representation of all loaded and retrieved documents and
which signatures have been verified for which key. For the logical decision
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of whether a decision follows from a policy, our colleagues Schlichtkrull
et al. then use this trace to offer a reliable logical verification: they take
the decision and the policy, together with the trace, and feed it into the
automatic theorem prover RPX [SM20]. The prover then checks if the
given decision logically follows from the policy and the given documents.
The correctness is double-checked, as the correctness of RPX was formally
proven using the theorem prover Isabelle/HOL [NPW02; Sch+18; SBT19].

7.5.3. Graphical Policy Authoring
The Prolog-inspired syntax of TPL allows the formulation of flexible and
expressive policies. It does not require modifying the verifier’s source code
and hides technical details. But, the syntax of TPL can still challenge
non-technical domain experts for business logic and trust rules (following
legal regulations), who often formulate policies. To mitigate this usability
challenge, two projects provide graphical editors for TPL policies, making
policy authoring even easier.

In the LIGHTest project, Alber el al. provide the so-called Trust Policy
Authoring Tool (TPAT) [Alb+19a; AW19]. Following the three-layered
approach introduced by Weinhardt et al., the TPAT provides means to
author TPL policies on three levels: the Prolog-like syntax, a drag-an-drop
interface for graphical policy editing, and a (constrained) natural-language
editor [WO19]. While each level improves the usability of policy editing,
the flexibility decreases. A user-experience evaluation of this tool is further
presented in [WP19].

Based on our work, Mödersheim and Ni introduce Graphical TPL (GTPL),
the most high-level representation of TPL [MN19]. In GTPL, a policy
can be formulated by filling out a template form (generated from a TPL
format). The GTPL tool then uses the graphical policy to generate a
machine-readable (and executable) TPL policy.

7.5.4. Future Work: TPL Standard Library
Since trust verification of some transactions often follows the same struc-
ture, policies often contain the same predicates. For example, to establish
trust in a transaction, the SP must always check the trust scheme mem-
bership claim, retrieve corresponding trust information, and handle trust
translations. To avoid this redundancy and additional work, we suggest
a TPL standard library. This standard library could contain a set of
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predicates useful for common trust management tasks. In contrast to
TPL’s built-in predicates, this standard library can be written entirely
in TPL syntax. TPL authoring tools could also use the standard library
predicates to hide complexity from policy authors.

7.5.5. Privacy

When presenting a credential during an authentication process, a holder
often reveals sensitive data. Commonly, only parts of that data are
needed by the SP to fulfill its purpose [Eur16, Article 5 (1)(b); Kyi+23].
For example, in our SSI example, even the date of birth reveals more
information than needed. The only relevant information is the 1-bit of
information on whether a person is in the defined age range. Thus, in
part 2 of this thesis, we extend TPL by adding privacy features (see
Chapter 9). By integrating privacy-enhancing technologies, we enable
selective disclosure and predicates on attributes in trust policies.

7.6. Use Case: TPL for Decentralized Systems

This section is based on the paper YOU SHALL NOT COMPUTE
on my Data: Access Policies for Privacy-Preserving Data Market-
places and an Implementation for a Distributed Market using MPC
by More and Alber [MA22]. Parts of this paper have been copied
verbatim.

In this section, we present a use case of our TPL system. The focus is on
using policies in decentralized platforms such as an online marketplace
for (personal) data, like the one we build in the Horizon 2020 project
KRAKEN [Koc+22].

Context: Private Data Marketplaces

Personal data has become an attractive source to derive insights for the
individual as well as for various companies and institutions. Those data
sets can be analyzed using computations like traditional algorithms and
novel machine learning-based approaches. The results of such computa-
tions have proven valuable for different business and research fields such
as medicine, marketing, and more. To enhance the analysis of such data
sets, available data must be efficiently brokered to relevant consumers.
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Data marketplaces take on this brokerage task. However, the collected per-
sonal data is highly sensitive, prompting legislators to protect it well (see
Chapter 3). An example is the EU’s General Data Protection Regulation
(GDPR) [Eur16], which defines the circumstances under which collecting,
transmitting, storing, or processing such data is allowed. Especially data
sets that might identify a specific person present a unique challenge since
misuse can lead to discrimination (e.g., insurance, job market).

Private data marketplaces [Kou+20] try to mitigate these issues by using
modern privacy-enhancing technologies. These technologies enable the
computation on personal data without revealing the data itself. Recently,
multiple approaches relying on this principle have been published [Env22;
Kou+20]. One of them is KRAKEN [Koc+20; Koc+22], a marketplace
architecture that uses Multi-Party Computation (MPC) to preserve users’
privacy. The data is distributed in opaque shares to several nodes for
computation. Only the final assembly of all the output shares discloses
the result to the computation buyer.

Challenge: Control computations on personal data

A challenge private data marketplaces face is that users have limited
ability to control who can buy their data and what buyers can do with
this data. Further, users must trust the marketplace to follow the rules
they specify for their data. Therefore, data sellers must trust that the
marketplace is not covertly performing computations on their data. E.g.,
on the KRAKEN marketplace, data providers cannot easily control who
can buy computations on their data since the marketplace’s computation
system has no information about the buyer’s identity. For the same
reason, the marketplace also has access to the computation results, even
if a legitimate user launched the computation.

Concept Overview

We tackle the described challenge by adding a policy system to private
data marketplaces.

We introduce an architecture for an extension of private data marketplaces.
This extension features a flexible access control mechanism based on our
TPL system. In the resulting marketplace system, data sellers can define
expressive policies to control the usage of their data. An advantage of
TPL is that data sellers can build their policies on qualified and thus
trustworthy information. They can also rely on trust information from
various other sources in their policies, e.g., SSI and distributed ledgers.
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Using TPL also enables each seller to define their own policy for their
data instead of relying on a set of rules pre-defined by the system.

Those policies are then attached and cryptographically linked to data
products offered on a data marketplace. When a buyer purchases a com-
putation on some data products, they are asked to provide credentials
certifying their identity and other attributes. The marketplace’s com-
putation system then verifies if the credentials fulfill the policy for the
selected data. Additionally, the system uses the policy to check if the
(now-authenticated) buyer is qualified to execute the concrete computation
the buyer requested. The allowed computation and parameters might
depend on the identity of the buyer. Only then the system proceeds and
executes the computation.

Further, the buyer’s credentials are used to encrypt the result of a com-
putation. This ensures that only the legitimate buyer can access the
result.

Scope: Our design focuses on private data marketplaces that allow a com-
putation on user’s data without the user’s involvement (non-interactive).
Thus, we don’t consider systems where the user participates in the compu-
tation on their data (which does not require this type of policy system).

7.6.1. Architecture

In general, a private data marketplace consists of the following components:

Data Seller: The actor who produces data and wants to offer it on the
marketplace. To host this data, the data seller uses some cloud storage.
Since the data is encrypted at this stage, the seller can also use a public
cloud storage. Some models subdivide the data seller further into separate
roles, i.e., the data producer/generator, the data subject, and the data
provider.

Data Buyer: The actor that wants to buy computations on the data
of several data sellers. They select one or multiple data products on a
marketplace and decide which computations to execute. The data buyer
is sometimes refered to as data consumer.

Marketplace: The online platform which acts as a broker to connect
data sellers with relevant data buyers and enables the data trade. The
marketplace provides a catalog of data products to which a data seller
can add their data records. In addition, the marketplace helps the data
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buyer to find data products of their liking and sells the utilization of the
data on its computation infrastructure. Additional tasks the marketplace
offers are out of the scope of this paper, e.g., payment processing.

In our work, we focus on private data marketplaces that use a privacy-
preserving computation system to perform the computation requested
by a data buyer. The number of computation nodes N involved in this
computation depends on the cryptographic technique applied by a market-
place. The KRAKEN system builds on MPC. In MPC, the computation
is performed distributed on several nodes (N > 1), and each node only
receives a part of the user’s data [Koc+20]. Alternative techniques like
Functional Encryption (FE) and Full homomorphic encryption (FHE) are
performed on a single node (N = 1, e.g., [Env22]).

In addition, our approach introduces the following additional components:

Policy Interpreter: The marketplace uses the TPL policy interpreter
software component to decide if a particular buyer is qualified to acquire
(a computation on) some data records. As input the interpreter takes
a TPL policy defined by the seller for their data, as well as a set of
credentials from the buyer, alongside some metadata about the requested
computation.

7.6.2. Process

In this section, we describe a private data marketplace to which we added
our TPL interpreter component. We also add a step necessary to create
a policy and adapt the brokerage logic to inform users what credentials
they need to provide. A graphical overview of this extended marketplace
architecture is shown in Figure 7.3.

Process Overview: We split the flow into the following phases: 0. To
trade their data, the seller first creates an account at the marketplace.
Additionally, they receive the cryptographic material required to sell data.
1. The seller then prepares the data they want to sell. In our approach, a
seller also defines the TPL policy for their data. This policy specifies who
can buy the data and what types of computations the seller allows. 2. After
encrypting and uploading the data to a public cloud, the seller registers
the records together with the policy on the marketplace. They combine
the web links to the (encrypted) data and the policy with (unencrypted)
metadata describing the data. Publishing this record on the marketplace
creates a so-called data product, 3. which the buyer discovers using the
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marketplace catalog. The buyer then selects a set of data products from
the catalog and specifies which computation they want to perform on
those products. In our approach, each of the data products comes with
its own policy, so there is now a set of policies that the buyer needs to
fulfill. Before purchasing a computation, the buyer provides the required
credentials to prove access qualifications w.r.t. the involved policies. The
marketplace collects both the computation specification and the buyer’s
credentials. It then sends it alongside the selected products and policies
to the computation system. 4. A computation system with our policy
extension uses the policies and the credentials to determine whether the
buyer is eligible. 5. On granted access, the system fetches the data from
the clouds and performs the specified computations. After completing the
computation, the system encrypts the data and returns the result to the
buyer.

3.2 Send
Computation
Request    

Data Seller

1. Prepare Data Product
& create Policy

Public Cloud

4.1 Retrieve Data
Products   

5.2 Return enc. result

5.1 Compute &
encrypt result  4.2 Policy

evaluation

Computation
System

2.1 Encrypt & upload
Data Product   

2.2 Publish Data Product information

3.1 Broker Data

Market
Place

Data Buyer

TPL
Interpreter

Figure 7.3.: Architecture and dataflows of a private data market-
place extended with our policy system. In addition to several
modifications to the brokerage process (see Section 7.6.2), we
add step 1 to create and step 4.1 to verify a policy. We also add
the policy-related data, which is highlighted in red.

In the following paragraphs, we describe all six phases in more detail.

Phase 0: Setup: As a first step, users who want to become data
sellers or data buyers create an account on the online marketplace. Setup
steps depend on the concrete marketplace, but usually also involve the
establishment of a payment channel. As a result of this phase, a new user
obtains cryptographic material enabling them to create data products for
the marketplace. A seller can also retrieve parts of this cryptographic
material directly from a computation system they trust. Additionally, the
user receives some credentials which they can use to reauthenticate at
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the marketplace later (e.g., username and password, or a W3C verifiable
credential [SLC22]).

Phase 1: Data and Policy Preparation: To provide some data on
the marketplace, the data seller first retrieves some data they want to sell,
e.g., from their local storage system or IoT devices.

As an additional preparation step before uploading the data, the seller
uses a TPL authoring tool (see Section 7.5.3) to formulate their data
usage policy. Primarily, this policy contains the rules about who is eligible
to buy computations on the corresponding data. While providing a list
of qualified buyers is the simplest option, it is not practical for a large
set of potential buyers. Thus, the seller could instead restrict access to
a category of qualified buyers. For example, they can require that the
buyer provides a qualified certificate from a specific trust scheme (e.g.,
the European Union’s eIDAS). In another example, the seller may restrict
the type of buyer (e.g., public universities or certified medical research
organizations). Further, the policy also contains the types of computations
a particular buyer category is allowed to perform on the data. The seller
can allow different computations for different sellers. As an alternative to
formulating their own policy, the seller can browse the marketplace for
existing policies and select one that suits their requirements. To illustrate
the syntax and structure of a TPL policy, in Listing 7.8 we give an example
seller’s policy in TPL

Phase 2: Data Selling: The seller then prepares the data package for
selling on the marketplace, i.e., by preparing the data and encrypting it
using the cryptographic material retrieved in the setup phase. The details
of this step depend on the cryptographic technique used by the specific
marketplace and, thus, on the number of computation nodes N . For
example, the KRAKEN distributed computation architecture (N > 1),
the seller first splits the data into N shares. The result of this step is a
data package prepared for the respective privacy-preserving computation
technique. To restrict who can perform computations on the data, the
prepared package is additionally encrypted for the specific computation
node(s).

Additionally, to prevent an attacker from replacing the policy (see Sec-
tion 7.6.5) with their own, the seller cryptographically links the policy
to the data. They do so by adding a hash digest of the policy to the
encrypted data package.

Afterward, the seller uploads the encrypted data package to a server, e.g.,
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to a public cloud. Then, they create a data product on the marketplace
by registering the web links to the uploaded data package alongside the
policy and some metadata describing the data.

Phase 3: Data Buying: A buyer browses the marketplace’s product
catalog and selects one or several data products they want to use. Addi-
tionally, they specify the computation they want to execute on the data
and initialize a computation request.

The marketplace first loads the policies of all selected data products and
does an (informal) pre-check to see if the buyer’s computation request is
possible. The system aborts at this place if the requested computation is
not possible on this data. It then computes the list of credentials required
to fulfill all involved policies and sends the list to the buyer. The buyer com-
pletes the computation request by providing all the requested credentials
to the marketplace, which calls the computation system. Alternatively,
the buyer discovers the computation system using the marketplace, and
forwards their credentials directly to the computation node(s).

Next, the computation system initiates the computation at the compu-
tation node(s). Depending on the number of computation nodes N , the
computation process on the node(s) looks different. For the special case
of architectures with a single computation node (N = 1), only this single
node performs the computation. For distributed computation architec-
tures (N > 1), the marketplace sends the computation request to all
nodes. All nodes then perform the same operations but use their own key
material and individual part of the input.

Phase 4: Policy Evaluation: After receiving a computation request,
the computation node first uses the provided links to download all data
packages from the public clouds and decrypts them.

Before the system launches any computation on the data (shares), it
checks whether the buyer is entitled to the requested computation. For
this it verifies the buyer’s credentials using the policies, which it receives
for each data product. Before evaluating a policy, the system checks if
each policy really belongs to its data. This check is done by calculating
the hash of each policy and comparing it with the policy hash inside the
corresponding (now-decrypted) data package.

If this precheck is successful, the node launches the TPL interpreter. The
inputs to the interpreter are the computation request and all the credentials
the node received. Further, the node also provides the number of retrieved
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data records to the interpreter. As a first step, the TPL interpreter checks
if all involved credentials are linked to the same entity, i.e., by checking if
they reference the same subject identifier [Ree+21]. This check prevents
an entity from mixing the credentials of several unrelated people to fulfill
the policies.

The TPL interpreter then checks if the buyer fulfills the requirements
stated by all involved sellers and if the buyer is permitted to perform the
requested computation. As part of this check, the TPL interpreter can
download additional trust status information. During these verifications,
the interpreter also assumes the task of validating the revocation status
of the trust data.

Phase 5: Computation: If the interpreter concludes that all rules are
fulfilled, the node(s) proceeds with executing the requested computation.
After the successful computation, all nodes encrypt the computation result
using the buyer’s public key. Since the node extracts the public key from
the buyer’s primary credential, no one but the buyer can view the result.

Finally, the buyer receives the encrypted result and decrypts it using their
private key. For distributed systems with N > 1, the buyer receives only
a part of the result from each node and has to assemble them into the
final result.

7.6.3. Evaluation
To evaluate the practicability of our approach, we conducted a performance
analysis of our prototype implementation. We measure the impact of
the additional TPL interpreter component on the time a data buyer
needs to wait for a result. As a baseline, we take the performance of the
MPC system used by the KRAKEN marketplace, which utilizes the MPC
framework SCALE-MAMBA [Aly+21].

Network: Executing a TPL policy introduces additional network round-
trips. Depending on the policy, the interpreter may establish network
connections to retrieve the trust status information. The incurring delay
depends on the network performance between the interpreter and the
trust status registries. As a reference, we measured the latency of some
common network actions in trust policies. We used the TPL interpreter’s
HTTPS client in our office network. Loading the eIDAS root trust status
list XML14 took us 0.3 s (± 0.209 s), while resolving an identifier from
14https://ec.europa.eu/tools/lotl/eu-lotl.xml

https://ec.europa.eu/tools/lotl/eu-lotl.xml
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accept(BuyerCreds, NumRecords, ComputationType) :-
extract(BuyerCreds, format, w3c_VP),
extract(BuyerCreds, mainCredential, BuyerCredential),
extract(BuyerCredential, format, w3c_VP),

extract(BuyerCredential, issuer, Issuer),
check_qualified(Issuer),

NumRecords > 100,
extract(BuyerCredential, organization_type, OrgType),
acceptComputation(OrgType, ComputationType).

acceptComputation(OrgType, ComputationType) :-
OrgType == public_university,
ComputationType == machine_learning.

acceptComputation(OrgType, ComputationType) :-
OrgType == private_research,
ComputationType == simple_statistics.

Listing 7.8.: Example TPL policy formulated by a KRAKEN data
seller. Signature and trust chain verification omitted.

the Ethereum ledger15 takes 0.47 s (± 0.302 s). We note that several of
those network lookups are identical for many policies. Thus, the nodes
should be able to cache the results. For example, the TPL interpreter, per
default, downloads the eIDAS trust status lists of all EU member states
during initialization, so no additional network access is required for any
further eIDAS trust scheme check.

Policy Execution: We used our TPL interpreter implemented in Java
and measured the time for the interpreter to load and evaluate a policy.
Apart from the trust status information the interpreter loads from the
internet, the performance of a policy execution depends on the complexity
of a policy. For benchmarking, we used the Java Microbenchmark Harness
(JMH)16 in version 1.35 and OpenJDK 16. We executed the benchmarks
15we use the non-production Universal Resolver at https://dev.uniresolver.io, measured

with a simple DID lookup on 2022-05-13
16https://github.com/openjdk/jmh

https://dev.uniresolver.io
https://github.com/openjdk/jmh
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on the TPL reference implementation using a Intel Core i7-8550U office
laptop with 16 GB RAM running Ubuntu 21.10. The results we present
in Table 7.1 show the execution of typical policies. We observed that the
run-time grows linearly with the amount of executed policies. Thus for
computations involving many data products, the nodes must aggregate
the policies before execution to improve the run time.

Computations can take a few seconds (for simple statistics) to a couple of
hours (for training a simple machine learning model), and even longer for
more complex computations or larger datasets.17

In contrast, our implementation introduces an overhead from one to ten
seconds for sensible policies. We note that our implementation is not
optimized for performance.

Since policies are executed sequentially, the memory consumption only
depends on the size of the policy, but not on the number of policies. In
our benchmarks, each run consumes from ≈22 MB to ≈62 MB of JVM
heap memory, depending on the number of predicates in a policy (see
Table 7.1). The observed increase in memory consumption is mainly a
result of the recursive implementation of the interpreter.

The measured timings are neglectable compared to the latency of a typical
MPC computation, especially when assuming faster performance on server
hardware and the continuation of Moore’s Law [Gus11]. We thus argue
that the performance overhead is acceptable. We note that we use the
TPL reference implementation, which is not optimized for performance.
Thus, instantiating our proposed architecture with an optimized policy
system may further increase practicability.

