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Abstract. In this article, the RIPEMD-160 hash function is studied
in detail. To analyze the hash function, we have extended existing ap-
proaches and used recent results in cryptanalysis. While RIPEMD and
RIPEMD-128 reduced to 3 rounds are vulnerable to the attack, it is not
feasible for RIPEMD-160. Furthermore, we present an analytical attack
on a round-reduced variant of the RIPEMD-160 hash function. To the
best of our knowledge this is the first article that investigates the impact
of recent advances in cryptanalysis of hash functions on RIPEMD-160.
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1 Introduction

Recent results in cryptanalysis show weaknesses in commonly used hash func-
tions, such as RIPEMD, MD5, Tiger, SHA-0, and SHA-1 [1,2,9,11,12,13,14].
Therefore, the analysis of alternative hash functions, like RIPEMD-160, the
SHA-2 family, and Whirlpool is of great interest. Since RIPEMD-160 is part
of the ISO/IEC 10118-3:2003 standard on dedicated hash functions, it is used in
many applications and is recommended in several other standards as an alterna-
tive to SHA-1. Based on the similar design of RIPEMD-160, MD5, SHA-1, and
its predecessor RIPEMD, one might doubt the security of RIPEMD-160. There-
fore, we investigated the impact of recent attack methods on RIPEMD-160 in
detail. We are not aware of any other published analysis with respect to collision
attacks of the RIPEMD-160 hash function. In the analysis of the RIPEMD-160
hash function we have extended existing approaches using recent results in crypt-
analysis. In the analysis, we show that methods successfully used to attack SHA-1
are not applicable to full RIPEMD-160. Furthermore, we use analytical methods
to produce a collision in a RIPEMD-160 variant reduced to 3 rounds. However,
no attack has been found for the original RIPEMD-160 hash function. In sum-
mary, we can state that RIPEMD-160 is secure against known attack methods.
Nevertheless, further analysis is required to get a good view on the security of
RIPEMD-160.
? The work in this paper has been supported by the Austrian Science Fund (FWF),

project P18138.

S.K. Katsikas et al. (Eds.): ISC 2006, LNCS 4176, pp. 101–117, 2006.
http://dx.doi.org/10.1007/11836810 8
c© Springer-Verlag Berlin Heidelberg 2006

http://dx.doi.org/10.1007/11836810_8


102 Authors Suppressed Due to Excessive Length

Table 1. Notation

Notation Meaning

A⊕B logical XOR of two bit-strings A and B
mi input message word i (32-bits)
wi expanded input message word i (32-bits)

A� n bit-rotation of A by n positions to the left
A� n bit-rotation of A by n positions to the right
step single execution of the step function

round set of consecutive steps, has a size of 16 (1 round = 16 steps)

The remainder of this article is structured as follows. A description of the
RIPEMD-160 hash function is given in Section 2.1. In Section 2.2, we give an
overview of existing attacks on RIPEMD, the predecessor of RIPEMD-160. In
Section 2.3, the basic attack strategy we use in our analysis is described. Section 3
presents the results of the analysis following this attack strategy. In Section 4,
we describe some methods for improving the results of the analysis. Moreover,
we present a theoretical attack on a simplified variant of RIPEMD-160 reduced
to 3 rounds using analytical methods in Section 5. We conclude in Section 6.

2 Finding Collisions for RIPEMD-160

In this section, we will give a short description of the RIPEMD-160 hash function.
We will present the basic strategy we used for the attack on RIPEMD-160 and we
will show why existing attacks on RIPEMD are not applicable to RIPEMD-160.
For the remainder of the article we will follow the notation given in Table 1.

