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Abstract: In a previous work of the author about non-data-aided estimation of the signal-to-noise
ratio (SNR) for bandlimited optical intensity channels, a couple of limitations have been identified in
terms of error performance and computational complexity. In the current paper, these deficiencies
are avoided by the introduction of a second receiver filter with specific properties that is operated
in parallel to the receiver filter normally used in this respect. Although not initially intended, the
concept is also applied to data-aided SNR estimation by deriving a maximum likelihood algorithm
and the Cramer–Rao lower bound (CRLB) as the theoretical limit of the error performance. In the
next step, the dual-filter framework is used in the context of SNR estimation without knowledge
about data symbols. The most significant benefit of this method is that the number of payload data
employed for the estimation procedure might be selected arbitrarily long without impacting the
spectral efficiency of the link. Since the computation of the true CRLB was out of scope due to
complexity reasons, an asymptotic variant for very low SNR values is analyzed, which ends up in a
closed-form solution. Furthermore, an algorithm based on first- and second-order moments of the
samples at the dual-filter output is investigated, which turned out to be very attractive in terms of
error performance and computational complexity.

Keywords: SNR estimation; optical wireless communications; intensity modulation

1. Introduction

There is no doubt that optical wireless communication (OWC) solutions have a lot of
benefits compared to their radio frequency (RF) counterparts: rather inexpensive and easy
to deploy, extremely high throughput, no problems with data security, no regulatory and
license issues, just to mention the most significant aspects in this context [1–4]. However,
when it comes to optical intensity modulation, a unipolar signal concept with respect to
symbol constellation and pulse shaping is of paramount importance. Realized via pulse
amplitude modulation (PAM) and root-raised cosines, normally used in the RF domain for
pulse shaping, this has been investigated in [5,6] by assuming an appropriately selected
bias. Although the approach is strictly bandlimited, the price to be paid is some clipping
effect and less efficiency in terms of power and energy.

As an alternative, squared raised cosine and double jump functions have been sug-
gested in [7] for pulse shaping in bandlimited optical intensity links. Clipping as well as
bias problems are completely avoided by this method, with the additional benefit that the
Nyquist property is still satisfied, which allows a simple detection procedure without the
introduction of inter-symbol interference effects.

Nevertheless, even for OWC systems, the most important transmission parameters
must be recovered at the receiver by suitable algorithms. In this context, some knowledge
about the signal-to-noise ratio (SNR) is indispensable for a lot of scenarios; e.g., many
adaptive systems [8] or powerful error correction schemes [9] necessitate this sort of
information so that the link can be operated close to the Shannon bound. In this context,
a non-data-aided (NDA) algorithm for SNR estimation has been discussed by the author
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in a recently published paper [10], i.e., no a priori knowledge about data is needed in the
receiver unit for this purpose, or, in other words, payload data might be used so that the
spectral efficiency does not depend on the observation length required for the estimation
process. This is in striking contrast to a data-aided (DA) approach, where part of the data
frame is occupied by pilot sequences [11].

However, the solution developed in [10] is based on the expectation-maximization
(EM) principle [12–14], which turned out to be the only way to approach the Cramer–
Rao lower bound (CRLB) as the theoretical limit of the error performance [15–17]. Other
algorithms for SNR estimation have been studied as well, e.g., moment-based or decision-
directed methods, but they failed insofar as they exhibit a non-negligible bias and/or jitter
effect. Unfortunately, the computational load of EM algorithms is considerable, so a less
complex SNR estimator would be most welcome. In the current paper, this is realized
by the introduction of a second filter operated in parallel to the receiver filter and using
both outputs in a moment-based approach, which is characterized by its computational
simplicity and the fact that the performance degradation of EM solutions in the medium
SNR range is avoided.

The rest of the paper is organized as follows: In Section 2, the signal and channel model
is introduced, which we use for analytical and simulation work in the sequel. In Section 3,
a maximum likelihood algorithm is investigated for DA SNR estimation, complemented by
the derivation of the related CRLB as the theoretical limit of the error performance. The
focus of Section 4 is on the development of a method based on the first- and second-order
moments of the samples available at the output of the receiver filters. Since the computation
of the true CRLB is out of scope in the context of NDA SNR estimation, we concentrate on
an asymptotic variant, which is available in closed form and applies to smaller SNR values.
Numerical results related to bias effect and error performance are presented in Section 5.
Finally, conclusions are drawn in Section 6.