7.6.4. Security Assumptions

The goal of our architecture is that a buyer who fails to fulfill the given
policy for some data must never be able to launch a computation on this
data. Also, the marketplace must neither be able to launch computations
independently nor learn the computation results.

For MPC, the KRAKEN system uses a fully-malicious protocol, which
assumes that from the set of N MPC nodes, at least one is honest [Koc+20].
17The KRAKEN MPC system source code is available at https://github.com/krakenh20

20/MPCService. The system’s benchmarks [KRA22] were provided to us in private by
the authors.

https://github.com/krakenh2020/MPCService
https://github.com/krakenh2020/MPCService
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Table 7.1.: Runtime benchmarks of the TPL interpreter.

# policies # predicates/policy run-time [s/op] memory [MB]

1 3 0.08 (± 0.03) ≈22
1 20 0.09 (± 0.03) ≈25
1 100 0.12 (± 0.07) ≈62

100 3 7.68 (± 1.68) ≈22
100 20 8.18 (± 0.59) ≈25
100 100 10.16 (± 1.84) ≈62

Given this assumption, no node must gain access to the plaintext or the
computation result.

Our approach builds on that trust assumption. By distributing the policy
evaluation to all nodes, we ensure that one honest policy evaluator is
enough to ensure that the computation is only initiated if the policy is
fulfilled.

Since an honest node would never start the MPC computation if the
respective buyer does not fulfill a given policy, this effectively prevents
the other nodes from computing anything on the data. Thus, if the stated
MPC assumption holds, the goal is achieved, and our approach can be
considered secure under the same assumptions as an MPC system. This
prevents both illegitimate buyers as well as a curious marketplace from
initiating computations without authorization.

7.6.5. Considered Adversaries and Attacks

The goal is to prevent illegitimate entities from accessing personal data,
launching a computation, or accessing the result of a computation. As
adversaries, we consider (1) a buyer who does not fulfill the policy for a data
product, (2) a malicious marketplace, and (3) a malicious computation
node. We consider the following attacks:

A marketplace wants to access data, launch a computation, or
access the result of a computation. In private data marketplaces,
the marketplace platform itself has, by definition, no access to the data
since the data is only shared with the platform in encrypted form. The
privacy of the computation itself depends on the marketplace’s architecture.



146 Chapter 7. Expressive Trust- and Access-Policies

In our KRAKEN-based implementation, a marketplace can not launch
a computation alone. Since all MPC nodes are needed to perform a
computation, the marketplace would have to convince all the nodes that
it fulfills the policy. Additionally, the marketplace cannot access the
computation result because the MPC nodes encrypt the result (shares)
only for the buyer. In some other architectures [Kou+20], a curious
marketplace can freely launch computations on the data at will. At the
same time, it can view the result of a computation launched by a legitimate
buyer without much effort. Thus, such architectures require a marketplace
to be trustworthy to some degree.

An adversary replaces the seller’s policy with a policy they fulfill.
The policies are stored at the marketplace and sent to the computation
system in plaintext, together with the links to the (encrypted) data. Thus,
any adversary, e.g., a curious marketplace, could send the links to data
they are interested in alongside a fake policy they can fulfill. Such an
attack is not possible in our design since we cryptographically link the
policy to the corresponding data. We let the user add a hash of the policy
to the data product before they encrypt the data authentically. If an
attacker tries to replace the policy, the hashes do not match, and the
computation node aborts the process.

An adversary replaces the buyer’s public key to access computa-
tion results. In our MPC-based implementation, all result shares are
encrypted with the buyer’s public key. This public key is sent as part of a
credential to the computation system. To gain access to the computation
result, a malicious marketplace could try to replace the buyer’s public
key with their own. Alternatively, they could add a credential with their
public key to the computation request. The request would then fulfill the
policy using the buyer’s real credentials, but the nodes would encrypt the
result for the wrong public key. We prevent this attack by including a
check in the seller’s policy that ensures that all credentials belong to the
same identity. Since the public key is extracted from one of the credentials,
only the legitimate buyer’s public key is used to encrypt the computation
result.
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Chapter 7 Conclusions
In this chapter, we introduced our extensible trust- and access-policy sys-
tem TPL. Using TPL, verifiers can define rules about their understanding
of trust as well as other business-logic rules in a flexible way. We discussed
the integration of the TPL system into our global trust management
system, which we introduced in Chapter 6. Further, as a use case for TPL,
we presented an access control extension for private data marketplaces.
This extension enables data sellers to define expressive policies on their
data usage. The results of the research presented in this chapter have
been published in three academic papers [Möd+19; Alb+21; MA22].





8
Transforming Credentials between

Representations

This chapter is based on the paper Trust Me If You Can: Trusted
Transformation Between (JSON) Schemas to Support Global Au-
thentication of Education Credentials by More, Grassberger et al.
[Mor+21]. Parts of this paper have been copied verbatim. The pro-
totype was implemented as part of the bachelor’s thesis of Dominik
König.

Upon retrieval of a credential, a Service Provider (SP) needs to assess
the credential’s authenticity (see Chapter 6); additionally, the SP also
needs to be able to interpret the credential’s content. This works if the
credential issuer and SP share an understanding of an encoding schema,
but it becomes a problem when they do not. When credentials are issued
and verified in a global and heterogeneous setting, a diverse set of data
formats and schemata are used to encode the certified information.

The format and schema of digital credentials play an essential role in their
global applicability and compatibility with different systems. Credential
formats refer to the structure and syntax of the credential data, such
as the file type used (e.g., XML). Credential schemata refer to the
description of the credential data, such as the structure of attributes and
their values (e.g., a specific XML schema). The choice of format and
schema can impact the interoperability of digital credentials, as different
systems may have different requirements and standards.

This potential lack of agreement represents a considerable challenge to
automated processing. The SP’s automated verification tool needs to un-
derstand the credential’s format to be able to parse it (see also Figure 6.2).
Further, as shown in the example in Figure 8.1, an SP’s access policy relies
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on a specific credential structure to define access rules (see also Chapter 7).
If the incoming credential is of a different format or schema, the policy
system cannot check it. The underlying problem is that a verification tool
always needs to understand the semantics of a credential to process it.

Concept: Transform the Credential using Trusted Information

Problem: Different Credential Schemata

transform()

Transformation
Info

Transformed
Credential

degree:
  type: Bachelor
  subject: Arts
  effort:
    type: ECTS
    value: 180

Received
Credential

...
BAdegree:
  ects: 180

Needed
Credential

degree:
  type: ?
  subject: ?
  effort:
    type: ?
    value: ?

Received
Credential

...
BAdegree:
  ects: 180

Access
Policy

using degree:
  type == Bachelor
  subject == Arts|Sci
  effort.type == ECTS
  effort.value >= 180
...

Figure 8.1.: If a SP receives a credential in a format/schema it does
not understant, it first needs to transform it.

To support entities who want to verify credentials from various issuers,
we introduce a system to interpret credentials issued in an unknown
schema. Our system does so by transforming digital credential data
between schemata and formats. This transformation is done automatic-
ally using transformation information that the SP’s verification system
executes. The transformation itself is performed using existing transform-
ation languages or template systems. However, transforming a credential
invalidates its signature. Hence, our system automatically authenticates
the transformation information before executing the transformation. It
can easily do so using our global trust management system (see Chapter 6).
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Given this then-trusted transformation information, SPs can locally trans-
form a credential from the issuer’s schema or format into their preferred
schema. This transformation results in a credential in a schema and format
that the issuer’s policy system understands.

By implementing trusted credential transformations, issuers and SPs
can exchange digital credentials in an interoperable way, without requiring
them to use the same format and schema.

Chapter 8 Goal:

We discuss the overall goals of this thesis in Chapter 5. In this chapter, we
focus on Goal 2 (Global Trust Scheme Interoperability). More specifically,
we tackle the aspect of Attestation Format Interoperability. From this
goal, we derive seven requirements to survey the state of the art and
evaluate our approach (see Section 8.2).

Chapter 8 Outline:

We start the chapter with a conceptual introduction into credentials,
discussing the difference between credential formats and schemata (Sec-
tion 8.1).

We then define requirements that our thesis goals pose on a credential
transformation system (Section 8.2). In Section 8.3, we use these require-
ments to survey the state of the art and argue why a new approach is
needed.

In Section 8.4, we present our approach for flexible credential transform-
ations. In this section, we also introduce the relevant concepts and the
two types of a transformation we consider: the transformation of a cre-
dential’s schema and the transformation of both the credential’s format
and schema. Additionally, we discuss the implications of a transformation
on the credential’s authenticity.

In Section 8.5, we show a proof of concept implementation of our trans-
formation approach. Our implementation builds on our Distributed Ledger
(DL)-based trust management system, which we introduced in Section 6.6
as alternative to our DNS-based system. In this implementation, the
transformation information is stored on a decentralized storage layer and
authenticated using a trust registry stored in a distributed ledger. This
registry also enables all involved entities to publish trust statements about
each other, announcing to their trusted peers which other entities they
consider legitimate publishers of transformation information.
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In Section 8.6, we evaluate out trusted credential transformation system
against the requirements that we previously introduced. We also discuss
our approach and state ideas for future work.

8.1. On Credentials
Credentials are documents commonly used to prove one’s identity, capab-
ilities, or the fulfillment of requirements. Examples of credentials are a
passport, a driver’s license, or a public transport ticket. Other examples
are credentials issued for reaching achievements, e.g., course certificates
and university diplomas.

A digital credential is the electronic equivalent of a paper-based creden-
tial. Simple digital credentials are username and password, e.g., used to
authenticate at a website. In the context of this thesis, a credential is
a signed data structure issued to some user (the holder) [BT11, p. 46].
In more detail, a credential consists of some attributes (sometimes also
called “claims”) about a subject. Bertino et al. define an attribute as “a
set of data that describes the characteristics of a subject” [BT11, p. 22].
Those encoded attributes are electronically signed by an issuer. For a
credential to have any relevance, it must be issued by an issuer qualified
to do so. We also discuss this in Section 2.2.

Many solutions exist to create, manage, and verify digital credentials
with different characteristics [BRA23]. In this chapter, we focus on the
representation of credentials as authenticated containers for attributes.
We define an attribute as a key-value pair. While the key is typically a
string (i.e., the attribute’s name), there are many potential types of values.
Since a credential commonly involves more than a single attribute, it has
some structure. This structure can be a flat list of all attributes or a more
complex arrangement. For example, some credential systems allow that
the value of an attribute consists of attributes again (“nesting”). The list
of attributes and the structure of a credential depends on the specific use
case.

When we create a credential, we thus first need to represent it on an
abstract level, then encode it to a concrete byte string. In that context,
we differentiate between a format, a schema, and the encoding:
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• A format refers to the specific syntax and structure used to represent
the data. Formats1 commonly used to represent credentials are
JSON, XML, and X.509.

• A schema defines the rules and constraints for the data’s structure
and content. In the context of this thesis, the word schema refers
to the formal description of a document’s structure [Wal01]. A
schema itself is specified by some system (in a special format or by
a technical standard). For example, “JSON Schema” and “XML
Schema Definition” (XSD) are examples of schema systems that
specify the structure of a JSON or XML document, respectively.
Further, in X.509, “profiles” define the structure and content of
X.509 certificates. An example of an X.509 profile is PKIX, which
is commonly used in the web Public Key Infrastructure (PKI) for
Transport Layer Security (TLS) authentication (profiled in [Coo+08],
see also Section 4.2).

• The encoding of a credential is the concrete byte sequence repres-
enting some data.2 While JSON and XML are formats with their
own encoding, X.509 is an abstract representation that needs an
encoding format like Distinguished Encoding Rules (DER) [Hou+99;
ITU02]. This byte sequence can then be stored or transmitted over
the network. Additionally, the attributes’ encoding is also required
for the signing of a credential, as the signature function signs a
concrete byte sequence. Some credential systems use the same at-
tribute encoding for signing that they also use to store/transmit
the credential (e.g., JWT, X.509, or OpenPGP) [JBS15; Coo+08;
Cal+07]. Other systems apply a canonicalization to the credentials
to ensure the input of the signature function is always the same
(e.g., XMLDsig) [Bar+13, Section 4.4.1].

The choice of encoding mechanism and schema depends on the specific
use case.

8.1.1. Common Credential Formats and Schema Systems
Table 8.1 gives an overview of common formats, schemata, and encodings.
Relevant credential formats in the context of this thesis are XML and

1In this chapter, formats refer to file formats, not to be confused with TPL formats
(cf. Section 7.3).

2The encoding of data is also concerned with the encoding of characters (e.g., ASCII
or UTF-8), but this is out of the scope of this thesis.
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JSON. XML is a format and a meta-format (used to define other languages
like XHTML and SVG). Common schema systems used with XML are
XML Schema Definition (XSD) and document type definitions (DTD).
For JSON, JSON Schema is a JSON-based schema for describing the
structure of JSON data.

In addition, X.509 is a common format for digital certificates. The
structure (schema) of an X.509 certificate is defined using a profile. In
contrast to XML and JSON, X.509 certificates are represented in the
abstract ASN.1 notation. A certificate can then be encoded using different
encodings; however, certain X.509 profiles might require a specific encoding.
For example, the IETF’s PKIX profile requires the DER encoding (or its
base64-encoded PEM form). Another relevant format is the OpenPGP
message format (which specifies a package format to encode certificates
with attributes) [Mor15].

Table 8.1.: Data formats commonly used to represent digital cre-
dentials.

Meta Format Schema System Encoding (examples)
XML XML XSD, DTD XML
- JSON JSON Schema JSON, JWT, CBOR
ASN.1 X.509 X.509 Profiles DER, PEM, CBOR
ASN.1 PKCS, LDAP, . . . . . . DER, CBOR, XER
ASN.1 CMS BER
- OpenPGP Format OpenPGP OpenPGP Packets
- - - XMLDsig, CL-Sigs

8.1.2. Terminology

As some terms in this chapter overlap with similar terms in other chapters,
we now provide a clarification:

• In this chapter, we talk about the transformation of credentials
(as defined above). In other chapters, we use the more general word
attestation to denote a signed data structure of any kind. Another
type of attestation is a certificate, which we defined as a data
structure binding a key to some identifier. Following this definition,



8.2. Requirements 155

certificates and credentials are both attestations. This differentiation
is also discussed in Section 2.2.

• With schema (plural: schemata), we denote a data schema (as
described above). In contrast, the word scheme is used for trust
schemes (see Section 6.1).

• With format, we denote a file format (like XML or JSON). In
Chapter 7 we also use the word “format” for TPL formats, which
are parsers from concrete (data) formats into the abstract TPL
format used by the TPL interpreter.

8.2. Requirements
This chapter focuses on the goal of Attestation Format Interoperability
(see Chapter 5). To fulfill this goal, we require a system that can transform
a digital credential from various representations into a representation that
the SP can process. This section outlines the requirements for such a
credential transformation system. We derive seven requirements from the
overall goals considered in this chapter (R1–R7).

In the following Section 8.3, we then use those requirements to survey the
state of the art. Later in Section 8.6.1, we also use the requirements to
evaluate our own approach.

8.2.1. Thesis Requirements
Based on the overall goal of our thesis (see Chapter 5), we derive the
following requirements for a credential transformation system.

R1 Attestation Format Interoperability: The main reason for this
chapter is the need to support many credential formats, i.e., signed en-
codings of attributes (Goal 2). The goal is that an SP can process a
credential, even if it was encoded in a format unknown to the SP. To fulfill
this requirement, we thus require a method or a system that helps an SP
to understand the semantics of such a credential. This is the basis for
further processing, e.g., with an access policy system.

R2 Trust: When the SP receives a transaction and attempts to transform
it, the transformation system must ensure its trustworthiness. If the



156 Chapter 8. Transforming Credentials between Representations

transaction was trustworthy before transforming it, then the system must
ensure that it can also be trusted after the transformation. Conversely, if
no trust can be established in the incoming transaction, then the result
of the transformation must also be marked as untrustworthy. Hence, all
entities and artifacts involved in the transformation must be trusted by
the SP.3 Further, all information needed to transform a credential needs
to be retrieved from trusted parties.

Since each SP has its own perception of trust (Goal 1), it is desirable
to assess the trustworthiness of transactions using trust policies (see
Chapter 7).

R3 Local Trust View: In the global context highlighted by Goal 2, we
consider a heterogeneous environment with many trust schemes, issuers,
and credential formats. Conversely, we aim to enable SPs to enforce their
own perception of trust (Goal 1). A likely implication of these goals is
that the issuer and the verifier don’t know each other and thus cannot
agree on a credential encoding. Hence, the system must neither depend
on the issuer to issue a credential in the correct format nor assume that
the issuer can create such a credential on demand.

R4 No modifications of the issuer: The goal of our approach is to
facilitate interoperability (Goal 2) between existing systems as well. Hence,
to increase the acceptance of the system,4 modifications of the issuer’s
systems must be avoided. Specifically, the system must not assume that
the issuer adapts a novel signature scheme.

Given our focus on local perceptions of trust and requirement R3, we
don’t restrict modifications of the verifier’s systems.

R5 Extensibility: To comply with the extensibility Goal 3, the system
must not limit the credential formats it supports. Further, to facilitate
automated processing, the discovery and installation of new credential
formats should also happen automatically. Hence, the need for manually
installing components for each format should be avoided.

3The software security of the local transformation system is also vital for a transform-
ation’s trustworthiness but is out of the scope of this thesis.

4and to avoid an xkcd 927 situation
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R6 Confidentiality & Undetectability: One of the goals of this thesis is
to preserve users’ privacy (Goal 4). This includes the potentially sensitive
content of credentials and information about the user’s behavior. To fulfill
this goal, the system must not reveal the content of credentials or other
identifiable information (i.e., PII) of the user to any third party. This
restriction includes the credential issuer and the issuer’s trust scheme
operator.

R7 No execution of third-party code: A credential transformation might
involve a third party supporting the transformation, e.g., by providing cre-
dential format information to the SP or fully executing the transformation.
Such an entity is trusted by the SP and is relied on for transformations
of potentially very important information. Nevertheless, to minimize the
attack surface and reduce the impact of a malicious or compromised entity,
the SP’s system should not execute any code it retrieved from third parties.
Here we distinguish between the execution of any (Turing-complete) code
and the transformation using, e.g., a less powerful template language that
only describes a mapping.

8.3. State of the Art

We now survey the state of the art of credential format interoperability,
focusing on credential transformation approaches. We consider techniques
and tools that can be used to transform a digital credential (i.e., signed
data structure) from one encoding schema to another one. The focus of
the survey is on systems that comply with our requirements. To systemize
our survey, we first introduce four types of approaches to transform a
credential. We argue why only the last type is suitable w.r.t. our core
requirements. Hence, we then continue with a discussion of the state of
the art of this last type.

8.3.1. Types of Credential Transformation Approaches

Given the typical credential flow (as discussed in Chapter 2 and Sec-
tion 6.1), we consider four types of credential transformations, depending
on which entity is performing the transformation process.
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Type 1: Transformation by the Issuer: This is the simplest case for
interoperability: If the issuer creates a credential in an encoding that the
verifier can understand, then there are no interoperability issues w.r.t.
credential formats. However, as we focus on a heterogeneous context in
which issuers and verifiers don’t agree on a credential format, this type
violates R3.

