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Abstract. The diversity of methods for fast collision search in SHA-1
and similar hash functions makes a comparison of them difficult. The
literature is at times very vague on this issue, which makes comparison
even harder. In situations where differences in estimates of attack com-
plexity of a small factor might influence short-term recommendations of
standardization bodies, uncertainties and ambiguities in the literature
amounting to a similar order of magnitude are unhelpful. We survey dif-
ferent techniques and propose a simple but effective method to facilitate
comparison. In a case study, we consider a newly developed attack on
70-step SHA-1, and give complexity estimates and performance measure-
ments of this new and improved collision search method.

1 Introduction

Recently, claims for small improvements of collision search attacks attract the
attention of the cryptographic community. Examples are a 23-fold speed-up for
collision search in SHA-1 reduced to 58 steps [14] and full SHA [10] (the pre-
decessor of SHA-1). Apart from the interest in new techniques, reports on new
improvements (especially in the case of SHA-1) might also influence short-term
recommendations of standardization bodies.

Motivated by the growing importance of estimating the complexity of newly
developed or improved collision search attacks on members of the SHA family,
we point out a number of technical issues which are, if at all, only very vaguely
addressed in the literature.

— Computational cost of message modification (and similar methods)
— Influence of early-stop technique
— Impact of the last conditions of both blocks in a 2-block attack

All these issues contribute to the total cost of a differential collision search.
Once devised, these methods require very little memory, are trivially paralleliz-
able with negligible communication cost. Note that this contrasts the situation
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in many other types of cryptanalytic attacks, where e. g. the need for memory
access significantly contributes to the full cost of an attack [21].

As an example of our findings we show that a very new and promising speed-
up method named Boomerang-method is less efficient than expected in an colli-
sion search. Additionally, we are describing the technical details of a fast collision
search method for SHA-1 reduced to 70 steps and for the first time give an ex-
ample of a colliding message pair.

2 Short description of SHA-1

SHA-1 is an iterative hash function that processes 512-bit input message blocks
and produces a 160-bit hash value. Like all dedicated hash functions used today,
it is based on the design principle of MD4, pioneered by Rivest. In the following
we briefly describe the SHA-1 hash function. It basically consists of two parts: the
message expansion and the state update transformation. A detailed description
of the hash function is given in [I1]. For the remainder of this article we follow
the notation of [3] and restate it whenever needed.

Table 1. Notation

notation|description
X @Y |bit-wise XOR of X and Y
X +Y |addition of X and Y modulo 232
X arbitrary 32-bit word
X2 |pair of words, shortcut for (X, X*)
M; |input message word i (32 bits)
W; |expanded input message word ¢ (32 bits)
X < n |bit-rotation of X by n positions to the left, 0 <n < 31
X >> n|bit-rotation of X by n positions to the right, 0 <n < 31
N number of steps of the compression function

2.1 Message expansion

The message expansion of SHA-1 is a linear expansion of the 16 message words
(denoted by M;) to 80 expanded message words W.

(1)

W — M; for 0<1i<15,
Ul Wit @ Wis @ Wisis @ Wiigp) << 1 for 16 <i <79 .

2.2 State update transformation

The state update transformation of SHA-1 consists of 4 rounds of 20 steps each.
In each step the expanded message word W; is used to update the 5 chaining
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variables A;, B;, C;, D;, E; as follows:

A1 =B+ A 5+ f(B;,Ci, D) + K; + W,

B = A;
Ciy1=8B;>2
Diy1=C;
Eip1=D;

Note that the function f depends on the actual round: round 1 (steps 0 to 19)
use frp and round 3 (steps 40 to 59) use fas 4. The function fxor is applied in
round 2 (steps 20 to 39) and round 4 (steps 60 to 79). The functions are defined
as follows:

fir(B,C,D)=BAC&BAD (2)
frmas(B,C,D)=BAC&®BAD®CAD (3)
fxor(B,C,D)=B&C&D . (4)

Note that B; = A;_1, C; = A;_o > 2, D; = A;_3>> 2, E; = A;_4 >> 2. This
also implies that the chaining inputs fill all A; for —4 < j < 0. Thus it suffices
to consider the state variable A, which we will for the remainder of this paper.

After the last step of the state update transformation, the chaining variables
Ao, By, Cy, Dy, Ey and the output values of the last step Agg, Bso, Cso, Dso, Eso
are combined using word-wise modular addition, resulting in the final value of
one iteration (feed forward). The result is the final hash value or the initial value
for the next message block.

3 Collision search strategies

In order to construct efficient attacks, differentials with high probability are used.
Since no secret key is involved, in addition to the message difference, also the
actual values of bits in certain positions in the message influence the probability
of such a differential. Exploitation of this additional degree of freedom led to
remarkable progress in the cryptanalysis of hash function in recent years. For
hash functions like SHA-1, most (complex) differentials through the earlier parts
of the compression function can have for various reasons a very low probability.
More recently, the impact of this fact was systematically studied in detail in [3].
It is shown that the degrees of freedom from the message largely neutralize
the disadvantages of this low probability. This shifts the goal to optimizing the
probability of a differential through the later part of the compression function.
Additionally, this allows to remove all restrictions on the input differences of such
high probability differentials. By using a second message block as an additional
degree of freedom also all restrictions on the output differences of such a high
probability differential can be removed.

Methods for searching high probability characteristics through (parts of) the
compression function suitable for such an optimization were already discussed
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in [BITT2IT3ITE]. In Section we describe an improved variant of such an
optimization we used for our case study of 70-step SHA-1.

Optimality of 2-block approach. It turns out that by removing the con-
straint to have a collision already after a single message block, differentials with
significantly better probabilities can be found. On the other hand, more than
two blocks do not give any additional exploitable degrees of freedom anymore.
Hence, aiming for a differential spanning two message blocks is preferable, since
the workloads to find the right message pairs for each block add up. Note that
due to less effective methods, the first collision for SHA (the predecessor of
SHA-1) was built using a differential spanning four message blocks [2].

4 Computational cost of differential collision search

By fixing a difference and having random trials we expect to have to try around
2" times. With appropriate choices for differences and part of the actual mes-
sages, the aim is to reduce the work to find a colliding pair below the work of a
birthday search of order 2/2 trials.

We divide the involved computational costs into three categories.

— Determining a suitable message difference
— Determining a suitable characteristic
— Searching for a message pair that roughly follows this characteristic

For complexity estimates in the literature, usually only the last step is con-
sidered. We note that the first two steps used to have manual steps. With the
possibility to fully automate also these parts (as shown in [3]) it becomes possi-
ble to also estimate this computational effort and consider trade-offs with other
parts of an collision search attack.