2. Signal and Channel Model

The signal and channel model for the current paper are more or less the same as those
in [10,11] for NDA as well as DA estimation of the SNR, respectively. Nevertheless, for
convenience, the model is briefly recapitulated in the sequel. On top of that, it is also
extended in a suitable manner so that new results are achievable.

In the following, it is assumed that the data symbols ak, k ∈ Z, are independent
and identically distributed (i.i.d.) elements of an M-ary PAM alphabet A. In this context,
it makes sense to normalize the symbols such that E[a2

k ] = 1, where E[·] denotes the
expectation operator. This is straightforwardly achieved by A = 1√

ηM
{0, 1, . . . , M− 1}

and ηM = 1
6 (M− 1)(2M− 1). As a consequence, the average symbol value is given by

µa = E[ak] =
1
√

ηM

M− 1
2

=

√
3 (M− 1)
2 (2M− 1)

(1)

If we adopt a pulse shape expressed by h(t), the signal at the output of the opto-
electrical receiver module develops as [10,11]

r(t) = A ∑
k

ak h(t− kT − τ) + w(t) (2)

where A > 0 is the channel gain, T and τ specify the symbol period as well as the propagation
delay between transmitter and receiver, respectively. Of course, the signal part in (2)
is impaired by w(t), representing a zero-mean white Gaussian noise component with
variance σ2

w.
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Furthermore, by introduction of

h =
1√
T

∞∫
−∞

h(t) dt (3)

and the average optical power P0 = µah, the average electrical SNR is described as

γs =
A2P2

0
σ2

w
(4)

Before the signal in (2) can be processed in further receiver stages, it has to be filtered
appropriately. Denoting the corresponding impulse response by q(t), the related output
is obtained as z(t) = q(t)⊗ r(t), where ⊗ characterizes the convolutional operator. This
scenario is basically illustrated in Figure 1. Regarding a radio frequency (RF) system, q(t)
would be designed as a matched filter in order to maximize the SNR at the output. It
has been shown in [18,19] that suitable pairs of transmitter-receiver filters satisfying the
non-negativity and Nyquist properties are only attainable via an unconstrained min–max
optimization procedure, which must be solved by rather cumbersome numerical means
whenever a new filter design is required. In order to avoid this, it is suggested to implement
a rectangular shape over the spectrum occupied by the user component in (2).
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Figure 1. Signal model for SNR estimation using a dual-filter framework.

By application of the Fourier transform [20], we simply obtain Q( f ) = F [q(t)] =
√

T
for | f | ≤ (1 + α)/T and Q( f ) = 0 elsewhere, with α as the roll-off factor (excess band-
width) of the selected pulse shape. As a result, the signal parts of r(t) and z(t) are the same,
whereas the noise component is determined by n(t) = w(t) ⊗ q(t), representing a zero-mean
non-white Gaussian process.

As already mentioned previously, a second filter will be operated in parallel to the
receiver filter, as visualized in Figure 1. Performing an impulse response expressed by
.
q(t), the corresponding output is given by

.
z(t) =

.
q(t) ⊗ r(t). Under the assumption

that the symbol timing has been reliably recovered by properly selected estimation or
synchronization algorithms [21–23], it is required that

.
q(t) exhibits an impulse response

such that the signal component of
.
z(t) vanishes at integer multiples of the symbol pe-

riod, which is satisfied only if h(t)⊗ .
q(t)

∣∣
t=kT = 0 for all k ∈ Z. In this respect, it is to

be noticed that the first-order derivative of squared raised cosine or double jump func-
tions fulfills this pre-requisite [7], i.e., ∂h(t)/∂t|t=kT = 0, k ∈ Z. Hence, by shifting
this problem to the frequency domain, the Fourier transform of

.
q(t) is determined by

.
Q( f ) = F [ .

q(t)] =j2π f T Q( f ).
After having synchronized symbol timing and clocking, e.g., by implementation of

one of the recovery algorithms investigated in [21–23], the T-spaced samples at the output
of the dual-filter concept are furnished by

zk = z(kT) = A·ak + nk (5)

and
.
zk =

.
z(kT) =

.
nk (6)
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It is to be emphasized that the parallel filter delivers solely noise samples denoted by
.
nk, which is explained by the filter properties introduced previously. Furthermore, both
noise processes, nk and

.
nk, have a zero-mean non-white Gaussian character.

