
Improved Collision Attack on the Hash Function
Proposed at PKC’98?

Florian Mendel??, Norbert Pramstaller, and Christian Rechberger

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Florian.Mendel@iaik.TUGraz.at

Abstract. In this article, we present an improved collision attack on
the hash function proposed by Shin et al. at PKC’98. The attack has
a complexity of about 220.5 hash computations, while the previous at-
tack of Chang et al. presented at SAC 2002 has a complexity of about
237.13 hash computations. In the analysis of the hash function we com-
bined existing approaches with recent results in cryptanalysis of hash
functions. We show that message-dependent rotations can be exploited
to construct collisions. The weak design of the step function facilitates
high-probability multi-block collisions.

Keywords: cryptanalysis, collision attack, differential attack, collision,
near-collision, hash functions

1 Introduction

Recently, weaknesses in many commonly used hash functions, such as MD5 and
SHA-1 have been found. These breakthrough results in the cryptanalysis of hash
functions are the motivation for intensive research in the design and analysis of
hash functions. It is of special interest whether or not existing attack methods,
which have been successfully used to break MD5 and SHA-1, can be extended
to other hash functions as well. Based on this motivation, we present a collision
attack on the hash function proposed by Shin et al. at PKC’98. The attack
adapts and extends existing methods leading to an attack complexity of about
220.5 hash computations. This is an improvement by a factor of 216.5 compared
to the collision attack presented by Chang et al. at SAC 2002. In addition to the
improved collision attack this article illustrates how powerful recently invented
methods are and shows how they can be extended to other hash functions such
as the hash function proposal from PKC’98.

? The work described in this paper has been supported in part by the European
Commission through the IST Programme under contract IST2002507 932 ECRYPT.
The information in this paper is provided as is, and no guarantee or warranty is given
or implied that the information is fit for any particular purpose. The user thereof
uses the information at its sole risk and liability.

?? This author is supported by the Austrian Science Fund (FWF), project P18138.

M.S. Rhee and B. Lee (Eds.): ICISC 2006, LNCS 4296, pp. 8–21, 2006.
http://dx.doi.org/10.1007/11927587 3
c© Springer-Verlag Berlin Heidelberg 2006

http://dx.doi.org/10.1007/11927587_3

Improved Collision Attack on the Hash Function Proposed at PKC’98 9

Table 1. Notation

Notation Meaning

A ∨B logical OR of two bit-strings A and B
A ∧B logical AND of two bit-strings A and B
A⊕B logical XOR of two bit-strings A and B
A ≪ n bit-rotation of A by n positions to the left
A ≫ n bit-rotation of A by n positions to the right

Mj message block j (512-bits)
mi message word i (32-bits)
wi expanded message word i (32-bits)

step single execution of the step function
round set of consecutive steps, has a size of 24 (1 round = 24 steps)

An important contribution of this article is that we analyze message-dependent
rotations, a property not existing for instance in MD5 and SHA-1. Our conclu-
sions are that the message-dependent rotations decrease the security of the hash
function. The weak design of the step function in combination with the used
Boolean functions facilitates the construction of high-probability multi-block
collisions.

The remainder of this article is structured as follows. A description of the hash
function is given in Section 2. The basic attack strategy that is used to improve
all existing collision attacks on the hash function is described in Section 3. In
Section 4, we present the characteristic used for the improved collision attack.
Based on this characteristic we construct a near-collision in Section 5 and finally
we present a collision in Section 6. A detailed analysis of the overall attack
complexity is given in Section 7. A sample colliding message pair is presented in
Section 8 and conclusions are given in Section 9.

2 Description of the Hash Function proposed at PKC’98

The hash function was proposed by Shin et al. [5] at PKC’98. It is an iterative
hash function that processes 512-bit input message blocks and produces a 160-bit
hash value. In the following, we briefly describe the hash function. It basically
consists of two parts: message expansion and state update transformation. A
detailed description of the hash function is given in [5].

Since Shin et al. did not name their hash function, we will refer to it as
PKC-hash for the remainder of this article. Throughout the remainder of this
article, we will follow the notation given in Table 1.