4.1 General method to estimate work factor of a chosen
characteristic

We briefly recall some methods and definitions given in [3] needed for the sub-
sequent discussion.

Generalized conditions and generalized characteristics. Generalized con-
ditions for hash functions were first defined in [3]. The generalized conditions on
a particular pair of words X? will be denoted by VX. VX represents as a set,
containing the values for which the conditions are satisfied. In order to write this
in a more compact way, we will use the notation listed in Table
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Table 2. Notation for generalized conditions, possible conditions on a pair of
bits

(24, 2:7)((0,0) (1,0) (0,1) (1,1)||(zs,2;7)[(0,0) (1,0) (0,1) (1,1)
? v v v v 3 v v - -
- v - - v 5 v - v -
X - v v - 7 v v v -
0 v - - A - v - v
u - v - - B v v - v
n - - v - ¢ - v v
1 - - - v D v - v v
# - - - - E - v v v

Total work factor for generalized characteristic. Let us assume that
we have given a complete generalized characteristic for SHA-1, specified by
VA_4,...,VAy and VW, ..., VIWx_1. Our goal is to estimate how much ef-
fort it would take to find a pair of messages which follows this characteristic,
assuming a simple depth-first search algorithm which tries to determine the pairs
of message words M? one by one starting from Mg.

In order to estimate the work factor of this algorithm, we will compute the
expected number of visited nodes in the search tree. But first some more defini-
tions, which are all needed to estimate the work factor.

Definition 1. The message freedom Fyy (i) of a characteristic at step i is the
number of ways to choose W2 without violating any (linear) condition imposed

on the expanded message, given fixed values I/Vj2 for0<j <.

We note that since the expanded message in SHA-1 is completely determined
by the first 16 words, we always have Fy (i) = 1 for ¢ > 16.

Definition 2. The uncontrolled probability P, (i) of a characteristic at step i
is the probability that the output A12+1 of step i follows the characteristic, given
that all input pairs do as well, i.e.,

Pu(i)=P (A}, € VA1 | A} ; € VA;_j for 0 < j <5, and W? € VW) .

Definition 3. The controlled probability P.(i) of a characteristic at step i is
the probability that there exists at least one pair of message words W2 following
the characteristic, such that the output A?+1 of step i follows the characteristic,
given that all other input pairs do as well, i.e.,

P.(i)=P(IW} € VW;: A}, € VA1 | A7 ; € VA;_j for 0<j <5) .

With the definitions above, we can now easily express the number of nodes
N, (i) visited at each step of the compression function during the collision search.
Taking into account that the average number of children of a node at step i is
Fw (i) - P, (%), that only a fraction P.(7) of the nodes at step i have any children
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at all, and that the search stops as soon as step N is reached, we can derive the
following recursive relation:

N ifi=N,
= {max{Ns(i+ 1) Fw (i)' PUHE), PO} ifi <N

c

The total work factor is then given by

Once a characteristic has been fixed, we have to find a message pair that
follows the characteristic. By using a simple greedy approach or techniques such
as message modification or neutral bits the probability of the characteristic after
step 16 can be improved. In the following we will describe these techniques in
more detail.

4.2 Corrective factors for speed-up methods

In order to include methods that speed-up collision search into the very useful
general method to estimate the work factor of a chosen characteristic as described
above, we introduce corrective factors. It is easy to see that if a method aims for
higher speed, less steps need to be computed and hence less nodes in the search
tree are visited.

We now briefly describe how corrective factors can be derived for the different
methods that can be found in the literature. Because of its actuality, we chose
the so-called Boomerang-method as an example for our model in Section [4.8]
The adaption of our model to other methods works similarly.

Before that, we discuss how to incorporate also less probable characteristics
and the impact of conditions at the end of a block into this general model by the
use of corrective factors C;. (i) where i < N and n enumerates all considered
corrective factors. The corrected probability for each step is hence

Pcorr(i) — Pu(l) H Cn(l) .

The corrected number of nodes N, and total work factor is then based on
P, instead of P,.

4.3 Effect of additionally considering related characteristics

We give here two methods to consider additional characteristics that are related
to the originally chosen main characteristic.
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Less probable characteristics. Even if all message conditions for the main
characteristic are already in place, there exist a number of less probable charac-
teristics. For the case of high probability characteristics through the compression
function of SHA/SHA-1, these have been systematically studied in [9]. We pro-
pose to model the impact of them by setting a C(i) > 1 for each disturbance
in step ¢+ where there exist also less probable characteristics. Examples will be
given in Section

Conditions at the end of each block. By using a 2-block approach, char-
acteristics with a better probability can be found. Furthermore, the conditions
at the end of each block can be partially ignored (without further explanation
already observed in [I8]). This improves the probability of the characteristic sig-
nificantly. For the first message block all the conditions in the last 2 steps can
be ignored. For the second block this is not the case, since for every difference in
the initial value a correcting difference is needed to cancel it out. However, if we
can guarantee that the sign of the disturbances in the last 2 steps is opposite to
the sign of the according differences in the initial value, then we can ignore the
carry conditions for these disturbances. This also improves the probability of the
characteristic in the second block. In general the attack complexity is dominated
by the complexity of the second block, since only the carry conditions in the last
2 steps can be ignored. We propose to model the impact of them by setting a
C(i) > 1 for each case. An example will be given in Section

4.4 Greedy approach

The simple greedy approach was introduced in [3]. The idea is to run through
all bit positions of every state variable and every expanded message word, check
which conditions can be added to improve the total work factor, and finally
pick the position and corresponding condition which yields the largest gain.
By repeating this many times, the work factor can be gradually improved. No
corrective factor is needed.

4.5 Message Modification

Message Modification was introduced by Wang et al. in the cryptanalysis of
MD4 [15], MD5 [19] and the SHA-family [I8/20]. The main idea of message
modification is to use the degrees of freedom one has in the choice of the message
words to fulfill conditions on the state variables. Since every message word is only
used once in the first 16 steps, all the conditions on the state variables can be
easily fulfilled for these steps. This method is referred to as simple message
modification. After step 16 each message word depends on at least 4 previous
message words. Hence, a more sophisticated method (referred to as advanced
message modification) is needed to fulfill conditions after step 16. It can be
described as follows:
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1. Check if one of the conditions on the state variables is not satisfied. (starting
at the LSB)

2. If one condition does not hold then flip the according bit in message word W.
This causes a change in a previous W; for some ¢ < 16 due to the message
expansion. Hence, a change in A;; 1. This can be compared to introducing a
new difference (disturbance) in step t.

