Trust and Privacy in a Heterogeneous World

PhD Defense

Stefan More

30. November 2023

Graz University of Technology

Trust and Privacy

Trust and Privacy

Trust (noun); to **trust** (verb):

Trust (noun); to **trust** (verb):

- to rely on the truthfulness or accuracy of ...
- assured reliance on the truth of someone or something

Trust (noun); to **trust** (verb):

- to rely on the truthfulness or accuracy of ...
- assured reliance on the truth of someone or something

Trust is an enabler!

Trust as Enabler

Without trust:

Without trust:

- no reliance on person/document possible
 - need for (manual) verification
 - assessment of reputation, insurance, ...

Certificate

- contains identity and public key
- used to sign other data

Certificate

- contains identity and public key
- used to sign other data

Certificate

- contains identity and public key
- used to sign other data

Credential

• contains attributes

Cryptographic signatures can provide:

• Integrity

Cryptographic signatures can provide:

- Integrity
- Authenticity?

Cryptographic signatures can provide:

- Integrity
- Authenticity?
 - Data was signed by specific cryptographic key. But
 - is this key really the issuer's key?
 - is this issuer qualified to issue that information?

• Legal regulations, technical standards, infrastructure, and organizations

- Legal regulations, technical standards, infrastructure, and organizations
- Authorize qualified issuers

- Legal regulations, technical standards, infrastructure, and organizations
- Authorize qualified issuers
- Verifier trusts the Trust Scheme (direct trust in scheme, indirect trust in issuer)

Examples:

- Web PKI: CA/Browser Forum, list of trusted root CAs
- EU: eIDAS regulation, EU Trusted List

• Complex transactions: many credentials

- Complex transactions: many credentials
- Multiple issuers, qualified in different schemes

- Complex transactions: many credentials
- Multiple issuers, qualified in different schemes
- Different trust requirements: no "meta scheme" possible

- Complex transactions: many credentials
- Multiple issuers, qualified in different schemes
- Different trust requirements: no "meta scheme" possible

Technical Challenges of supporting multiple schemes:

• Need to setup cryptographic material for each scheme

- Complex transactions: many credentials
- Multiple issuers, qualified in different schemes
- Different trust requirements: no "meta scheme" possible

Technical Challenges of supporting multiple schemes:

- Need to setup cryptographic material for each scheme
- Different encoding of trust

Global Trust Infrastructure
• Verifier only trusts few directly

• Verifier only trusts few directly

• Verifier only trusts few directly

• Verifier only trusts few directly

Trust Scheme Recognition:

- Trust Schemes identified by human-readable name
- Recognition:
 - list of names of other schemes

• Verifier only trusts few directly

Trust Scheme Recognition:

- Trust Schemes identified by human-readable name
- Recognition:
 - list of names of other schemes

Varying understanding of trust

- Trust character of a credential
- Boolean, Ordinal, Tuple-based

recognize USA Scheme EU Scheme define Translation USA→EU configuration configuration <u>Trust Policy</u> Trust: EU Scheme Verifier

• Governance

- eIDAS Article 14
- DNS / DNSSEC (ICANN/IANA)
- LIGHTest provides legal framework: [GJ19]

• Governance

- elDAS Article 14
- DNS / DNSSEC (ICANN/IANA)
- LIGHTest provides legal framework: [GJ19]

• Requirements Evaluation

- **<** DNS governance for legal *liability*
- $\ensuremath{\boxtimes}$ Support for different scheme types
- $\mathbf{\boldsymbol{\boxtimes}}$ Single cryptographic root

DNS-based Trust Scheme Publication + Trust Recognition + Trust Translation

Wagner, G., Wagner, S., More, S., Hoffmann, M., "DNS-based Trust Scheme Publication and Discovery". In: *Open Identity Summit.* 2019

More, S. "Trust Scheme Interoperability: Connecting Heterogeneous Trust Schemes". In: ARES. 2023

Going global in a heterogeneous world:

- S Complex transactions: many credentials
- \blacksquare Multiple issuers, qualified in different schemes

Going global in a heterogeneous world:

- S Complex transactions: many credentials
- Local perception of trust
 - Different verifiers trust different entities/schemes/regulations
 - No meta-scheme
 - Need to enable verifiers to define their own trust rules

Going global in a heterogeneous world:

- S Complex transactions: many credentials
- Local perception of trust
 - Different verifiers trust different entities/schemes/regulations
 - No meta-scheme
 - Need to enable verifiers to define their own trust rules

TPL: Trust- & Access-Policies

Accept any application from CS master-level graduates with a diploma qualified in EU-Edu scheme.

Accept any application from CS master-level graduates with a diploma qualified in EU-Edu scheme or any scheme recognized by EU-Edu. Trust Recognition/Translation

Accept any application from CS master-level graduates with a diploma qualified in EU-Edu scheme or any scheme recognized by EU-Edu and a recommendation letter issued to the same student by a person qualified in the EU-Sci scheme.

Second Credential with Inter-credential constraint

• Support of expressive constraints for trust & access rules

- Support of expressive constraints for trust & access rules
- Integration with our global trust infrastructure

- Support of expressive constraints for trust & access rules
- Integration with our global trust infrastructure
- Modularity
 - Formats (e.g., credential schemata)
 - Predicates (use-case: integration with SSI)

- Support of expressive constraints for trust & access rules
- Integration with our global trust infrastructure
- Modularity
 - Formats (e.g., credential schemata)
 - Predicates (use-case: integration with SSI)

TPL Components

- TPL Policy Language
- TPL Interpreter
- Automated Trust Verifier (ATV)

Bonus: graphical *TPL* editor

🚺 Welcome to the LIGHTest experience.

				Trust Scheme	Relational	Values	Б
LiG	LIGHT ²²⁵ +		▼ Format:	Pumpkin Seed O	il Delivery Net	work -]
NL	Example	Ì	If	П	ហៃ		
NL	PSO2	面		Ŀ			
GE	PSO	Ì	Certificate	Ū	Ĩ		
			is part of	Ū	Ì		
			PSA Internal	Ū	Ì		
			then accept	it [[Ĩ		

Publications

Mödersheim, S., Schlichtkrull, A., Wagner, G., More, S., Alber, L., "TPL: A Trust Policy Language". In: *IFIPTM*. 2019

Alber, L., **More, S.**, Mödersheim, S., Schlichtkrull, A., "Adapting the TPL Trust Policy Language for a Self-Sovereign Identity World". In: *Open Identity Summit*. 2021

More, S., Alber, L., "YOU SHALL NOT COMPUTE on my Data: Access Policies for Privacy-Preserving Data Marketplaces and an Implementation for a Distributed Market using MPC". In: *ARES*. 2022

Received		Needed	Access	
Credential		Credential	Policy	
 BAdegree: ects: <i>180</i>	Adegree: ects: <i>180</i>		<u>using</u> degree: type == <i>Bachelor</i> subject == <i>Arts</i> <i>Sci</i> effort.type == <i>ECTS</i> effort.value >= <i>180</i> 	

Credential Format Interoperability

Received		Needed	Access	
Credential		Credential	Policy	
 BAdegree: ects: <i>180</i>	Adegree: ects: <i>180</i>		<u>using</u> degree: type == <i>Bachelor</i> subject == <i>Arts</i> <i>Sci</i> effort.type == <i>ECTS</i> effort.value >= <i>180</i> 	

Going global in a heterogeneous world Problem: Different Credential Schemata

Trusted Credential Transformation

Trusted Credential Transformation

More, S., Grassberger, P., Hörandner, F., Abraham, A., Klausner, L. D., "Trust Me If You Can: Trusted Transformation Between (JSON) Schemas to Support Global Authentication of Education Credentials". In: *SEC*. 2021

Going global in a heterogeneous world:

- Service Provider is happy about trustworthy information
- What about the User?