Message Expansion. The message expansion of PKC-hash is a permutation
of 24 expanded message words in each round, where different permutation values
are used in each round. The 24 expanded message words wi used in each round

10 Florian Mendel, Norbert Pramstaller, and Christian Rechberger

are constructed from the 16 input message words mi in the following way:

wi =

{
mi 0 ≤ i ≤ 15
(wi−4 ⊕ wi−9 ⊕ wi−14 ⊕ wi−16) ≪ 1 16 ≤ i ≤ 23.

For the ordering of the message words the permutation ρ is used.

Round 1 Round 2 Round 3 Round 4

id ρ ρ2 ρ3

The permutation ρ is defined as following.

i 0 1 2 3 4 5 6 7 8 9 10 11

ρ(i) 4 21 17 1 23 18 12 10 5 16 8 0

i 12 13 14 15 16 17 18 19 20 21 22 23

ρ(i) 20 3 22 6 11 19 15 2 7 14 9 13

State Update Transformation. The state update transformation starts from
a (fixed) initial value IV of five 32-bit registers and updates them in 4 rounds
of 24 steps each. Figure 1 shows one step of the state update transformation of
the hash function.

Ai Bi Ci Di Ei

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

f

Kj

Wi <<< 10

<<< s

Fig. 1. The step function of the hash function.

The function f is different in each round: f0 is used in the first round, f1 is used
in round 2 and round 4, and f2 is used in round 3.

f0(x1, x2, x3, x4, x5) = (x1 ∧ x2)⊕ (x3 ∧ x4)⊕ (x2 ∧ x3 ∧ x4)⊕ x5

f1(x1, x2, x3, x4, x5) = x2 ⊕ ((x4 ∧ x5) ∨ (x1 ∧ x3))
f2(x1, x2, x3, x4, x5) = x1 ⊕ (x2 ∧ (x1 ⊕ x4))⊕ (((x1 ∧ x4)⊕ x3) ∨ x5)

Improved Collision Attack on the Hash Function Proposed at PKC’98 11

A step constant Kj is added in every step; the constant is different for each
round. Different rotation values si are used in each step. The rotation values are
dependent on the message words. The rotation values si, for i = 0, . . . , 23 are
calculated in the following way:

si = wi mod 32

The rotation values are permuted in each round. Again the permutation ρ is
used, but in reverse sequence.

Round 1 Round 2 Round 3 Round 4

ρ3 ρ2 ρ1 id

After the last step of the state update transformation, the initial value and the
output values of the last step are combined, resulting in the final value of one
iteration known as Davies-Meyer hash construction (feed forward). In detail, the
feed forward is a word-wise modular addition of the IV and the output of the
state update transformation. The result is the final hash value or the initial value
for the next message block.

3 Our Attack Strategy

In the following, we present the attack strategy we use to improve the colli-
sion attack on PKC-hash. It is based on recent results in cryptanalysis of hash
functions [6,7,8]. The attack can be basically described as follows.

1. Find a characteristic for the hash function that holds with high probability
for the last 3 rounds of the hash function.

2. Find a characteristic (not necessary with high probability) for the first round.
3. Use basic message modification techniques to fulfill all conditions for the

characteristic in the first round.
4. Use random trials to find values for the message bits such that the message

also follows the characteristic in the last 3 rounds.

Observation 1 For the first steps the probability of the characteristic is not im-
portant, because the conditions that have to be satisfied such that the character-
istic holds can be easily fulfilled for these steps using basic message modification
techniques [6,8].

Observation 2 Multi-block messages can be used to turn related near-collisions
into a collision.

Since Biham and Chen observed in [1] that near-collisions are easier to find than
collisions, we will use Observation 2 in Section 4 to improve our attack.

12 Florian Mendel, Norbert Pramstaller, and Christian Rechberger

To find a characteristic which holds with high probability, we exploit the
structure of the hash function. Considering the design of the step function we
made the following observations. We use these observations in Section 4 to con-
struct a characteristic which holds with high probability.

Observation 3 The rotation values sj of the state update transformation are
dependent on the values of the expanded message words.

This gives the attacker more degrees of freedom for constructing a good charac-
teristic. The observation can be used to improve the probability of the charac-
teristic significantly, see Section 4.

Observation 4 Due to the message-dependent rotation values the step function
is not invertible.

This means we could try to construct collisions by using different wj , w
′
j and

sj , s
′
j which have the property that Bj+1 = B′

j+1. However, the complexity for
constructing a collision with this method is too high for a reasonable attack.

Observation 5 The function f can either preserve or absorb an input differ-
ence. This gives the attacker more flexibility for constructing the characteristic.