3. Correct the differences in A¢y1,. .., Arye by adjusting the according message
words Wt+1, ey Wt+5.

In detail this correction is equal to constructing a new local collision with
a disturbance in step t. Note that this method does not work if the correction
in the message words affects one of the conditions on the state variables or
message words themselves. Thus, the degree of freedom for advanced message
modification is determined by the characteristic in the first 16 steps.

As shown in unpublished but informally presented results by Wang [16/17] the
attack complexity of 269 can be improved to 253 by doing message modification
up to step 25. Wang et al. estimated the cost for message modification of about
22 SHA-1 compression function evaluations. Note that a new characteristic for
the first 16 steps was needed to do message modification up to step 25.

4.6 Equation solving

At FSE 2007, Sugita et al. presented a new method for message modification in
SHA-1 using symbolic computation [T4]. Their method reduces the number of
trials (needed message pairs) significantly at the cost of increased message modi-
fication costs. With their method a collision in 58-step SHA-1 can be constructed
with complexity close to 28 message modification (symbolic computation) steps
which they claim is approximately 23! SHA-1 computations (experimentally).
Note that the complexity of Wang’s attack on 58-step SHA-1 is about 234 hash
computations. Unfortunately, Sugita et al. do not give any information how this
comparison to SHA-1 was done. This makes it very difficult to compare their
approach to others. Furthermore, the description of their method is vague and
they do not give any estimations for the attack complexity on the full SHA-1
hash function. At the current state it is not clear if this method can lead to any
improvements in the attack complexity of SHA-1.

4.7 Neutral Bits

This technique was invented by Biham and Chen in the analysis of SHA [I]. The
main idea of this approach is to start the collision search from some intermediate
step 7 and hence improving the complexity of the attack. Therefore, Biham and
Chen invented the notion of neutral bits. For a given message pair (m, m*) that
follows the characteristic up to step r the j*"-bit is called neutral if the message
pair (m @ 27, m* @ 27) also follows the characteristic up to step r. Every set of
neutral bits can be used to generate 2° new message pairs, where ¢ denote the
number of neutral bits. The attack is based on the observation that a fraction
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(1/8) of these message pairs again follow the characteristic up to step r. Hence,
one get 273 message pairs following the characteristic up to step r. It is easy to
see that this reduces the complexity of the collision search in SHA.

4.8 Boomerangs/Tunnels

At CRYPTO 2007, Joux and Peyrin presented a new idea on how to improve the
attack complexity of SHA-1 [@]. It uses a variant of the boomerang attack, known
from analysis of block ciphers. The method is similar to the idea of tunneling
as introduced by Klima [8]. Each message pair that follows the characteristic in
the first steps is related to another message pair by a high probability auxiliary
differential. This auxiliary differential ensure that the characteristic also holds
in the first steps for the other message pair. Hence, each auxiliary differential
doubles the number of message pairs that follow the characteristic in the first
steps, which improves the complexity of the attack. An easy method to con-
struct these auxiliary differentials is to combine several local collisions. With
this method auxiliary differentials can be constructed up to step 29. However,
to guarantee that the auxiliary differential holds a set of additional conditions
have to be fulfilled in the steps before. This on the one hand reduces the de-
grees of freedom needed in the final collision search and on the other hand a
characteristic is needed for the first 16 steps that is compatible with the auxil-
iary differential. It is an interesting research problem to maximize the number
of auxiliary differentials that fit into a suitable characteristic for collision search.
However, issues like available message freedom and implementation aspects can
hugely influence the resulting work factor for collision search.

We propose to model the impact of auxiliary differentials as follows. Each
auxiliary differentials allows to increase a single C(i) by 2 - pau., where @ is
the first step where P.orr(i) < 1, and pgy, is the probability for the auxiliary
differential to hold up to step 7 which is often 1 or close to 1. The details depend
on the characteristic being used and the auxiliary differentials. The consequences
are interesting: even in favorable settings, the resulting corrected work factor can
not be improved by a factor of 2 per auxiliary differential, but noticeably less. As
an example, consider a setting where 6 auxiliary differentials are used. Instead
of a 64-fold improvement, the improvement is less than 45-fold. This has several
reasons, 7. e. the precise way our model takes the early-stop strategy into account.

4.9 Comparison of methods

Comparison of different approaches to speed-up collision search for SHA and
SHA-1 is difficult because usually not enough information is provided in the
respective descriptions.

Chabaud and Joux count in their attack on SHA [4] the number of needed
message pairs for constructing a collision to estimate the attack complexity.
Furthermore, they provide some measurements to confirm their estimates. This
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makes it easy to compare their results with other implementations. Unfortu-
nately, this is not the case for most of the recent published attacks on SHA and
SHA-1.

In their recent attacks on SHA and SHA-1 Wang et al. count the number
of conditions that have to be fulfilled such that the message follows the char-
acteristic to estimate the complexity of attack. Furthermore, they consider im-
provements achieved by message modification techniques as well as early stop.
This lead to an estimated attack complexity for SHA and SHA-1 of about 237
and 23 hash computations, respectively. However, since the description message
modification is vague, it is difficult to compare it to other methods.

In [T4], Sugita et al. count the number of symbolic computations (message
modification steps) needed for their message modification technique. Unfortu-
nately, they do not give any timing information for the algorithm, which makes
it difficult to compare the method to others.

In [3], De Canniére and Rechberger count the number of nodes in a search
tree that have to be visited to find a collision in the hash function to estimate
the complexity of the attack. This estimation already includes improvement of
message modification and early stop. With their approach a collision for 64-step
SHA-1 can be found with a complexity of about 23° hash computations.

An other notable example is the SHA collision by Naito et al. given in [I0].
They improved the collision attack of Wang et al. on SHA by a factor of 23. To
estimate the complexity of the attack, they build upon the work of Wang et al. in
the original attack. In addition to counting conditions for the characteristic and
considering the improvement of early stop and the cost for message modification,
they also provide measurements. Their finding is that a collision in SHA has a
complexity of about 236 hash computations and takes on average about 100
hours (on a Pentium4 3.4GHZ CPU). This shows an interesting gap between
claimed complexity and measurement. In fact one can expect more than 22°
SHA compression function calls per second on such a machine and hence would
expect a runtime of less than 20 hours.

