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Abstract. We argue that the usual trace-based notions of implication
and equivalence for linear temporal logics are too strong and should be
complemented by the weaker notions of open implication and open equiv-
alence. Although open implication is harder to compute, it can be used to
advantage both in model checking and in synthesis. We study the differ-
ence between trace-based equivalence and open equivalence and describe
an algorithm to compute open implication of Linear Temporal Logic for-
mulas with an asymptotically optimal complexity. We also show how to
compute open implication while avoiding Safra’s construction. We have
implemented an open-implication solver for Generalized Reactivity(1)
specifications. In a case study, we show that open equivalence can be
used to justify the use of an alternative specification that allows us to
synthesize much smaller systems in far less time.

1 Introduction

A recent verification project at STMicroelectronics [17] considered an arbiter
that receives requests and provides acknowledgments. Two of the requirements
for the design read: (R;) From some time on, the difference between the total
number of requests and the total number of acknowledgments is zero, and (Rz)
the total number of acknowledgments never exceeds the total number of requests.
Requirement R; does not imply R: a trace that contains an acknowledgment
followed by a request with no further acknowledgments or requests thereafter
fulfills Ry but not Rs. Nevertheless, because one can not predict the number of
requests that will come, the only way to implement R; is to always wait for a
request before sending an acknowledge. Thus, any implementation that fulfills
Ry also fulfills Ry. We say that Ry open-implies Ro. Thus, it suffices to make
sure that Ry holds; Ry follows. Likewise, we say that two specifications are open
equivalent if they are fulfilled by the same implementations.

Traditionally, for linear specification formalisms such as Linear Temporal
Logic (LTL) [20] or Biichi automata [5], only trace implication and trace equiv-
alence have been studied. Intuitively, trace implication and trace equivalence
are defined with respect to all systems. In contrast, open implication and open
equivalence are defined with respect to open systems only. In open systems we
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distinguish between inputs and outputs and we require that the system be re-
ceptive to all inputs [9], the intuition being that the system cannot block the
actions of the environments.

The notions of open implication and open equivalence have not been stud-
ied in the literature. We argue here that these are important notions. When
model checking open systems, a specification can always be substituted by an
open-equivalent one: it is fulfilled by the same open systems. Likewise, for au-
tomatic synthesis of open systems from specifications [21], one may replace the
specification by any realizable specification that open-implies it. The stronger
specification may be easier to synthesize. Consider for instance, a simplified spec-
ification of an arbiter with input r for request and output a for acknowledge-
ment. The specification reads ¢ = (GFr) — G(a — X(—aUr)). Now consider
¢ = G(a — X(—aWr)). We have that ¢ and ¢’ are open equivalent but not
trace equivalent. Moreover, the language of ¢’ can be represented by a weak
automaton and is thus both easier to model check [4,15] and (much) easier to
synthesize [10, 16].

In this paper, we show that the inability to predict the future is the under-
lying cause for the difference between open implication and trace implication.
Then, we consider the problem of deciding whether ¢ open-implies v for LTL
formulas ¢ and 1. We provide an algorithm that runs in 2EXPTIME in |¢| and
PSPACE in |¢|, matching the lower bounds. This algorithm uses Safra’s intricate
determinization construction. We complement this with an algorithm that avoids
Safra’s construction, is much easier to implement, and may be far more efficient
when the specifications are not equivalent. Additionally, we consider Generalized
Reactivity(1) formulas [19]. Although less expressive than LTL, such formulas
suffice to conveniently describe most properties that occur in practice. Efficient
synthesis tools for this subset have been used on realistic examples [2,3]. We
present an implementation of open implication based on this approach and show
that it can be used to significantly simplify the synthesis of an arbiter for an
industrial bus.