Observation 6 Only the expanded message word w and the output of the f
function is used to update state variable B in each step.

From Observation 5 it follows that differences in the state variables can be
canceled by using the differential properties of the f function. In particular,
a difference in Bj+1 introduced in step j through a difference in the expanded
message word wj (referred to as disturbance) can be canceled within a few steps.

The number of steps needed for canceling a single disturbance depends on
the function f and the rotation values sj of the step function. While we need at
least 5 steps to cancel a disturbance in round 3, we need at least 6 steps to cancel
a disturbance in round 1, 2 and 4. This is due to the fact that we cannot always
block the input differences of f0 and f1. A detailed analysis of the differential
properties of f0, f1 and f2 is given in [2]. In Appendix A, we give the local
collisions and related probabilities for each round of the hash function.

However, to get a characteristic that holds with high probability, we have
to minimize the number of disturbances in each round. This can be done by
minimizing the number of differences in the expanded message.

Observation 7 The minimal number of differences in the expanded message
words is 2 for each round (8 in total).

This follows from the inspection of the linear message expansion, which uses 16
input message words to generate 24 expanded message words. A permutation of
these 24 words is used in each round of the hash function and hence the number
of disturbances in each round is the same. Based on these observations, we will
construct a characteristic which holds with high probability in Section 4.

Improved Collision Attack on the Hash Function Proposed at PKC’98 13

4 The New Improved Collision Attack

In this section, we describe the characteristic we use for the improved collision
attack on PKC-hash. Before presenting the characteristic in Section 4.2 and
Section 4.3, we briefly describe how the characteristic has been obtained in the
following section.

4.1 Finding a good Characteristic

In the past, it has been shown that it is easier to find near-collision than collision
within a hash function. Since two message blocks can be used to turn a near-
collision into a collision (see Observation 2), we will consider near-collisions in the
analysis as well. Note that the attacker has full control on the expanded message
words in the first 16 steps of the hash function. Hence, it is easy to find a message
that follows the characteristic in the first 16 steps, because the conditions for
the first 16 steps can be fulfilled by using basic message modification techniques.
Therefore, only the probability of the characteristic in the remaining 80 steps
determines the attack complexity. In order to keep the complexity low, we want
to have as few disturbances in the last 80 steps as possible. This can be achieved
by choosing the differences in the message words in such a way that there are
only a few differences in the expanded message. We have found the following 4
options which have only 2 differences in the expanded message words in each
round. Note that 2 is a matching lower bound for the number of differences in
the expanded message words in each round (see Observation 7).

∆w8,j = ∆w13,j (1)
∆w9,j = ∆w14,j (2)

∆w10,j = ∆w15,j (3)
∆w11,j = ∆w20,(j+1) mod 32 (4)

Out of this four cases, we select option (2) with j = 32, i.e. ∆w9 = ∆w14 =
80000000 to maximize the probability of the characteristic. By choosing the
difference in the MSB no conditions are needed for the modular addition, which
decreases the attack complexity. This is due to the fact that modular addition
behaves like an XOR for differences in the MSB.

Furthermore, we reduce the number of local collisions in round 1, 2, and 4
from the expected value of 2 to 1 by selecting option (2). Therefore, the probabil-
ity of our characteristic is much higher than the probability of the characteristics
used in [2] and [3]. On the one hand, we increase the probability of the char-
acteristic remarkably, but on the other hand this leads to a nonzero difference
in the state variables after the last step of the state update transformation (a
near-collision). However, as it will be described in Section 6, we can use a second
message block to turn this near-collision into a collision without significantly
increasing the attack complexity.

14 Florian Mendel, Norbert Pramstaller, and Christian Rechberger

4.2 Characteristic for the First Round

The characteristic for the first round (24 steps) has probability 2−7.8. However,
all the conditions for the first 16 steps can be fulfilled by basic message modifi-
cation techniques. Since the characteristic has probability 1 for steps 16-23 (see
Table 2), the probability for the characteristic in the first round is always 1.
Therefore, the attack complexity only depends on the probability of the char-
acteristic in the last 3 rounds. In Section 4.3, we give a characteristic for the
remaining 3 rounds which holds with high probability. The characteristic for the
first round of the hash function is given in Table 2. To improve readability, we
use hexadecimal notation and denote the zero difference by ‘0’.