4.10 Proposal

In order to avoid misinterpretation and allow fair comparison of different meth-
ods, we propose to directly compare every fast collision search method with a
standard implementation of SHA-1 (e. g. OpenSSL) on the same platform. This
would make comparison of different approaches easier in the future. In cases
where collision search can not be implemented it is still possible to give mea-
surement results for parts of the characteristic. We refer to our case study for
an example.

5 Case study: Collision search for 70-step SHA-1

5.1 Message Difference

We developed efficient search algorithms to find suitable message differences.
They are based on methods developed in [I2], with the improvement that exact
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probabilities as described in [39] instead of Hamming weights are used to prune
and rank them.

As described in Section [3] the effort to find colliding message pairs for SHA-1
mainly depends on the number of conditions between state and/or message bits
where no method to fulfill them better than random trials is known. For evalu-
ating and comparing candidate message differences, it will be useful to have the
following definition:

Definition 4. The truncated total work from step ¢ N¢(i) of a characteristic is
the product of all corrected probabilities down to step i, i.e.,

Nt(l) = HPcorr(j)v

where j runs from R downto i.

Assuming that the controlled probability P.(i) can be ignored (which is per-
fectly reasonable for ¢ > 16), N.(i) for ¢ > 16 can be used as an estimate of
the total work without fully specifying the generalized characteristic from step
0 on. The argument 4 in N¢(¢) can be interpreted as the threshold up to which
methods more efficient than random trials are known to look for right message
pairs.

Table 3. Disturbance vectors for 70-step SHA-1

steps 18-70 steps 20-70
message|Hamming weight|N;(18)|Hamming weight|N;(20)
MD 1 19 251.66 17 24740
MD 2 19 218.66 17 24723
MD 3 19 250-36 16 24737
MD 4 19 250-22 17 21987
MD 5 19 24909 17 24732
MD 6 19 250-14 18 248.50

For the attack we used the message difference MD 2, since it has the best
truncated total work after step 18 and 20. This perfectly matches to the greedy
method we use to speed-up collision search.

5.2 Detailed Characteristic

Table [4] shows the used message difference, which is the same for both blocks.
The characteristics found for the two blocks are given in Tables [f] and [f] re-
spectively. For improved collision search efficiency the probability of them was
further improved by fixing the actual values of certain bits in the message and
the internal state using available degrees of freedom. Table [7] and [§] show the
respective results.

The total expected work for both blocks amounts to about 2*4 compression
function equivalents. In contrast to other figures given in the literature this
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includes the impact of a less than ideal implementation (which is in our case
about a factor 10).

We run experiments for parts of the used characteristic to give this esti-
mate. Our experiment which produced an actual 70-step collision confirms this
estimates. Note that this includes the impact of a less than optimal implemen-
tation of the collision search and compares to a fast implementation of SHA-1
(OpenSSL) on the same platform. For that, we used as a means of comparison
the SHA-1 implementation of OpenSSL, which can do about 22 compression
functions per second on our PC.

A straightforward extension of the method used for the 64-step collision as
presented in [3] to 70 steps would have required more than 2°° compression
function equivalents. The gain in speed is partly due to the choice of a different
disturbance vector, and partly due to an improvement of the greedy-approach.

5.3 The employed improved greedy-approach

In our case study, we employ the greedy approach as described in Section [4.4
We improve upon [3] in the following way. Instead of picking only single bit
positions, we pick several of them at once. This results in a larger search space
but also in better results. We always pick a set of 7 bits (a local collision) and
test for each bit which condition would yield to the largest gain in the work
factor. This is an easy way to estimate the improvement of the work factor for
one local collision. Note that checking all 27 possibilities to add conditions for
a local collision would be inefficient. After testing all local collisions we pick
the one with the largest improvement and set the corresponding conditions. By
repeating this method the work factor can be gradually improved.

5.4 Some corrective factors

Conditions at the end of each block. Applying the rules described in Sec-
tion [4.3|to the characteristic in both blocks (Tables [7|and [8]) we can remove all 6
conditions in the last two steps of the first block and 2 conditions in the second
block. In terms of corrective factors as introduced in Section [£:2] we arrive at a
C(69) = 23 and C(70) = 23 for the first block and C(69) = 2 and C(70) = 2!
for the second block.

Impact of additional less probable characteristics. We achieve some more
speedup if also less probable characteristics are allowed. Once at bit position 0
in step 34, we would get a speed-up by 25%. The three disturbances in step
62, 65 and 66 would each allow a speedup of about 6.25%. By avoiding strict
checking of conditions/differences in the implementation, we can hence expect
to visit only about 66% nodes in order to find a suitable message pair. In terms
of corrective factors as introduced in Section we arrive at a C(34) = 1.25,
and C(62) = C(65) = C(66) = 1.0625. Note that this speed-up applies to both
blocks in the same way.
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Table 4. Example of a 70-step SHA-1 collision using the standard IV

% Message 1 (mg), first block Message 1 (mq), second block
1-4 |3BB33AAE 85AECBBB 57A88417 8137CB9C |[ABDDBEE2 42A20AC7 A915E04D 5063B027
5-8 |4DE99220 5B6F12C7 726BD948 E3F6E9B8 |4DDF989A EO0020CF7 7FFDCOF4 EFEFEOA7
9-12 23607799 239B2F1D AAC76B94 E8B009A1E |OFFBC2FO C8DE16BF 81BBE675 254429CB
13-16|C24DE871 5B7C30D8 000359F5 90F9ED31 [5F37A2C6 CD1963D3 FFCA1CB9 9642CB56

3 Message 2 (mg), first block Message 2 (m7), second block
1-4 |ABB33ADE 35AECBE8 67A8841F 8137CBDF [3BDDBE92 F2A20A94 9915E045 5063B064
5—8 |9DE99252 EB6F12D7 826BD92A 23F6E9FA |9DDF98E8 50020CE7 8FFDC096 2FEFEOES
9-12 [236077A9 C39B2F5F 8AC76BF4 08009A5F |OFFBC2CO 28DE16FD A1BBE615 (C544298A
13-16|E24DE821 9B7C3099 E0035987 30F9ED32 |7F37A296 0D196392 1FCA1CCB 3642CB55

3 XOR-difference are the same for both blocks
1-4 |90000070 B0000053 30000008 00000043 [90000070 B0O000053 30000008 00000043
5-8 |D0000072 B0O000010 F0000062 CO000042 |DO0O00072 BO000010 FO000062 CO000042
9-12 (00000030 EO0000042 20000060 EO0000041 [00000030 E0000042 20000060 E0000041
13-16|20000050 C0000041 EO0000072 A0000003 [20000050 C0000041 EO0000072 A0000003

[[4 ] The colliding hash values |
[ 1-5 | 151866D5 F7940D84 28E73685 C4D97E18 [ 97DA712B |

6 Conclusions

Currently known differential collision search attacks on hash functions like SHA-1
need little memory and are trivially parallizable. Still, theoretical analysis (count-
ing conditions, calculate probabilities for successful message modification) of-
ten leads to optimistic conclusions about actual collision search implementation
costs.