2.1 Short Description of RIPEMD-160

The RIPEMD-160 hash function was proposed by Hans Dobbertin, Antoon
Bosselaers and Bart Preneel in [8] to replace RIPEMD. It is an iterative hash
function that processes 512-bit input message blocks and produces a 160-bit
hash value. Like its predecessor RIPEMD, it consists of two parallel streams. In
each stream the state variables are updated according to the expanded message
word wi and combined with the initial value IV after the last step, depicted
in Figure 1. While RIPEMD consists of two parallel streams of MD4, the two
streams are designed differently in the case of RIPEMD-160.

In the following, we briefly describe the RIPEMD-160 hash algorithm. The
hash function basically consists of two parts: message expansion and state update
transformation. A detailed description is given in [8].

Message Expansion. The message expansion of RIPEMD-160 is a permuta-
tion of the message words in each round, where different permutations are used
for the left and the right stream.
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Fig. 1. The RIPEMD-160 compression function.
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Fig. 2. The step function of RIPEMD-160.

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of five 32-bit registers and updates them in 5 rounds of
16 steps each by using the expanded message word wi in step i. Figure 2 shows
one step of the state update transformation of RIPEMD-160. The function f is
different in each round. fj is used for the j-th round in the left stream, f6−j

is used for the j-th round in the right stream (j = 1, . . . , 5). A step constant
Kj is added in every step; the constant is different for each round and for each
stream. Different rotation values s are used in each step and in both streams.
After the last step of the state update transformation, the initial value and the
values of the right and the left stream are combined, resulting in the final value
of one iteration (feed forward). In detail, the feed forward is a modular addition
of the permutations of the IV and the output of the left and right stream (see
Figure 1). The result is the final hash value or the initial value for the next
message block.

For the analysis of RIPEMD-160 in Section 3, we use a linearized variant of
the state update transformation. Every addition identified in the hash function is
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replaced by an XOR and the nonlinear functions f2, f3, f4, f5 are approximated
by a 3-input XOR; f1 is already an XOR.

2.2 Existing Attacks on the Predecessor RIPEMD

In this section, we will discuss the results in cryptanalysis of RIPEMD, the pre-
decessor of RIPEMD-160. We will describe the attack of Dobbertin and Wang et
al. and discuss why these attacks are not applicable to RIPEMD-160. A detailed
description of both attack strategies is given in [6].

Attack of Dobbertin [7]. In 1997, Hans Dobbertin presented an attack on
RIPEMD reduced to 2 rounds with complexity about 231 hash computations.
The basic idea of the attack is to find an inner collision for the compression
function using a very simple input differential pattern (having only a difference
in one message word mi). Hence, there are differences in the state variables after
step i. Since mi has to be applied in the second round as well, it is chosen in such
a way that the differences in state variables cancel out and the remaining steps
are equal. Once an inner collision has been found, the remaining free variables
have to be determined to meet the IV by calculating backward from step i in
both streams.

In the attack, Dobbertin uses modular differences to describe the whole hash
function by a system of equations. In general, such a system is too large to be
solved, but Dobbertin used several constraints to extremely simplify the system
such that it becomes solvable in practice. In the attack, he exploits the fact that
the left and the right stream of RIPEMD are quite similar. A detailed description
of the attack is given in [7].

However, applying the attack to RIPEMD-160 might be impractical. Due
to the different permutation and rotation values used in the left and the right
stream of RIPEMD-160 and due to the increased number of rounds, the system
of equations would be too large to be solvable in practice.

Attack of Wang et al. [12]. In 2004, Wang et al. presented collision attacks
on MD4, MD5, and RIPEMD. The attack on RIPEMD has a complexity of
about 218 hash computations. The basic idea of all attacks is to use differences
in more than one message word to find an inner collision within a few steps in the
last round and then find a suitable characteristic for the remaining steps. Hash
functions with only 3 rounds seem to be vulnerable to this method in general.
Hash functions with more than 3 rounds can only be broken if it is possible to
exploit weaknesses of the design [6]. For instance, in the case of RIPEMD, Wang
et al. take advantage of the similar design of the two streams of the hash func-
tion. Since the permutation and rotation values are equal for both streams, it is
sufficient to find a collision-producing characteristic for one stream (3 rounds)
and apply it simultaneously to both streams. Nevertheless, the number of nec-
essary conditions increases for two streams. Hence, it is more likely to have
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contradicting conditions. In fact, Wang et al. reported that among 30 selected
collision-producing characteristics only one can produce the real collision.