2 Preliminaries

We consider systems with input signals I and output signals O. We define AP =
1 U O, which is the set of atomic propositions in the logic specifications defined
below. Our input alphabet is thus D = 27, the output alphabet is X' = 29, and
we define A = 247,

Transducers and Trees. We use transducers to represent open systems. A (possi-
bly infinite) transducer with inputs D and outputs X' is a tuple T' = (Q, qo, 9, \),
where @ is the (possibly infinite) state space, qo € @ is the initial state, J :
Q x D — @ is the transition function, and A : Q — X' is the output function. In
each state, the transducer outputs a letter in X, then reads a letters in D, and
moves to the next state. Transducers correspond to Moore machines. A trans-
ducer is finite if @ is finite. The run of T on a sequence d = dpd; --- € D¥ is a



sequence pop1 - -+ € Q¥, where pg = qo and p;11 = d(ps,d;). The corresponding
word is A(p) = wowy - - - € A® such that w; = A(p;) U d;. The set L(T') denotes
the words corresponding to some run of T" and is called the language of T'.

We use trees to represent transducers and runs of alternating automata (be-
low). A Y-labeled D-tree is a tuple (7, A), where 7 is the set of nodes, a prefix
closed subset of D*, and A\ : 7 — X' is the labeling function. If 7 = D*, 7 is
complete. The node ¢ is the root of the tree and a node ¢-d is a successor of t. A
path 7 in 7 is a maximal sequence of nodes tgt; ... such that tg = ¢ and there
are dods ... such that t;;1 =t; - d;. Paths can be finite or infinite. We assign to
each path m = tot1 ... a word A\(7) = wowy ... such that w; = A\(¢;) U d; for all
i>0.

The unrolling of a transducer T' = (Q, qo, J, ) is a complete X-labeled D-tree
(1, ), such that each run p of T is mapped to an infinite path 7 in (7, A) with
A(p) = A(w). A tree is regular if it is the unrolling of some finite transducer. We
denote the set of all regular Y-labeled trees with directions D by 7.

Temporal Logics. We write specifications in Linear Temporal Logic (LTL) [20].
The syntax of LTL is defined in negation normal form as ¢ ::= true | false | p |
pleVe | pAp | Xe | eUp | Ry with p € AP. We use the usual semantics of
LTL for words in A“. The set of words that satisfies ¢ is denoted by L(¢) C A“.
A X-labeled D-tree t satisfies ¢ if for all paths = of ¢, 7 = ¢. A transducer T
satisfies ¢ (T | ) if its unrolling does. A formula ¢ is satisfiable if L(p) # 0,
it is tautologous if L(p) = A“ and it is realizable if there is a tree ¢ such that
t = .

Automata. Let BT (X) denote the set of Boolean formulas without negations
over X. We say that a set C C 2% satisfies p € BT(X) (written C = ¢) if ¢
evaluates to true after replacing all occurrences of ¢ € C' (¢ € C) in ¢ by true
(false, resp.). Set C'is minimal if forall ¢ € C, (C'\ {c}) F~ ¢.

An alternating parity tree automaton for Y-labeled D-trees is a tuple A =
(Q,q0,9, F), where Q) is a finite set of states, ¢y € @ is the initial state, J :
Q x X — BT(Q x D) is the transition relation and the acceptance condition
F = (Fy,...,Fy) is a partition of @, where k is the index of A. We use A9 to
denote the automaton A with initial state q.

We say that an alternating tree automaton is nondeterministic if it does
not force multiple copies to one child. That is, for all ¢ € @ and ¢ € X, if
C E d(q,0) and C is minimal then for all (¢,d) € C and (¢/,d') € C,if d = d’
then ¢ = ¢’. The automaton is universal if all formulas are conjunctions and it
is deterministic if it is both nondeterministic and universal. For deterministic
automata we can assume, without loss of generality, that the transition relation
is of the form § : Q x X' x D — (). An automaton is a co-Biichi automaton if
k = 2 and a Biichi automaton if k = 3 and I} = (). Tree automata run on trees
with directions D. If |D| = 1, we say the automaton runs on words (over ') and
omit D.

A run of an alternating tree automaton A on a tree (77, ;) is a tree T, =
(Tp, Ap) with 7, € N* and A, : 7, — (@ x 77) for which (1) A\,(¢) = (qo,€)
and (2) If ¢, is a node of T, with label (¢,t;) and the children of ¢, are labeled



(g1,t1), ..., (qn,tn), then for all i« € {1,...,n} there is a d; € D such that
t; =ty -d; and {(q1,d1),...,(qn,dn)} E 6(q, A1 (ts)). (Not all directions must
appear in {(q1,d1), ..., (gn,dn)}.) Let m = tot1 ... be an infinite path in (7,, A,),
then inf(7) = {¢ € @ | there exist infinitely many nodes ¢ € © with A\, () =
(q,tr) for some tr}. A path is accepting if the minimal ¢ € {1,...,k} for which
inf(m) N F; # () is even. A run is accepting if all infinite paths are accepting.
An automaton accepts an input tree (77, A7), if there exists an accepting run on
(11, A1). We call the set of trees accepted by A the language of A and denote it
by L(A).