Measurement results and comparison with standard hash implementations
on the same platform are needed to compare different collision search strategies.
As a case study, a collision search method and an example of a colliding message
pair for 70-step SHA-1 was used. The highest number of steps for which a SHA-1
collision was published so far was 64.
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Table 5. Characteristic for the first block of the 70-step collision before opti-

Christophe De Canniére, Florian Mendel, and Christian Rechberger

mization.

7 VA, VW, Fyy | Py (i)|Pe(i) | N (4)
-4:/00001111010010111000011111000011
-3:/01000000110010010101000111011000
-2:/01100010111010110111001111111010
-1:/11101111110011011010101110001001

0:/01100111010001010010001100000001 --111---1nun1110| 14| -4.42| 0.00| 0.00
1:{ul-u1011--10---1--010-1-nuun0001 20(-13.00(-0.79| 0.79
2:|0u0u10--0-01--100--Onun1-00nnniu 22(-17.09|-1.00| 1.00
3:{111n111---1-nuuulu-00n11u-0110ul 17(-16.00{-1.00| 1.83
4:1101001111--nn011n1u11n000101n10n 15(-14.83|-2.83| 2.83
5:{1100100u0--010101u110unn-100u1lu|ninu--11- 21(-19.09|-1.00| 1.00
6:|n10--Ounnnnnnnnnnnnn0--0n10-Oun-|nuuu00 22(-18.27|-2.00| 2.00
7:1000111----11101u001u10-1100nn-00 |uu 23|-18.16|-2.75| 2.75
8:|u-0----—- 10111111--1010u-0-OuuOu1|0-1 26|-11.00(-1.42| 1.42
9:/1-0-- --0-111u-1----01-|nnu--------=—=——=—-—=———= 25|-11.00|-3.42| 3.42

: 1nu---nn001-|1-u: nn: 0| 23| -6.00{-1.00| 1.00
11: ----n1----100n|uuu n-1---n| 25| -7.00|-3.42| 3.42
12:|ul 00nn|-1n u-u----| 22| -7.00|-0.61|13.00
13:|u-1-0--=-=-=—==—=mmmmmmm 1--0-1n-|nu u n| 13| -3.00(-1.00|28.00
14:|-0 1---u|nnn: uuu--n-| 11| -6.00|-2.19|38.00
15:/110-0 Ou--|uln nu| 14| -4.00(-2.42|43.00
16:|n0 1-01|nn- u--n-| 0| -3.00|-1.00|53.00
17:|--0 ul|Oun in---1-n| 0| -3.00|-2.00|50.00
18:|n-0 nu- un--n-| 0| 0.00]-0.00|47.00
19: 0-u 1---1n| 0] -0.00(-0.00|47.00
20: nu u; 0| -2.00{-1.42|47.00
21: u- |nun n----uil| 0| -2.00{-2.00|45.00
22: u-|lun n----n0 0| -1.00(-1.00|43.00
23: n 1u0 0| -1.00(-1.00|42.00
24: 1| 0| -0.00{ 0.00|41.00
25: 10 0| 0| 0.00{-0.00|41.00
26: uo 0---- 0| 0.00| 0.00|41.00
27: 100 u 0| -1.00(-0.42|41.00
28: u-|0 n 0| 0.00| 0.00|40.00
29: 0 0| 0| -2.00{-1.00|40.00
30: n-|u u---1-0| 0| -0.00|-0.00|38.00
31: u-0 1 0| -2.00(-1.00| 38.00
32: n-{0-0 u 1-| 0] -0.00(-0.00|36.00
33: no On| 0| -2.00{-2.00|36.00
34: u nu----0| 0| 0.00| 0.00|34.00
35: ni Onu 0| -1.00(-1.00]| 34.00
36: I ui| 0] -2.00(-2.00|33.00
37: u-|uu I 1-| 0] -1.00(-1.00|31.00
38: nu: n 0| -1.00{-1.00|30.00
39: u 00-| 0| 0.00[-0.00|29.00
40: u 0| -1.00(-1.00{29.00
41: u-0 uo| 0] -1.00(-1.00|28.00
42: u-|0 o 0l 0.00| 0.00|27.00
43: -1 n0[ 0| -1.00(-1.00|27.00
44: u 0| -1.00|-1.00|26.00
45: n 10 0| -1.00(-1.00|25.00
46: n: 0-| 0| -0.00| 0.00|24.00
47: 11 Oul| 0| -1.00|-1.00|24.00
48: u n----0- 0| 0.00| 0.00|23.00
49: 1-1 0| -2.00(-1.00|23.00
50: u-|u n 0 0| -1.00(-1.00|21.00
51: x 1in-| 0| -2.00[-2.00{20.00
52: o 0| -1.00{-1.00|18.00
53: x0 11 0| -1.00{-1.00|17.00
54: x 0| -0.00| 0.00|16.00
55: 1| 0| 0.00| 0.00|16.00
56: 0| -0.00| 0.00|16.00
57: 0--- 0| 0.00| 0.00|16.00
58: 1-0-| 0| 0.00| 0.00{16.00
59: 0| -0.00| 0.00|16.00
60: 0| 0.00{-0.00|16.00
61: u-1| 0| -1.00|-0.42|16.00
62: u; n--0----| 0| 0.00| 0.00|15.00
63: x--| 0] -1.00| 0.00(15.00
64: n--x| 0| -2.00{-0.19|14.00
65: n u--0--n-x| 0| -2.00|-0.42|12.00
66: I u---x--n 0| -1.00| 0.00{10.00
67: n-xx-| 0] -3.00|-0.36 9.00
68: I u u-xx| 0| -3.00({-0.42| 6.00
69: u; n---xx-ux| 0| -3.00{-0.42| 3.00
70: X--=
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Table 6. Characteristic for the second block of the 70-step collision before
optimization.