However, due to different permutation and rotation values in the left and the
right stream of RIPEMD-160 and the increased number of rounds (each stream
has 5 rounds), this attack is not applicable to RIPEMD-160.

2.3 Our Attack Strategy

In the following, we will present our attack strategy against RIPEMD-160 based
on recent results in cryptanalysis of SHA-1. All attacks basically use the same
strategy:

1. Find a collision-producing characteristic that holds with high probability.
2. Find values for the message bits such that the message follows the charac-

teristic.

There are several methods for finding a characteristic, i.e. the propagation of
input differences through the compression function of the hash function. In the
following, we will describe the method of Chabaud and Joux [5] and the method
of Wang et al. [15] which is used in their attack on SHA-1.

Method of Chabaud and Joux [5]. In 1998, Chabaud and Joux presented
an attack on the SHA-0 hash function. In this attack a linearization of the
hash function was used to obtain a characteristic (in this paper referred to as
L-characteristic). The probability that the characteristic holds in the original
hash function is related to the Hamming weight of the characteristic. In general,
a characteristic with low Hamming weight has a higher probability than one
with a high Hamming weight.

Remark 1 For the first steps, the probability of the characteristic is not impor-
tant, because the conditions that have to be satisfied such that the characteristic
holds can be easily fulfilled for these steps [5].

Method of Wang et al. [15]. Considering the recent results of Wang et al., it
seems to be a good approach to use a general (possibly non-linear) characteristic
for the first 16 steps and a characteristic that follows the linear approximation
for the remaining steps. This is shown in Figure 3. For the remainder of this
article the first 16 steps are referred to as V1 and the remaining steps are re-
ferred to as V2. The basic idea of this method is to maximize the probability of
the L-characteristic in V2 and to ignore the probability of the characteristic in
V1. This is based on the fact that the probability of V1 can be neglected (see
Remark 1).

Observation 1 Wang’s method to find a characteristic for the hash function
can be generalized as follows:
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Fig. 3. Method of Wang et al.

1. Find an L-characteristic with good probability resulting in a pseudo-collision
for V2.

2. Find a general characteristic for V1 to turn a pseudo-collision into a collision.

Observation 2 Multi-block messages can be used to turn near-collisions into
collisions.

Since Biham and Chen observed in [1] that near-collisions are easier to find than
collisions, we will use Observation 2 in Section 3.3 to improve the attack.

3 Finding an L-characteristic with Good Probability

Finding an L-characteristic for V2 with good probability is the most important
part of the attack. Since the first 16 steps (V1) can be fulfilled by using mes-
sage modification techniques [13,14] and neutral bits [1], the attack complexity
only depends on the probability of the chosen L-characteristic in V2. A com-
mon approach to find an L-characteristic with good probability is to search for
one with low Hamming weight. In [10,11], algorithms from coding theory were
used to obtain an L-characteristic for SHA-1 with low Hamming weight, i.e. an
L-characteristic with good probability. Even if these algorithms are probabilis-
tic and do not guarantee to find the best L-characteristic, they are expected to
produce good results as they did in the case of SHA-1.

For the remainder of this article, we will only give the Hamming weight of the
state variable A of the L-characteristic, since this gives us a good heuristic for
its probability. More precisely, we use 2−2·HW(A), where HW(A) is the Hamming
weight of the state variable A. Note that this is a quite conservative method to
estimate the probability of the L-characteristic. The probability might be lower
in practice.