Table 2. Characteristic for the first round of PKC-hash.

step ∆A ∆B ∆C ∆D ∆E ∆w s probability

0 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

8 0 0 0 0 0 0 - 1
9 0 0 0 0 0 80000000 22 1
10 0 00200000 0 0 0 0 0 1/4
11 0 00200000 80000000 0 0 0 - 3/8
12 0 0 80000000 80000000 0 0 - 3/4
13 0 0 0 80000000 80000000 0 - 1/4
14 80000000 0 0 0 80000000 80000000 - 1/2
15 80000000 0 0 0 0 0 - 1/2
16 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

23 0 0 0 0 0 0 - 1

0 0 0 0 0 2−7.8

4.3 Characteristic for the Last 3 Rounds

Since all the conditions on the characteristic in the first round can be easily
fulfilled, only the probability of the characteristic in the last 3 rounds deter-
mines the attack complexity. Therefore, we are searching for a characteristic
which holds with high probability in the last 3 rounds. In this section, we give a
characteristic for the last 3 rounds which has probability of 2−20.5. To maximize
the probability of the characteristic, we use the fact that the rotation values of
PKC-hash are dependent on the expanded message words (see Observation 3).
The rotation values can be set to arbitrary values by setting additional condi-
tions on the expanded message words. The characteristic and necessary rotation
values are given Table 3. Note that we do not count the conditions for the rota-
tion values to the attack complexity, since these can be easily fulfilled in advance
by fixing the values of the expanded message words.

Improved Collision Attack on the Hash Function Proposed at PKC’98 15

Table 3. Characteristic for the last 3 rounds (round 2-4) of PKC-hash.

step ∆A ∆B ∆C ∆D ∆E ∆w s probability

24 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

44 0 0 0 0 0 0 - 1
45 0 0 0 0 0 80000000 0 1
46 0 80000000 0 0 0 80000000 - 1
47 0 0 00000200 0 0 0 - 5/8
48 0 0 0 00000200 0 0 - 1/2
49 0 0 0 0 00000200 80000000 0 1/2
50 00000200 80000000 0 0 0 0 - 1/4
51 0 0 00000200 0 0 0 - 1/2
52 0 0 0 00000200 0 0 - 1/2
53 0 0 0 0 00000200 0 - 1/2
54 00000200 0 0 0 0 0 - 1/2
55 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

61 0 0 0 0 0 0 - 1
62 0 0 0 0 0 80000000 0 1
63 0 80000000 0 0 0 0 - 1/2
64 0 0 00000200 0 0 0 - 1/2
65 0 0 0 00000200 0 0 - 1/2
66 0 0 0 0 00000200 0 - 1/2
67 00000200 0 0 0 0 0 - 1/2
68 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

74 0 0 0 0 0 0 - 1
75 0 0 0 0 0 80000000 0 1
76 0 80000000 0 0 0 0 10 1
77 0 00000200 00000200 0 0 0 - 3/8
78 0 0 00080000 00000200 0 0 - 25/64
79 0 0 0 00080000 00000200 0 - 25/64
80 00000200 0 0 0 00080000 0 - 25/64
81 00080000 0 0 0 0 0 - 5/8
82 0 0 0 0 0 0 - 1
...

...
...

...
...

...
...

...
...

92 0 0 0 0 0 0 - 1
93 0 0 0 0 0 80000000 0 1
94 0 80000000 0 0 0 0 0 1
95 0 80000000 00000200 0 0 0 0 5/8

0 80000000 00000200 00000200 0 2−20.5

16 Florian Mendel, Norbert Pramstaller, and Christian Rechberger

5 A Near-Collision Producing Characteristic

The characteristic for the first round (Table 2) and the characteristic for the
remaining 3 rounds (Table 3) can be combined to construct a near-collision
in one iteration of the hash function. Using the most naive method (random
trials) to find a message following the characteristic in the last 80 steps, we
get a complexity close to 220.5 hash computations. Hence, a near-collision can be
found in PKC-hash with complexity about 220.5 hash computations. By using two
message blocks, we can turn this near-collision into a collision. This is described
in detail in the following section.