A similar approach is to later entrust an issuer with the transformation
of a credential it issued. This raises similar issues (violating R3) and
additionally violates the undetectability requirement from R6. Hence,
since approaches of this type already conceptually prevent compliance
with our requirements, we did not consider issuer-based approaches.

Type 2: Transformation by the Holder: Once the credential is signed
and sent to the holder, the following entity in line to transform it is the
holder itself. For example, Glaude recently proposed that the holder’s
digital identity wallet acts as an adapter to transform credentials to the
form needed by the verifier [Gla23]. However, as Young points out, this
breaks the credential’s authenticity [You23], violating the fundamental
trust requirement R2.

The W3C Verifiable Credential (VC) data model proposes a mechanism
that would allow the transformation of a credential by its holder using
zero-knowledge proofs [SLC22, Section 5.8]; this is similar to what we
propose in Section 8.6.4. The mechanism discussed in the VC data model
requires that the credential issuer uses a suitable signature scheme, e.g., CL
signatures [CL02; SLC22, Figure 11], which excludes existing credentials
and issuers, and thus violates R4.

Type 3: Transformation by a Trusted Third Party (TTP): If two
systems want to communicate but don’t agree on a data exchange format,
a third system can transform the data for them. In the distributed
computing field, this is known as message-oriented middleware (MOM)
[CCL08]. While MOMs enable SPs to process incoming data, they do not
provide any trust in that data (violating R2).

To mitigate this issue, the concept of MOMs—or, more specifically, data
transformation TTPs—can be extended to consider the data’s authenti-
city. For example, Young recommends a proxy issuer approach similar
to notaries [You23; Tru21]. Such a proxy issuer takes a credential in
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some format, converts it to another format, and attests to the semantic
equivalence and the credential’s trustworthiness to the SP. The SP then
trusts the TTP to only attest credentials with a valid signature and can
hence also trust the transformed credential. This approach is conceptually
similar to Validation Authorities, i.e., entities to which SPs can outsource
the trust verification of a transaction (see Chapter 5 and Chapter 6). The
downside of this type of approaches is that sending the full credential to
a TTP violates the privacy requirements from R6. It also impedes the
requirement of a local trust view R3.

Type 4: Transformation by the Verifier: After the holder transmits the
credential to the verifier (SP), it is up to the verifier itself to establish an
understanding in the credential, i.e., transform it. This type of approach
has the advantage that no modifications to any other component are needed.
Further, the verifier can authenticate the credential before transforming it
using their own trust perception.

To fulfill the extensibility requirement R5, approaches of this type might
download executable code to perform the transformation. Doing so can
partially violate the security requirement R7. We discuss this challenge in
the evaluation in Section 8.6.1 below.

8.3.2. Results

Since we argued that only approaches of type 4 can fulfill our requirements,
we now continue with a survey of approaches of this type.

Type 4 approaches: There exists a large body of techniques and tools
to locally transform a document from one form into another.

In the context of our goals, a transformation system is a system that per-
forms the transformation based on some mapping template. A commonly
used system for this is the Extensible Stylesheet Language Transformations
(XSLT) language5. XSLT is designed to transform XML documents into
other XML documents (of a different schema) or documents of another
format. In XSLT, a transformation is performed by an XSLT processor,
which takes a structured (XML) document and an XSLT stylesheet as
input, and outputs the transformed document. Systems similar to XSLT

5https://www.w3.org/standards/xml/transformation, accessed on 2023-04-20

https://www.w3.org/standards/xml/transformation
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exist for other languages, for example, jsonpath-object-transform6 (for
JSON), or more general approaches like Liquid templates.7 However, those
transformation systems just transform a document and don’t consider its
authenticity, violating the fundamental trust requirement R2. Similarly,
they rely on a pre-configured transformation template, which violates the
extensibility requirement R5.

The FutureID project deals with the translation between different eID
credential formats using a broker service [Fut19b; Sel+19, Section 8.1]. To
do so, FutureID introduces the concept of simple credential transformers
(SCTs) that can handle different types of credentials during authentication.
A SCT “validates the credential. If successful, the SCT [creates] an
authenticated session and sets the identity attributes that were provided
with the credential and then redirects the user to the originally requested
resource” [Fut14]. While this ensures the trustworthiness of credentials, a
separate SCT needs to be installed for each credential format (violating
the extensibility requirement R5).

Although all of those approaches violate several of our requirements, they
provide a valuable building block for a trustworthy transformation system.

Other approaches: The Resource Description Framework (RDF)8 is
another approach that can be used to solve the credential format inter-
operability problem. RDF is a graph-based data model used to encode
information about resources. This approach is similar to what credentials
do. Example encodings for RDF are JSON-LD (JSON for Linking Data)9

and Turtle.10 An interesting aspect of RDF is that it uses Uniform Re-
source Identifiers (URIs) to identify those resources. For example, when
applying this idea to credentials, the name of an attribute is encoded as a
URI. Hence, an advantage of RDF-based approaches is that no credential
transformation system is needed. However, the basis for this is that issuers
create credentials with semantic annotations (e.g., a JSON-LD context),
i.e., map attributes to URIs. Further, all entities in the system need to
agree on a shared context vocabulary for those URIs (e.g., schema.org).
Since this assumes a global agreement (at least between the issuer and

6https://github.com/dvdln/jsonpath-object-transform, accessed on 2023-04-20
7https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-enterprise-integration

-liquid-transform, accessed on 2023-04-20
8http://www.w3.org/standards/techs/rdf, accessed on 2023-07-29
9https://www.w3.org/TR/json-ld/#relationship-to-rdf, accessed on 2023-07-29

10https://www.w3.org/TR/turtle, accessed on 2023-07-29

https://github.com/dvdln/jsonpath-object-transform
https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-enterprise-integration-liquid-transform
https://learn.microsoft.com/en-us/azure/logic-apps/logic-apps-enterprise-integration-liquid-transform
http://www.w3.org/standards/techs/rdf
https://www.w3.org/TR/json-ld/#relationship-to-rdf
https://www.w3.org/TR/turtle
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verifier), RDF approaches violate our interoperability requirements R1
and R3. Nevertheless, RDF can be used in addition to a transformation
system, providing additional semantic information to the SP.

Conclusion: The result of our survey is that no single approach fulfills all
our requirements. However, we assembled a collection of valuable building
blocks. Specifically, compliance of a local transformation system (e.g.,
XSLT) with our requirements can be achieved if it is extended to discover
transformation mappings automatically and only relies on trusted data.
We investigate this idea in the rest of this chapter.

8.4. Trusted Credential Transformation
Issuing digital credentials in a machine-readable form requires the issuing
institution to decide on the format and schema it uses to encode the
credential’s data. Both format and schema need to fulfill various require-
ments depending on the context. For example, the schema of a university
diploma credential depends on the structure of the education system, the
contents of a course or study, and legal regulations. Conversely, the SP
verifying such credentials needs to understand the formats and schemata
used therein. Thus, the issuer and SP have to not only agree on file
formats, but also on the schema to represent the credential data, which is
a challenge.

To mitigate this issue, we introduce trusted credential transformations
to enable compatibility between different credential formats and schemata.
Credential transformations involve mapping the data from one schema
to another, allowing for the exchange of credentials between different
systems. This process consists in identifying the attributes in the source
schema and mapping them to corresponding attributes in the target
schema. This mapping is encoded in machine-readable form—the so-called
transformation information (TI). The transformation process can then
be achieved using existing techniques, such as XSLT or jsonpath-object-
transform (see also Section 8.3). In addition to mapping a credential
to a different schema, a transformation can also map the credential to
another format (e.g., XML to JSON, using XSLT). To trust the result
of a transformation, the TI must be retrieved from a qualified entity.
Hence, the focus of this chapter is not the transformation itself, but how
to perform it in a secure and trustworthy way.
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Authenticity and Trust: The signature on the credential protects its
integrity and authenticity. However, transforming the credential to another
format changes the content, thereby invalidating the signature. Thus,
the SP must check the signature—and signer—before it transforms the
credential. This check is easily possible if the transformation only involves
the schema, as the signature mechanism does not change. In that case, the
SP can also directly authenticate the credential’s issuer using its trusted
trust scheme. If the credential’s format is also transformed, the signature
verification requires additional work. For example, an SP that only knows
how to handle credentials in JSON format cannot verify XML signatures.

Additionally, the SP needs to authenticate the transformation information.
This information describes how to transform a credential from the issuer’s
schema into a schema known to the SP. Since the SP wants to trust the
result of the transformation, it also needs to trust the transformation
information. This trust is enabled by using the trust scheme to authen-
ticate the information.11 For example, this can be done in a similarly
to the authorization of qualified issuers (see Section 6.1 above). The
transformation information is then retrieved and authenticated by the
SP and used to transform credentials. We visualize the transformation
process’s conceptual trust model in Figure 8.2.

The authentication of the credential and the TI is possible in an automated
way using our global trust management system, which we introduced in
Chapter 6. The result of the transformation process is a credential in
a schema (and format) that the SP understands, transformed from a
trusted credential using trusted transformation information. Afterward,
this credential can then be automatically processed based on rules locally
defined in the SP’s policy (see also Chapter 7).

8.4.1. Concepts

Our approach builds on an existing trust management system. For example,
it can be applied to the global system which we introduced in Chapter 6.
Hence, we extend the actors defined in Section 6.1 and introduce the
following concepts:

The Transformation Engine is the software component that performs
the transformation process (denoted with transform() in Figure 8.2).
11If the publisher of the transformation information is a foreign trust scheme, a trust

recognition must first be used to establish trust in this scheme (see Section 6.3).
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transform()Credential
in Schema A

Credential
in Schema B

Transformation Info
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authenticated via
trusted
trust scheme

derived using only
authenticated

information

authenticated via
trusted
trust scheme

TPL Interpreter
[Chapter 7]

ATV System
[Chapter 6]

Figure 8.2.: Conceptual trust model of the Credential Transforma-
tion process and interaction with the other components of our
thesis.

The SP operates it as part of the trust verification process. The concrete
choice of an engine depends on the involved schemata and formats.

Transformation Information (TI) is a set of (machine-readable) trans-
formation rules that define how to transform a credential issued using one
schema into a credential using another schema. In the same way, TI can
describe rules on how to transform a credential between two formats. It
is published by a trusted entity, and later retrieved and authenticated by
the SP’s verification tool.

TI is encoded in an implementation-specific format. The concrete encoding
of the TI is specific to the transformation engine and thus needs to be one
that the SP understands. But, this does not require a global standard for
transformation systems. Instead, only transformation publishers and SPs
who want to collaborate need to agree on such a format. This agreement
can happen independently of any credential issuers. Additionally, it is
even possible that different transformation engines are used for different
credential formats.

TI only takes care of the transformation of the actual data but assumes
that the data has been authenticated before transforming it. If the format
is also transformed, more information is needed to verify the credential’s
signature.

Verification Information (VI) is an optional extension of transforma-
tion information. It describes how to authenticate an incoming credential.
To do so, VI consists of functionality to handle public-key material and
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verify signatures. VI is published alongside TI by the same publisher.

As an alternative, the TI and VI to transform the format and authenticate
the credential can be published by a different entity than the TI to
transform the schema. For example, a foreign trust scheme might publish
the VI explaining how to verify XML signatures and the TI to transform
XML documents into JSON, while the local scheme publishes the schema
TI between two JSON schemata.

TI is encoded as a static file that describes the mapping (e.g., a template).
The transformation engine uses the TI file to map the attributes between
the schemata. In contrast, VI is encoded and published as directly ex-
ecutable code. We show an example TI encoded as a JSON template in
Listing D.1 in the appendix.

A Schema Identifier is a URI identifying the schema of a credential. It
is optionally part of the credential, e.g., as an attribute. In contrast, a
Format Identifier is not part of the credential itself, but instead derived
from the credential’s file extension (e.g., .xml and .json), or from other
context information (e.g., MIME type). The SP needs both identifiers to
select the correct TI and VI.

Depending on the schema/format, identifying the type without knowledge
about it might lead to a chicken-and-egg situation. E.g., extracting
the schema identifier from a credential requires knowledge about that
credential’s schema, i.e., the attribute used to store the identifier. In this
case, an SP might use all its available transformation engines to attempt
to parse the credential.12 If successful, the respective engine can extract
the identifier and verify if it is responsible for this schema. Alas, this
approach does not work if the respective engine is not yet available locally
at the SP.

An alternative approach is to agree on parts of the schema (almost making
it part of the format) and only leave the credential’s payload open to the
specific schema. For example, this is commonly done in the VC data model
[SLC22]. The VC recommendation only specifies the general structure of
a credential, most notably the type attribute. This attribute contains the
schema identifier of the credential. Applications then specify this type/s-
chema identifier, which describes the structure of the credential’s payload,
stored in the credentialSubject attribute (see also Appendix D).

The Transformation Data Registry (TDR) is a storage system used
12This is supported by our TPL format library, as introduced in Chapter 7.
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by all system participants to publish, discover, and retrieve TI and VI.
For example, in the case of a DL-based trust scheme (see Section 6.6),
the TDR can be a smart contract on a ledger and a suitable storage
system. Alternatively, the TDR could be built on our Domain Name
System (DNS)-based trust system introduced in Chapter 6. For example,
the trust scheme operator (whom all trust scheme members already trust)
could operate a TDR for its members. Or, a trust recognition can be
used to establish trust in a foreign scheme operator and use its TDR (see
Section 6.3). Hence, a single global TDR is unnecessary, in the same
way as there is no need for a worldwide agreement on a TI encoding (see
above).

8.4.2. Types of Transformations
Credential transformations can be categorized into two types, as also
visualized in Figure 8.3.

A Schema Transformation transforms the credential from one schema
to another schema of the same format. An example is the transformation
of a JSON credential into another JSON credential of a different structure.
Before verifying the credential, the SP needs to check the signature
on the credential (and authenticate its signer). Since the SP in that
example already knows how to verify the JSON signature, the schema
transformation process relies only on TI.

In contrast, a Format Transformation also transforms the format of the
credential. This is, for example, needed if the credential is issued in XML
format, but the SP can only verify and parse JSON-based credentials. In
this example, the SP also needs to gain the knowledge of how to verify
the signature on the (unknown) XML format. Hence, to establish trust
in such a credential, the SP requires VI in addition to TI. By executing
the verification and transformation process, the transformation engine
first uses the VI to check the (XML) signature. It then uses the TI to
transform the credential into a JSON credential, which the SP can trust
and process further.

8.4.3. Process
The transformation process described in this section helps SPs who are
unfamiliar with the schema of a credential they receive and, therefore, need
support to interpret the credential correctly. We split this process into two
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Figure 8.3.: Types of Credential Transformations: transforming
just the Schema (e.g., two different JSON schemata), or the full
Format (e.g., XML to JSON).

phases. In the first phase, entities knowing how to interpret a credential’s
schema and transform it into another schema encode this information
as TI. The prospective transformation publisher then publishes this in-
formation in the registry (TDR). For example, a university having dealt
with credentials in a foreign schema before may encode and publish this
knowledge as transformation information (TI). If the credential’s format
also needs to be transformed, the transformation publisher additionally
publishes the corresponding verification information (VI). In the second
phase, an SP retrieves this TI (and optional VI) from the Transformation
Data Registry (TDR) to transform and verify a credential. In doing so,
the SP also authenticates the retrieved information.
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Phase 1 Publication Process:

The preparation of a credential transformation starts when a transforma-
tion publisher knows the mapping between two credential schemata. The
publication can either happen by an entity in the transformation’s target
or source.13 In the case of a publication by a target entity, this
knowledge is about how to map a foreign schema to a local schema. This
can, for example, happen when an institution needs to authenticate a
digital diploma issued by a foreign university. In doing so, the local
institution manually maps the credential’s schema into its local schema.
To save other institutions from this tedious process, it wants to share this
mapping. An example of this publication is shown in Figure 8.4 below. In
the opposite case of a publication by a source entity, the entity knows
how to map from its local schema to a foreign schema. For example, the
trust scheme authority of ExampleCom scheme might want to facilitate
transactions between its members and members of the FantasyLand trust
scheme. To facilitate outgoing transactions, it can publish TI and VI to a
schema and format used in the FantasyLand trust scheme. In both cases,
the publication happens by an entity trusted by the SP that later wants
to use the information.

The transformation publisher then encodes this VI and TI in machine-
readable form. After encoding the information, the transformation pub-
lisher signs the TI and VI. This essential step enables an SP to verify the
authenticity and establish trust in the information.

Finally, the transformation publisher publishes the signed information on
the TDR. The concrete publication protocol and registry location depends
on the use case and trust scheme (see Section 8.4.1). The identifier of
the transformation information is constructed from the identifiers of both
source and target of the transformation. The encoding of this identifier
also depends on the type of TDR. For example, a use case building on
our DNS-based trust scheme publication discussed in Chapter 6 might
use a DNS-based TDR. In that case, the TI identifier is constructed
by concatenating the DNS encoding of the schemata identifiers and the
publisher’s DNS identifier.

13In this context, “target” and “source” don’t necessarily reference separate trust
schemes. Entities can have knowledge about different credential schemata (or
formats) used in the same trust scheme.
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Phase 2 Transformation Process:

When an SP receives a credential encoded using a schema or format it does
not understand, it must transform the credential. Before transforming
the credential, the SP needs to retrieve the corresponding transformation
information. To do so, the SP first determines the format identifier of the
received credential (see also Section 8.4.1). Using this format identifier, the
SP determines the type of the required transformation (see Section 8.4.2).

Type 1: Schema Transformation: If the format identifier matches with an
identifier that can be directly processed by the SP’s verification system, no
format transformation is needed. In that case, the SP can directly verify
the signature on the credential. While doing so, it also authenticates the
signer of the credential using its trust policy (see Chapter 7). After trust
in the received credential is established, the SP proceeds by determining
the schema identifier of the credential (see Section 8.4.1).

The SP then uses this schema identifier to retrieve suitable TI. This re-
trieval is done using the credential’s schema identifier (the source identifier)
and the identifier of a schema known by the SP (the target identifier). The
target identifier is selected from a list of schemata that are relevant to the
current use case. For example, the registrar’s office of a university might
choose all diploma schemata its policy system can check. Combining both
identifiers results in a “TI identifier” that the SP uses to query the TDR
and retrieve the TI. If no such TI exists at the TDR, the SP proceeds with
another target schema it understands. If the SP cannot find a suitable TI,
it aborts the process and rejects the credential.

Next, before executing the TI, the SP must establish trust in the retrieved
TI. This is done by verifying whether a trusted and qualified entity
published the information. To check this, we build upon the SP’s local
trust scheme. The details of this step depend on the concrete use case
and TDR architecture. For example, if the system uses a DNS-based
trust scheme (as introduced in Chapter 6), the scheme’s authority could
be qualified to issue such information. The SP then uses the DNS to
retrieve and trust the signing keys of the scheme’s authority. Or, the
authority might authorize other entities in the scheme to publish TI.
Another example is the use of a distributed TDR, like on our smart
contract-based web of trust (as discussed in Section 6.6). In that example,
the WoT is used to authenticate the TI’s publisher and retrieve its keys.

After authenticating the TI, the SP proceeds with executing it using the
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transformation engine (as shown in Figure 8.3). The result is a (unsigned)
credential in a schema that the SP can process further.

Type 2: Format Transformation: If the credential’s format identifier does
not match an identifier known by the SP, a format transformation is needed.
In that case, the SP cannot read the credential before the transformation,
so no signature check is possible. Instead, VI is needed to authenticate
the credential and its signer.