B VA; VW; Fw ]| P.(2)[P:.(0)[Ns(2)
-4:101010011010101010100101101110n00
-3:/01100110101100010100011111001010
-2:/00000011110101011011000000nu1011
-1:/0100010101011010000011001101u010

0:/0101001110100011001110111000n101|u01n1011- 111101uun0010| 11| -2.52| 0.00| 0.00
1:/n11n1000------- 1-1-11001nnunOnuu --0101uOnO1uu| 17| -8.00|-0.96| 0.96
2:{1u0u10100------ 0---n-nn11100010u --0000100u101| 17| -9.38|-0.35| 0.35
3:{ulun00001-----nn-u-0-00nu1011udn 17(-14.00| 0.00| 3.79
4:/n0101110n1u-u-101-n1011011uu0010 14|-14.62(-2.61| 6.79
5:{010n011u11010n1-nu-10u01u010innu 13|-16.19|-5.17| 6.18
6:1n000111100uu001-0100-n00011001u 14(-12.44|-2.99| 2.99
7:|innnnnnnnnnnnnnn-111--01nn1--u00 16| -6.00| 0.00| 0.00
8:/100-11000----- 1100-u---1un11-101|{000---=-—========——=—=—-—— luu---0| 25(-19.68| 0.00| 0.00
9:/010011111111100111--01-0-100--0n |uun- nili-ul| 23(-10.00(-4.00| 4.00
10:{ul--01---=-=—=-————- 11--nuOuOun0|10n uul0--1| 22| -6.42|-1.61| 1.61
11 —--n--0000011|nnu----=-=-=-=———=—====--- x00---u| 25| -7.83|-2.61| 2.61
12: —-----1n-1n1|01n 22| -2.42(-0.68| 9.51
13:|u 0-0-u|uuo x0----u| 14| -7.00(-3.00|29.09
14:|101 1-1-ujuuu-------=--------—--——-= xuu--ni| 13| -5.09|-0.29|36.09
15:[--1-0-—=—=—=——————— 11u--|uOn 10-un| 13| -4.00(-2.83|44.00
16:|n1 0-11|un0 0-u--n1| 0| -3.00(-2.00|53.00
17:|--0 n1|Oun u0--10n 0| -3.00(-2.00|50.00
18:|n-0 uul un--ni| 0| 0.00| 0.00/47.00
19 00u 0---0n| 0| -0.00| 0.00|47.00
20 nu0 1 n0[ 0] -2.00(-2.00|47.00
21: n-|nun: u----n0| 0| -2.00|-2.00|45.00
22 n-|Oun u----ul 0| -1.00{-1.00|43.00
23: uil inl 0| -1.00(-1.00|42.00
24: 100 10----00| 0| 0.00| 0.00|41.00
25: 110 11| 0] -0.00{-0.00|41.00
26 u00: 0--11 0| 0.00[-0.00|41.00
27: 100 no 0| -1.00(-1.00|41.00
28: n-(011 u----00| 0| 0.00|-0.00{40.00
29: 001 01| 0| -2.00{-2.00/40.00
30: u-(n10 n---111 0| 0.00(-0.00]38.00
31: u00 110 0| -2.00(-2.00] 38.00
32: u-{100 n--1011| 0| 0.00| 0.00(36.00
33: ulo 000u| 0| -2.00(-2.00|36.00
34: n(011 un-0001| 0| 0.00(-0.00|34.00
35: ul0 Olun 0| -1.00(-1.00| 34.00
36: 0uo 0| -2.00{-2.00|33.00
37: n-|uu 0| -1.00{-1.00|31.00
38: un: 0| -1.00{-1.00|30.00
39: ul0: 0| -0.00(-0.00|29.00
40: u-0 0| -1.00{-1.00|29.00
41: n-0 0| -1.00{-1.00|28.00
42: n-(10 0| 0.00{-0.00|27.00
43: -1 0| -1.00{-1.00|27.00
44: x11 0| -1.00(-1.00|26.00
45: u 0| -1.00{-1.00|25.00
46: n-1 0l 0.00| 0.00|24.00
47: 11 0| -1.00{-0.42|24.00
48: n 0| 0.00(-0.00|23.00
49: -1 0| -2.00{-1.00|23.00
50: n-|u-1 0| -1.00{-1.00|21.00
51: x-1 0| -2.00{-2.00|20.00
52: 1 0| -1.00(-1.00| 18.00
53: x0 0| -1.00{-1.00|17.00
54: x 0| 0.00| 0.00|16.00
55: 0| 0.00| 0.00|16.00
56: (0 0| 0.00| 0.00|16.00
57: 0 0| 0.00| 0.00|16.00
58: 0| 0.00| 0.00|16.00
59: 0| -0.00| 0.00|16.00
60: 0l 0.00{-0.00|16.00
61: n-0 0| -1.00(-0.42|16.00
62: n u--01-0-| 0| 0.00| 0.00{15.00
63: x1-| 0] -1.00| 0.00(15.00
64: u--x| 0| -2.00{-0.19|14.00
65: u; ni-11-u-x| 0| -2.00{-0.42|12.00
66: u n---x--u 0| -1.00| 0.00|10.00
67: 1---u-xx-| 0| -3.00|-0.36 9.00
68: u n n-xx| 0| -3.00(-0.42| 6.00
69: n u---xu-nx| 0| -3.00|-0.42| 3.00

70: u;




72 Christophe De Canniére, Florian Mendel, and Christian Rechberger

Table 7. Characteristic for the first block of the 70-step collision after applying
the greedy approach. Bold numbers in column P,,,.(¢) highlight impact of new

corrective factors.