6 Collision Producing Characteristic

In [8], Wang et al. show how a two-block message can be used to construct a
collision for MD5. The main idea is that a second message block can be used
to turn a near-collision after the first block into a collision after feed forward
of the second block with a certain probability. Therefore, a slightly modified
characteristic is required in the first round of the second block. This is depicted
in Fig. 2.

 state update

msg expansion

 state update

msg expansion

∆M1 ∆M2

∆h0 = 0

24 2496 96

∆24 = 0 ∆24 = 0∆96 = δ ∆96 = δ

∆h2 = 0

∆h1 = δ

Fig. 2. A two-block collision in the hash function.

While we use a characteristic of the form:

∆h0(0, 0, 0, 0, 0) 7→ ∆24(0, 0, 0, 0, 0) 7→ ∆96(0, 231, 29, 29, 0) (5)

in the first message block, we need a characteristic of the form:

∆h1(0, 231, 29, 29, 0) 7→ ∆24(0, 0, 0, 0, 0) 7→ ∆96(0, 231, 29, 29, 0) (6)

in the second block. Constructing such a characteristic is quite easy in our par-
ticular case. Due to the weak design of the step function we can block differences
in the state variables in each step of the hash function depending on the differ-
ential properties of the f function (see Observation 5). Hence, we can cancel all
differences in the state variables at the beginning of the second block within a
few steps in the first round. Note that the differential behavior of the f function

Improved Collision Attack on the Hash Function Proposed at PKC’98 17

depends on the values of the state variables and we cannot control it in the first
steps of the second block. This is due to the fact that the initial value of the
second block is fixed by calculating the first block. Therefore, in principle the
characteristic for the second block cannot be fixed until the first block has been
calculated.

However, in practice due to the large degree of freedom we have in our col-
lision attack, we can use the same characteristic in the second block as we use
in the first block and cancel all differences in the state variables in the first 9
steps of the second block without affecting any of the conditions of the original
characteristic.

Note that the probability of the characteristic of the second message block
for the first 16 steps can again be neglected. Hence, the probability of the second
block is also 220.5. By combining both message blocks we can construct a collision
after the feed forward of the second block with a certain probability. In detail,
we can find a two message block collision for PKC-hash with probability close
to 2−22.85. A detailed analysis is given the following section.

7 Overall Collision Attack Complexity

The complexity of the collision attack only depends on the probability of the
characteristic in the last 3 rounds of both message blocks. Note that some ad-
ditional conditions have to be met to guarantee that all differences cancel out
in the feed forward after the second block. Therefore, the second block has a
slightly lower probability than the first block.

As shown in Section 4, the characteristic for the last 3 rounds has a proba-
bility of 2−20.5 and therefore a straightforward implementation of the collision-
search algorithm would yield a complexity of about 220.5 hash computations for
the first block and 220.5 · 22 hash computations for the second block. In order to
obtain a collision after the feed-forward of the second block, the following two
conditions on the state variables at the output of the second block have to be
satisfied

C0,10 ⊕ C81,10 = 1
D0,10 ⊕D81,10 = 1

to guarantee that all differences cancel in the feed forward of the second block.
Since the third difference is in the MSB (see Equation (6)), the difference cancels
out with probability 1 and no condition is needed. Hence, the second block has a
complexity of 220.5 ·22 hash computations and the final attack complexity would
be 220.5 + 220.5 · 22 = 222.85 hash computations to construct a collision in the
hash function.

However, there are several simple methods to improve the efficiency of the
attack. In [9], Wang et al. use a so-called early-stop technique to improve the
attack complexity for SHA-0 by a factor of 8. The main idea is that only a few
steps have to be computed after the basic message modification to check whether

18 Florian Mendel, Norbert Pramstaller, and Christian Rechberger

or not the message follows the characteristic. If the message does not follow
the characteristic the collision-search algorithm aborts the current computation
and starts again with a new message. It is clear that this reduces the attack
complexity. In our case, we can improve the attack complexity by a factor of
8/3, since we have to calculate on average 36 steps out of 96 steps to check
whether the chosen message follows the characteristic or not.

Furthermore, it has been shown recently in [4] that it is useful to look at all
possible characteristics in the second part of the attack (the part after message
modification, i.e. round 2-4) to get an accurate estimation of the attack com-
plexity. Since we use random trials to find a message following the characteristic
after the first round, we do not need to stick to the characteristic given in Sec-
tion 4.3. The only constraint we have is that there has to be a certain output
difference after step 96. Hence, other characteristics (with lower probability) for
the last 3 rounds do contribute as well. Therefore, the effective attack complex-
ity is slightly lower. We have done this analysis for the third round of the hash
function and have achieved an improvement by a factor of about 2. Note that
we have fixed additional rotation values in round 3 to maximize that factor.