3.1 Collision and Near-Collision Producing Characteristics

To find a collision-producing characteristic with good probability (low Hamming
weight), we use algorithms from coding theory like it is done in [10,11] for SHA-1.
To construct the generator matrix G, we use the linearized variant of the state
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Table 2. Hamming weight of A using an NL-characteristic in V1.

type Hamming weight projection* steps stream

RIPEMD - 160

pseudo-collision 1471 704 16–80 both
near-pseudo-collision 907 480 16–80 both
pseudo-collision 657 352 16–80 left
pseudo-collision 665 352 16–80 right
pseudo-collision 959 384 16–64 both
near-pseudo-collision 675 352 16–64 both
pseudo-collision 432 192 16–64 left
pseudo-collision 424 192 16–64 right
pseudo-collision 458 256 16–48 both
near-pseudo-collision 428 224 16–48 both
pseudo-collision 187 96 16–48 left
pseudo-collision 180 128 16–48 right

RIPEMD - 128

pseudo-collision 659 448 16–64 both
near-pseudo-collision 561 448 16–64 both
pseudo-collision 298 256 16–64 left
pseudo-collision 311 192 16–64 right
pseudo-collision 178 - 16–48 both
near-pseudo-collision 18 - 16–48 both
pseudo-collision 28 - 16–48 left
pseudo-collision 10 - 16–48 right

RIPEMD pseudo-collision 20 - 16–48 both

(*)Results achieved by using a projection as described in Section 4.

update transformation having zero differences as input in the first step and
forcing zero differences after the feed forward (a collision). To keep the generator
matrix and the search space small, only state variable A of each step is used.
Bi, Ci, Di, Ei and Wi of step i can be reconstructed from Ai, . . . , Ai+5. The
Hamming weight of the codewords found and hence the attack complexity is too
high for an attack on RIPEMD-160. In Appendix C, the Hamming weight of the
codewords found for RIPEMD-160, RIPEMD-128 and round-reduced variants is
shown. Considering these results, we conclude that the final attack complexity
would be too high for a reasonable attack.

3.2 Pseudo-Collision Producing Characteristics

Since we assume that we are able to turn a pseudo-collision into a collision within
V1 (see Observation 1), we can restrict the low-weight search to pseudo-collisions
in V2. As we want zero differences in the end (after the feed forward) the gener-
ator matrix G is constructed by going backwards in V2, having zero differences
after the feed forward. More precisely, this is done by going backwards in the left
and the right stream using the linearized inverse state update transformation.
We have a difference δL in the left stream and a difference δR in the right stream
after step 80, where the differences δL and δR cancel out due to the feed forward.
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Table 2 lists the Hamming weight of the codewords found for RIPEMD-160,
RIPEMD-128 and round-reduced variants. Note that this weight includes the
weight of variable A in the left and the right stream without considering the
weight of the first 16 steps. As can be seen in Table 2, we found a codeword for
RIPEMD with weight of 20, which might be low enough for an attack following
the attack strategy described in this article. Based on the assumed heuristic,
we estimate the final attack complexity to be 22·20. Since the heuristic for the
estimation of the attack complexity is quite conservative, the final attack com-
plexity might be higher in practice. Note that the round-reduced variant of the
left and the right stream of RIPEMD-128 is very close to an MD4 computation.
This explains the low Hamming weight of the codewords found. The results of
the left and the right stream differ, because different permutations are used in
the message expansion for both streams. However, the probability of the found
L-characteristic is too low for an attack on RIPEMD-160 following the strategy
described in Section 2.3.

3.3 Near-Pseudo-Collision Producing Characteristics

The results of Section 3.2 can be further improved by extending our search
to near-collisions. In [13], Wang et al. show how this can be done for SHA-1
by using 2 message blocks. They use different characteristics in V1, but the
same L-characteristic in V2 in both blocks. Due to the permutation of the state
variables of the left and the right stream before the addition of both streams
and the initial value in the feed forward, we would need 5 instead of 2 message
blocks to turn a near-collision into a collision for RIPEMD-160 if we use the
same L-characteristic in V2 in each message block.