We use three letter acronyms for automata, where the first denotes the
branching mode of the automaton (nondeterministic, universal, deterministic,
or alternating), the second describes the acceptance condition (parity, Biichi or
co-Biichi), and the third letter indicates the input elements (words or trees). For
instance, a UPT is a universal parity tree automaton.

3 Open Implication

3.1 Definitions, Characteristics, and Lower Bounds

Definitions. Let us first recall the standard notions of implication and equiv-
alence between two LTL formulas and then define open implication and open
equivalence.

Definition 1. Given two LTL formulas ¢ and ¥, ¢ trace-implies ¢ if L(p) C
L(v). Formula ¢ is trace equivalent to v if L(p) = L(v).

Definition 2. Given two LTL formulas ¢ and 1), ¢ open-implies 1), denoted by
o, if for all (infinite) transducers T we have that T |= ¢ implies T |= 1.
Likewise, p <« 1) (p is open equivalent to 1)) if p -e 1) and ¥ - .

Theorem 1. If for all finite transducers T, T' |= ¢ implies T |= 1, then ¢ o).

Proof. We prove the converse. If ¢ <4 1, then there is a (possibly infinite) trans-
ducer T such that T = ¢, but T' [~ 1. The unrolling of T' is accepted by the
deterministic Streett automaton A that accepts all trees (of the proper arity)
satisfying the CTL* formula x = Ap A = A [7]. Since the language of A is
not empty, there exists a finite transducer generating a tree accepted by A [22].
Thus, there exists a finite transducer 7" such that 77 |= ¢, but T |~ 1.

Without loss of generality, we refer to finite transducers in the remainder of the
paper.

Open versus Trace Equivalence. If two specifications are open equivalent but
not trace equivalent, then the traces in which the specifications differ cannot be
produced by a transducer because they require knowledge of the future.
Rosner [23] distinguishes two reasons for unrealizability. First, a specification
may be unrealizable because there is an infinite input word that cannot be paired



with an output word. The second reason is that some specifications require
clairvoyance. For instance, for the specification a <+ Xr, where a is an output
and 7 is an input, there exists a valid output word for every input word. Lack of
knowledge of the future input prevents an implementation. (See also [29].)

Formally, given a specification ¢, we call w € AY p-clairvoyant if w = ¢ but
for some prefix w’ - (i U o) there is no transducer T that outputs o in the initial
state, such that for all words v of T, w’ - v = . That is, the word cannot be
used in a transducer because after some point, there is no correct reaction to all
future inputs. Note that only clairvoyant words satisfy a «<» Xr. A word that is
not p-clairvoyant is called -secure.

If two realizable specifications ¢ and 1 are open equivalent, then the set of
p-secure words and the set of 1-secure words are equal.

Theorem 2. We have ¢ -o 1) iff L(p) \ L(v) consists of -clairvoyant words.

Proof. The key insight is that w is p-secure iff there is a transducer T" such that
T | ¢ and w € L(T).

Let w € L(p) \ L(¢). If w is y-secure then there is a transducer that satisfies
¢, contains w, and thus does not satisfy v, so ¢ 4 1. Vice-versa, suppose that
@ % 1. Then there is a transducer T' that satisfies ¢ and not . This transducer
contains a word w that satisfies ¢ and not ¢ and this word is y-secure.

Extending our notation to w-regular languages, we have that for every w-
regular language L there is an w-regular language L’ that consists of the L-
secure words in L. Language L’ is the unique minimal representative of the open-
equivalence class of L and precisely characterizes all transducers that satisfy L.
The language can be constructed from a DPW A with language L by removing
all edges (¢,0U,q") such that there is an ¢’ with (¢,0U’,¢"”) € § and L(Aq”)
is not realizable.