3. Data-Aided SNR Estimation
3.1. Log-Likelihood Function

The Cramer–Rao lower bound (CRLB) is of paramount importance when it comes to
the estimation of a parameter. This is not only true for communication links, as exemplified
in [16,17], but relates to any technical system [15]. The reason behind this is the fact that
it represents the theoretical limit of the error performance of any estimator developed in
this respect. In order to derive the CRLB of SNR estimates achieved by the dual-filter
framework in Figure 1, we assume that L observables zk and

.
zk, k = 0, 1,. . ., L − 1 are

available at the output of the receiver filters. Arranging these observables in vector form,
we have that z = A·a + n and

.
z =

.
n, where a, n and

.
n denote the corresponding data and

noise sequences, each of them with L elements. For convenient reasons, we put these pieces
together so that we have a single vector equation given by

y =

(
z
.
z

)
= A·

(
a
0

)
+

(
n
.
n

)
= A·c + ν (7)

where 0 stands for a vector with L zero entries.
According to the channel model introduced in the previous section, the average

electrical SNR in (4) is a function of the channel gain A and the standard deviation σw of
the zero-mean white Gaussian noise process. Since P0 depends on the PAM scheme as
well as the pulse shape selected for this purpose, both of which are known in advance
by the receiver unit, we better focus on the estimation of the SNR normalized by P2

0 , i.e.,
ρs = γs/P2

0 = A2/σ2
w. Therefore, the parameter vector used for the computation of the

CRLB is characterized by u = (A, σw).
The major ingredient for the derivation of the CRLB is knowledge of the likelihood

function Pr(y|c; u) describing the signal model in (7). Since both noise components, n and
.
n, are zero-mean Gaussian variates, the likelihood function is furnished by [24,25]

Pr(y|c; u) =
1√

(2π)2Ldet(R)
e−

1
2 (y−A c)TR−1(y−A c) (8)

with R = E[(y− A c)(y− Ac)T ] as the corresponding covariance matrix. This 2L × 2L
matrix can be partitioned into four L × L submatrices as follows:

R = E[ν·νT ] =

(
E[n·nT ] E[n· .

nT
]

E[ .
n·nT ] E[ .

n· .
nT

]

)
=

(
R11 R12
R21 R22

)
(9)

For line i = 0, 1,. . ., L− 1 and column k = 0, 1,. . ., L− 1, the entries of R11 are determined
by the auto-correlation of the noise samples ni, i.e.,

E[ni nk] = σ2
w

(1+α)/T∫
−(1+α)/T

ej2π(i−k) f TQ( f )Q(− f ) d f

= 2(1 + α) σ2
w sinc[2(1 + α)(i− k)]

(10)
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with sinc(x) = sin(πx)/(πx). On the other hand, the entries of R12 characterize the cross-
correlation between noise samples ni and

.
nk, which is given by

E[ni
.
nk] = σ2

w

(1+α)/T∫
−(1+α)/T

ej2π(i−k) f TQ( f )
.

Q(− f ) d f

= 2(1 + α)σ2
w

{
0, i = k
− cos[2π(1+α)(i−k)]+sinc[2(1+α)(i−k)]

i−k , i ̸= k

(11)

The elements of R21 are determined by E[ .
nink], which is equivalent to (11) after having

swapped indexes i and k, i.e., R21 is the transpose of R12. Finally, we have that the entries
of R22 are specified by the auto-correlation of

.
ni, which yields

E[ .
ni

.
nk] = σ2

w

(1+α)/T∫
−(1+α)/T

ej2π(i−k) f T
.

Q( f )
.

Q(− f ) d f

= 2(1 + α)σ2
w


4π2(1+α)2

3 , i = k
2 cos[2π(1+α)(i−k)]+([2π(1+α)(i−k)]2−2)sinc[2(1+α)(i−k)]

(i−k)2 , i ̸= k

(12)

Extracting the common factor, we simply obtain

R = 2(1 + α) σ2
w Ω (13)

where the entries of Ω are only functions of the roll-off factor α. Furthermore, it is not
difficult to show that Ω = ΩT . Hence, with Ψ = Ω−1, Ψ = ΨT , and substituting (13) into
(8), the log-likelihood function (LLF) of our signal model, i.e., Λ(y|c; u) = log Pr(y|c; u) , is
expressed by

Λ(y|c; u) = −L log σ2
w −

yTΨ y− 2A yTΨ c + A2cTΨ c
4(1 + α)σ2

w
(14)

after having omitted immaterial constants and factors not depending on u.