To discover a suitable TI, the SP uses the credential’s format identifier. In
addition to TI, the SP also requests VI to verify the credential’s signature.

The retrieval of TI and VI works in the same way as with the TI alone
(see Type 1 above): the SP generates the information identifier by using
the source and target identifiers and queries the TDR. It then uses its
local trust scheme to authenticate the TI and VI. After retrieving and
authenticating the information, the SP executes it.

During the execution of the TI, the credential is transformed to the
target format, and the SP can continue processing it. Additionally, the VI
contains executable code to also verify the signature of the credential. This
verification code checks the signature before the credential is transformed.
The code outputs the verification result as well as the public key of the
signer in a format that the SP understands. The SP uses this public key
to authenticate the credential’s signer using its trust policy.

Type 1 & 2: A special case occurs if both format and schema need to be
transformed using different information. This case happens if the format
transformation yields a credential in a suitable format but an unknown
schema. In that case, an additional TI is needed to transform the schema.
This is done by executing Phase 1 after Phase 2, with the (now unsigned)
credential in the correct format as the input credential.

8.5. Prototype
To show the feasibility of our concept, we implement a prototype using our
DL-based trust management system, which we introduced in Section 6.6.
This system deals with credentials in VC format issued in a heterogeneous
setting. The data inside the VC envelope is encoded following a schema
chosen by the issuer. In Chapter 6 above, we discussed the case where a
credential is issued in a JSON schema that the SP’s verifier understands.
If this is not the case, the verifier needs to first transform the credential
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to a schema known by them. To facilitate this transformation, we extend
the smart-contract-based registry with a TDR. In our architecture, this is
done as a transformation graph that stores pointers to TI files. An SP then
uses the transformation graph of the decentralized registry to discover
suitable TI. This information is first authenticated using the Web of Trust
(WoT) graph and then used to transform the incoming credential. Since
a) the signature on the credential is verified before the transformation,
b) the transformation information is authenticated, and c) the SP itself
does the process, the result remains trustworthy. We discuss our system
in more detail in [Mor+21].

Registry Smart Contract on DL

Transformation graph

IPFS

WoT graph

Trust
Statement

Fantasy
Land

Transformation

Fantasy
Schema

ExampleC
Schema

IPFS Address

Transformation
Information

Fantasy → ExampleCExample
Com

Publisher

Figure 8.4.: Architecture of our DL-based trust registry with cre-
dential transformations following the example from Section 8.4.3.
The authority of the ExampleCom (target) scheme publishes TI
for a transformation from FantasyLand’s schema (source) to its
own ExampleC schema on the transformation graph. The TI
itself it stored on IFPS and references from the graph. Addi-
tionally, the ExampleCom authority publishes a trust statement
about the FantasyLand trust scheme.

Distributed Storage Layer: To host our decentralized registry, we develop
a smart contract in the Solidity programming language14 and deploy it
on a private Ethereum ledger. The contract stores the trust graph and
the transformation graph as a list of edges.

Storing large data on a DL is often not practical due to storage constraints
and costs. We thus use a decentralized storage system to publish the
14https://docs.soliditylang.org, accessed on 2023-04-13

https://docs.soliditylang.org
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actual transformation information. For the decentralized storage of trans-
formation information, we use the InterPlanetary File System (IPFS),
since its architecture works well together with a distributed ledger (see
also Section 4.3). Furthermore, IPFS provides integrity protection by
addressing files based on their content.15 The transformation graph then
only stores the information’s IPFS content identifier (CID). This architec-
ture is illustrated in Figure 8.4. Listing 8.1 shows the TI storage part of
the registry smart contract.

TransformationEdge[] public transformationGraph;

struct TransformationEdge {
uint id;
string publisherDID;
string sourceSchema;
string targetSchema;
string ipfsCID;

}

Listing 8.1.: The transformation graph storage in Solidity.

Client Components: To help users with adding and retrieving TI edges
from the registry, we develop client components using the web3.js library.
Those components take a user’s call to the registry contract, process it
using an Ethereum wallet, and send it to a node of the ledger. They also
retrieve and visualize the current state of the graphs.

Transformation Engine: TI is discovered using the transformation graph
and authenticated using the WoT graph, as explained above. The TI can
be encoded by any means as long as the SP’s verification tool is able to
execute them. In our implementation, we used jsonpath-object-transform
[Lan+17] and published corresponding templates encoded in JSON to
IPFS. Listing 8.2 illustrates the syntax and structure of TI encoded as
15In IPFS, a content identifier (CID) is based on the cryptographic hash of the

file’s content (content-addressable storage). Per default, SHA256 is used, see
https://docs.ipfs.tech/concepts/content-addressing, accessed on 2023-09-29

https://docs.ipfs.tech/concepts/content-addressing
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jsonpath-object-transform template. We give a full example in Appendix D.
Alternate approaches to transform JSON between different schemata or to
another representation (such as XML) include table-based transformations,
more generic templating systems using JSONPath [Gös07], and systems
based on XML’s XSLT (including its experimental variant JsonT [Gös06]).

{
"TransformationInformation": {

"GraduationDiploma": {
"PersonDID": "$.credentialSubject.id",
"UniversityDID": "$.credentialSubject.alumniOf.id",
"UniversityName": "$.credentialSubject.alumniOf.name.value"

}
},
"TransformationInformationSignature": {

"type": "RsaSignature2018",
"created": "2019-01-01T01:00:00Z",
"proofPurpose": "assertionMethod",
"verificationMethod": "did:example:ababb1f712ebc6f1c2762ec1",
"jws": "TVkIEq_PbChOMqsLfRoPsnsgw5WEuts01mq..."

}
}

Listing 8.2.: Example TI, encoded for the jsonpath-object-transform
transformation engine. This TI transforms a VC into a simple
diploma credential. The SP uses the signature to authenticate
the TI. Trust in the publisher is established by checking its DID
(stored in verificationMethod) on the WoT graph.

Evaluation of Prototype: The performance of our approach consists of
the retrieval of TI (see Chapter 6) and the execution of the transformation.
The performance of the transformation itself depends on the respective
transformation engine. In our prototype, we use jsonpath-object-transform
[Lan+17] as transformation engine. To evaluate the performance of this
core component, we run several benchmarks. To do so, we use the example
transformation template from Appendix D. The execution of the full
transformation process takes 38.8 ms (± 0.6 ms). Since jsonpath-object-
transform is a nodejs module, this benchmark involves the initialization
of the nodejs runtime on each request (which takes 36.5 ms ± 0.8 ms).
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To take this into account, we also evaluate the performance of jsonpath-
object-transform directly in nodejs (i.e., simulating a more optimized
architecture). This results in a performance of 0.46 ms (± 0.05 ms).

8.6. Evaluation & Discussion
In this section, we evaluate our approach against the overall goals of this
thesis and the requirements established above. We then discuss several
aspects of our trusted credential transformation system.

8.6.1. Evaluation
This chapter focused on facilitating global trust scheme interoperability
and consider heterogeneous attestation formats; this is Goal 2 of our
overall research goals (see Chapter 5). In that scenario, a SP needs to
understand the semantics of attestations issued in schemas that it does
not understand. Hence, it needs to transform the attestation to a different
format.

Based on that goal, in Section 8.2 we formulate seven requirements for a
credential transformation system (R1–R7). We now discuss the evaluation
our system against the tackled requirements. For each requirement, we
briefly state the measure or design decision that ensures we comply.

R1 Attestation Format Interoperability: We fulfill this meta-requirement
by providing a trustworthy credential transformation system (see Sec-
tion 8.4). By building on existing local credential transformation ap-
proaches (e.g., XSLT), we take advantage of established transformation
methods while enriching them with trust and flexibility, expanding the
state of the art.

R2 Trust: We fulfill this requirement in two ways: When performing a
schema transformation using only TI, the SP already has the knowledge
to check a transaction’s authenticity. Hence, our system directly verifies
the authenticity of an incoming credential before transforming it (see
Section 8.4). In case of a format transformation, VI is used in addition,
which contains the logic to authenticate the credential (see Section 8.4 and
Section 8.6.2). In both cases, the SP can use their own trust rules (i.e.,
trust policy) to decide if they consider a credential’s issuer trustworthy.



174 Chapter 8. Transforming Credentials between Representations

Further, all transformations are executed only using trustworthy inform-
ation. In specific, we use the trust scheme already in use by an SP to
establish trust in TI and VI before executing it.

R3 Local Trust View: We comply with this requirement since all trans-
formations are performed locally, i.e., without the issuer’s involvement.
Hence, we don’t require that the issuer create a credential in the correct
format or provide it at the verifier’s request. This enables a verifier to use
their local trust perception (in the form of a trust policy) to authentic-
ate the credential and their own access policy to check the credential’s
attributes.

R4 No modifications of the issuer: Since our system does not involve
the credential issuer in a transformation, we comply with this require-
ment. Specifically, our system supports established signature schemes and
credential formats. Thus, there is no need to adopt novel schemes.

R5 Extensibility: Our system uses the trust schemes trusted by the SP
to discover and retrieve the TI and VI needed to transform a credential.
The system is fully extensible because there is no need to pre-configure any
transformation mapping. Further, retrieving and installing new mappings
(i.e., TI and VI) happens automatically and on demand. A limitation to
this is that only mappings published by trusted entities are available, so
there is no guarantee that a specific credential can be processed.

R6 Confidentiality & Undetectability: We comply with these privacy
requirements since neither the credential nor any information referencing
the holder is transmitted to a third party. This is achieved by retrieving
TI/VI and executing it locally—without the involvement of any TTP or
the issuer.

R7 No execution of third-party code: We partially fulfill this require-
ment by differentiating schema and format transformation (see Section 8.4).
In the case of a schema transformation, TI is used to transform the creden-
tial. Depending on the utilized transformation engine, TI is encoded as
a machine-readable mapping template, i.e., not Turing-complete. While
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there is no need for TI to be Turing-complete, there are nevertheless
Turing-complete mapping templates, e.g., XSLT.

In the case of a format transformation, the used VI also contains executable
code to authenticate the credential, which leads to noncompliance with
this requirement. For use cases where VI is needed, we recommend limiting
the list of trusted VI publishers. Further, we suggest applying sandboxing
techniques on the transformation engine as a minimum line of defense.

8.6.2. Local Trust
A challenge that we tackle in this chapter is the authenticity of transformed
credentials. To avoid a signature becoming invalid due to transforming the
credential, the SP first verifies the signature of the original credential and
only then converts the credential (based on trusted TI) locally. Signature
verification and credential transformation occur locally in the SP’s trust
domain; only trusted transformation information is used. Assuming the
published TI is correct, this guarantees that the transformed credential
has the same meaning as the incoming signed one.

8.6.3. Limitations
Transformations of credentials have limitations. For example, if a target
schema requires values that are not available in the source schema, a
direct transformation might not be possible. In that case, the TI could
map missing values to some defaults. The SP or its policy then must
decide whether or not the transformed credential is considered sufficient.
Given these missing values, the transformation result could be deemed
insufficient for the assessment.

8.6.4. Future Work: Transformation by Holder
In this chapter, we discuss credential transformations that are performed
by the SP. In that approach, a credential’s holder does not know about
the target schema/format the SP needs, and sends the credential in its
original encoding. To establish trust in the credential, the SP checks the
signature on the credential before the (schema) transformation, or it uses
VI to verify the credential’s signature.

An alternative approach is credential transformation that is performed
directly by the credential’s holder. In that case, the SP tells the holder
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about its schema requirements, and the holder transforms the credential
before sending it to the SP. But, this naive transformation by the holder
breaks the signature on the credential, and thus the SP cannot trust it
[You23]. To mitigate this, we propose an approach where the holder creates
a cryptographic proof showing that the new credential was generated using
a credential with a valid signature. This approach can be implemented
using our zero-knowledge policy system, which we introduce in Chapter 9.
See Figure 8.5 for a comparison of those approaches.
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Figure 8.5.: Different approaches to Credential Transformations,
differentiated by who is performing the transformation. In a
transformation performed by the holder, the holder transforms
the credential and proves the relation using a cryptographic
proof.
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Chapter 8 Conclusions
In this chapter, we presented our approach for flexible and trustworthy
credential transformations. Using trusted credential transformations,
issuers and SPs can exchange digital credentials without requiring them
to agree on a format and schema. Further, we discussed a proof of
concept implementation of our transformation approach, demonstrating
its feasibility. The research results presented in this chapter have been
published as part of an academic paper [Mor+21].
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Research Area 2 Introduction

Outlook
In this part of the thesis, we present our research in the area of Pri-
vacy. Our work in this area resulted in two scientific publications (see
Section 1.2.1). The presentation of this research is structured into the
following two chapters:

In Chapter 9, we present a generic design for supporting privacy-
preserving technologies in access control systems. In this approach,
we mitigate the problem that users commonly need to reveal too much of
their sensitive data when presenting credentials to the Service Provider
(SP). Our design prevents unnecessary disclosure of sensitive information
while still allowing the formulation of expressive rules for access control.
For that, we make use of Non-Interactive Zero-Knowledge Proofs (NIZKs).
The fundamental idea is to automatically derive the structure of the proof
a user needs to create from an access control policy and also integrate the
verification of those proofs into the policy system. Our approach allows
users to only provide the information the service requires. At the same
time, it ensures that SPs can use trustworthy attributes to verify the
user’s request.

As a reference implementation of this concept, we provide a privacy
extension for the TPL system, which we introduced in Chapter 7 above. We
also evaluate the resulting ZK-TPL language and its associated toolchain.
Our evaluation shows that for usual credential sizes, communication and
verification overhead is negligible.

In Chapter 10, we present our Ledger State Attestation system. Users
can utilize this system to retrieve offline-verifiable attestations on data
stored on a Distributed Ledger (DL). For example, this data might be
the revocation status of some credential or data from other DL-based
registries. This approach then enables users to present this data to SPs
that are offline. Doing so has the advantage that the DL and its node do
not learn about the relationship between SP and the user. This prevents
the detectability of the credential presentation and preserves the user’s
privacy (cf. Section 3.2). Further, it increases the availability of the overall
system. We also provide a reference implementation for the Ethereum
ledger and discuss our approach.
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9
Enhancing Access Policies with

Privacy Features

This chapter is based on the paper Extending Expressive Access
Policies with Privacy Features by More, Ramacher et al. [Mor+22].
Parts of this paper have been copied verbatim. The prototype was
implemented by our student Marco Herzl.

In Chapter 7 above, we introduced our extensible and flexible policy
system TPL. Policy systems like TPL enable the codification and re-use
of access policies while decoupling them from the deployed access control
systems. Furthermore, policy systems offer a higher level of abstraction
that facilitates the design of policies without requiring concrete insights
into the implementation of the underlying access control system.

In the policy-based and credential-based access control model, a policy
is defined by the Service Provider’s (SP) domain expert, codifying rules
for authentication, authorization, and trust verification [Lee11; SWS07,
Section C-3; Mor+22]. Users in the system receive digital credentials and
store them in their digital identity wallet. To authenticate, a user later
bundles the required credentials to their service request and sends it to
the SP (as visualized in Figure 9.1). After receiving the request, the SP
uses a policy interpreter to verify the incoming user request by applying
its access policy.

However, this approach suffers from privacy issues. Users are often in
possession of credentials that certify numerous attributes (see also Sec-
tion 8.1). When showing a credential to an SP, users reveal all attributes
to the verifier, which is often neither desirable nor necessary to fulfill
an authentication request. For example, to pass the TPL policy given
in Listing 9.1, a user needs to reveal their date of birth. This is more
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information than needed, since the SP is only interested in the predicate
whether the user is older than 17.

3.) Credentials

User
2.) Credential Request

Verifier (SP)

Credential
Wallet

Policy
Interpreter Policy

1.) Service Request

Figure 9.1.: High-level architecture of an access process using a
policy system.

By integrating privacy-preserving technologies into the access control
process, users are enabled to only reveal a subset of the attributes or
even prove a statement without revealing any attribute at all. For ex-
ample, by introducing Camenisch-Lysyanskaya (CL) signatures [CL02] into
W3C’s verifiable presentations [SLC22], support for privacy-preserving
showings is achieved. Those features are well-understood in the field
of attributed-based credentials [Cha81; Cha85] and have been studied
for Self-Sovereign Identity (SSI) systems [Müh+18; Abr+19; Abr+21].
While the above-mentioned research and standards are helpful, integrating
privacy-preserving technologies into policy-based access control systems is
not straightforward.

Several challenges need to be addressed:

• Policy systems offer a method to define access policies and distrib-
ute them among all participants of a system, but they currently
lack the possibilities to represent (expressive) statements on hid-
den attributes—both on the language side and the interpreter side.
How can privacy-preserving technologies help to overcome these
challenges while being flexible enough to preserve the expressiveness
of the policy languages?

• With the possibility to have hidden attributes, integrators and policy
authors face a new challenge: which attributes should be hidden or
revealed to the SP? In addition, which statements/predicates on the
hidden attributes need to be revealed?

• Even if these questions are solved on the side of the SP, this inform-
ation needs to be communicated to users. How is the user informed
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on the statements they need to present?

• On the user side, identity wallet implementations need to support a
multitude of different services all having their own access require-
ments. How can a user-side wallet implementation support all the
possible proof types different SPs may ask for?

We close the gap by extending policy language systems with privacy
features using (non-interactive) zero-knowledge proofs (NIZK-Proofs). We
introduce a generalized approach for extending existing policy language-
based access control systems. In our approach, the policy’s author codifies
which statements the user should prove and which information needs to
be revealed to receive access as a policy. The policy author then uses
our policy compiler to derive a presentation request they provide to users.
The presentation request informs the user about the attributes they need
to reveal and statements they need to prove. That enables users to only
provide the required attributes and statements, and hide the rest of the
credential data. While we focus our implementation and evaluation on the
SSI model, the design itself is generic. It can be applied to various policy
systems and identity management models, enriching them with privacy
features.

accept(Cred) :-
extract(Cred, format, w3c_verifiableCredential),
extract(Cred, issuerDID, DIDissuer),
checkQualified(DIDissuer),
verify_signature(Cred, DIDissuer),

extract(Cred, credentialSubject, Subject),
extract(Subject, date_of_birth, Birthdate),
calculateAge(Birthdate, Age), Age >= 18,

extract(Subject, username, Username),
print(Username).

Listing 9.1.: Example TPL policy for W3C Verifiable Credentials,
with the trust-check omitted for clarity.
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Chapter 9 Goals:

We discuss the overall goals of this thesis in Chapter 5. In this chapter,
we focus on Goal 4 (Privacy). In specific, we tackle the aspects of con-
fidentiality as well as integrating privacy technology into access control
systems.

Chapter 9 Outline:

We start the chapter by defining the requirements for privacy-preserving
access control systems in the scope of our thesis (Section 9.1). Further,
we give an overview of the state of the art in privacy-preserving access
control (Section 9.2).

We then introduce our generic approach of privacy extensions for access
control systems (Section 9.3). In this section, we also introduce relevant
concepts and describe the process of privacy-preserving access control
using our approach.

In Section 9.4, we show the practicability of our approach by applying it
to the TPL policy system. The result is an expressive policy system with
privacy features that re-uses existing policies. We evaluate our reference
implementation in Section 9.4.3.

In Section 9.5, we evaluate our generic concept against the stated re-
quirements. Further, we discuss our approach and state ideas for future
work.