Lower Bounds. An obvious solution to deciding open implication is to apply
the approach suggested in the proof of Theorem 1 by checking nonemptiness of
the tree automaton for the formula y. The problem with this algorithm is that
it is doubly exponential in both || and |¢)|. After discussing the lower-bound
complexity of deciding open equivalence and open implication between two LTL
formulas, we describe an asymptotically-optimal algorithm.

Theorem 3. Let ¢ and v be two LTL formulas. (1) Deciding whether ¢ -1 is
2EXPTIME-hard, so is deciding whether @<« 1) and (2) Deciding whether ¢ -e»1)
is 2EXPTIME-hard for a fixed v and PSPACE-hard for a fixed .

Proof. We have that ¢ is unrealizable iff ¢ -e false iff ¢ <« false and LTL-
realizability is 2EXPTIME-complete [21]. This proves 2EXPTIME-hardness.
We prove that v is tautologous iff true -e» ). Because deciding validity of
LTL formulas is PSPACE-complete [25], this proves that open implication is
PSPACE-hard in 1. The forward direction is trivial. For the other direction,
assume that ¢ is not tautologous, then Jw € A% : w [~ 1. Since we can choose
w as a finite prefix followed by a finite cycle [27], we can construct a transducer
T such that w is a word of T'. We have that T' = true but T [~ v, so true % .



3.2 Algorithm and Upper Bounds

We show an algorithm to decide whether ¢ - 1) that runs in time doubly expo-

nential in ¢ and in space polynomial in . We first describe an algorithm that

is exponential in 1), and then show how to obtain optimal space complexity. In

the following, we fix n = |p| and m = ||

The algorithm proceeds as follows: ¥ -

1. COI’lStI‘UCt a DPT ADPT = (QDPT;QODPT75DPT7 FDPT) *

such that L(Appr) = {t € T | t = ¢} with at most

9n2*" 2 Hn otates and index ippr = 227F! [18,27]. *

2. Compute the set W, = {¢ € Qppr | L(Appr?) # 0} in
doubly exponential time in n [7].

3. Construct a DPW Appw = (Qppw, gopPW, SDPW, FDPW) ¢

over AP with |Qppr| states and index ippr such that

o € L(Appw) iff 0 = A(m) for some path m of a tree l

t € L(Appr) (see below).
4. Construct a NBW Axpw = (QnBwW,%NBW, ONBW,

Fypw) with at most 2|Qppr|ippr states, such that ANpw
L(Axsw) = L(Appw) [12]. v
5. Construct an NBW Bypw with at most 22 states that B
NBW

accepts all words in L(—)) [27].

6. Check if L(Axpw) N L(Bypw) = (0 in time linear in the /

size of ANBW and BNBW [27] ANB 7é (2)7

The DPW Appw = (Qppw, ¢oppT; 0DPW, FDPW) is constructed as follows. We

have Qppw = W¢, 5Dpw(q,o U Z) = 5DpT(q,0,i) ifVjel: 5DpT(q,0,j) € Ww,
and Fppw equals Fppr restricted to states in Qppw.

Lemma 1. o € L(Appw) iff 3t € L(Appt) with a path © such that \(m) = o.

Proof. Let 0 = 0goy --- € L(Appw) and suppose that o; = i; Uo; with i; € D
and o; € X. Then Vi € D, the run of the DPT for ogoy ...0j_1(0; U%) ends in
a state in W, whence we can extend the path to an accepted tree that includes
the word o. Vice versa, if there exists a tree ¢t € L(Appr) with a path 7 such
that A\(7) = o then, by construction, o is accepted by Appw.

Theorem 4. ¢ < v iff L(Axgw) N L(Bxaw) # 0.

Proof. It ¢ < 1) then there is a transducer T such that T = ¢ and T (£ 9,
so for some path 7 € ¢t where ¢ is the unrolling of T, we have A(w) P~ ¢ and
M) | . Thus, () is in L(Axw) N L(Bxpw). Similarly, if there is a word
o in L(Axgw) N L(Bxpw) then there is a regular tree t € 7 satisfying ¢ with
a path 7 € t such that A(w) = 0. The transducer T generating ¢ models ¢ and
violates ¢ (because o £ 1), so ¢ 4 1 holds.