3.2. Modified Cramer–Rao Lower Bound

Knowing the LLF, we are able to derive the elements of the Fisher information matrix
(FIM), which are determined by the second-order derivatives of the LLF with respect to
A and σw. However, by definition of Pn = σ2

w and replacing the channel gain A in (14) by√
ρsPn, the derivatives are related to ρs and Pn. This approach has the advantage that the

CRLB for the normalized SNR is directly obtained without the application of cumbersome
transformation rules [15]. As a consequence, we have that

∂2Λ(y
∣∣c; u)

∂ρ2
s

= − yTΨ c

8(1 + α)
√

ρ3
s Pn

(15)

∂2Λ(y
∣∣c; u)

∂P2
n

=
L
P2

n
− yTΨ y

2(1 + α)P3
n
+

3
√

ρsyTΨ c

8(1 + α)
√

P5
n

(16)

∂2Λ(y
∣∣c; u)

∂ρs ∂Pn
=

∂2Λ(y
∣∣c; u)

∂Pn ∂ρs
= − yTΨ c

8(1 + α)
√

ρ3
s Pn

(17)

Plugging now y = A c + ν =
√

ρsPn c + ν into (15)–(17) and averaging with respect
to ν provides us with FIM elements depending on the selected pilot sequence c~a. In order
to avoid this sort of restriction, we may extend the expected operation to c as well, which
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constitutes the so-called modified Cramer–Rao lower bound (MCRLB) [26–28]. By doing
so, we get

J11 = −E
[

∂2Λ(y
∣∣c; u)

∂ρ2
s

]
=

1
8(1 + α)ρs

Ec[cTΨ c] (18)

J22 = −E
[

∂2Λ(y
∣∣c; u)

∂P2
n

]
= − L

P2
n
+

ρs

8(1 + α)P2
n
Ec[cTΨ c] +

1
2(1 + α)P3

n
Eν[ν

TΨ ν] (19)

J12 = −E
[

∂2Λ(y
∣∣c; u)

∂ρs∂Pn

]
=

1
8(1 + α)Pn

Ec[cTΨ c] (20)

As a result, the MCRLB for ρs is achieved as

MCRLB(ρs) = J22
J11 J22−J2

12

= 2(1 + α)ρ2
s

(
Pn

Eν[νTΨ ν]−2L(1+α)Pn
+ 4

ρs Ec[cTΨ c]

) (21)

with Ec[·] and Eν[·] indicating the averaging procedures with respect to data and noise.
Next, we assume that the 2L × 2L matrix Ψ is partitioned into four L × L submatrices
according to

Ψ =

(
Ψ11 Ψ12
Ψ21 Ψ22

)
(22)

where ψmn,ik denotes the entry of Ψmn for line i and column k. Hence, by considering the
definition of c in (7), it is clear that

Ec[cTΨ c] = Ea[aTΨ11 a] =
L−1

∑
i=0

L−1

∑
k=0

E[aiak] ψ11,ik = L(Ψ0 + 2µ2
aΨ1) (23)

after having taken into account that E[a2
i ] = 1 and E[aiak]i ̸=k = µ2

a as well as using the
sums

Ψ0 =
1
L

L−1

∑
i=0

ψ11,ii, Ψ1 =
1
L

L−1

∑
i=0

L−1

∑
k=i+1

ψ11,ik (24)

Furthermore, if we employ the results in (10)–(12), the averaging procedure with
respect to noise yields

Eν[νTΨ ν] = Eν[nTΨ11 n + nTΨ12
.
n +

.
nT

Ψ21 n +
.
nT

Ψ22
.
n]

=
L−1
∑

i=0

L−1
∑

k=0

{
E[nink] ψ11,ik +E[ni

.
nk] ψ12,ik +E[ .

nink] ψ21,ik +E[ .
ni

.
nk] ψ22,ik

}
= 4L(1 + α) Pn Ψ2

(25)

where

Ψ2 =
1

2L

2L−1

∑
i=0

2L−1

∑
k=0

ωik ψik (26)

with ωik and ψik as the entries of Ω and Ψ, respectively. Finally, by putting all these pieces
together, the MCRLB in (21), for convenient reasons normalized by ρ2

s , boils down to

NMCRLB(ρs) =
MCRLB(ρs)

ρ2
s

=
1
L

(
1

2Ψ2 − 1
+

8(1 + α)

ρs(Ψ0 + 2µ2
aΨ1)

)
(27)

3.3. Maximum Likelihood Estimator

The closed form of the LLF in (14) gives us the chance to develop a maximum likelihood
(ML) estimator in a fairly straightforward manner by computing the first-order derivatives
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of (14) with respect to channel gain A and noise power Pn, equating these results to zero,
and solving both relationships for A and Pn. Specifically, we have for u = (A, Pn)

∂Λ(y|c; u)
∂A

∣∣∣∣
u=û

=
yTΨ c− Â cTΨ c

2(1 + α)P̂n
= 0 (28)

and
∂Λ(y|c; u)