Hence, we can update the final attack complexity to 220.5−2.4 hash compu-
tations for the first message block and 222.5−2.4 for the second block. Therefore,
the final attack complexity is 220.5−2.4 + 222.5−2.4 ≈ 220.5 hash computations.

8 A Colliding Message for the Hash Function

Applying our improved collision attack to PKC-hash, we can construct a two
message block collision with a complexity of 220.5 hash computations. The col-
liding message pair is given in Table 4. Note that h0 is the initial value, h1 is
the intermediate hash value after the first block, and h2 is the final hash value
after the second block (see Fig. 2 in Section 4).

Table 4. Colliding message pair for the hash function.

h0 67452301 EFCDAB89 98BADCEF 10325476 C3D2E1F0

M0
210A7ED6 69EC9B20 71E79487 ECDB11C0 CCE394EA EBA83742 44A26AC0 9A644570
E78BA0F0 D0CD3794 AC8A28BB 29303480 F9A7F632 0F886620 28E118E9 39E4CF77

M ′
0

210A7ED6 69EC9B20 71E79487 ECDB11C0 CCE394EA EBA83742 44A26AC0 9A644570
E78BA0F0 50CD3794 AC8A28BB 29303480 F9A7F632 0F886620 A8E118E9 39E4CF77

∆M0
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

h1 E1A286A2 5E619A9E F341C16E 8A3B4927 AFCFF8D2

h′
1 E1A286A2 DE619A9E F341C36E 8A3B4B27 AFCFF8D2

∆h1 00000000 80000000 00000200 00000200 00000000

M1
89221C96 237E9860 76346FC0 C5F4F3E0 B66B5EAA D025B4C9 BE742420 E1362EC6
084DB7A0 3F231F9A D883A03A AFCB10A0 CDA285EE 24630660 BE9599C0 F6F63E65

M ′
1

89221C96 237E9860 76346FC0 C5F4F3E0 B66B5EAA D025B4C9 BE742420 E1362EC6
084DB7A0 BF231F9A D883A03A AFCB10A0 CDA285EE 24630660 3E9599C0 F6F63E65

∆M1
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
80000000 00000000 00000000 00000000 00000000 00000000 80000000 00000000

h2 B141281F FC5A987C FB473C39 A9864410 21ACD08E

h′
2 B141281F FC5A987C FB473C39 A9864410 21ACD08E

Improved Collision Attack on the Hash Function Proposed at PKC’98 19

9 Conclusion

In this article, we used recent results in the cryptanalysis of hash functions to
improve the collision attack on the hash function proposed by Shin et al. at
PCK’98. We have shown that a collision can be found in the hash function with
a complexity below 220.5 hash computations. In detail, we improve the results
of Chang et al. [2] with the new collision attack by a factor of 216.5 using a new
differential characteristic and exploiting basic message modification techniques
and multi-block collisions.

We point out that the weakness of the hash function comes from the message-
dependent rotation values and the weak design of step function. Firstly, the
degrees of freedom the attacker has to choose the rotation values can be used
to increase the probability of the attack. Secondly, the weak design of the step
function facilitates high-probability multi-block collisions. Differences in state
variables in the first step can easily be canceled within a few steps using the
differential properties of the f function.

Hence, we conclude that the Boolean functions used in the state update
transformation have to be chosen carefully and using only the expanded mes-
sage words and the output of the f function to update the state variables is
insufficient. Furthermore, rotation values depending on the message words can
reduce the security of hash functions.

Acknowledgements

The authors wish to thank Vincent Rijmen, and the anonymous referees for
useful comments and discussions.

References

1. Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K. Franklin, edi-
tor, Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, vol-
ume 3152 of LNCS, pages 290–305. Springer, 2004.

2. Donghoon Chang, Jaechul Sung, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Full-
Round Differential Attack on the Original Version of the Hash Function Proposed at
PKC’98. In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in Cryptog-
raphy, 9th Annual International Workshop, SAC 2002, St. John’s, Newfoundland,
Canada, August 15-16, 2002. Revised Papers, volume 2595 of Lecture Notes in Com-
puter Science, pages 160–174. Springer, 2002.