Theorem 5. Deciding ¢ - 1 is 2EXPTIME-complete and PSPACE-complete
when ¢ is fized. Deciding open equivalence is 2EXPTIME-complete.



Proof. Hardness was shown in Theorem 3. The algorithm runs in time 9270 90(m)

The first four steps of the algorithm use time and space 927"

Deciding whether L(Axpw)NL(Bxpw) = 0 can be done within the resources
required. The key is avoiding an explicit construction of Bxgw, rather, construct-
ing its state while performing an on-the-fly search. We check whether there is a
word that is accepted by the NBW Axpw and the NBW Bypw by nondeter-
ministically guessing a word ¢ € A“ and simultaneously keeping track of the
corresponding runs in both automata. We only have to store two states of the
NBW Angw and two states of the NBW Bypw at each step of the algorithm.
Since each state of Axpw has size 200" and each state of Bygw has size O(m),
nonemptiness for L(Axpw) N L(Bxpw) can be checked using 20(n) O(m) non-
deterministic space. By [24], this can be done using 2™ 4+ O(m?) deterministic
space. The time requirement is exponential in the space requirement, so it is
92°M 90(m?)

Altogether, the algorithm uses doubly exponential time in n and polynomial
space in m.

Open implication can be viewed as a simultaneous realizability testing for the
implicate (left-hand-side of implication) and validity testing for the implicant
(right-hand-side of the implication). For a fixed implicant, open implication is
2EXPTIME-complete, just like realizability!, and for a fixed implicate open
implication is PSPACE-complete, just like validity.

For the next section, we need a bound on the size of the witness for ¢ - 1.

Lemma 2. If L(Axsw) N L(Bxew) # 0 then there exists a word uwv € A* of
length at most 2™+ |Qnew| such that uv* € L(Axw) N L(Bxpw)-

Proof. The product automaton Cyxpw of Axpw and Bypw has at most 2 -
22m|Qnpw]| states. If L(Cxpw) # 0 then there exists a word uv € A* whose
length is at most the number of states in Cxpw such that uwv* € L(Cnpw).

Theorem 6. If o1, there is a transducer T with at most 2™ |Qnew||QppT|
states such that T |= ¢ but T |~ 1.

Proof. Let m = (ioUOQ) .. (’ik—l UOk_l)((ik UOk) . (il—l UOl_l))w in L(ANBw)ﬂ
L(Byxpw) with I < 227+ Qnpw|. The transducer is T = (Q, qo, d, \) with Q =
Wy, x {0,...,0 — 1, 1L}, where the second element keeps track of whether and
where we are in 7. From Appr we can derive a transducer 7" with state space
W, that satisfies ¢. Our transducer 7" behaves like 7" for all states in Qpprx{L}.
For j € {0,...,1—1}, we have A((¢,j)) = o; and 6((q,7),%) = (dppr(q, 05,7), '),
where j' =1 if i # i; and if § = 4, then j' = j+1if j < [—1 and k otherwise. Note
that dppr(g, 05,7) € W, because 7 is accepted by Axpw and thus by Appw.
The transducer violates 1) when the input sequence is as in 7 and satisfies (.
The number of states of T'is at most 22" Qnpw||QppT| = 92?4100 +342m

! In spite of the doubly exponential lower bound, there have been recently encouraging
developments regarding the practicality of realizability checking [10, 16, 19].



. . 2n43
Notation: Let witn(n, m) = 2n?" " +10n+3+2m

Note that it is possible to avoid constructing Axgw in our algorithm, if
we check language emptiness of L(Appw) N L(Bxpw) directly. This leads to a
slightly better upper bound in Theorem 6.

Our proof techniques can be extended to other linear specification formalisms
that allow a translation of the specification into an NBW. Two popular for-
malisms falling into that class are QPTL [26] and the industrial PSL [6]. The
algorithm follows the approach described above, adapting Step 1 and 5 to the
formalism used. The complexity of the algorithm depends on the cost of trans-
lating the specification into an NBW. For QPTL and PSL it is possible to find
an algorithm whose complexity matches the lower bounds for realizability and
validity of the respective logics.