The results of the low-weight search are shown in Table 2. We found a code-
word with weight of 18 for RIPEMD-128 reduced to 3 rounds which is compa-
rable to the result of RIPEMD for a pseudo-collision. However, the Hamming
weight of the codewords for RIPEMD-160 is still too high for a reasonable attack
complexity. This has several reasons:

– The search space is very large and the problem of finding low-weight code-
words in a linear code is NP-hard.

– We do not know any lower bound for the Hamming weight in the code defined
by the generator matrix G.

– The search algorithms are probabilistic and certain parameters need to be
tuned to optimize the performance. While there exist guidelines, which values
to chose for a random code [4], we do not know which values would be optimal
in the case of RIPEMD-160.

4 Improving Search Algorithms

Considering the results from the previous section, we have to think about im-
provements of the probabilistic algorithms. There are several possibilities to in-
crease the speed (success probability for finding a codeword with low Hamming
weight) of the algorithms.
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4.1 Optimization of the Algorithms/Implementation

Since these algorithms are well known and have been studied by many re-
searchers, we can assume that they are almost optimal in the general case (for a
random code). There is still space for some optimizations in the implementation
of the algorithms, but the speedup we can obtain is not significant enough.

4.2 Reducing the Search Space

Reducing the search space might be the best way to increase the speed of the
probabilistic algorithms we used in the analysis. Since the code describing the
linearized hash function is not a random code, its structure can be exploited to
reduce the search space, i.e. size of the generator matrix describing the linear
code. This method was successfully used for SHA-1. It was observed that dif-
ferences in the expanded message words and state variables occur in bands of
successive ones [11]. For RIPEMD-160, no structure in the low-weight codewords
could be found so far. Nevertheless, several methods can be applied to reduce
the size of the generator matrix and/or the search space of the algorithms. Some
of these methods are:

1. Restricting the analysis to the left (right) stream of the hash function.
2. Looking at round-reduced variants of RIPEMD-160.
3. Using other linearizations for non-linear functions f2, f3, f4 and f5.
4. Forcing zero bits (like it is done in [10] for SHA-1). In detail the search

space is reduced by setting certain bits (differences) to zero before doing the
low-weight search.

5. Reducing the search space by using a projection, P (w) =
∑32

i=1 bi > 0, where
bi is the i-th bit of the word w. The main idea is to reduce the search space
by looking at words instead of bits. In detail, P (w) is 1 if there are differences
in the word w and 0 if there are no differences. This reduces the number of
columns and rows of the matrix by a factor of 32.

Some of the methods described in this section substantially increase the qual-
ity of the results. While the improvements are marginal for reducing the search
space by forcing (random) zero bits in the generator matrix or using other lin-
earizations for f2, f3, f4 and f5, the other methods worked quite well as shown in
Table 2. On the one hand, codewords with lower Hamming weight can be found
by reducing the search space but on the other hand the Hamming weight of the
codewords found is still too high for an attack on RIPEMD-160 or round-reduced
variants. Therefore, we need other (analytic) methods to improve the results.

5 A Variant of RIPEMD-160

In this section, we will describe an approach using analytic methods to find a
characteristic with low Hamming weight through the hash function. Since this
is very difficult for the original hash function, we concentrate the analysis on a
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Fig. 4. A fixed-point for one step of the RIPEMD-160 variant.

variant of RIPEMD-160, where the rotation of register C is removed, as shown
in Figure 4. For this variant, reduced to 3 rounds, we can find a collision using
fixed-points.

5.1 Fixed-Points in the RIPEMD-160 Variant

By removing the rotation of register C, it is possible to construct fixed-points in
one and two steps of the hash function, where a fixed-point is defined as: δ = g(δ).
In our scope, g either is a single step or two steps of the RIPEMD-160 variant. In
Figure 4, a fixed-point for one step of the RIPEMD-160 variant is shown, while
Figure 5 shows fixed-points for two steps of the RIPEMD-160 variant. The gray
lines and shadowed rectangles indicate a difference in the MSB. These fixed-
points can be used to produce a collision in the RIPEMD-160 variant reduced
to 3 rounds with complexity 264 and 251.