∂Pn

∣∣∣∣
u=û

= − L
P̂n

+
yTΨ y− 2Â yTΨ c + Â2cTΨ c

4(1 + α)P̂2
n

= 0 (29)

Introducing in the next step Mcc = cTΨ c, Mcy = yTΨ c, and Myy = yTΨ y, the
estimates for channel gain and noise power are furnished by

Â =
yTΨ c
cTΨ c

=
Mcy

Mcc
, Mcc > 0 (30)

and

P̂n =
yTΨ y− 2Â yTΨ c + Â2cTΨ c

4(1 + α)L
=

1
4(1 + α)L

(
Myy −

M2
cy

Mcc

)
(31)

According to the invariance principle [29,30], the ML estimate is then given by

ρ̂s =
Â2

P̂n
(32)

Note that Mcc must be larger than zero; otherwise, the algorithm fails, i.e., a pilot
sequence constituted by only zero elements would not work. In the following, the ML
algorithm is summarized to be executed step by step (Algorithm 1):

Algorithm 1: ML estimator.

Initialization
Pre-calculation of Ψ← Ω−1

Creation of pilot sequence c and vector y of observables
Computation

Auxiliary terms: Mcc ← cTΨ c, Mcy ← yTΨ c, Myy ← yTΨ y

Channel gain estimate: Â← Mcy
Mcc

Noise power estimate: P̂n ← 1
4(1+α)L

(
Myy −

M2
cy

Mcc

)
Output

SNR estimate: ρ̂s ← Â2

P̂n

Since Ψ is a 2L× 2L matrix and c as well as y are vectors with 2L entries each, it is clear
that the computational complexity of the SNR estimate is in the order of O(L2) real-valued
additions and multiplications.

4. Non-Data-Aided SNR Estimation
4.1. Asymptotic Cramer–Rao Lower Bound

For NDA estimation of the SNR, we cannot assume that the data sequence c~a is
known to the receiver. On the other hand, as already mentioned in the introductory section,
via an NDA approach, we are in a position to take arbitrarily long portions of the payload
data without impacting the spectral efficiency, as would be the case for a DA solution.
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Regarding the computation of the CRLB, the likelihood function in (8) must be aver-
aged first with respect to c before deriving the FIM elements [28]. Consequently, the related
LLF is determined by

Λ(y; u) = logEc[Pr(y|c; u)] = log

(
1

ML ∑
c∈AL

eΛ(y|c;u)

)
(33)

where AL denotes the L-dimensional space spanned by the M-ary PAM alphabet. Of
course, the computational complexity of (33) is in the order of O(ML), i.e., even for smaller
values of L, the evaluation of (33) is out of scope. Therefore, we will concentrate in the
current paper on the derivation of the asymptotic Cramer–Rao lower bound (ACRLB),
which applies only to lower SNR values but is achievable in closed form. To this end, the
likelihood function is rewritten as

Pr(y
∣∣∣c; u) = eΛ(y|c;u) = P−L

n e−Φ1(y;u)+Φ2(y|c;u) (34)

where

Φ1(y; u) =
yTΨ y

4(1 + α)Pn
(35)

and

Φ2(y|c; u) =
2
√

ρsPn yTΨ c− ρsPn cTΨ c
4(1 + α)Pn

(36)

By series expansion of (36), we obtain for smaller SNR values:

Pr(y|c; u) = P−L
n e−Φ1(y;u)

∞

∑
k=0

Φk
2(y|c; u)

k!

∣∣∣∣∣
ρs≪1

≈ P−L
n e−Φ1(y;u)[1 + Φ2(y|c; u)] (37)

and averaging with respect to c yields

Pr(y; u) = Ec[Pr(y|c; u)]|ρs≪1 ≈ P−L
n e−Φ1(y;u)[1 + Φ2(y; u)] (38)

where Φ2(y; u) = Ec[Φ2(y|c; u)] . As a result, the corresponding LLF is approximated by

Λ(y; u) = log Pr(y; u)
≈ −L log Pn −Φ1(y; u) + log[1 + Φ2(y; u)]
≈ −L log Pn −Φ1(y; u) + Φ2(y; u)

(39)

In computing the second-order derivatives with respect to ρs and Pn, in the next step
we arrive at

∂2Λ(y; u)
∂ρ2

s
=

∂2Φ2(y; u)
∂ρ2

s
= − S1(y)

8(1 + α)
√

ρ3
s Pn

(40)