VA I Pt [P (D] Poore () [Ne (D [Noorr ()
-4:/01010011010101010100101101110n00

-3:/01100110101100010100011111001010

-2:/00000011110101011011000000nu1011

-1:/0100010101011010000011001101u010

0:/01100111010001010010001100000001 |n01u101110110011001110--1nun1110| 2| -1.00 0.00{ 1.02 0.00
1:{u10u1011011001111101001-nuun0001|{u0nn01011010111011-010111nlulOuu 1|-1.00 0.00| 2.02 0.00
2:{0u0u1001010110100000nun1000nnn1u|{01nu011110101000100001000001n111 0| 0.00 0.00| 2.02 0.00
3:{111n11111111nuuulul00n11u10110u1|{1000000100110111110010111n0111nn| 0| 0.00 0.00| 2.02 0.00
4:110100111100nn011n1u11n000101n10n|nudn110111101001100100100nun00n0| 0| 0.00 0.00| 2.02 0.00
5:/1100100u000010101u110unn0100u10u|ninui1011011011110001001---0n0111 3| -3.00 0.00| 2.02 0.00
6:|n10000unnnnnnnnnnnnn0100n1000un1 |nuuu001001101011110110-10un010n0 1| 0.00| -3.00| 2.02 0.00
7:1000111110011101u001u10-1100nn000|{uu100011111101101-1010--1n1110n0 3| -2.00 -1.00| 3.02 0.00
8:/u000110110111111011010u-010uu0u1|001000110110000001-1011-10nu1001| 2| -1.00| -5.00| 4.02 0.00
9:/1100111111110001100111u-11001011|nnu0001110011011--~ -0n0111in1| 8|-4.00| -2.00| 5.02 0.00
10:{01000100001000101---1nu-10nn0010{10u0101011000-110-- ---nn10100 9] -6.00 -4.00| 9.02 2.88
11:/10011101100011-1000---n1--10100n |uuu010000-00000-~ --n0111in| 11| -3.00 -7.42112.02 5.88
12:/u101111110100001-- 0000nn |11n000100100-1-- ulu0001| 12|-8.00| -7.00(/20.02| 13.88
13:{u11001111110011111--———- 1-1011n1|nu011011011111-00-- --u01100n| 9|-4.00| -2.00|24.02| 17.88
14:/1010111000100000 nnn000000000001-~ —-uuu0ini| 10|-1.00 -8.00(29.02 22.88
15:{110101110111--~ u0n10000111-1-- --100nu| 14]|-5.00 -6.00| 38.02 31.88
16:|n0111011--0011- nn10100000001-11- -111u00n0 0| -0.02 -0.55[47.02 40.88
17:/000--1111 0un01110000000 -1n0111in| 0| 0.00 0.00]47.00| 40.86
18:|n00 nu00000011-1 -un01n0| 0] -1.00| -1.00{47.00| 40.86
19:/--0 00u10100-010 110101n 0| 0.00 0.00{46.00 39.86
20: nu100111100-1- -000011u1| O0|-1.00| -1.00|46.00| 39.86
21: u-|nun001100-1- --n0001ul| 0|-2.00| -2.00|45.00 38.86
22: u-|1un0101-010-1- -1n0111n0| 0| -1.00| -1.00|43.00| 36.86
23: 0[-1.00| -1.00/42.00 35.86
24: 0| 0.00 0.00{41.00| 34.86
25: 0] -0.00 0.00{41.00| 34.86
26: 0] -0.00 0.00]41.00| 34.86
27: 0] -1.00| -1.00{41.00| 34.86
28: 0| 0.00 0.00|40.00| 33.86
29: 0] -2.00| -2.00{40.00| 33.86
30: 0] -0.00 0.00|38.00| 31.86
31: 0] -2.00| -2.00|38.00| 31.86
32: 0] -0.00 0.00]36.00| 29.86
33: 0] -2.00| -1.91|36.00| 29.86
34: 0] -0.00 0.00{34.00| 27.94
35: 0| -1.00| -1.00{34.00| 27.94
36: ini1 11100000ul| 0] -2.00| -2.00{33.00| 26.94
37: u-|uu-1-0-1--=-----————---- 0n101010| 0|-1.00| -1.00|31.00| 24.94
38: nu100-1 0000011n1| O0|-1.00| -1.00|30.00| 23.94
39: u00 01000001| 0| 0.00 0.00{29.00| 22.94
40: u-1-0 011100101 0|-1.00| -1.00|29.00| 22.94
41: ul01-1 1111110u0| 0] -1.00| -1.00{28.00{ 21.94
42: u-|01----—- Bttt 00n110010| 0| -0.00 0.00{27.00| 20.94
43: -1-0 10111n0| 0|-1.00| -1.00|27.00| 20.94
44: ul1l-0 001111011| 0|-1.00| -1.00|26.00| 19.94
45: n 00011110 0|-1.00| -1.00|25.00| 18.94
46: n-0 1000100-| 0| -0.00 0.00{24.00| 17.94
47: 11-0 10110u1| O0|-1.00| -1.00|24.00| 17.94
48: u- 100n111001| 0| 0.00 0.00{23.00| 16.94
49: -0-1 0000101-1| 0|-2.00| -2.00|23.00| 16.94
50: u-|u-1 1n011100| 0|-1.00| -1.00(/21.00| 14.94
51: x 111011n-| 0] -2.00| -2.00/20.00| 13.94
52: [ 1111000-0-| 0] -1.00| -1.00{18.00| 11.94
53: x0 111010011 0] -1.00| -1.00{17.00{ 10.94
54: x 01000110--| 0| -0.00 0.00{16.00 9.94
55: 0100-0-1| 0| 0.00 0.00{16.00 9.94
56: 1 100111101-| 0] -0.00 0.00{16.00 9.94
57: 01010---| 0| 0.00 0.00{16.00 9.94
58: 01001-1-0-| 0| 0.00 0.00{16.00 9.94
59: 101010-1| 0| 0.00 0.00|16.00 9.94
60: 001100----| 0| 0.00 0.00{16.00 9.94
61: 01-1-u-1| 0|-1.00| -0.99|16.00 9.94
62: u--— 00n0000-0-| 0| 0.00 0.00{15.00 8.96
63: 100--x--| 0| -1.00| -1.00|15.00 8.96
64: 10110-0-n--x| 0[-2.00| -1.98|14.00 7.96
65: - 001u0101-n-x| 0f-2.00| -1.98|12.00 5.98
66: n 011ul--x--n| 0[-1.00| -1.00/10.00 4.00
67: 111-0-n-xx-| 0] -3.00| -3.00{ 9.00 3.00
68: n 0u0100-u-xx| 0[-3.00| 0.00| 6.00 0.00
69: u-—-— 1n0--xx-ux| 0]-3.00 0.00| 3.00 0.00
70: X---
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Table 8. Characteristic for the second block of the 70-step collision after ap-
plying the greedy approach. Bold numbers in column P,,,..(7) highlight impact
of new corrective factors.