Note that in [3] a similar attack has been applied to MD5 and we can assume
that the designers of RIPEMD-160 included the rotation of register C to prevent
this kind of attack.

From a Fixed-Point to an Attack. In the analysis, we assume that the
conditions for the first 16 steps (V1) of the hash function can be fulfilled and
we can construct differences in the MSB in arbitrary state variables of the left
and the right stream after V1 using a general characteristic. More precisely, if
we have differences in the MSB in all state variables of both streams at the first
step of V2 then we can use the fixed-point shown in Figure 4 for the remaining
64 steps in V2. The output difference of f with input differences δ = (1, 1, 1) is
1 or 0, depending on the values of the input variables. Since the difference in
the MSB of Ai can be canceled by f , the difference in Ei propagates to Bi+1.
This results in a collision after the feed forward of the RIPEMD-160 variant.
By choosing the differences in the MSB, we reduce the complexity of the attack
enormously, since the modular addition behaves linearly for differences in the
MSB. So only the conditions for the nonlinear functions f2, f3, f4, f5 have to be
considered for the attack complexity. In detail, one condition has to be fulfilled
for the nonlinear functions fj in each step of the left and the right stream in V2.
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Fig. 5. Two fixed-points for two steps of the RIPEMD-160 variant.

To cancel a difference in the expanded message word wi, we exploit the
properties of the functions fj . The output of the functions f2, f3, f4 and f5 is
either 1 or 0 with probability 1/2 for an input difference δ = (1, 1, 1), which
allows us to cancel differences in the expanded message words in round 2, 3, and
4 of the RIPEMD-160 variant. In the first round of the left stream and in the last
round of the right stream, the linear function f1 is used, making it impossible
to cancel a difference there, because f1 flips with probability 1 for δ = (1, 1, 1).
Since there are differences in all message words in the MSB, f2, f3, f4 have to
be blocked in each round of V2. We use another (general) characteristic in V1.
Hence, we have an attack on the RIPEMD-160 variant reduced to 3 rounds. We
derive the following set of conditions for round 2 and 3 of the right and the left
stream. Note that the conditions are equal for the right and the left stream.

Bi,32 = ¬Ci,32 = Di,32 i = 16
Bi,32 = ¬Bi−1,32 i = 17, . . . , 47

This results in a set of 64 conditions (32 for each stream). Satisfying all these
conditions with the most naive method (random trials), we get a complexity close
to 264 hash computations. Note that no conditions are needed for the modular
addition in the feed forward, since we have only differences in the MSB of all
state variables of the left and the right stream.

Finding a pseudo-collision in the according RIPEMD-320 reduced to 4 rounds
has a complexity of at most 276 hash computations. RIPEMD-320 is an extension
of RIPEMD-160 which has the same security level as RIPEMD-160, but produces
a hash value of 320 bits. In Appendix B, the conditions for all 4 rounds as well
as a sample pseudo-collision on a round-reduced variant (2 rounds) are given.
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Improving the Attack Complexity. The attack complexity can be further
improved by using one of the fixed-points shown in Figure 5 and by choosing
differences in the MSB of wi, for i = 1, 4, 6, 7, 10, 11, 12, 15. Using one of these
fixed-points, we can construct an attack on the RIPEMD-160 variant reduced to
the first 3 rounds with complexity close to 251 hash computations. By choosing
differences in the MSB of wi, for i = 1, 4, 6, 7, 10, 11, 12, 15, only 8 conditions are
needed instead of 16 in round 3 of the left and the right stream. This is due to
the fact that the differences in the message words are chosen in such a way that
only the even or odd words of the left and the right stream have differences in
the MSB. Hence, the number of conditions is reduced from 64 to 48. In more
detail, if f3 flips for an input δ = (0, 1, 0), then it also flips in the next step with
input δ = (1, 0, 1). Hence, round 3 has a probability of 2−8 and not 2−16 as one
may expect. Since we need 5 message blocks to have a collision after the last
block, the final attack complexity is 248 · 5. Since all the differences in the state
variables are in the MSB, no additional conditions have to be fulfilled for the
feed forward. Note that the same L-characteristic is used in each message block
and only the general characteristic is different for each block. The conditions for
the used L-characteristic are given in Appendix A.