Note that the use of quantifiers allows us to check open equivalence between
specifications at different levels of abstraction, e.g., a specification can be checked
against a refined version that includes variables encoding implementation details.
This is particular useful for synthesis of Generalized Reactivity(1) (cf. Section 4),
which introduces additional variables to encode LTL specifications.

3.3 Avoiding Safra’s Construction

In this section, we present another algorithm to decide if ¢ -» 1), based on [16],
which avoids Safra’s intricate determinization construction and parity games and
lends itself to implementation [10].

In [16], Kupferman and Vardi provide an approach to decide the realizability
problem for LTL. Given an LTL formula ¢, they construct a UCT U that accepts
exactly all trees that are solutions to the realizability problem of .

Theorem 7. [16] The realizability problem for an LTL formula ¢ can be reduced
to the nonemptiness problem for a UCT with at most 41! states.

In order to check if the language of U is empty, U is translated into a corre-
sponding NBT N.

Theorem 8. [16] Let U be a UCT with p states. For each k > 0 we can construct
an NBT Ny, with 2°P0°8(0)+2) states such that a tree generated by a transducer
with at most k states is accepted by U iff it is accepted by Ny.

Intuitively, the size of N is bounded by the size of the transducers generating
the trees Ny has to accept. (Note that in general one cannot translate a UCT
to an equivalent NBT.)

Since we are looking for a transducer that fulfills ¢ and violates 1), Theorem 6
provides a bound on the size of the transducers of interest, which is witn(n,m).
We can replace the algorithm of Section 3.2 by the following algorithm:

1. Construct a UCT Aycr of size 4" such that L(Ayct) = {t € T | t E ¢}.
From Aycr construct the NBT Nyt (n,m) (Theorem 8). The number of

states of this NBT is 2027



2. Compute the set W, of states ¢ of Nyt (n,m), such that N accepts

witn(n,m)
some tree, in quadratic time [28].

3. From Nyin(n,m) construct an NBW Anpw such that o € L(Axpw) if 0 =
A(m) for some path 7 of a tree t € L(Nyjtn(n,m))-

4. Construct an NBW Bypw with at most 4™ states that accepts all words in
L(~) [27].

5. Check if L(Axpw) N L(Bnw) = 0 in time linear in the size of Axpw and
Bxsw [27]

Theorem 9. Deciding if p -1 can be reduced to the language emptiness check
of the product between Angw and Bnpw .

The revised algorithm is doubly exponential in ¢ and exponential in ). We
do not attempt to be space efficient here, as the automaton Ny (n,m) 18 already
exponential in 1. Nevertheless, this approach is useful as it avoids Safra’s con-
struction and parity games. It is particularly suitable for finding counterexamples
to open implication, since it can be implemented incrementally by increasing the
size of the transducers we are looking for. This may allow us to find counterexam-
ples using much smaller automata than the full deterministic parity automaton
[16,14].

4 Generalized Reactivity

Generalized Reactivity(1), or GR(1) for short, is a specification formalism that
has been proposed in [19] for synthesis. GR(1) specifications consist of two sets
of symbolically represented DBWs, one for the environment and one for the
system. This formalism avoids the determinization step normally required for
synthesis; it has a symbolic synthesis algorithm consisting of a triply nested
fixpoint computation [19]. Experience shows that the formalism can be used to
synthesize modest sized industrial circuits from their specifications, and that the
restriction to GR(1) specifications is not overly restrictive [2, 3].

We briefly recapitulate the construction of [19]. A DBW over AP with n
states can be symbolically represented by an LTL formula ¢ by using a set V'
of [1g(n)] new atomic propositions. The formula is a conjunction of three parts:
(1) ' is a propositional formula over V denoting the initial state, (2) ¢! is
a formula of the form G A,(x; — X¢&;) representing the complete, deterministic
transition relation, where y; and &; are propositional formulas over APUV and V,
respectively, and (3) o/ is a formula of the form G F , where  is a propositional
formula over V', representing the fairness condition. For instance, we represent
G(r — Fa) with V = {s} by ¢ = s AG((ms Ar A—a — Xs) A (=s A (—rVa) —
X=s)A(sA—a — Xs)A(sAa — X=s)) AGF —s. The DBW is shown in Figure 1.