Trust and Privacy

Computers

- $\bullet \ \Rightarrow A \text{ lot of sensitive data}$
- Behavior, medical, political preferences, personality profiles,

Computers

- Computers are omnipresent and interconnected
 - $\bullet \ \Rightarrow \mathsf{A} \text{ lot of sensitive data}$
 - Behavior, medical, political preferences, personality profiles, ...
- Computers are powerful
 - ⇒ Possible to collect, process, and store an unthinkable amount of data

Computers

- Computers are omnipresent and interconnected
 - $\bullet \ \Rightarrow \mathsf{A} \text{ lot of sensitive data}$
 - Behavior, medical, political preferences, personality profiles, ...
- Computers are powerful
 - ⇒ Possible to collect, process, and store an unthinkable amount of data

Various actors (mis-)use these data, e.g.

- Targeted advertising
- Surveillance capitalism
- Disinformation campaigns

Privacy (noun):

• from Latin *Privatus*: what is private

Privacy

Privacy (noun):

• from Latin Privatus: what is private

• the claim of individuals [...] to determine for themselves when, how, and to what extent [any] information about them is communicated to others Privacy

Privacy (noun):

• from Latin Privatus: what is private

• the claim of individuals [...] to determine for themselves when, how, and to what extent [any] information about them is communicated to others

Privacy is a right!

European Convention on Human Rights (Article 8): Everyone has the right to respect for his private and family life, his home and his correspondence.

A lot of data revealed Privacy !?

Privacy-enhanced Access Policies

Privacy:

• To prove they fulfill a policy, users need to send full credentials and reveal all attributes

Privacy:

• To prove they fulfill a policy, users need to send full credentials and reveal all attributes

(Non-interactive) Zero-knowledge Proof:

(Non-interactive) Zero-knowledge Proof:

Background: Zero-knowledge Proofs

(Non-interactive) Zero-knowledge Proof:

Background: Zero-knowledge Proofs

(Non-interactive) Zero-knowledge Proof:

We extend policy language systems with privacy features using zero-knowledge proofs.

Integration Gap:

• Use of privacy features with existing technologies

Privacy-preserving Policy System:

1. Policy author defines which attributes need to be revealed (and for which proof of statement is enough)

<u>Verifier (SP)</u>	TPL Policy	
Jser		

Privacy-preserving Policy System:

- Policy author defines which attributes need to be revealed (and for which proof of statement is enough)
- 2. Policy compiler derives ZKP presentation request

Privacy-preserving Policy System:

- Policy author defines which attributes need to be revealed (and for which proof of statement is enough)
- 2. Policy compiler derives ZKP presentation request
- 3. User creates ZKP presentation token based on request

Privacy-preserving Policy System:

- 1. Policy author defines which attributes need to be revealed (and for which proof of statement is enough)
- 2. Policy compiler derives ZKP presentation request
- 3. User creates ZKP presentation token based on request

• Performance

- 2 curves, 2 commitments
- One-time: compile, gen keys
- Repeated: witness, proof, verify

Evaluation

Performance

- 2 curves, 2 commitments
- One-time: compile, gen keys
- Repeated: witness, proof, verify

33 / 42

• Performance

- 2 curves, 2 commitments
- One-time: compile, gen keys
- Repeated: witness, proof, verify
- Future Work
 - 🕈 Linkability
 - 🗱 ZKP Setup & NIZK Toolchains
 - 📽 Policy Authoring Tools & UX

More, S., Ramacher, S., Alber, L., Herzl, M., "Extending Expressive Access Policies with Privacy Features". In: *TrustCom*. 2022

A lot of data revealed \mathbf{V} zkTPL

A lot of data revealed $\mathbf{\mathfrak{S}}$ zkTPL

A lot of data revealed $\mathbf{\mathfrak{S}}$ zkTPL

State learns about visit

A lot of data revealed $\mathbf{\mathfrak{S}}$ zkTPL

State learns about visit Privacy !?