5.2 Attack on the RIPEMD-160 Variant Using Fixed-Points

Since we assume that we use a general characteristic in V1 (first round) to obtain
the desired target differences at the input of the first step of V2, we have an at-
tack on the RIPEMD-160 variant reduced to the first 3 rounds using one of the
fixed-points described before. Using one message block to construct a collision,
the attack has complexity 264 and complexity 251 using 5 message blocks. Even
though we cannot extend this attack to the full RIPEMD-160 variant, we con-
jecture that the rotation of state variable C in the state update transformation
enhances the security of RIPEMD-160. The attack works as follows:

1. Choose differences in the MSB in message words wi.
2. Use a general characteristic to construct differences in the MSB in the state

variables at the input of the first step in V2 (to match the desired target
difference) and fulfill the conditions for the first 16 steps (V1) using message
modification techniques and neutral bits. Note that if more than one message
block is needed to produce a collision then this step has to be repeated for
each block.

3. Construct the set of conditions for the L-characteristic in V2 corresponding
to the chosen differences in the message words wi.

4. Fulfill the conditions for V2 by random trials. The final attack complexity is
related to the number of conditions in V2.

6 Conclusion

In this article, we used recent results in the cryptanalysis of hash functions
to analyze the security of RIPEMD-160. We combined methods from coding
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theory with recent attack techniques which were successfully used in the attack
on SHA-1. While RIPEMD and RIPEMD-128 reduced to 3 rounds are vulnerable
to this kind of attack, the attack is not suitable for RIPEMD-160.

Furthermore, we analyzed a variant of RIPEMD-160, where the rotation of
state variable C was removed. We show that for this variant an attack on 3
rounds is possible using fixed-points. Hence, we conclude that the rotation of
state variable C enhances the security level of RIPEMD-160.

We found no attack on the original RIPEMD-160 hash function including all 5
rounds. In summary, we state that RIPEMD-160 is secure against known attacks.
Neither the attack of Dobbertin or Wang et al. on RIPEMD can be extended
to RIPEMD-160, nor recent methods used in the cryptanalysis of SHA-1 are
applicable to full RIPEMD-160. Even though this paper gives new insights on
the security of RIPEMD-160, further analysis is required to get a good view on
its security margin.
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A Set of Sufficient Conditions for the L-characteristic of
the RIPEMD-160 Variant Reduced to 3 Rounds

In this section, we will give the complete set of sufficient conditions for the attack
on the RIPEMD-160 variant reduced to 3 rounds using a fixed-point for 2 steps
as described in Section 5.

For the analysis, we assume that we can find a general characteristic for round
1 such that we have differences in state variable C of the left stream and the
right stream in the input of the first step of round 2. Since there are differences
in the message words wi, i = 1, 4, 6, 7, 10, 11, 12, 15, the number of conditions is
reduced, see Section 5. Hence, we derive the following set of equations for the
L-characteristic for round 2 and 3 of the right and the left stream.
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– Left Stream:

Bi,32 = 0 i = 18, 26, 28
Bi,32 = 1 i = 16, 20, 22, 24, 30, 32, 34, 36, 38, 40, 42, 44, 46