A GR(1) specification has the form ¢ = (A; ¢e,;) = (/\; ¢s,j), Where envi-
ronment assumptions ¢, ; and the system guarantees ¢, ; represent DBWs. In
the sequel, let of = A; ¢f ; for a € {i,t, f} and b € {s,e}. GR(1) formulas are
intended to describe Mealy machines, not Moore machines, which leads to small
technical differences with the previous presentation. Also, in keeping with [19],
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we use game-based terminology here. A game corresponds to a tree automaton
and a winning state corresponds to a state with a nonempty language.

In order to decide realizability of a GR(1) formula, a game graph G, is built.
The transition structure of the game graph is given by the combination of !
and ¢!, the initial state is ¢! A %, and the winning condition is ¢! — ¢f. The
winning region W, of the game is computed symbolically by a triply nested
fixpoint formula, and the formula is realizable if the initial state is winning [19].

We now describe how to decide open implication. Suppose we have two GR(1)
specifications, ¢ = A, e — /\j @sj and ¢ = A Ve — N, Vs We check
whether ¢ -e 1) as follows.

1. Construct the game graph G, and compute the winning region W,,.

2. Construct the game graph G and the product G of G, and G.

3. Check if there is a path in G that (i) stays within Wy, (ii) satisfies ¢! — ¢/,
and (iii) violates ¥/ — /.

Note that this algorithm is similar to the one described above, although removal
of the losing states (the states with an empty language) has been replaced by
the requirement that the path remain in the set of winning states. Thus, we
are looking for a path within W, that satisfies all of the 1/)57 4» Violates one of

the wil, and either violates one if the goéi or satisfies all of the <p£’j. This is
expressed by the p-calculus [13] formula v = pY . W, A (7' V pre(Y)), where
v = \/i,l(l/Y Wy A _‘ng,i N Ey N _‘1/)5,1)) VvV (Y (Wy ASg A Ey A _‘1/)5,1))7
Ey = A\, pr‘e(,uZ.Y/\(wik\/pre(Z)))7 and S, = /\; pre(,uZ.Y/\(gog’j Vpre(Z))).

The complexity of a symbolic algorithm can be given in terms of the number
of symbolic steps [1], where steps in this case are preimage computations and
computations of the force operator used for games [19]. Computing the winning
region of G, requires a cubic number of steps in terms of the number of states in
G. Computing v, a doubly-nested fixpoint, and thus requires only a quadratic
number of steps in terms of the size of G.

Theorem 10. We have that p ¢ iff the initial state of G is in the set . This
computation uses a number of symbolic steps cubic in G, and quadratic in G .



4.1 Experimental Results

We have implemented the algorithm for open implication of GR(1) formulas
in ANzu [11], a synthesis tool for GR(1) specifications. We have tested our
implementation on specifications of an arbiter for ARM’s AMBA AHB bus used
in [2, 3]. In Figure 2, we show the time ANZzU takes to synthesize the specifications
and the time needed to calculate open implication. The old specification, which
was used in [2] can only be synthesized for up to 7 masters. ANZU runs out
of memory for larger instances. In [3] an improved version of the specification
was presented, but it was not proven that the old and new specifications are
equivalent. The new specification can be synthesized for up to 15 masters?.
(2GB of memory were available.) Using the algorithm presented above, we can
show that the new specification open-implies the old one and can thus be used
in its stead. Figure 2 also shows that the combined time needed to calculate
open implication and to synthesize the new specification is less than the time
needed to synthesize the old specification, when that is possible. It should be
noted that the circuits that result from the new specification are much smaller
than those resulting from the old specification.

5 Conclusions

We have argued that open implication is an important concept both in model
checking and in synthesis. We have given algorithms to compute open implication
and open equivalence for the specification formalisms LTL and GR(1). For LTL,
we have shown an algorithm that runs in time that is doubly exponential in the
size of the implicate and space that is polynomial in the size of the implicant,
matching the lower bounds. We have also shown how to implement the algorithm
while avoiding Safra’s construction. Finally, we implemented the approach for
GR(1) specifications and showed that it can be used to show the correctness of
simple specifications and, thus, to synthesize circuits that would otherwise be
out of reach.
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