∂2Λ(y; u)
∂P2

n
=

L
P2

n
− ∂2Φ1(y; u)

∂P2
n

+
∂2Φ2(y; u)

∂P2
n

=
L
P2

n
− S2(y)

2(1 + α)P3
n
+

3
√

ρsPnS1(y)
8(1 + α)P3

n
(41)

∂2Λ(y; u)
∂ρs∂Pn

=
∂2Φ2(y; u)

∂ρs∂Pn
= − S1(y)

8(1 + α)
√

ρsP3
n

(42)

where S1(y) = Ec[yTΨ c] and S2(y) = yTΨ y. The related FIM elements are achieved
by substituting y into (40)–(42). The results are then averaged with respect to y, i.e., with
respect to data and noise sequence, c and ν, so that we have

J11 = −Ey

[
∂2Λ(y; u)

∂ρ2
s

]
=

S1

8(1 + α)
√

ρ3
s Pn

(43)
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J22 = −Ey

[
∂2Λ(y; u)

∂P2
n

]
= − L

P2
n
+

S2

2(1 + α)P3
n
−

3
√

ρsPnS1

8(1 + α)P3
n

(44)

J12 = −Ey

[
∂2Λ(y; u)

∂ρs∂Pn

]
=

S1

8(1 + α)
√

ρsP3
n

(45)

where S1 = Ey[S1(y)] and S2 = Ey[S2(y)] provided by (A3) and (A11) in Appendix A. With
this in mind, the ACRLB is obtained after some lengthy but straightforward manipulations as

ACRLB(ρs) = J22
J11 J22−J2

12

= 8(1+α)ρs

Lµ2
a(Ψ0+2Ψ1)

(
1− µ2

a (Ψ0+2Ψ1)ρs
8(1+α)(2Ψ2−1)+(4Ψ0−3µ2

aΨ0+2µ2
aΨ1)ρs

) (46)

Normalized by ρ2
s , the relationship is for lower SNR values, approximated by

NACRLB(ρs) =
ACRLB(ρs)

ρ2
s

∣∣∣∣
ρs≪1

≈ 8(1 + α)

Lµ2
aρs(Ψ0 + 2Ψ1)

(47)

4.2. Moment-Based Estimator

Regarding RF systems, moment-based (MB) estimators are well established when
it comes to SNR estimation [30,31]. One of the main reasons behind this is that they are
often very simple from a computational point of view, e.g., the algorithm based on second-
and fourth-order moments frequently employed in the RF context, but they are also very
powerful in that their error performance approaches the CRLB. However, the latter is only
true for constant-modulus constellations like PSK, whereas for non-constant constellations
like QAM, they exhibit a significant degradation, which could be mitigated by resorting to
higher-order moments as shown in [32,33]. A particular simple solution is available if the
MB principle is applied to the dual-filter framework in Figure 1, as shown in the sequel.

Computing the first-order moment of the samples at the output of q(t), we have

M1 = E[zk] = A E[ak] +E[nk] = A µa (48)

whereas the second-order moment of the samples at the output of
.
q(t) is given by

M2 = E[ .
z2

k ] = E[ .
n2

k ] =
8 π2(1 + α)3

3
Pn (49)

Of course, in a practical scenario, the moments in (48) and (49) are replaced by finite
sums according to

M̂1 = Â µa =
1
L

L−1

∑
k=0

zk (50)

and

M̂2 =
8 π2(1 + α)3

3
P̂n =

1
L

L−1

∑
k=0

.
z2

k (51)

so that the related SNR estimate is furnished as

ρ̂s =
Â2

P̂n
=

8 π2(1 + α)3

3µ2
a

M̂2
1

M̂2
(52)

For convenient reasons, the MB algorithm is summarized as follows (Algorithm 2):
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Algorithm 2: MB estimator.

Initialization
Collection of L filter outputs: zk,

.
zk

Computation

Modified first-order moment: M̂a ←
L−1
∑

k=0
zk

Modified second-order moment: M̂b ←
L−1
∑

k=0

.
z2

k

Output

SNR estimate: ρ̂s ← 8 π2(1+α)3

3µ2
a

M̂2
a

M̂b

Since the MB algorithm is reduced to the calculation of first- and second-order mo-
ments, it is obvious that the computational complexity of the related SNR estimate is just in
the order of O(L) real-valued additions and multiplications.