9.1. Requirements

In this section, we outline requirements for our privacy-preserving access
control system. We derive requirements from the overall privacy goal
considered in this chapter (Goal 4). Additionally, we consider the other
goals of this thesis, in specific modularity and extensibility (Goals 1 and 3,
cf. TPL requirements in Section 7.1). To also respect general requirements
on a policy system, we add the relevant criteria from two review papers
by Seamons et al. and Coi et al. (cf. Section 7.1.2) [Sea+02; CO08]. In
the following Section 9.2, we then use those requirements to survey the
state of the art. Later in Section 9.5.1, we also use the requirements to
evaluate our own approach.
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R1 Data Minimization: Goal 4 of our thesis is to preserve the users’
privacy. This goal includes the potentially sensitive content of credentials
and information about the user’s behavior. This represents a challenge
if the verifier needs access to some but not all of the data stored in the
credential. To fulfill this goal, the system must support the selective
disclosure of attributes without invalidating the authenticity guarantees
of the credential.

R2 Expressive Power: We aim to provide a policy system flexible enough
to represent all kinds of expressive policies (Goals 1 and 3). To provide a
policy designer with the greatest flexibility possible, we focus on Turing-
complete policy languages. To enable expressive policies and, at the same
time, preserve the user’s privacy (Goal 4), the system must support the
computation of predicates on private attributes, revealing only the result
of the predicate.

R3 Unlinkability: Sometimes a user selectively reveals only some attrib-
utes to an SP but later reveals other attributes of the same credential
to the same SP. If those presentations a linkable, a malicious SP could
combine those presentations, violating the user’s privacy. The same issue
exists if two or more SPs collude to aggregate credential presentations of
the same user. To protect the user’s privacy in that case, the system must
provide unlinkability (see Section 3.2). Specifically, the system should
provide unlinkability with respect to two different SPs, and for multiple
showings at the same SP (multi-show unlinkability).

R4 Simple linking of predicates: Constraints on attribute values, both
public and private, are supported (cf. R1 and R2). The system must enable
the chaining of multiple constraints, i.e., allow for logical conjunction of
constraints.

R5 Expressive linking of predicates: The relevance of some constraints
depends on the value of other constraints or attributes, forming a generic
boolean equation. Thus, in addition to a simple logical conjunction of
constraints (R4), the system should also support expressive chaining of
constraints, i.e., also support disjunction.
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R6 Inter-credential constraints: The system must support constraints in
the attributes of two different credentials. E.g., by requiring that a specific
attribute in two credentials has the same value, those two credentials
could be linked. Additionally, the value of an attribute in a credential can
influence the constraints on attributes in another credential.

R7 No modifications of the issuer: The goal of our approach is to
facilitate interoperability (Goal 2) between existing systems as well. Hence,
to increase the system’s acceptance, modifications of the issuer’s systems
must be avoided. Specifically, the system must not assume that the issuer
adopts a novel signature scheme.

R8 Practicability: To ensure the practicability of our approach, we
consider several aspects. First, the system must minimize the setup
effort imposed on the user. Second, the system must provide realistic
performance, i.e., consider common usability goals. Following the advise
from Nielsen, “1 second is about the limit for the user’s flow of thought
to stay uninterrupted”, and “10 seconds is about the limit for keeping the
user’s attention focused” [Nie97, p. 135]. This limits concern the time it
takes to calculate a credential presentation and the duration the user has
to wait for a result from the verifier. Further, the credential presentation
must be transmitted from the user to the SP, e.g., over the Internet or
Bluetooth. As this impacts the performance, the system should also limit
the size of transmitted data, i.e., of the credential presentation.

9.2. State of the Art
We now survey the state of the art of privacy-preserving access control
systems (ppACS) with a focus on the policy-based and credential-based
access control model. In that model, a ppACS comprises a policy-based
access control system and privacy-preserving technologies.

The ABC4Trust project focused on privacy-enhancing attribute-based
credentials (ABC) and can be seen as preliminary work for the W3C VC
standard [SLC22] and modern SSI [SKR12; Bic+15a; Bic+15b]. In their
approach, the verifier sends a so-called presentation policy to the user.
This policy states the conditions the user has to fulfill to access the service.
On the user side, the ABC engine then matches the needed attributes,
and finally, a presentation token is created consisting of cryptographic
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evidence that the user satisfies the policy. This proof can later be verified
for access control purposes. The calculation of tokens relies on credentials
signed using specific cryptography (e.g., CL signatures [CH02; CL01] or
Brands blind signatures [Bra93; Bra95]; cf. [Cam+14]). This requires
modifications of the issuer (violating R7). Further, since the whole policy
must be proven through the presentation token, it can not contain any
conditions that are difficult or impossible to translate to a cryptographic
proof (e.g., online lookup for trust verification). Additionally, the pro-
ject supports a limited list of functions for use in predicates on private
attributes.1 As ABC4Trust policies build on XACML, they only support
the conjunction of predicates and no expressive linking of constraints
(violating R5). Thus, ABC4Trust enables interesting privacy features, but
its policies are limited in flexibility and expressiveness (impacting R2).

Belchior et al. propose a Self-Sovereign Identity based access control (SS-
IBAC) for service providers [Bel+20]. It leverages conventional attribute-
based access control using the attributes in SSI credentials, profiting from
its decentralized nature. SSIBAC uses the XACML standard for policy
specification (impacting R5). Their implementation is based on W3C
Verifiable Credentials [SLC22], Hyperledger Indy2, and Aries3 for com-
munication and distributed storage. While they mention the possibility
of introducing privacy-enhancing technologies, they do not discuss its
integration into an access policy language.

Conclusion: Above, we presented a selection of privacy-preserving access
control systems. While the state of the art shows that there is ongoing
research in this field, none of the presented systems is suitable for the goals
of this thesis. In specific, existing systems use credentials based on cryp-
tographic techniques that prevent the critical expressiveness requirement
R2. For the same reason, they only allow simple linking of predicates and
attributes (enabling R4 but violating R5) and require modifications to
the issuer (violating R7). However, the conceptual technique applied by
ABC4Trust inspires a valuable building block, namely the derivation of
presentation request and token from an access control policy. Hence, we
advance this approach and investigate it with novel and more expressive
cryptographic techniques in the rest of this chapter.

1https://abc4trust.eu/download/Deliverable_D2.2.pdf, Section 4.4.3
2https://github.com/hyperledger/indy-sdk, accessed on 2022-07-03
3https://github.com/hyperledger/aries, accessed on 2022-07-03

https://abc4trust.eu/download/Deliverable_D2.2.pdf
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/aries
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A second aspect of the thesis Goal 4 is the integration of privacy tech-
niques into existing access control and policy systems (see Section 5.4.2).
Additionally, we introduced the TPL system to provide a foundation for
trust management in a heterogeneous setting, as discussed in Section 7.2.
This research resulted in a policy system that fulfills our thesis’ goals but
lacks privacy features. Thus, in this chapter, we also demonstrate our
concept’s feasibility by applying it to the TPL system.

9.3. Compiling Access Policies into NIZK-Proofs
In this section, we describe the design of our access policy system with
privacy-preserving features. In Section 9.4, we discuss a concrete instanti-
ation of this design.

9.3.1. Concept
Before describing the different components, actors and the process, we
will present the high-level idea of our concept.

Preliminary: Commit-sign-proof Credentials One common approach
(cf. [CL02; FHS19]) to design attribute credentials is to first commit
to the attributes. This commitment is then signed by the issuer (i.e.,
identity provider). We show the simple form of this process in Figure 9.2.
For privacy-preserving showings, the user later proves consistency of any
revealed attribute with respect to the commitment. The latter proof is
combined with a proof of knowledge of a signature on the commitment,
or by directly providing the signature to the verifier.

Compiling Access Policies into NIZK Proofs As in other systems with
access control, rules that have to be satisfied must be represented as
program logic, forming a policy. Hence, we extend the concept of commit-
sign-proof credentials with the possibility for a policy designer to codify
such access rules. For any committed-to attribute, we enable the policy
designer to decide whether the user needs to reveal an attribute to the
service provider or whether it is sufficient to convince the verifier that
an attribute satisfies a policy rule without revealing it. Our system
automatically informs the user about the policy and compiles it into the
corresponding Non-Interactive Zero-Knowledge Proof (NIZK). That is,
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Figure 9.2.: Data flow of a commit-sign-proof credential.

the user proves the consistency of revealed attributes with the public
commitment. Similarly, for all rules involving hidden attributes, the user
also generates proofs of knowledge of these attributes and that they satisfy
the specified rules.

In our system, we allow the policy to express rules with respect to any
credential format: attributes that are encoded in some form of data
structure that has some public reference value. The latter may consist
of a signed commitment or a signature directly over the attributes. The
statement for the proof system is then built accordingly.

9.3.2. Components
Our system consists of the following actors/components:

User (Holder): The actor that wants to access a resource or consume
a service at the SP, and needs to authenticate to do so. Their identity
attributes are stored in form of digital credentials in a digital identity
wallet [PAZ22]. Part of the wallet is also a policy client, which prepares
a presentation token that satisfies a presentation request.

Service Provider (Verifier): The SP is the actor (or their system) which
provides access-protected services or resources to users. To control who
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can access a resource and how users are authenticated, the administrator
of the SP creates a policy that encodes access control and trust rules. The
SP uses a policy compiler to generate the presentation request, which
they provide to the user. After receiving a service request (which includes
the presentation token), the SP uses a (extended) policy interpreter
to verify the request.

9.3.3. Process
We now discuss the entire process of our concept. We split the process
into the following three phases: 1. The setup of the cryptographic sys-
tem, authoring of a policy, and publishing of the presentation request,
2. computing of a presentation token, and finally 3. the verification of the
presentation token.

Phase 1 Setup System and Policy:

Setup cryptography: If the employed proof system requires a specific
setup, performing it is the first step. For example, when using Succinct
Non-Interactive Arguments of Knowledge (SNARKs), a trusted third
party generates a Common Reference String (CRS) (we discuss this in
Section 9.5.2 below). The so-obtained common material is published and
retrieved by all system participants.

Author policy: During the setup phase, a policy is authored by the SP.
This policy encodes the rules a user of the SP needs to fulfill to use the
service or access a resource. Depending on the nature of an SP, there can
be different policies for different services or resources.

Authors of this policy are either technical personnel or domain experts
of the SP. An author without technical knowledge but with domain
expertise can use a graphical policy authoring tool to create the policy (cf.
Section 7.5.3). A policy is, in the end, always encoded in machine-readable
form, e.g., as an executable program or in a specific data format.

Define public and private attributes: As part of the policy, the author
specifies which attributes a user has to provide and what credential types
the SP accepts [OM23]. Additionally, the policy author defines two types
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of rules the user attributes have to satisfy, which are differentiated by
whether they operate on revealed attributes or private attributes. The
first set of rules operates on attributes the user must reveal to the SP.
They are used when the SP requires the attributes for further processing
or trust management. The second set of rules are instead transformed
into statements for the NIZK proof system. Thus, the user can prove
that their credentials fulfill these rules without revealing the values of the
attributes.

Compile policy and publish presentation request: Depending on the
NIZK proof system, the SP at this stage also compiles parts of the policy
into an intermediate representation for the policy client.

The encoded policy, together with metadata about the service, forms
the presentation request for a specific service. Before initiating a service
request, users need to know what data they are required to provide.
Therefore, the presentation request is published by the SP alongside the
service description.

Phase 2 Authentication at SP:

Retrieve presentation request: When a user want to access a service
or consume a resource, they have to authenticate with the SP. To do so,
they first retrieve the corresponding presentation request from the SP’s
website or another form of a service catalog.

Execute policy: The user then extracts the policy from the presentation
request and executes it using the policy client. While doing so, the
client retrieves the respective credentials from the user’s identity wallet
[Cam+15].

Handle public attributes: For the rules on public attributes, the client
extracts the attributes from the credential, thereby revealing their values.
It then computes a NIZK statement that proves that the value was indeed
extracted from the credential, i.e., to prove the consistency of the values
with the commitment. This statement proves that the revealed attributes
are linked to their credential. As a special case, if all attributes of a
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credential are specified as revealed in a policy, the client adds the full
credential to the response instead of a proof.

Handle private attributes: For the policy rules on private attributes,
the client computes a NIZK statement which proves that the attributes
fulfill the rules. Again, the client adds a statement to the proof that the
attributes were indeed extracted from the credential.

For the computation of proofs, the client uses the common material
retrieved in the setup phase and the NIZK statements. The client also
appends the metadata (e.g., issuer information) of all involved credentials
to the response.

Create presentation token: After executing the policy, the client encodes
all proofs, revealed credentials, and credential metadata into a presentation
token. An example presentation flow is shown in in Figure 9.3.

Then, the user adds service-specific data and sends it alongside the token
to the SP.

Phase 3 Verification of Presentation Tokens:

Load policy: On receiving a request, the SP loads the policy for the
respective service. The SP’s policy interpreter then uses a NIZK verifier
and a policy verifier to check the presentation token.

Execute NIZK verifier: The SP extracts the NIZK proofs from the
presentation token and verifies them using the NIZK verifier. As inputs for
the NIZK verifier, the policy and its proof system-specific representation,
respectively, need to be provided. Additionally, all public reference values,
i.e., the commitments and all revealed attributes, need to be known to the
NIZK verifier. Hence, the SP extracts these values from the presentation
token and provides them to the NIZK verifier. After this step, the verifier
is convinced that the proven statements match the requested statements.

Execute policy verifier: As next step, the SP initializes the policy verifier
and executes the remaining rules of the policy. All rules that work only
on revealed or public data are validated by the policy verifier.
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Figure 9.3.: Deriving different presentations from the same cre-
dential. Presentation A1 only reveals Attribute-1, while
Presentation A2 reveals Attribute-2 and a predicate on
Attriibute-3, but not its value.

Ensure trustworthiness of tokens: Besides evaluating the rules on the
revealed attributes, this phase verifies the token’s trustworthiness. To do
so, the policy verifier uses the trust rules encoded in the policy to check the
issuer of the credential (i.e., the signer of the attribute commitment). That
forms a trust chain from the issuer along the signature to the commitment,
which is in turn linked with the proof and consequently the attributes.
This trust chain is also visualized in Figure 9.4.

The trust rules specify which issuers are trustworthy for which type of
credentials. That can, for instance, be done by providing a list of trusted
issuers. A more flexible method is to define a trusted trust scheme (cf.
Section 7.4.2): One example of a possible trust scheme is Europe’s eIDAS
trust framework. Another example are SSI trust schemes established using
distributed ledgers (cf. Section 7.4.4). Depending on the defined trust
scheme, the policy verifier automatically retrieves trust status information
about the credential issuers from online registries. This process ensures
that public and private attributes can be trusted. Therefore, all NIZK
statements on these attributes are trustworthy w.r.t. the user’s rules.
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Conclude verification: After the NIZK verifier and the policy verifier
conclude that the presentation token is trustworthy and fulfills the user’s
policy, the SP grants the user access to the service.

Presentation A1
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signs Signature A

links

contains
Proof A1
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verify proof

Verifier
verify

signature
Issuer's

Public Key

Figure 9.4.: The tust chain of our approach. After establishing
trust in the issuer’s public key (e.g., by using our approach from
Chapter 6) and verifying the signature, the verifier establishes
trust in the proof by comparing the signed commitment with the
commitment in the proof. This authenticates the proof, which
is then used to authenticate the (revealed) attribute.

9.3.4. Benefits
In our approach, we derive the presentation request from an access control
policy. We then send it to the user, who automatically generates a suitable
presentation token using their identity wallet and existing credentials. Our
design properties result in several benefits for the involved actors.

Benefits for users: Our approach builds on commit-sign-proof credentials
and standard cryptographic schemes. By doing so, we allow the use of
existing credentials in a privacy-preserving way, without the need to change
credential specifications or modify issuers. Specifically, only relevant
attributes need to be revealed, and different attributes an be revealed for
different SPs or policies (see also Figure 9.3). Additionally, user can use
credentials they already received in their identity wallet, enhancing their
privacy. Those processes are performed automatically, as the presentation
request is executed by the policy client.

Benefits for SPs: In our approach, we derive privacy-preserving access
requests from high-level access control policies. Our design further serves
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as a basis for the use of cryptographic techniques that allow the use of
more expressive policies (e.g., SNARKs), as discussed in the next section.
This enables service providers and their policy authors to express complex
business rules using existing tools and languages they know. By always
linking the derived presentation request with the signature on the original
credential, we retain the authenticity guarantees of the attributes. The
SP can then use their own trust policy to establish trust in this signature,
retaining a local trust view.

9.4. Implementation

While our concept is described on a generic level, the concrete choice of
policy system and proof system is important to assess the feasibility and
to evaluate the performance and security. Thus, we provide a concrete
instantiation of our concept.

Our implementation builds on our TPL policy system (as introduced in
Chapter 7), which we extend with privacy features. Since TPL uses a
logic-based syntax, we need to compile the rules encoded in form of TPL
predicates to suitable statements for NIZK proofs.

As NIZK proof system we use SNARKs, since it enables small proofs (see
also Chapter 4). We instantiate our SNARKs with the Groth16 proving
scheme, which we execute with the help of the Bellman library.

Furthermore, we integrate the ZoKrates zero-knowledge toolbox [ET18]
as an intermediate layer in the transformation process. Thus, we compile
TPL policies into ZoKrates programs, which are then mapped to circuits
for bellman. An advantage of this intermediate step is that the SP can
already compile the policy into a ZoKrates program and directly share
that with the user as part of the presentation request. As an alternative,
the presentation request can be directly bundled with the identity wallet
or shipped to the user by other means prior to authenticating. This makes
sense for large proof requests which could take too long to transmit to
the user directly (e.g., via bluetooth). For example, when applying our
SNARK-based system on credentials that use SHA256 as commitment
function, proof request size can be on the scale of 100MB.

During authentication, the user only needs to provide their credentials
to the ZoKrates client and execute the ZoKrates program. Then, they
send the resulting proof alongside the selected revealed credentials to the
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SP as part of the presentation token. Finally, the SP uses the ZoKrates
verifier to ensure the proof is valid. In the next step, they forward the
NIZK verification result and the rest of the presentation token to the TPL
verifier. In addition to executing the policy on the revealed credentials,
the TPL verifier also checks whether all data is trustworthy. An overview
of this process is shown in Figure 9.5.

In our implementation we enable the privacy-preserving showing of attrib-
utes originating from credentials as well as private statements on these
attributes driven by TPL policies. We did not focus this implementation
on other aspects of the credentials, in specific we don’t hide the issuer
or other parts of the trust chain. In the following sections, we discuss
the integration of our concept (from Section 9.3) into the TPL system in
more detail. Specifically, Section 9.4.1 presents the extensions of TPL to
ZK-TPL from the point of view of the policy author. And Section 9.4.2
covers aspects of compiling ZK-TPL into NIZK statements using ZoKrates.
Finally, Section 9.4.3 presents the evaluation of our implementation.
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Figure 9.5.: Architectural overview of our implementation including
the actors and process flow.