i VA, Fw [Py (4) [ Peorr(4) | Ns (4) [ Neorr()
-4:/01010011010101010100101101110n00
-3:/01100110101100010100011111001010
-2:/00000011110101011011000000nu1011
-1:/0100010101011010000011001101u010
0:/0101001110100011001110111000n101|{u01n101111011101101111101uun0010 0| 0.00 0.00| 0.97 0.00
1:|n11n10001001000101011001nnunOnuu|ninn001010100010000010101u0n01uu 0| 0.00 0.00| 0.97 0.00
2:/1u0u101001010010010n0nn11100010u|10un100100010101111000000100u10l 0| 0.00 0.00| 0.97 0.00
3:{u1un0000100111nn1u00100nu1011udn|{0101000001100011101100000n1001uu 0| 0.00 0.00| 0.97 0.00
4:/n0101110n1u1u11010n1011011uu0010|nuOn110111011111100110001nnuiOud 0| 0.00 0.00| 0.97 0.00
5:/010n011u11010n10nu010u01u0101nnu |ulun00000000001000001-00111u0111 1| 0.00 0.00| 0.97 0.00
6:/1n000111100uu00110100-n100011001u|nuuu1111111111---1000-001uu101n0 4|-3.00 -3.00| 1.97 0.00
7:|1nnnnnnnnnnnnnnn01111-01nn101u00{uu10111111101111-1100--01n1001ul| 3| -1.00| -1.00| 2.97 0.24
8:11000110000111111001u---1un110101{0000111111111011--000---11uu0000 5| -5.00| -5.00] 4.97 2.24
9:/0100111111111001110001-00100010n|{uun0100011011110~ -in111iul 8|-2.00f -2.00| 4.97 2.24
10:{u1010110010011-----~ 11--nuOuOun0|10n0000110111-1-1 ---uul0101| 10| -4.00 -4.00(10.97 8.24
11: —--n--0000011|nnu001010-00010-- --x00101u| 12|-7.42 -7.42(16.97 14.24
12:/0011001000011-- 01n111110011-1-- u0n0110| 12| -7.00| -7.00|21.55 18.82
13:/u00100011111000~ uu0011010001-0-1- --x01001u| 12|-2.00| -2.00|/26.55| 23.82
uuul111111-0101-- --xuulOni| 12|-8.00| -8.00|36.55| 33.82
u0n10110010-0-1-1 13| -6.00| -6.00]40.55| 37.82
un000000010-0~ 0[-0.55| -0.55|47.55| 44.82
0un010111-1010-- 0| 0.00 0.00|47.00| 44.27
18:|n00 uu10011001-0-1-0- 0[-1.00| -1.00|47.00| 44.27
19:|--0 00u01010-1-0-0 0| 0.00 0.00|46.00| 43.27
20: nu001101-11-1- 0|-1.00f -1.00|46.00| 43.27
21: n-|nun010010-1-0- 0[-2.00| -2.00|45.00| 42.27
22: n-|0un0101-0-0-1- 0[-1.00| -1.00/43.00 40.27
23: u111100-00-1 0] -1.00| -1.00{42.00| 39.27
24: 10001110-1-0-0--~ 0| 0.00 0.00|41.00| 38.27
25: ---0010111| 0| -0.00 0.00|41.00| 38.27
26: -10101111| 0| 0.00 0.00|41.00| 38.27
27: ---00110n0| 0| -1.00| -1.00|{41.00| 38.27
28: I --u000000| 0| -0.00 0.00|40.00| 37.27
29: 0[-2.00| -2.00/40.00| 37.27
30: --n010111| 0| 0.00 0.00|38.00| 35.27
31: ----101110| 0| -2.00| -2.00|38.00| 35.27
32: 10n111011 0| 0.00 0.00(36.00] 33.27
33: -11001000u| 0| -2.00| -1.91|36.00| 33.27
34: 0un00001| 0| 0.00 0.00|34.00 31.36
35: u10-10-1---=======—————- 111001un| 0|-1.00| -1.00|34.00| 31.36
36: 0Ou01: 0110101n1 0[-2.00| -2.00|33.00| 30.36
37: n-|{uu-1-1-1----------——---- 1u001011| 0[-1.00| -1.00|31.00| 28.36
38: un-01-1 1001001n0( 0|-1.00| -1.00|30.00 27.36
39: ul0---0 11000011| 0| 0.00 0.00|29.00| 26.36
40: u-0-1 110011110| 0| -1.00| -1.00{29.00| 26.36
41: n-01-0 011101n0 0| -1.00 -1.00|28.00 25.36
42: n-|10----- O-———=————————— 1u011010 0| 0.00 0.00(27.00| 24.36
43: -1-1 01110ul| 0[-1.00| -1.00|27.00 24.36
44: x11-1 011101100 0| -1.00| -1.00{26.00| 23.36
45: u---0-0 10000101 0|-1.00f -1.00|25.00| 22.36
46: n-1 0110011- 0| 0.00 0.00(24.00| 21.36
47: 11-0 01000n-| 0[-1.00| -1.00|24.00 21.36
48: I 01u000011| 0| 0.00 0.00|23.00 20.36
49: -1-1 0110010-0 0] -2.00f -2.00|23.00| 20.36
50: n-|u-1 1u0111-0 0|-1.00{ -1.00/21.00 18.36
51: x-1 101010u-| 0[-2.00| -2.00/20.00 17.36
52: 1 1110101-1-| 0[-1.00| -1.00/18.00| 15.36
53: x0 010100-10| 0| -1.00| -1.00|{17.00| 14.36
54: X 0111011-- 0| 0.00 0.00]16.00 13.36
55: 0111-0-1| 0| 0.00 0.00|16.00| 13.36
56: 0 00100-01-| 0| 0.00 0.00|16.00| 13.36
57: 0 11010---| 0| 0.00 0.00|16.00| 13.36
58: 1001-0-1- 0| 0.00 0.00|16.00 13.36
59: 101-11-1| 0|-0.00 0.00|16.00| 13.36
60: 11110----|  0/-0.00 0.00|16.00| 13.36
61: 01-0-n-0| 0|-1.00| -0.99|16.00| 13.36
62: n 1u1-01-0-| 0| 0.00 0.00|15.00| 12.37
63: 111--x1- 0|-1.00f -1.00|15.00 12.37
64: 10000-1-u--x| 0]-2.00| -1.98|14.00| 11.37
65: u---— 010ni1-11-u-x| 0]-2.00| -1.98(12.00 9.39
66: u-- 00inl--x--u| 0]-1.00| -1.00{10.00 7.42
67: 11-0-u-xx- 0]|-3.00] -2.42| 9.00 6.42
68: u 1n0-01-n-xx| 0|-3.00| -2.00| 6.00 4.00
69: I 1ul--xu-nx| 0|-3.00| -2.00| 3.00 2.00
70: u---—
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