3. Daewan Han, Sangwoo Park, and Seongtaek Chee. Cryptanalysis of the Modified
Version of the Hash Function Proposed at PKC’98. In Joan Daemen and Vincent
Rijmen, editors, Fast Software Encryption, 9th International Workshop, FSE 2002,
Leuven, Belgium, February 4-6, 2002, Revised Papers, volume 2365 of Lecture Notes
in Computer Science, pages 252–262. Springer, 2002.

20 Florian Mendel, Norbert Pramstaller, and Christian Rechberger

4. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen.
The Impact of Carries on the Complexity of Collision Attacks on SHA-1. In Matt
Robshaw, editor, Fast Software Encryption, 13th International Workshop, FSE
2006, Graz, Austria, March 15-17, 2006, Pre-Proceedings, 2006.

5. Sang Uk Shin, Kyung Hyune Rhee, Dae-Hyun Ryu, and Sangjin Lee. A New Hash
Function Based on MDx-Family and Its Application to MAC. In Hideki Imai and
Yuliang Zheng, editors, Public Key Cryptography, First International Workshop on
Practice and Theory in Public Key Cryptography, PKC ’98, Pacifico Yokohama,
Japan, February 5-6, 1998, Proceedings, volume 1431 of Lecture Notes in Computer
Science, pages 234–246. Springer, 1998.

6. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanaly-
sis of the Hash Functions MD4 and RIPEMD. In Ronald Cramer, editor, Advances
in Cryptology - EUROCRYPT 2005: 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005. Proceedings, volume 3494 of LNCS, pages 1–18. Springer, 2005.

7. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-
1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, 25th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 14-
18, 2005, Proceedings, volume 3621 of LNCS, pages 17–36. Springer, 2005.

8. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005: 24th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Aarhus, Denmark, May 22-26, 2005. Proceedings, volume 3494 of LNCS,
pages 19–35. Springer, 2005.

9. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks
on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005,
25th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of LNCS, pages 1–16. Springer, 2005.

A Local Collisions

In this section, we will give the best local collision for each round of the PKC-hash.
Since f1 is used in round 2 and round 4 the local collisions are equal for both
rounds.

Table 5. Local Collision in Round 1 (f0).

step ∆A ∆B ∆C ∆D ∆E ∆w s probability

j 0 0 0 0 0 80000000 0 1
j+1 0 80000000 0 0 0 0 0 1/2
j+2 0 80000000 00000200 0 0 0 - 3/8
j+3 0 0 00000200 00000200 0 0 - 3/4
j+4 0 0 0 00000200 00000200 0 - 1/4
j+5 00000200 0 0 0 00000200 0 - 1/2
j+6 00000200 0 0 0 0 0 - 1/2

0 0 0 0 0 2−6.8

Improved Collision Attack on the Hash Function Proposed at PKC’98 21

Table 6. Local Collision in Round 2/4 (f1).

step ∆A ∆B ∆C ∆D ∆E ∆w s probability

j 0 0 0 0 0 80000000 0 1
j+1 0 80000000 0 0 0 0 10 1
j+2 0 00000200 00000200 0 0 0 - 3/8
j+3 0 0 00080000 00000200 0 0 - 25/64
j+4 0 0 0 00080000 00000200 0 - 25/64
j+5 00000200 0 0 0 00080000 0 - 25/64
j+6 00080000 0 0 0 0 0 - 5/8

0 0 0 0 0 2−7.2

Table 7. Local Collision in Round 3 (f2).

step ∆A ∆B ∆C ∆D ∆E ∆w s probability

j 0 0 0 0 0 80000000 0 1
j+1 0 80000000 0 0 0 0 - 1/2
j+2 0 0 00000200 0 0 0 - 1/2
j+3 0 0 0 00000200 0 0 - 1/2
j+4 0 0 0 0 00000200 0 - 1/2
j+5 00000200 0 0 0 0 0 - 1/2

0 0 0 0 0 2−5

	Introduction
	Description of the Hash Function proposed at PKC'98
	Our Attack Strategy
	The New Improved Collision Attack
	Finding a good Characteristic
	Characteristic for the First Round
	Characteristic for the Last 3 Rounds

	A Near-Collision Producing Characteristic
	Collision Producing Characteristic
	Overall Collision Attack Complexity
	A Colliding Message for the Hash Function
	Conclusion
	Local Collisions