9.4.1. Extending TPL with Zero-Knowledge Rules
We now focus on the concrete changes to the TPL syntax to express ZK
rules. A policy author defines in a policy which attributes a user needs to
reveal. There are multiple options to denote this in a TPL policy:

Option 1: Naming Convention: In TPL, the type of terms such as
atoms and variables is defined by their name. Any term starting with an
uppercase letter followed by letters, numbers or underscores represents
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a variable. Whereas terms starting with lowercase letters refer to atoms
(constants). Hence, in the same way we could refer to attributes that are
not revealed via a naming convention. However, as adding new conventions
to the TPL specification would lead to ambiguities, we consider this
approach to be error-prone and unintuitive.

Option 2: Privacy Predicate: Another approach is to represent the
hidden and revealed nature of attributes explicitly via a special predicate.
As with other domain-specific predicates that are available for TPL, a new
predicate can be defined that only evaluates to true if the corresponding
attribute is hidden. With this approach, all predicates related to this
attribute need then to cope with a potentially hidden attribute value.

Option 3: zkaccept-Predicate: Finally, the third (and chosen) option
is to add a new zkaccept predicate in addition to the accept entrypoint-
predicate for TPL programs. A policy is satisfied if and only if both accept
and zkaccept evaluate to true. Consequently, accept and zkaccept are
the two main predicates that represent a TPL rule set. With this approach,
the meaning of the accept predicate is untouched and interpreted as
before. In the zkaccept predicates, all statements are interpreted with
respect to hidden attributes and cause the creation and verification of
the corresponding NIZK proofs. Our approach is exemplified by the TPL
policy in Listing 9.2. It requires the owner of the credential to be of 18
years or older, whereas neither the calculated age nor the date_of_birth
attribute are revealed to the verifier. The example policy also contains a
semester attribute, which is revealed to the verifier since it is only used
in the accept predicate, but not in the zkaccept predicate.

We opted to implement the third approach since it provides a clear
differentiation between predicates applied to public and hidden data
points. As such, we consider it easier for the policy designer to design and
reason about the policy. From a technical perspective, we expect all three
approaches to be implementable with reasonable effort.

Consistency Checks: When evaluating the policy on the prover or verifier
side, one needs to take care of multiple issues. First, an attribute can only
appear as either hidden or revealed attribute. If a revealed attribute is
also used in the zkaccept predicate, this is likely a mistake of the policy
designer. Thus, the compiler needs to check if this invariant is satisfied
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zkaccept(Presentation) :-
extract(Presentation, format, w3c_VP),
extract(Presentation, verifiableCredential, Cred),
extract(Cred, format, w3c_VC),
extract(Cred, credentialSubject, Subject),

% range proof on private attribute
extract(Subject, date_of_birth, Birthdate),
calculateAge(Birthdate, Age), Age >= 18.

accept(Presentation) :-
extract(Presentation, format, w3c_VP),
extract(Presentation, verifiableCredential, Cred),
extract(Cred, format, w3c_VC),
extract(Cred, issuerDID, DIDissuer),

checkQualified(DIDissuer),
verify_signature(Cred, DIDissuer),

extract(Cred, credentialSubject, Subject),

% revealed attribute
extract(Subject, semester, Semester),
print(Semester).

Listing 9.2.: TPL policy from Listing 9.1 extended with privacy-
preserving features: from the full credential, only the statement
about age (derived from Birthdate) and the Semester attribute
are revealed.
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and yield an alert if not. Secondly, when two or more distinct attributes
of the same data structure, e.g., a credential, are used in accept and
zkaccept, consistency needs to be ensured. Hence, the zero-knowledge
proof needs to be extended with statements ensuring consistency of all
publicly revealed attributes.

9.4.2. Compiling TPL policies to NIZK circuits

ZK-TPL Compiler: As ZoKrates provides a domain-specific yet high-
level language that closely resembles the syntax of Python, the TPL rules
need to be compiled to this language. ZoKrates itself then compiles the
corresponding code to suitable circuits for the underlying NIZK library,
i.e., bellman. Hence, we provide the ZK-TPL compiler to transform
policies from TPL syntax into ZoKrates’ proof program syntax, as shown
in Figure 9.5. The ZoKrates standard library already provides several
cryptographic primitives such as the compression function of SHA256,
and SHA256 for a fixed number of calls to the compression functions, i.e.,
SHA256 for fixed input lengths, or Pedersen commitments. Therefore,
parts of the functionality we require are covered by the standard library.
Comparison operators for primitive types are also provided by ZoKrates.

When compiling TPL policies to ZoKrates programs, we consider the
following challenges:

1) Constant-length Attributes: When generating the ZoKrates proof
program, a challenge is to map attributes to either private or public
variables, and how to encode their lengths. As lengths can already be
sensitive information for various data points, they are encoded as fixed-
length string with 0 to pad to the maximal length. Thus, there is a
compromise between runtime costs for the additional padding, security,
and functionality. Length restrictions may be problematic for field types
with international variations such as the use of first and last names.

2) Arithmetic: While integer types are available in various forms (8
bit to 64 bit), ZoKrates also provides a native field type representing
Zp (the integers modulo p) where the prime p depends on the choice of
elliptic curve used by ZoKrates. In general, p will be large (≥ 256 bit) and
all the arithmetic of the smaller types is implemented as Zp arithmetic.
Hence, when compiling arithmetic involving hidden attributes, arithmetic
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is best represented using the field type unless specific features of the
fixed bit-width types are needed.

3) Representing Strings as Numbers: Third, parsing arbitrary strings as
integers is a complex and expensive task when performed inside ZoKrates.
Conversion of an array of u8 into a field involves arithmetic and po-
tentially additional checks of well-formedness, e.g., that the individual
bytes are ASCII digits, or that the full string is valid UTF-8. Hence, we
perform the parsing outside the ZK component as much as possible. To
ensure the integrity of the proof, this pre-processing step uses the same
encoding of attributes than the issuer of the credential. Thus, we require
that the hash of the parsed data matches the hash used in the credential
as commitment.

Note that our ZK-TPL compiler together with ZoKrates define the encod-
ing of data and its representation in the rank-1 constraint system of the
underlying SNARK. Therefore, any change to our compiler or in ZoKrates
may render old proofs unverifiable. For short-lived or interactive scenarios,
we thus require compatible encodings for both prover and verifier.

Example ZoKrates Program: Listing 9.3 presents an example ZK pro-
gram, generated by our ZK-TPL compiler from the policy in Listing 9.2.
For the inputs to the hash function, we opted to directly use u32 arrays
as expected by the provided implementation of SHA256. When using
different hash function designs with ZK-friendly permutations such as
GMiMC [Alb+19b] or Poseidon [Gra+21], the inputs and outputs can be
represented as field elements. Thereby, we would be able to significantly
improve the performance of the ZK program. With the goal in mind to
be as widely usable as possible, we consider support for common hashes
such as SHA256 essential.

9.4.3. Evaluation of Prototype

To evaluate our prototype implementation, we perform several benchmarks
and compare them with the evaluation of the TPL system without any
privacy features. Existing TPL benchmarks focus on the verification
phase, which takes one to ten seconds for realistic policies and includes the
retrieval of trust information from online registries (see also Chapter 10)
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import "hashes/sha256/sha256" as sha256

def compare(u32[8] h1, u32[8] h2) -> bool:
return h1[0] == h2[0] && h1[1] == h2[1] &&

h1[2] == h2[2] && h1[3] == h2[3] &&
h1[4] == h2[4] && h1[5] == h2[5] &&
h1[6] == h2[6] && h1[7] == h2[7]

def main(u32[8] pub_hash, u32 currentYear,
private u32 birthYear, u32 semester) -> bool:

// Encode full credential, append SHA256 padding:
u32[1][16] enc_cred = [[birthYear, semester,

2147483648, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 64]]

// Calculate age using private attribute:
u32 age = currentYear - birthYear

// Proof that attributes fulfill the age check
// and the consistency of data used for the proof:
return age >= 18

&& compare(pub_hash, sha256(enc_cred))

Listing 9.3.: ZoKrates program generated by compiling the TPL
policy from Listing 9.2. Contains private birthYear attribute,
revealed semester attribute, and (simplified) age check. It also
proves the consistency of the attributes w.r.t. pub_hash com-
mitment of the credential. The magic-numbers for the encoded
credential are SHA256 padding-constants.
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[MA22]. Standard TPL needs no setup phase, and the authentication
phase is a trivial process for the user.

To measure the impact of the privacy extension to the existing TPL
toolchain in Java, we run hyperfine4 benchmarks on a Intel Core i7-
8550U office laptop with 16 GB RAM running on Ubuntu 21.10. Our
prover and verifier tools use ZoKrates, which we configured to use the
bellmann backend with Groth16 [Gro16]. We evaluate the performance on
the ALT_BN128 [BN05] and BLS12_381 [Bow17] curves; while the former
provides 100 bit of security, the latter is slower but provides ≥ 117 bit of
security [BD19; YKS19]. Additionally, we compare the performance of
SHA256 with the ZK-friendly Poseidon hash function [Gra+21]. While
Poseidon is faster and produces smaller proofs, SHA256 is commonly used
in existing credential systems.

Evaluation Results: To illustrate the impact of our privacy extension,
we divide our process (from Section 9.3.3) in two categories:

• The setup phase (compilation of policy, generating of keys/CRS) is a
one-time phase and only performed once for each policy. Since those
steps are only performed once, their duration is of less importance.
The results of this steps are the policy program and thee ZoKrates
keypair (verifier key and prover key), which need to be distributed
to the corresponding parties. The size of this artifacts is of relevance,
as some use cases might deal with users that are connecting to a
service using a constrained connection (e.g., bluetooth [Abr+20]).

• The authentication phase (computation of witness and generation of
proof by the user) and verification phase (verification of proof and
execution of policy by the SP) are repeated phases and executed for
each authentication process. Hence, the performance of these steps
is important. This is also the case for the proof artifact, since it
needs to be transmitted from the user to the SP. Further, the proof
verification duration is of special interest, as the verifier deals with
many users at the same time.

Table 9.1 shows the results of our evaluation. We observe that the
verification is fast, and that the duration is independent of the utilized
commitment function and curve. This is an important advantage, as
the verifier has a need to verify a large amount of policies at the same

4https://github.com/sharkdp/hyperfine

https://github.com/sharkdp/hyperfine
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Table 9.1.: Evaluation results of the example policy in Listing 9.2
for different commitments and curves.

bn128 bls12_381
Poseidon SHA256 Poseidon SHA256

security 100 bit ≥ 117 bit

setup compile policy [s] 1.80 1.15 1.83 1.16
gen. keys [s] 0.74 9.11 1.23 16.09

authenticate
gen. witness [s] 0.02 0.31 0.02 0.33

gen. proof [s] 0.18 1.28 2.04 27.73
verify proof [s] 0.01 0.01 0.01 0.01

policy prog. [kB] 659.10 17475.2 643.99 17468.74
prover key [kB] 452.76 6406.62 658.29 9601.85
verifier key [kB] 1.88 3.02 2.58 4.18

proof [kB] 0.95 1.48 1.21 1.73

time. Also, the size of the proof transmitted to the verifier is around 1
kB in all cases. In our experiments we further observe that proof size
and verification duration are also independent of the complexity of the
policy. This is because the size of SNARK proofs always amounts to
only 3 elliptic curve points and is thus independent of the witness size.
Hence, the size of the transmitted proof only depends on the choice of
commitment function and curve, and size of the revealed attributes.

The performance of the setup and authentication phases depend on the
number of attributes that are part of the credential. This is because all
attributes are part of the credential’s signature and thus need to be part
of the commitment in the proof (see Listing 9.3). The performance of
calculating the commitment in the proof program is linear in the size of
the attributes.

We also observe that the higher security of BLS12_381 has a cost on artifact
size and on performance. While this is especially the case for SHA256, the
difference is potentially neglectable for Poseidon. Figure 9.6 visualizes the
performance differences and further highlights the performance advantages
of Poseidon. This shows why ZK-friendly commitment functions are
needed. At the same time, our evaluation shows that existing credentials
using SHA256 can be used in a privacy-friendly way without the need
for changes at the credential issuer. However, performance is slow on
the BLS12_381 curve, and the distribution of the larger key material and
policy program requires greater operational effort.
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Figure 9.6.: Performance overhead evaluation results of the example
policy in Listing 9.2 for different commitments and curves.

9.5. Evaluation & Discussion

9.5.1. Evaluation

This chapter focused on Goal 4 of our overall goals (see Chapter 5). Goal
4 is concerned with the privacy aspects of authentication. Based on
this goal, in Section 9.2 we formulated the concrete requirements for our
privacy-preserving access control system. Additionally, we added general
requirements for policy systems and considered the other goals of this
thesis, in specific modularity and extensibility (Goals 1 and 3). We now
discuss the evaluation of our approach against those requirements. For
each requirement, we briefly state the measure or design decision that
ensures we comply with it (or note why we don’t comply).

R1 Data Minimization: We provide a flexible system to disclose attrib-
utes of credentials selectively. Further, we automatically derive a proof
that revealed attributes are part of the (signed) credential. By doing so,
we ensure that the authenticity guarantees of the attributes are retained.

R2 Expressive Power: We fulfill this requirement by enabling policy
authors to specify expressive predicates. Those predicates can be applied
to attributes of the credential without revealing the attributes’ value to
the SP.
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We note that a malicious policy author could define a predicate that
reveals the attribute’s value. In the same way, a malicious policy can
reveal all attributes if the user does not pay attention. To mitigate this,
we propose to authenticate and accredit SPs and establish a liability
framework. Further, an SPs accreditation could be used to automatically
restrict what data the SP can request.

R3 Unlinkability: Our approach always sends the credential’s signature
and commitment to the verifier. These values are always the same for
presentations derived from the same credential – even if different attributes
are revealed or no attributes are revealed. As this enables malicious SPs
to link multiple showings, we don’t comply with this requirement.

Mitigating this problem in our approach is not easily possible, as it
would require modifications of the issuer (violating R7). Different types of
commitment schemes are needed, as the hash digest enables a link between
two presentations even if no attributes are revealed. However, the used
SHA-2 family does not support the randomization of the hash digest (in
contrast to, e.g., [Ped91]). As an alternative, we propose further research
into approaches that also hide the hash digest. Doing so would require
adding the verification of the issuer’s signature on the hash digest to the
presentation proof. Further research and implementation work in that
direction is needed. Another alternative is to use a different signature
scheme, e.g., [PS16; FHS19].

R4 Simple linking of predicates: We fulfill this requirement by allowing
logical conjunction of constraints in the form of checkQualified(DIDissuer),
verifySignature(Cred, DIDissuer).5

R5 Expressive linking of predicates: We fulfill this requirement by
using ZoKrates’ operators6 to allow logical disjunction of constraints
as well as a combination of conjunction and disjunction. In TPL, a
disjunction is defined by specifying multiple clauses for the same pre-
dicate name (see also Section 7.3); for example allowed(Student) :-
extract(Student, age, Age), Age >= 18. and allowed(Student)
:- extract(Student, approved, yes).

5The comma is the TPL operator for a logical and.
6https://zokrates.github.io/language/operators.html, accessed on 2023-08-18

https://zokrates.github.io/language/operators.html
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R6 Inter-credential constraints: Our approach supports expressive inter-
credential constraints. We achieve this by allowing to combine attributes of
multiple credentials in the same constraint, e.g., extract(GraduationCred,
student_name, Name), extract(CVCred, person_name, Name).

R7 No modifications of the issuer: Since our system works with existing
credentials and no specific schemes are needed, we comply with this
requirement. In specific, we support established commitment schemes.7
Additionally, since we reveal the credential’s commitment digest and
verify the signature separately, our approach is independent of the applied
signature scheme.

R8 Practicability (Authentication): We provide the evaluation of our
prototype implementation in Section 9.4.3. To evaluate the practicability,
we focus on the authenticate phase. The goal was to initialize the present-
ation (calculate the proof) in around 1 second and deliver the verification
result (and access decision) to the user in under 10 seconds [Nie97].

For the calculation of the credential presentation, the results depend on
the selected parameters, i.e., the commitment scheme of the credential and
the curve of the SNARK proof. Using the ALT_BN128 curve (100 bits of
security), the process takes less than 1 second for Poseidon and 1.5 seconds
for SHA256, achieving our stated goal. On the BLS12_381 curve (117 bits
of security), the process takes around 2 seconds for Poseidon. However,
with BLS12_381, the process takes 28 seconds for SHA256, which is close
to being impractical.

For the verification of the presentation proof, the performance is 0.1
seconds, independent of the selected parameters, achieving our goal. The
size of the data transmitted to the verifier is between 1–1.7 kB, which is
a practical amount to transfer. Most importantly, both the verification
duration as well as the size of the presentation are independent of the
credential’s size.

Hence, if support for SHA256-based credentials is needed (see also R7), and
100 bit-security is enough [Bar20, Section 5.6.1], we recommend using the
ALT_BN128 curve for practical performance. Otherwise, Poseidon-based
credentials provide a practical performance on both curves.

7https://zokrates.github.io/toolbox/stdlib.html, accessed on 2023-08-18

https://zokrates.github.io/toolbox/stdlib.html
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R8 Practicability (Setup): Further, the compiled policy (presentation
request) must be transmitted from the verifier to the user, a process that
happens once per policy per user. During the first interaction between
a user-verifier pair, the user must retrieve the prover key. To assess the
impact of these costs, we consider the size of the presentation request and
prover key (see Table 9.1).

For SHA256-based credentials, the request size is around 17 MB and the
prover key is 6–9 MB of size, clearly representing a practical limitation.
By using Poseidon, the request is approximately 0.6 MB large, while the
size of the prover key is about 0.4–0.7 MB. However, the practicability
of our approach can be improved by including common policies directly
in the identity wallet, downloading the request over a faster channel, or
applying caching. See also Section 9.5.2 for other alternatives.

Integration of privacy technology into access control systems: The
goal was to integrate privacy technologies into an access control system.
Further, we wanted to derive a privacy-preserving authentication system
from an existing (policy-based) system. This focus ensures that we can
re-use existing trust- and access-policies as much as possible instead of
replacing them with a policy language specific to privacy. We achieve this
goal by deriving a privacy-preserving presentation request from an access
policy. In terms of implementation, we derive a presentation request for
the SNARK zero-knowledge proof system from a TPL policy. The only
modifications to the TPL policy are to mark the attributes and predicates
that the user needs to reveal. The system then automatically derives
privacy-preserving proofs from the user’s credentials to probe that the
user fulfills the SP’s policy.

9.5.2. NIZK Setup

From a deployment point of view, policy-dependent setup phases may
hamper the adoption of such a system. As this dependency is mainly
influenced by the underlying proof system, an efficient proof system with a
universal CRS is of paramount importance for more flexible applications.

Also, the need for a trusted third party (TTP) for the CRS generation
is not ideal in some use cases. However, it has already been shown that
the TTP can be replaced using secure multi-party computation for the
setup algorithm [BGG18]. Alternatively, it is also possible to employ
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transparent, subversion-resistant, or updatable proof systems [Ben+19;
BFS20; Fuc18; Gro+18; ARS20], where knowledge of secret trapdoors no
longer poses a threat.

9.5.3. Constant-length Attributes

We observe multiple restrictions inherent to the use of attributes with
arbitrary types. Specifically, when dealing with string attributes, all the
strings need to be encoded with a constant length. Otherwise, the length
of the strings could reduce the anonymity set and the mere knowledge
of the string lengths leaks sensitive information. This also extends to
primitives that consume these strings, e.g., hash functions, as the number
of compression function evaluations depends on the size of the input.