5. Numerical Results

Using a 4-PAM signal operated with no excess bandwidth, i.e., α = 0, as well as
its maximum value specified by α = 1, Figure 2 illustrates the evolution of the error
performance, normalized by ρ2

s , as a function of ρs = γs/P2
0 in dB for DA estimation of the

SNR. For this purpose, a rather small value for the length of the pilot sequence, embodied
by L = 10, and a larger one with L = 100 have been assumed. For the dual-filter solution
analyzed in the current paper, we can see that the normalized MCRLB in (27)—in the
diagram denoted by NMCRLB-DF and shown by solid lines—exhibits for ρs → ∞ the
same value irrespective of the selected roll-off factor, which is proportional to 1/L, whereas
for ρs ≪ 1 this proportionality is given by (1 + α)/L. For comparison purposes, the diagram
also includes the normalized limit in the case of a single filter approach [11], which is
denoted by NMCRLB-SF and shown in dashed-dotted style. By detailed inspection, we
observe that the single-filter results are for ρs → ∞ approximately twice as large as those
achieved with the dual-filter method; this is explained by the fact that, with the output of
the parallel filter, twice as many samples are available for estimation purposes.
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Figure 2. Normalized mean square error for data-aided SNR estimation (4-PAM).

However, with L = 10, we also observe that the ML estimator developed in Section 3.3
performs a normalized mean square error (NMSE) with a non-negligible amount of degrada-
tion, i.e., although evolving in parallel to the NMCRLB-DF, the difference to the theoretical
limit is considerable. The reason for this deficiency is a significant bias effect, which is
detailed in Figure 3 (the dotted lines are not related to any analytical work; they are just
obtained by cubic interpolation of the simulation results embodied by solid dots in differ-
ent styles). Nevertheless, the diagram also demonstrates that the bias might be reduced
significantly when we increase the length of our pilot sequence to L = 100. This is confirmed
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by Figure 2, where the NMSE generated by the corresponding ML estimator is now very
close to NMCRLB-DF.
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Figure 3. Normalized bias for data-aided ML SNR estimation (4-PAM).

Using again a 4-PAM constellation applied to α = 0 and 1, Figure 4 visualizes the nor-
malized error performance for NDA estimation of the SNR, but now for larger observation
lengths, i.e., L = 100 and 1000, as is typical for an NDA situation. For comparison purposes,
the diagram includes the evolution of NMCRLB-DF given by (27), in the diagram shown
by solid lines, but also that of the normalized true CRLB for NDA estimation of the SNR
assuming a single filter receiver (NTRCLB-SF), illustrated in dashed-dotted style, which
has been derived in [10]. For ρs → ∞ , we see that the single-filter limit is again twice as
large as NMCRLB-DF, irrespective of the chosen excess bandwidth.
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Figure 4. Normalized mean square error for non-data-aided SNR estimation (4-PAM).

The most interesting phenomenon in this respect is that NTRCLB-SF deviates signifi-
cantly from NMCRLB-DF in the medium SNR range. However, the effect is well known
from the open literature when it comes to non-data-aided SNR estimation of non-constant
modulus constellations, like PAM or QAM schemes [10,34]. And it is in particular this SNR
domain where the simple MB algorithm developed in Section 4.2 is considerably better
than the single-filter bound. On the other hand, for ρs → ∞ the normalized MSE of the MB
algorithm is approximately two times larger than NTCRLB-SF, irrespective of the chosen
value of α.

For ρs ≪ 1 and L = 1000, the error performance of MB estimates is close to the
normalized asymptotic CRLB for the dual-filter solution expressed by (47), in Figure 4
denoted by NACRLB-DF and depicted in dashed style. In this context, it is to be recalled
that—similar to NMCRLB-DF—the asymptotic variant is also proportional to (1 + α)/L.
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Not surprisingly, a non-negligible discrepancy is observed for smaller observation intervals,
as exemplified by L = 100, the reason for which is a non-negligible bias effect exhibited by
the MB algorithm. This sort of degradation vanishes more and more with increasing values
of L, as confirmed by Figure 5.
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Figure 5. Normalized bias for non-data-aided MB SNR estimation (4-PAM).

Comparing the DA and NDA methods, we can see that at least ten times the value of
L is necessary for the NDA solution, i.e., L ≥ 1000, to reduce the bias effect to an amount
such that it does not have an impact on the error performance. In this respect, it is to
be mentioned again that this does not affect the spectral efficiency of the communication
system as such because no pilot data are needed for MB algorithms.