Ledger State Attestations

 Verification leaks information about the user's behavior to registry

• Verification leaks information about the user's behavior to registry

- Verification leaks information about the user's behavior to registry
- Registry might be unavailable
- Verifier needs to be online

Solution: Remove communication between Verifier and DL

Solution: Remove communication between Verifier and DL

Context: Distributed Ledger-based Registries

Solution: Remove communication between Verifier and DL

Context: Distributed Ledger-based Registries

Challenges:

- Many DL nodes: Who signs a response/attestation?
- Not just revocation: Need for generic query system

More, S., Heher, J., Walluschek, C., "Offline-verifiable Data from Distributed Ledger-based Registries". In: *SECRYPT*. 2022

Bar Visit: Age Check

A lot of data revealed $\mathbf{\mathfrak{S}}$ zkTPL

State learns about visit State LSA

Global Trust Infrastructure

Global Trust Infrastructure

TPL Trust- & Access-Policies

TPL Trust- & Access-Policies

Credential Format Interoperability

Global Trust Infrastructure

TPL Trust- & Access-Policies

Credential Format Interoperability

Privacy-enhanced Access Policies

Global Trust Infrastructure

TPL Trust- & Access-Policies

Credential Format Interoperability

Privacy-enhanced Access Policies

Ledger State Attestations

Contribution Summary

18 Publications +1 under submission

8 First Author

Contribution Summary

18 Publications +1 under submission

Service & Community

- PC (OID, ARES SECPID)
- Session Chairing
- 3 Horizon 2020 Projects
- CTF Team Coordinator
- CryptoParty Founder

8 First Author

Thank you for your attention!

Trust and Privacy in a Heterogeneous World

Stefan More

- Illustrations by Storyset.com
- LATEX icons: tikzsymbols, tikzpeople, fontawesome, worldflags
- [AMM+21] Alber, L. "Adapting the TPL Trust Policy Language for a Self-Sovereign Identity World". In: Open Identity Summit. Vol. P-312. LNI. Gesellschaft für Informatik e.V., 2021, pp. 107–118.
- [GJ19] Graux, H., Jacobs, E., LIGHTest D4.7 Cross-Border Legal Compliance and Validity of Trust Scheme Translation. https://www.lightest.eu/static/deliverables/D4.7.pdf. online, accessed on 17 February 2023. LIGHTest Consortium, 2019.

References ii

[MA22] More, S., Alber, L., "YOU SHALL NOT COMPUTE on my Data: Access Policies for Privacy-Preserving Data Marketplaces and an Implementation for a Distributed Market using MPC". In: ARES. ACM, 2022, 137:1–137:8.

- [MGH+21] More, S. "Trust Me If You Can: Trusted Transformation Between (JSON) Schemas to Support Global Authentication of Education Credentials". In: SEC. Vol. 625. IFIP Advances in Information and Communication Technology. Springer, 2021, pp. 19–35.
- [MHW22] More, S., Heher, J., Walluschek, C., "Offline-verifiable Data from Distributed Ledger-based Registries". In: SECRYPT. SCITEPRESS, 2022, pp. 687–693.

References iii

[Mor23] More, S. "Trust Scheme Interoperability: Connecting Heterogeneous Trust Schemes". In: ARES. ACM, 2023, 124:1–124:9.

- [MRA+22] More, S. "Extending Expressive Access Policies with Privacy Features". In: *TrustCom*. IEEE, 2022, pp. 574–581.
- [MSW+19] Mödersheim, S. "TPL: A Trust Policy Language". In: IFIPTM. Vol. 563. IFIP Advances in Information and Communication Technology. Springer, 2019, pp. 209–223.
- [WWM+19] Wagner, G. "DNS-based Trust Scheme Publication and Discovery". In: Open Identity Summit. Vol. P-293. LNI. GI, 2019, pp. 49–58.