9.5.4. Future Work on NIZK Toolchains

While NIZKs and SNARKs are known for languages in all of NP (cf.
[GOS06] and others), for practical purposes the situation is significantly
different. Yet, as implementations of SNARKs gain better toolchains with
support for higher-level abstractions, SNARKs can be applied to solve more
interesting challenges. These toolchains need to abstract technical details
such as rank-1 constraint systems and other arithmetization techniques to
be useful for a wider audience. With ongoing scientific and engineering
effort, these abstractions are rendered more efficient, less costly, and more
expressive.

9.5.5. Future Work on Policy Authoring Tools

Since our work extends the capabilities of the TPL policy language, the
GUI-based authoring tools (as discussed in Section 7.5.3) would need to
be updated by future work. Attributes should be hidden by default and
only be revealed when indicated. Non-technical policy authors should be
able to use zero-knowledge features in a graphical manner without being
familiar with any underlying details.

9.5.6. Communicating Privacy Implications to Users

While we extend the capabilities available to a policy designer, the con-
sequences of revealing certain attributes also need to be explained to the
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user. Some works have developed interfaces that highlight the revealed
attributes and data flows to the user. Examples in various directions
include Angulo et al.’s approach [Ang+11], which provides visualizations
of policies, and Mikkelsen et al. [Mik+15] presenting a user interface
to disclose attributes of a credential selectively. Alternatively, privacy
metrics [WE18] offer tools to attach scores based on the processed data
and the type of performed computations. Using these techniques may help
visualize a user’s potential privacy risks based on the policy in question.

Chapter 9 Conclusions
In this chapter, we discussed the topic of privacy-preserving (and enhan-
cing) access control. Specifically, we focused on the context of our thesis:
policy-based and credential-based access control. We conceptualized a
generic way to extend access control systems with privacy features. We
do so by automatically deriving a privacy-preserving presentation request
and token from a high-level access policy.

The concrete privacy properties that can be achieved intrinsically depend
on the policy and the data involved in evaluating this policy. Thus,
we consider it of high importance that both the designer and the users
interacting with such a policy system clearly understand the risks to the
privacy of their personal data. Therefore, our system raises an interesting
question on how the policies can be presented to the user intuitively so
that they can perform an informed decision before presenting, for example,
their credentials.

Further, we evaluated our approach, elaborating its strengths (i.e., flexib-
ility and adaptability) and limitations (most notably, the user’s likability).
We also discussed the system’s parameters (commitment scheme and
elliptic curve for proofs) and practical parameter choices. The research
results presented in this chapter have been published in one academic
paper [Mor+22].





10
Privacy for Verification of DL-based

Credentials

This chapter is based on the paper Offline-verifiable Data from
Distributed Ledger-based Registries by More, Heher and Walluschek
[MHW22]. Parts of this paper have been copied verbatim. The
prototype was implemented by our student Clemens Walluschek.

Trust management systems often use registries of various forms to authen-
ticate data or form trust decisions. Examples are revocation registries,
accreditation registries, schema transformation lists, and trust status
lists. Such registries are usually implemented in the form of a list or
API published using a centralized server. By introducing Distributed
Ledgers (DLs), it is also possible to create decentralized registries, for
example using a smart contract as storage and interface (see Section 4.3).
A verifier then queries the respective contract during verification of a
credential or execution of a trust policy. While this ensures up-to-date
information, the process requires the verifier to be online. Additionally,
the connection from the verifier to the registry poses a privacy issue, as it
leaks information about the user’s behavior. To reduce this limitation, we
extend existing ledger APIs to support results which are verifiable even in
an offline setting.

Challenge: Availability & Privacy To retrieve DL-based data, the verifier
communicates with the API of a DL node it trusts. While this ensures
the freshness of the data, a network connection to this node is required.
If the verifier is offline, it cannot retrieve a trustworthy copy of the data
[Abr+20]. The same is true if the particular DL node used by the verifier
is unavailable [Li+21].

213
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User privacy poses an additional challenge. Such approaches don’t provide
undetectability of interactions—in other words, the contacted DL node
learns about the showing of a credential, and about which verifier the
credential was shown to (see also Section 3.2). Since verifiers are typically
operated by the individual Service Provider (SP), this correlates with the
user’s associations [Chu+18]. Often, sensitive information such as physical
location can be derived.

A solution to this problem would be to move the retrieval of DL data to
the user, and then forward it to the verifier. However, as data provided
by the DL API is currently not signed, trust in it is derived solely from
the authenticity of the underlying connection with a trusted node. This is
in contrast with comparable technologies, for example, OCSP stapling in
TLS [III11].

Chapter 10 Goal:
We discuss the overall goals of this thesis in Chapter 5. In this chapter,
we focus on the privacy Goal 4. More specifically, we tackle the aspect of
Undetectability.

Chapter 10 Contributions & Outline:
Offline-verifiable Data from DL-based Registries: In this chapter, we
extend the ideas of Abraham, More et al. [Abr+20] to solve the described
problem with a generic Ledger State Attestation (LSA) system. Using this
LSA system, a user can retrieve data from the DL and prove its provenance
to an offline verifier. Since our approach provides a generic interface to
the data stored on the ledger, the system can be used in different use
cases. We introducing our approach in Section 10.1. To summarize our
contribution, we differentiate between two types of attestations:

Node Attestations: As basis for ledger state attestations, we enable DL
nodes to issue signed node attestations to users. Such an attestation con-
tains the result of some specified operation on the DL, such as retrieving
the current block hash or the result of a smart contract invocation. Addi-
tionally, it attests in an offline-verifiable way that the result matches the
node’s current view of the DL state. We achieve this without modifications
to the code of the ledger clients but instead provide a wrapper around the
node API. This approach is also transparent to the consensus protocol
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used by the ledger; hence, it does not touch the ledger’s trust model. The
wrapper provides a generic attestation functionality and thereby supports
all kinds of current and future use cases. Although this wrapper needs to
be hosted directly on the nodes’ servers, this only needs to be done once.

Aggregated Attestations: Additionally, we enable an user to retrieve
such node attestations from multiple nodes aggregated into a single aggreg-
ate attestation. By retrieving node attestations from an appropriate set of
DL nodes, the user can be reasonably sure that the aggregate attestation
also includes node(s) that an unknown verifier trusts. The verifier can
then verify the attestation without needing to communicate with the
node(s) in question. As it can now trust the provided result, it can then
use it to authenticate the user’s credentials while remaining fully offline
and without leaking information to the node or other third parties.

Implementation and Discussion: We demonstrate the feasibility of our
approach using two implementations, which we present in Section 10.2.
While our general architecture is independent of a concrete DL technology,
in this proof of concept implementation we focus on the Ethereum stack.
Our first implementation variant enables DL nodes to attest the current
block hash, which then allows an offline verifier to establish trust in
any DL-based data that the user provides. The second variant issues
attestations of returned data from smart contract function calls. This
enables users to specify custom queries or filters for the data they want to
retrieve. In Section 10.3, we discuss trust assumptions and operational
concerns of our approach. Further, we state the limitations and ideas for
future work.

10.1. Concept

In this section, we introduce our approach on a conceptual level. First,
we give an overview of the architecture of our system and how it connects
with the existing DL architecture. Afterward, we discuss how the adapted
architecture forms a Ledger State Attestation (LSA) system, which
enables users to retrieve attestations of data stored on a DL.
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10.1.1. Architecture Overview

There are several main components in our system, which we describe
below. A high-level and generic overview of these components and how
they are connected is shown in Figure 10.1, while Figure 10.2 offers a
more detailed and Ethereum-focused picture.

User
(Offline)
Verifier

LSA
Gateway

DL 

Nodes


LSA Wrapper

Figure 10.1.: High-level architecture of our Ledger State Attestation
system.

DL Nodes: The distributed ledger (DL) is represented by its DL Nodes.
These nodes communicate peer-to-peer, using a consensus protocol to
agree on a shared state. DL Nodes provide an HTTP API to allow other
entities to access the state of the DL.

LSA Wrapper: We add the LSA Wrapper component to each DL node.
It wraps the node API, providing access to the same data but enriches
the API functionality, adding a proof of provenance to the returned data.
The wrapper provides the same API endpoints as the node API, so it is
compatible with existing API clients.

LSA Gateway: We introduce the LSA Gateway stand-alone component
to support the user by retrieving data from multiple (or all) DL nodes. It
can be part of a node, run by the user, or be operated by a third party.
We discuss the implications of this choice in more detail in Section 10.3.
The gateway provides the same API endpoints as the node API and our
LSA Wrapper. A user can then send a query to the gateway instead of to
each node separately. The gateway forwards queries it retrieves from a
user to the DL nodes, and aggregates their answers into a single response
for the user. By doing so, it acts as a helper to collect node attestations
from a set of DL nodes, and combines them into an aggregate attestation.
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The LSA Gateway only forwards requests and aggregates signatures issued
by the DL nodes, but does not sign anything. However, the user must
trust the gateway to forward the request to all nodes, and trust it not to
censor any replies.

User: The User wants to retrieve data from a DL and present it to a
verifier. To retrieve data directly from the DL, the users interact with the
API of a DL node. For data that can be presented to an offline verifier
later, they instead interact with the LSA Gateway.

(Offline) Verifier: The (Offline) Verifier operated by a SP receives data
from the user and needs to establish trust in this data. We consider a
scenario where this verifier is offline, i.e., it cannot connect to any of the
DL’s nodes during verification.

Attestation: In DL-based trust management, the verifier is interested in
the trustworthiness of a claim about the DL’s state. This claim can, e.g.,
be an assertion of the current block hash, or of the return value of a smart
contract function. We define an attestation as data combined with proof
of authenticity. There are two types of attestations: A node attestation,
created by an individual DL node, attests that the data reflects the data
in its local storage. Combining such attestations of several nodes yields
an aggregate attestation, attesting an agreement between all involved
nodes.

10.1.2. Ledger State Attestation (LSA)

When a user shows some data to a verifier, this verifier needs to make
sure that it can trust this data before relying on it for further processing.
Trusting data coming from a DL-based registry means verifying that this
data matches the data stored in the DL. An online verifier could check
this by contacting a trustworthy DL node and comparing the data, or
even by doing additional lookups on its own.

Since we consider the scenario where a verifier is offline, this online check
is not possible. The underlying challenge is that an offline verifier has no
reason to trust data that a user claims to have retrieved directly from a
node’s API. For example, a verifier cannot be sure if this data was really
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retrieved from a DL, that the user did not alter the data, or that the data
represents the latest state of the DL.

Attestation of state by a node: To mitigate this problem, we add the
LSA Wrapper component to all nodes of the DL, wrapping the node API.
This is the only modification to a DL node our approach requires, and
it only needs to be done once and not for every use case. The wrapper
enables DL nodes to issue attestations of data stored on the DL. While the
default node API answers user queries by returning plain data, the wrapper
additionally adds a proof to the response. To ensure the authenticity of
the data, the wrapper creates this attestation proof using a private key
of the node. To enable a verifier to decide if the presented information
was fresh enough, the number of the current block and a low-resolution
timestamp are also added to the attestation.

The attestation can then later be presented to an offline verifier which
checks it to ensure that the presented data was returned by a specific DL
node and has not been altered. After receiving some attestation (data
and proof) from a user, the verifier uses the node’s public key from a local
trust store to verify the attestation, before processing the data.

Attestation by the whole DL: While this process ensures authenticity
(and integrity) of the data with respect to one node, it means the user
needs to select a node the verifier trusts. This is a problem since a user
does not know, at the time of retrieving the attestation, which node(s) a
verifier trusts. Additionally, this limits which verifier the user can present
an attestation to, since different verifiers trust different nodes. To avoid
this, the user would need to retrieve an attestation by all DL nodes.

In our LSA system, the gateway is used to provide users with an easy way
to retrieve data, alongside a proof from all nodes. Since the data stored
by each node was agreed upon using the DL’s consensus protocol, the
data returned is also the same for each node. But the proof returned by
the nodes is different since it proves authenticity for a certain node. This
allows that the gateway returns the data only once, and aggregates the
proofs of the nodes into a single proof.

Protocol 1 shows all the required steps in this attestation process, while
Protocol 2 does the same for an interactive showing to an offline verifier.
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Our protocol relies on a multi-signature scheme MSIG for the attestation
proof (see Section 4.6).

Attestation Phase:
on User

1. encode the user’s claim:
query← Client.Encode(call, parameters)

2. send encoded query to the LSA Gateway
on LSA Gateway

3. forward query to n nodes
on Node i of the DL (in parallel)

4. retrieve data by executing the user’s query on the DL’s state:
data← Node.Execute(call, parameters)

5. create a node attestation statement:
epoch← low-resolution timestamp
NA′

i ← (call, parameters, data, epoch)
6. create a multi-signature: σi = MSIG.Sign(ski, NA′

i)
7. issue node attestation NA to the LSA Gateway:

NAi ← (NA′
i, σi, pki)

on LSA Gateway
8. receive node attestations from n nodes and aggregate them:

σ = MSIG.ASigs({(σi, pki)}∀i∈[n])
9. issue ledger attestation LSA to the user:

LSA← (call, parameters, data, epoch, σ, {pki}∀i∈[n])
on User
10. receive LSA and store it for the specified call and parameters
11. (Optional: verify LSA using local trust store)

Protocol 1: Attestation Protocol
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Showing Phase (Offline):
on User

1. receive the verifier’s request for DL data, which specifies the
required callV and the values for some parametersV while
leaving the values of other parameters parametersU to the user

2. retrieve stored LSA for the specified call and send it to the
verifier

on Verifier
3. verify the attestation

LSA = (call, parameters, data, epoch, σ, {pki}∀i∈[n]):
– check if enough signer keys {pki}∀i∈[n] are part of the

trust store and that epoch is fresh enough
– aggregate the signer keys: pk = MSIG.APKs(pk1, . . . , pkn)
– verify the aggregated signature:

MSIG.AVerify((call, parameters, data, epoch), σ, pk) = 1
– verify that call = callV and

parameters = (parametersV , parametersU )
– check if parametersU and data fulfill the verifier’s policy

4. use the now-trusted data for further processing
Protocol 2: Offline Showing Protocol

10.2. Implementation

To show the feasibility of our LSA concept, we implement a prototype
for the Ethereum stack. In this section and the following subsections, we
describe how we applied our approach to the API of Ethereum nodes, and
how the implementation can be used in practice. We focus on permissioned
DLs, such as those used in the European Blockchain Services Infrastructure
(EBSI) [Eur22].

On the server-side, we provide a wrapper for Ethereum’s RPC API (see
Section 4.3), which extends the API of Ethereum nodes to support signed
responses. The LSA Gateway first forwards the user’s query to the
wrapped API of all applicable nodes. Then, it aggregates the received
node attestations into one aggregate attestation. For the authenticity
proofs, we use digital signatures issued individually by each node using
their private key.

To be able to aggregate the signature of the individual nodes into one
combined signature, we use the BLS signature scheme for the authenticity
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proofs (see Section 4.6) [Bon+22]. An additional benefit of using BLS is
its efficiency and small storage requirements, minimizing the overhead.

On the client side, we extend the web3.js library1 to retrieve node and
aggregate attestations. This allows a user to call contracts using well-
established high-level calls, but retrieve the response value in a signed and
offline-verifiable form.

To demonstrate the flexibility of our design, we implement two different
variants, which differ in the type of data that gets attested.

Variant 1: Attestation of Data In this variant we enable an offline
verifier to trust any raw data retrieved from the DL by the user. This
then allows the verifier to execute a locally stored smart contract, or work
with the data by other means.

Ethereum ledgers protect the integrity of their data using merkle trees:
The block hash is the root hash of a merkle tree, formed by all transactions,
smart contract code, and data stored in the ledger at a certain point in
time [Woo+22]. A trustworthy attestation of the block hash therefore
allows any data in that block, and any previous block, to be trusted.
Another advantage of the attestation of the root hash is that it can be
pre-computed. Since this needs to be done only once per block, this
significantly reduces the load on the DL nodes while still allowing to
establish trust in all data on the DL.

Thus, we create a mechanism to retrieve an attestation of the current root
hash. This allows a user to retrieve any raw data, and the supplementary
parts of the merkle tree, called merkle proof [JJ18], from any (single) node.
Afterward, they send this data, the merkle proof, and the attestation of
the root hash to the verifier. The verifier can then use this trusted hash
to establish trust in the data.

Variant 2: Attestation of Smart Contract Response In our second
variant, we enable users to query for and retrieve trustworthy data from
the DL. To do so, we extend the functionality of the node API in a way
that nodes can issue attestations for the return value of smart contract
functions. Part of this attestation is also the address of the called smart
contract, the executed function, and the call parameters. This enables

1https://github.com/web3/web3.js, see Section 4.3

https://github.com/web3/web3.js
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users to send queries to a smart contract and get an attestation of the
query result. To provide more flexibility, we do this by extending the call
function of the web3 client library with the ability to request and handle
signed attestations.

A user can simply execute the function in the same way as without the
LSA system. Each node then executes the function call, creates a node
attestation of the return value, and sends the signature to the gateway,
which aggregates the signatures. The result is an aggregate attestation
that contains the call and return value of a certain contract function,
and proves the consensus of the nodes about this state. This attestation
credential can be shown to an offline verifier and authenticated using the
verifier’s truststore. Since the attestation contains the needed data, the
verifier does not need to execute a smart contract or evaluate a merkle
proof.

10.2.1. Attestation & Showing Process
The process works as follows in both variants. The structure of this process
is also shown in Figure 10.2.

LSA Gateway
ETH Nodes

ETH Nodes
ETH NodesUser

1. call 

GatewayLSA Client (web3)

(Offline) Verifier

6. call Verifier

LSA Verifier Client Trust 

Store

5. aggregate sigs

LSA Gateway API

BLS

LSA Wrapper

Local Ledger
State DB

Node BLS
private key

JSON-RPC API BLS

Distributed Ledger

2. call 

Nodes

4. sign data

3. call DL Node


DL 


Consensus

Figure 10.2.: The architecture of our Ledger State Attestation
system, extending the functionality of Ethereum nodes and
web3.js.

Attestation Phase

1. To fetch the attestation of some data, the user utilizes our modified
web3 library to send the request to the LSA Gateway. In variant 1,
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this is a request for the block hash, while in variant 2 this is a call
to a smart contract function including parameters.

2. The LSA Gateway has a list of all nodes of the DL. It forwards
the request to all nodes, which run Ethereum’s RPC API with our
wrapper.

3. Each node’s wrapper first forwards the request to the RPC API
of the node itself, which retrieves the requested data from its local
version of the ledger state. In variant 2, it also retrieves and executes
the called smart contract function using the EVM.

4. After retrieving the result, each of the nodes creates a node attest-
ation using its own BLS private key and sends the result back to
the gateway. In variant 1, the nodes attest the retrieved root hash
of the current block, while in variant 2 they attest the result of the
smart contract call.

5. The LSA Gateway then aggregates all signatures and sends the
aggregate attestation back to the user, who stores it, e.g., in a
digital wallet.

Showing Phase

6. Later, the user shows the aggregate attestation to an offline veri-
fier, for example by sending the attestation by Bluetooth to the
verification device. The offline verifier then uses their trust store
to authenticate the attestation and thereby establishes trust in the
attested data.

• In variant 1, the verifier can now use the now-trusted block
hash to authenticate the merkle proof the user also sent. It
then checks the merkle proof to authenticate the rest of the
data, which is only then used to locally execute a locally stored
smart contract.