6. Conclusions

The major motivation of the current paper were some drawbacks and shortcomings of
algorithms investigated in a previous work about NDA SNR estimation for bandlimited
optical intensity links. For this reason, the implementation of a second receiver filter with
particular properties has been suggested, which is operated in parallel to the receiver
filter normally used in this context. Although not intended at the beginning, it could be
shown that the approach might be applied to DA scenarios as well. In this respect, an
ML algorithm has been developed whose error performance is for larger pilot sequences
close to the CRLB as the theoretical limit; smaller pilot sequences exhibit some degradation,
which is explained by a non-negligible bias effect.

For the NDA approach, it turned out that the computation of the CRLB would be out
of scope even for smaller observation lengths. Therefore, the focus was on the derivation of
an asymptotic version of the CRLB, which applies to lower SNR values where a closed-form
solution could be achieved. In addition to this, a moment-based SNR estimator has been
obtained, which is very simple from a complexity point of view and performs in the medium
SNR range significantly better than the CRLB developed for a single-filter solution.

Finally, it is to be mentioned that the ML and MB algorithms have been verified with
other parameter setups as well, in particular with symbol constellations other than 4-PAM,
but the observations were in principle the same as those made with respect to 4-PAM.
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Appendix A

In this appendix, we detail the expected operations needed for the computation of the
asymptotic CRLB in Section 4.1. First, we focus on the averaging of S1(y) with respect to
c~a, i.e., S1(y) = Ec[yTΨ c]. By detailed inspection of the signal model in (7), we have

yTΨ c =
L−1

∑
i=0

L−1

∑
k=0

zi ψ11,ikak +
L−1

∑
i=0

L−1

∑
k=0

.
zi ψ21,ikak (A1)

such that the averaging with respect to ak leads to

S1(y) = µa

L−1

∑
i=0

L−1

∑
k=0

zi ψ11,ik + µa

L−1

∑
i=0

L−1

∑
k=0

.
zi ψ21,ik (A2)

In the next step, in order to obtain S1 = Ey[S1(y)], we have to perform the averaging
procedure with respect to zi = A ai + ni =

√
ρsPn ai + ni as well as

.
zi =

.
ni. By taking into

account that these are zero-mean processes, we get

S1 = µa
L−1
∑

i=0

L−1
∑

k=0
E[zi] ψ11,ik + µa

L−1
∑

i=0

L−1
∑

k=0
E[ .

zi] ψ21,ik

= µ2
a
√

ρsPn
L−1
∑

i=0

L−1
∑

k=0
ψ11,ik

= Lµ2
a
√

ρsPn(Ψ0 + 2Ψ1)

(A3)

where the last line is achieved by considering the sums in (24). Furthermore, by application
of the signal model to S2(y) = yTΨ y, we have

yTΨ y =
L−1

∑
i=0

L−1

∑
k=0

(zi ψ11,ikzk + zi ψ12,ik
.
zk +

.
zi ψ21,ikzk +

.
zi ψ22,ik

.
zk) (A4)

Averaging this relationship with respect to zi and zk yields

S2 = Ey[S2(y)]

=
L−1
∑

i=0

L−1
∑

k=0

{
E[zi zk] ψ11,ik +E[zi

.
zk] ψ12,ik +E[ .

zi zk] ψ21,ik +E[ .
zi

.
zk] ψ22,ik

} (A5)

In this context, one has to keep in mind that

E[zizk] = ρsPn E[aiak] + 2
√

ρsPnE[aink] +E[nink]

=

{
ρsPn + 2(1 + α)ω11,iiPn , i = k
µ2

aρsPn + 2(1 + α) ω11,ikPn , i ̸= k
(A6)

E[zi
.
zk] =

√
ρsPnE[ai

.
nk] +E[ni

.
nk] = 2(1 + α) ω12,ikPn (A7)

E[ .
zizk] =

√
ρsPnE[

.
niak] +E[ .

nink] = 2(1 + α) ω21,ikPn (A8)

E[ .
zi

.
zk] = E[ .

ni
.
nk] = 2(1 + α) ω22,ikPn (A9)

Therefore,

S2 = ρsPn
L−1
∑

i=0
ψ11,ii + µ2

aρsPn
L−1
∑

i=0

L−1
∑

k=0,k ̸=i
ψ11,ik + 2(1 + α)Pn

L−1
∑

i=0

L−1
∑

k=0
ω11,ik ψ11,ik

+ 2(1 + α)Pn
L−1
∑

i=0

L−1
∑

k=0
(ω12,ik ψ12,ik + ω21,ik ψ21,ik + ω22,ik ψ22,ik)

(A10)
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and by taking into account (24) and (26), we finally get

S2 = L [ρsPn Ψ0 + 2µ2
aρsPn Ψ1 + 4(1 + α)Pn Ψ2] (A11)
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