Bi,32 = Bi−2,32 i = 19, 23, 25, 31
Bi,32 = ¬Bi−2,32 i = 17, 21, 27, 29

– Right Stream:

Bi,32 = 0 i = 14, 26, 28, 32, 34, 36, 38, 40, 42, 44, 46
Bi,32 = 1 i = 16, 18, 20, 22, 24

Bi,32 = Bi−2,32 i = 17, 19, 23, 25, 29
Bi,32 = ¬Bi−2,32 i = 21, 27

Bi,32 = Bi−1,32 ⊕Bi−2,32 i = 31

B Set of Sufficient Conditions for a Pseudo-Collision in a
Round-Reduced RIPEMD-320 Variant

In this section, we will give a set of sufficient conditions for a pseudo-collision
in a RIPEMD-320 variant. Note that there are no differences in the message
words and the IV has differences in the MSB of all words. This would result
in an attack complexity of 2128 for a pseudo-collision in RIPEMD-320. Since
we assume that we can fulfill the first 16 to 20 steps of the right stream (no
conditions have to be fulfilled for the first 16 steps in the left stream), the attack
complexity would be 2108.

– Left Stream:

Bi,32 = Ci,32 = Di,32 = 1 i = 16
Bi,32 = Bi−1,32 i = 17, . . . , 79

– Right Stream:

Bi,32 = Ci,32 = Di,32 = 1 i = 1
Bi,32 = Bi−1,32 i = 2, . . . , 63

Below, a message and the according IV is given for a pseudo-collision in the
first 2 rounds of the RIPEMD-320 variant which has a complexity of 228 hash
computations. A pseudo-collision for the first 3 rounds would require about 260

hash computations.
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i M

0-7 1330C95E D6E82F5D 1902E1F8 040C42B4 F51D77D2 B8EF7ED0 D075FEE3 1CB083FD

8-15 37246C9D 72205B19 703A3DCD E7E5AFFD FD9D1E57 4C64C76F 4B424959 56B11DB4

i IV

0-4 A99DA4B3 257D7E0C 56D85144 8F93F035 79096694

5-9 58EEE5C0 AA910BAB BD91DCA9 8D5BE12A 14C72EF0

C Hamming Weight of Codewords Found for using an
L-characteristic in V1 and V2

In this section, we will give the Hamming weight of the codewords found for
using an L-characteristic in V1 and V2 as described in Section 3.1. In Table 3,
the Hamming weight of the codewords found for RIPEMD-160, RIPEMD-128
and round-reduced variants are shown. Since we assume that it is possible to
turn near-collisions to collisions by using multi-block messages (see Observation
2), we can improve the Hamming weight of the codewords found and hence the
probability of the characteristic. For a near-collision, the condition of having zero
differences after the feed forward can be ignored. The Hamming weight of the
codewords found are also shown in Table 3. Note that we only give the Hamming
weight after step 16, since the first 16 steps (V1) can be fulfilled in advance, and
only the probability of V2 is significant for the attack complexity. We conclude
that the final attack complexity would be too high for a reasonable attack.
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Table 3. Hamming weight of A using an L-characteristic in V1 and V2.

type Hamming weight projection* steps stream

RIPEMD - 160

collision 1760 768 16–80 both
near-collision 1568 768 16–80 both
collision 895 448 16–80 left
collision 848 576 16–80 right
collision 1184 576 16–64 both
near-collision 1184 576 16–64 both
collision 608 320 16–64 left
collision 644 352 16–64 right
collision 863 384 16–48 both
near-collision 768 352 16–48 both
collision 421 160 16–48 left
collision 414 128 16–48 right

RIPEMD - 128

collision 1303 640 16–64 both
near-collision 880 512 16–64 both
collision 602 256 16–64 left
collision 576 320 16–64 right
collision 800 256 16–48 both
near-collision 640 256 16–48 both
collision 377 64 16–48 left
collision 374 128 16–48 right

(*)Results achieved by using a projection as described in Section 4.
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