• In variant 2, the verifier checks that the smart contract ad-
dress and call specification contained in the attestation are the
expected values.
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10.2.2. Evaluation of Prototype

We consider the performance of our proof of concept implementation. To
do this, we contrast it with traditional online verification. We identify the
following additional

Attestation Phase

Attestation retrieval requires an additional network round trip com-
pared to a traditional online query, in scenarios where the LSA Gateway
is not co-located on the user device. Quantifying this overhead exactly
is difficult, as it varies based on the physical location of, and connection
topology between the various entities. However, given that even a transat-
lantic round trip typically takes only around 90 ms [Ver22], we consider
this to be negligible.

Data attestation requires each node to create a signature over the data
retrieved from the DL. Using BLS signatures with 128-bit security, as
in our implementation, signature creation takes ≈0.3 ms on a typical
consumer laptop [Bon+22].

Data retrieval of DL data by any one individual node incurs no additional
overhead compared to the traditional online flow. As the LSA Gateway
sends queries to all nodes in parallel, the query time in the worst case
should be no worse than for a single node. However, it is worth noting
that, when viewed across the entire ledger, our scheme induces additional
load. While in the traditional model the online verifier only sends its
query to a single trusted node which has to perform data retrieval, in our
case, the LSA Gateway sends this query to many different nodes, each of
which has to perform the operation.

Showing Phase

During verification the user needs to transmit the retrieved LSA to the
verifier. Since this communication could happen on constrained devices
and a slow channel, we also consider the storage size of an attestation. In
BLS, both signature and public key are encoded as single group elements
[Bon+22]. Thus, an aggregated signature uses 48 bytes, with an additional
48 bytes per public key. To evaluate the impact of this storage overhead,
we measure transmission of an attestation over 10 kB of data and 20
public keys using mid-range smartphones: a Samsung Galaxy XCover Pro
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and a Google Pixel 1. This results in a transmission time of ≈150 ms,
even using Bluetooth 4.2.

Then, the verifier needs to verify the LSA’s signature. For BLS
signatures with 128-bit security, the verification takes ≈2.7 ms on a
typical laptop [Bon+22].

We note that transmission time, scaling with the size of the transmitted
data and number of involved nodes, appears to be the primary driver
of verification time. This presents potential optimizations by reducing
the size of the transmitted LSA. For example, the public key space
requirement could be removed by also aggregating the BLS public keys.
On a permissioned ledger with a stable node membership, public keys
could be outright omitted from the attestation, and verification could be
performed using a complete trust store located at the verifier. Regardless,
we consider a total duration overhead of ≈153 ms to be negligible for an
interactive showing [Nie97].

10.3. Discussion

10.3.1. Evaluation

In this chapter, we focused on Goal 4 of our overall goals (see Chapter 5).
In specific, we focused on the aspect of Undetectability (see Section 3.2).

The goal was to hide the behavior of users from credential issuers, i.e., to
make sure the issuers don’t learn when and where a uses presents their
credentials. In the context of DLs, the issuer is represented by a node of
the DL. We achieve this by removing the DL nodes from the interactive
authentication process between a user and the SP. By doing so, we also
achieve our side-goal to enable the verification of credentials in the offline
setting. As opposed to the state of the art [Abr+20], we provide a simple
query system to enable the attestation of any data stored on the ledger,
without the need to modify the system for each use case.

10.3.2. Related Work

Various systems and methods in the blockchain world use data stored
in a DL, but all of those systems have online components that directly
interact with the ledger. E.g., Layer 2 protocols [Gud+20] move a large
number of transactions from a ledger to an off-chain service to increase
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performance and reduce cost. Systems based on the layer 2 approach
interact with a smart contract and thus require a connection to the DL.
The same requirement exists for Ethereum’s Light Client, which fetches a
state root from a trusted node [CBC21]. Another example is inter-ledger
communication [Zam+21], which is used to transfer assets from one ledger
to another. This transfer requires a trusted third party with a connection
to both ledgers.

To prove the provenance of data, TLS-N2 uses a more generic approach
by extending the TLS handshake to enable a server to notarize a TLS
session. TLSNotary [TLS14] and DECO [Zha+20] are concerned with
the attestation of access protected web data to a third party. This is
realized by involving a third party (oracle) trusted by the verifier in the
TLS session with the server.

Some revocation systems work without a direct connection between the
verifier and the revocation authority. One common example of this is
the verification of TLS certificates: OCSP stapling is a TLS extension
that allows a certificate subject (web server) itself to acquire the status
information of its certificate [III11]. This information is signed by a status
authority, which ensures that a verifier can trust the information. The
subject can then provide it to the verifier (web browser), and the verifier
does not require a direct connection to the status authority.

The system by Abraham, More et al. [Abr+20] allows the offline veri-
fication of DL-based revocation information. However, it is limited to
only the revocation use case. Modifying this system for other use cases is
possible, but each additional use case requires adaptions on all of the DL’s
nodes. Hence, we extended this approach to our generic ledger attestation
system.

10.3.3. Trust Assumptions

The user must trust the verifier’s trusted DL nodes to provide truthful
attestations. This assumption is also made in the online case, and is not
unique to our work.

Additionally, heading into an offline scenario the user relies on the provided
attestation being valid. It is not a negligible concern that the LSA Gateway
returns a bogus attestation. In order for the user to verify the provided

2https://github.com/tls-n, accessed on 2023-08-22

https://github.com/tls-n
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attestation, they would need to have a list of all DL nodes and their keys
on their device. In general, this is not trivial (see also Section 10.3.4).
Therefore, the user must trust the LSA Gateway to provide a valid
attestation. They may also retrieve attestations from multiple different
LSA Gateways. As long as at least one returns a valid attestation, the
user device can successfully complete the LSA process.

The verifier has some trust policy that relies on the truthfulness of
some subset of DL nodes. To verify the attestation proof, the verifier
also has a store with the public keys of the nodes it trusts. This does
not require additional assumptions beyond those already made in the
online scenario. The LSA Gateway simply retrieves attestations from all
DL nodes, including the nodes trusted by the verifier, and aggregates
them. The verifier’s trust in the aggregate attestation derives from the
inclusion of attestations by nodes it trusts. It does not need to trust the
LSA Gateway. Indeed, the existence of the gateway is transparent to the
verifier.

10.3.4. Operational Concerns

To forward requests, the LSA Gateway requires an up-to-date list of all
DL nodes.

Maintaining such a list is, in general, not a trivial task on permissionless
ledgers. It thus intuitively makes sense to separate the LSA Gateway
from the user device and, for example, to include it into one (or more)
well-known nodes of the DL. This co-location might enable use of DL
information already-available to the node to contact the other nodes.

For some DL setups like permissioned DLs, the set of nodes is well-known,
static, or otherwise can be easily obtained. In that case, it makes sense
to instead include the LSA Gateway into the user’s client device. This
eliminates the trust considerations towards the LSA Gateway outlined in
Section 10.3.3.

Availability: In practice, it may not be possible for the LSA Gateway to
reach all DL nodes. This can happen due to network issues, maintenance,
or as the result of a DoS attack [Li+21]. In this situation, it may only
be possible for the LSA Gateway to provide an incomplete attestation.
At what point it should give up and do so, and how this would be
communicated to the user, are open questions.
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Additionally, if the verifier expects an attestation was signed by all nodes of
a certain trust subset, an availability issue arises: if the LSA Gateway was
not able to reach all of these nodes, the resulting incomplete attestation
will be rejected.

To mitigate this, verifiers could use a threshold policy. Using the list of
public keys that are part of an attestation, the verifier first verifies the
aggregated signature on the data. It then checks if at least k nodes from
its trust store signed the provided aggregate, and accepts it if so.

Required Modifications: Modifications to existing systems are always
a challenge, especially to nodes in a distributed system. An advantage
of our approach is that the only such modification is the addition of the
LSA Wrapper to the nodes, which provides generic attestation and can
thus be employed in various use cases. Such a modification could be for
example performed during the setup of the system, and only the nodes
considered by any verifier need to be modified. This is in contrast to the
state of the art, where each use case requires an additional modification
to the DL nodes, which is often not feasible during operation.

10.3.5. Limitations & Future Work

Attestation Freshness: A limitation of both stated approaches is the
fact that information authenticated using such attestations is less up-to-
date than information directly retrieved from a registry. While this is
an acceptable trade-off for some use cases, other use cases require more
timely information. Depending on the concrete requirements on freshness,
we can mitigate the limitation up to some extent by utilizing the network
connection of the user. In a scenario where the user is online during or
shortly before the interaction with the (offline) verifier, they can retrieve a
fresh attestation. This makes sense for a verifier operated on a constrained
device and is especially useful for the user’s privacy since it facilitates
unobservability of the interaction.

Synchronized Time-stamping: In our scheme, we assume that the nodes
queried by the LSA Gateway will typically agree on the state of the DL.
This results in the returned node attestations having identical content,
allowing the node attestations to be aggregated into a single aggregate
attestation.
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However, the inclusion of a timestamp, low-resolution as it might be, in the
attested claim complicates this. For any variety of reasons, the attestations
returned by two nodes may end up in two (adjacent) epochs. Since the
epoch is part of the signed data, this difference makes it impossible to
aggregate the signatures.

One potential workaround would be for the LSA Gateway to include an
epoch derived from its local timestamp in its query to the DL nodes. The
DL nodes could then verify that the epoch is within an acceptable interval
of their local clock time, and issue their attestation with the requested
epoch. This ensures that all nodes issue their attestations for the same
epoch, thereby also for the same claim.

Node Discovery: Our approach works well for permissioned DLs such as
consortium ledgers, but node discovery is a challenge in open architectures.
In permissioned DLs like the European Blockchain Services Infrastructure
(EBSI), the set of nodes is known and changes relatively rarely [Eur22].
On the other hand, permissionless ledgers like mainnet Ethereum have a
large and unstable set of nodes, and no node knows all other nodes. In
our naive implementation, as all nodes perform the attestation process,
the LSA Gateway needs a list of those nodes. This presents a significant
challenge when applying our approach to such a permissionless ledger.

While some node discovery systems exist [MM02],3 future work is needed
to access if they are applicable for our system and in what way they can
be used by a verifier to create the required trust store.

Chapter 10 Conclusions
In many previous decentralized trust systems, an implicit always-online
requirement significantly hinders practical applicability. We resolve this
issue by applying the battle-tested concept of OCSP stapling to the
distributed ledger ecosystem.

After collecting signed attestations of the ledger’s current state from a
sufficiently large subset of DL nodes while online, the user can present this
aggregate attestation to a verifier later in an offline setting. The verifier
can use its local trust store to verify that the claimed state was attested by

3e.g., https://github.com/ethereum/devp2p/blob/master/discv4.md and https://eth.wiki/e
n/ideas/kademlia-peer-selection, accessed on 2022-07-01

https://github.com/ethereum/devp2p/blob/master/discv4.md
https://eth.wiki/en/ideas/kademlia-peer-selection
https://eth.wiki/en/ideas/kademlia-peer-selection
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nodes it trusts, establishing trust in the data itself. This allows the data
to be used to make informed decisions regarding the user’s credentials.

In this chapter, we introduced Ledger State Attestations, which allow
arbitrary queries to DL nodes’ HTTP API to retrieve attested results.
This serves as the basis for almost any imaginable use case with only
a single adjustment to the underlying DL’s nodes and is a significant
improvement over the state of the art. Additionally, our LSA approach
enables the undetectability of interactions with the verifier, which is
essential in ensuring users’ privacy.

Furthermore, we provided a proof of concept implementation for Ethereum-
based ledgers. We evaluate this implementation, demonstrating the prac-
tical feasibility of our scheme. Finally, we discussed the implications of the
LSA concept in terms of performance impact, added trust requirements,
and operational concerns.

The research results presented in this chapter have been published as part
of an academic paper [MHW22].
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This thesis focused on improving the trust verification aspect of electronic
transactions in a heterogeneous context.

To satisfy diverse use cases, we considered electronic transactions that
consist of multiple digital credentials. Each of those credentials provides
a different trust aspect to the verification and is issued by a different
issuer. These issuers can be qualified in a different trust scheme, i.e.,
authorized by a separate entity following a different governance framework.
So far, manual effort is needed to set up and maintain trust information
retrieval for each scheme. We addressed this challenge by proposing a
trust management infrastructure based on the Domain Name System
(DNS). Using this infrastructure, a verifier establishes trust in a previously
unknown trust scheme by simply configuring a single human-readable
identifier. Additionally, we enabled trust schemes that recognize other
trust schemes to publish this recognition in our system. To account for
different understandings (and accordions) of trust, we proposed automated
trust translations.

When an SP relies on a trust scheme to assess and certify the trustworthi-
ness of some information, it depends on that scheme’s understanding of
trust. However, the rules about the trustworthiness of data on hand are
specific to the concrete SP or a business use case and are usually unknown
to a trust scheme operator. To mitigate this and to allow verifies to
define their own view of trust, we introduced a expressive trust policy
system. To be future-proof, we added concepts that enable the easy
extensibility of our policy system without requiring modifications to the
policy language itself. We showed how this trust policy system can be
used with our DNS-based trust infrastructure and distributed ledger-based
trust management in the novel self-sovereign identity model.

The large variety of credential formats and schemata is another challenge
in the global context. A verifier needs to understand the semantics of the
data encoded in a credential but cannot do so if the credential is encoded in
an unknown credential schema. We tackled this challenge by introducing
a generic framework for trustworthy credential transformations.
Using this framework, a verifier automatically retrieves the data needed
to transform a credential into a format and schema it can parse.
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We further considered privacy aspects when presenting credentials with
sensitive attributes. Ensuring privacy in complex systems presents a
considerable challenge. This thesis considered privacy aspects of an
electronic transaction’s content and the user’s behavior.

Various privacy- enhancing/-preserving technologies exist to protect the
user’s privacy. However, integrating these technologies into existing access
control systems is not straightforward. We tackled this challenge by
extending expressive access control systems with privacy features.
Our approach re-uses existing access control policies, requiring only minor
modifications to define which attributes need to be revealed. We then
automatically derive a zero-knowledge-based access-control flow from the
policy. In doing so, we effectively turn an existing access control system
into a privacy-preserving access control system.

During the transaction verification, the verifier queries various registries,
e.g., to retrieve trust status information of the credentials. While this
ensures trustworthy information, the connection from the SP to the registry
poses a privacy issue, as it leaks information about the user’s behavior.
In the case of distributed ledger-based registries, this leaks information
about the user’s behavior to the ledger node. We resolved these issues
by extending existing ledger APIs to support ledger state attestation:
generic results that are trustworthy without directly communicating with
the DL node during the interaction with a verifier. By introducing a
simple query system, we enabled the attestation of any data stored on
the ledger without the need to modify the system for each use case. This
attestation enables a user to prove the provenance of any DL-based data
to an offline SP.

We also demonstrated the practicability of our proposals and discussed
their limitations.
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B
TPL EBNF Grammar

In Chapter 7 we introduce our trust policy system TPL. Using W3C’s
extended Backus–Naur form (EBNF),1 the syntax of TPL can be described
as shown in Listing B.1 and as visualized in Figure B.1.

TPLPolicy ::= Clause*

Query ::= (Predication ',')* Predication '.'

Clause ::= Predication '.'
| Predication ':-'

(Predication ',')* Predication '.'

Predication ::= 'PredicateSymbol'
| 'PredicateSymbol' '(' (Term ',')* Term ')'

Term ::= 'VariableSymbol'
| 'ConstantSymbol'
| 'FunctionSymbol' '(' (Term ',')* Term ')'

Listing B.1.: TPL’s grammar in EBNF notation.

1https://www.w3.org/TR/REC-xml/#sec-notation
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Figure B.1.: Railroad diagram of TPL’s EBNF grammar from
Listing B.1. Diagram generated using the Railroad Diagram
Generator at https://bottlecaps.de/rr/ui

https://bottlecaps.de/rr/ui


C
Example Credential Schema

Transformation

transform()

Transformation Info
BachelorDegree

→
UniversityDegree

Transformed Credential
in Schema UniversityDegree

type: UniversityDegree
context
id
issuer
issuanceDate
expirationDate

credentialSubject
  id
  name: Jane Doe
  degree:
    type: BachelorDegree
    name: Bachelor of Arts
  effort:
    type: ECTS
    value: 180

Received Credential
in Schema BachelorDegree

type: BachelorDegree
context
id
issuer
issuanceDate
expirationDate

credentialSubject
  id
  firstName: Jane
  lastName: Doe
  kind: Arts
  ects: 180

signature:
 ...

Figure C.1.: Example credential transformation process.
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D
Example Credential Schema

Transformation Template

Listing D.1 shows an example credential transformation process, as intro-
duced in Chapter 8. In the used credential, the JSON-LD @context is
used to contextualize the credential’s attributes. Most importantly, the
type attribute is mapped from a shortcut to a schema identifier URI (see
Section 8.4.1). E.g., the string VerifiableCredential is mapped to the
https://www.w3.org/2018/credentials#VerifiableCredential iden-
tifier using the first context. Additionally, the string AlumniCredential
(representing the schema of credentialSubject) is mapped to the
identifier https://example.org/examples#AlumniCredential using the
examples context. As an alternative, W3C Verifiable Credentials (VCs)
provide the credentialSchema property to specific a credential schema
and enforce a specific structure on a credential [SLC22, Sections 5.4 and
B.2].
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var jsonpathObjectTransform = require("jsonpath-object-transform")

var template = { "TransformationInformation": { "GraduationDiploma": {
"PersonDID": "$.credentialSubject.id", "UniversityDID":
"$.credentialSubject.alumniOf.id", "UniversityName":
"$.credentialSubject.alumniOf.name[?(@.lang == 'en')].value" } },
"TransformationSignature": { "type": "RsaSignature2018", "created":
"2019-01-01T01:00:00Z", "proofPurpose": "assertionMethod",
"verificationMethod": "did:example:ababb1f712ebc6f1c276e12ec21",
"jws": "TVkIEq_PbChOMqsLfRoPsnsgw5WEuts01mq...." } };

var credential = { "@context": [
"https://www.w3.org/2018/credentials/v1",
"https://www.w3.org/2018/credentials/examples/v1" ], "id":
"http://example.edu/credentials/1872", "type":
["VerifiableCredential", "AlumniCredential"], "issuer":
"https://example.edu/issuers/565049", "issuanceDate":
"2020-06-18T19:73:24Z",

"credentialSubject": { "id":
"did:example:ebfeb1f712ebc6f1c276e12ec21", "alumniOf": { "id":
"did:example:c276e12ec21ebfeb1f712ebc6f1", "name": [{ "value":
"Example University", "lang": "en" }, { "value": "Exemple
d'Université", "lang": "fr" }] } }, "proof": { "type":
"RsaSignature2018", "created": "2020-06-18T21:19:10Z",
"proofPurpose": "assertionMethod", "verificationMethod":
"https://example.edu/issuers/keys/1", "jws":
"eyJhbGciOiJSUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19...." }
};

var result = jsonpathObjectTransform(credential,
template.TransformationInformation);

// result:
"GraduationDiploma": {
"PersonDID":"did:example:ebfeb1f712ebc6f1c276e12ec21",
"UniversityDID":"did:example:c276e12ec21ebfeb1f712ebc6f1",
"UniversityName":"Example University"

}

Listing D.1.: Example TI, encoded for the jsonpath-object-transform
transformation engine. This TI transforms a VC into a simple
diploma credential. Credential adapted from [SLC22].
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